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Dispersive estimates for Schrodinger equations in
dimension one

By

HArRUYA MI1ZzUTANT*

Abstract

We study the time decay of scattering solutions to one dimensional Schrédinger equations
and prove a weighted dispersive estimate with stronger time decay than the case of unweighted
estimates. Furthermore an asymptotic expansion in time of scattering solutions is given.

§1. Introduction

This report is concerned with the time decay of scattering solutions e~ P,.u to
Schrodinger equations

10yu = Hu,
where
d2
H:—@—FV(:C), reR

is a one dimensional Schrodinger operator and P,. is the projection onto the absolutely
continuous subspace for H. We assume that V(z) is real valued and V € L} at least,
where LL is the weighted L? space:

L = {f [ (&) f € LPR)}, [fllpe = |[{z)" fll o
(@) :=+/1+2[2, 1<p< oo, yER.

Under the above conditions, H is self-adjoint on L?(R) with form domain H!(R) and
the absolutely continuous spectrum of H is the half line [0, 00), the singular continuous
spectrum of H is absent, and the eigenvalues of H are strictly negative.
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Let Hy = —%. It is well known that the propagator e o has the following
asymptotic expansion in B(L2, L? ) for sufficiently large s > 0:

e — 730 | 447 3C + -, t — o0,

where Cj_; are given by

<z4mwﬁ=755@5;40n—mfw@m%

and B(X,Y) denotes the Banach spaces of bounded operators form X to Y. The
asymptotic expansion of e~ as t — oo in B(L?, L%,) was proved by Murata [14],
under the assumption that |V (z)| < C(x)~ 7 for sufficiently large o > 7. In higher
dimension, such expansions were proved by [11, 10, 14]. In this paper we prove an
asymptotic expansion of e *H P, in B(L., L>,) as t — co.

In order to state our results, we introduce a few notations. The Jost functions
f+ (A, ) are the solutions to the equation

—f"\ )+ V() f(Nx) =A% f(\x), MNzeR
satisfying following asymptotic conditions
|fe(\, z) — e = 0 as x — Foo0.

It is well known (see [3]) that if V € Li, then the Jost functions are uniquely defined
for all A,z € R. We denote by W (A) their Wronskian

W) = fr(0) 0uf (A 2) — 0uf () f- ().
W () is independent of z and does not vanish for A # 0.

Definition 1.1. We say that the potential V' is of generic type if W (0) # 0 and
is of exceptional type if W(0) = 0. We also say that zero is a resonance of H if the
potential V' is of exceptional type.

Theorem 1.2.  Let m be a positive integer. Suppose that V € L}, and V is of
generic type, or V &€ L%m+2 and V is of exceptional type. Let

2m —1 if V s of generic type,
S =
2m if V' is of exceptional type.

(1.1) 1) ™" (€™ Pac = Pv-1)ul|pee < Ct27™||(2) ul| 1
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for all t > 0, where Pp,_1 is given by

m—1

Ppoyi=>» t

J=0

N

—iC;_ .

Furthermore, the coefficients Cj_1 satisfy the following:
(1) If V is of generic type, then C_y =0, rankC;_; < 2j and

) vl e < Ol Mull ey § = 1,2, m — 1.
(2) If V is of exceptional type, then rank C;_; < 2j+1 and
—2j 2 .
K2} Cj-1ull e < Cll{2) ullpe, j=0,1,..m — L.

Remark. In exceptional case, we can compute C'_; explicitly:

C_ju = \/%@, fo) fos

where fj is a non trivial bounded solution to the equation H f = 0 normalized as

tim S(Ufol@)? + o)) = 1.

T ——400

Dispersive estimates for Schrodinger equations have been studied by many authors.
L' — L™ estimates:

4 _ 4
(1.2) le™ " Pocul| o < CPI7%Jul| 11,

was proved by [12] under the suitable decay and regularity assumptions for V. Later
(1.2) has been proved by [6, 7, 9, 15, 17, 18, 19, 21, 22] under various assumptions on the
potential V and the assumption that zero is neither an eigenvalue nor a resonance of H.
When zero is either an eigenvalue or a resonance of H, similar estimates were studied
by [4, 23]. Such estimates are very important since (1.2) implies Strichartz estimates
which can be applied to prove well-posedness for nonlinear Schrodinger equations. The
time decay t~%2 in d = 1 is not integrable at infinity and is unsuitable for applying to
NLS. We hence are interested in a dispersive estimate whose time decay is integrable at
infinity. Goldberg [8] also proved (1.1) with m = 1 under the assumptions that V € L}
and V is of generic type, or V € L} and V is of exceptional type. Compared to his
results, our assumptions on the potential V' (x), which are used in Theorem 1.2, are
weaker.

§ 2. Sketch of the proof
To prove Theorem 1.2, we use the representation

. 1 2
(7P, uv) = — / e TN NR(A? + i0)u, v)dA,
R
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where we denote an extended resolvent liIilO(H — (A +ie)?) ! by R(A? +i0). We split
E—

the propagator into high and low energy parts. For the high energy part, the following

proposition holds.

Proposition 2.1.  Suppose V € LY, N € N and set \g := ||V||L11v' Let x be an
even smooth cut-off function such that x(A) =1 for |A\| < Ao and x(X\) = 0 for |A\| > 2X,.
Then

()N e ™ (1 = x(VI))ul | oo < Ct 2 N][(2)Vul| 1, w € LP N0 Ly

for all t > 0.

Proof. Set x(A\) := 1 — x(A). Let n be an even smooth function on R such that
n(A) = 1if |A]| <1, n(A) =0if [A| > 2 and let x(A) := n(A\/L)x(A\) for L > 1. Using
the Born series expansion of R(\? + i0), we have

1°° itaasn o xn(N)
itH - NN T o |z x;| XL
) = 53 g e )
u(zo) H V(zj)v(Tnt1)dAdzg...dxp 1.
j=1

Let us consider the oscillatory integral
O(t,a) = / eminrian Xe) gy
Y R )\’I’L )
Using integration by parts and Fourier inversion formula, we have
B(t,a)] < O 2 VIFBY (@R (MA )|

N
< CtEN Y Jal Y HIFAS R OA )
k=0

where Py = %% and F is the Fourier transform with respect to A. A direct computation

yields

sup sup ||.7:8'§(>ZL()\))\_n_N)||L1 < C(n+2N)N)\a”_N
L>10<k<N

for n > 0. Since

n n
> e — x| < H 1+ [zj),
=0 i=1
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we conclude that

sup [(e" " v (VH)u,v)|
L>1

oo
< Ct7 3NN 2 NSV @+ [ )YV I+ )Nl 13+ )NV oll

n=0

_1_ N N
< Ct72 N (@) Ml g [[(2) ol

for all ¢ > 0. O

§2.1. Jost Functions

Using the Jost functions and their Wronskian, the integral kernel of the resolvent
R(A\? £ 0) is given by

fr(EAYf (A 2) L FeEA D (EAY)
WEy e Wy e

In this subsection, we collect results on the Jost functions fi (A, x) needed later. fi(\,x)
and fi(—A\,z) are independent for A # 0 since their Wronskian

WIS ), (=X = frN ) - Oufr (=N x) — O fyr (N @) - fr (=X, )
= lim [P (—iN)e A% — jAeATe AT

r—+00

— 2\ £0.
Similarly W[f_(A,-), f-(=A, )] = 2iA. These imply the relations
TOVF- () = RiN) 5 () + F1 (A 2),
TN (A ) = Ro(A) - (A 2) + f-(=A @),

where T'(\), R1(A) and Ra(\) are called the transmission and reflection coefficients,
respectively. It is well known that

(2.1)

TP+ RV =1, j=1,2
Furthermore the following holds (see [3], [13] and [1]).

Lemma 2.2. (1) Suppose that V is of generic type and V € L, N > 1. Then
T, Ry and Ry € CN"Y(R) and for 1 <k < N — 1,

(2.2) OKT (V)] + [05Ri (V)| + |05 Ra(N)] < C (N, AR

Furthermore, we have
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(2) Suppose that V is of exceptional type and V € L, N > 2. Then T, Ry and
Ry € CN72(R) and (2.2) holds for 1 < k < N — 2. Furthermore, as A\ — 0, we have

2a
T(\) = Tra? +o(1),
1 — a?
Rl()‘) = 1+a2 +O(1)7
a? -1
RQ()‘) = 1—|—CL2 +0(1)7

with a ;== lim f4(0,z) # 0.
z——00

The following inequality was proved by Artbazar and Yajima [1]:
(2.3) 0% fr (A, 2)| < Cl2)*(1 + max(Fz,0)), (A, z) € R%
for 0 < k < N — 1. Using Lemma 2.2, we can improve the above estimates.

Lemma 2.3. (1) Suppose that V is of generic type and V € LY, N > 1. Then

XTI Se(N2)| < Cla)f, A#£0, z€R,
for0 <k < N —1. If in addition N > 2, then
05£2(0,2) < Cla)", @ €R,

for1<k<N—1 and k odd.
(2) Suppose that V is of exceptional type and V € LY, N > 2, then

05 fo(\,x)) < Cl@)*, (N z) e R2
for0 <k <N -2.

Lemma 2.3 follows from (2.1), (2.3) and Lemma 2.2, and we omit the proof.
We next study Fourier properties of the Jost functions. Set

Bi(&,x) = /R 2 (my (N, ) — 1)d),

where m4 (A, ) 1= eT%f (X, z) are the modified Jost functions. Then the function
By (€, x) satisfies the Marchenko equation:

00 & 00
(2.4) B () :/ V(O’)d0'+/ d¢ V(o)B+(¢,0)do

+£ 0 z+€—(¢

and B_({,x) also satisfies a corresponding equation. It is well known (see [3]) that if
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V € Li, then the function B, (&, z) is well defined for € > 0, # € R and satisfies the
following estimates

(2.5) By (&) <’z +¢), £20, z€R,

where n(x) = f;o |V (o)|do, v(x) = fmoo (o —z)|V(0)|do. B_(&,x) also satisfies a similar
inequalities. Since «y(x) is dominated by ||V||L% for all x > 0, (2.5) implies ||BL (-, )| ;1
is bounded for x > 0 with the bound depending on ||V||L%. Similarly ||B_(-,2)||,. is
bounded for x < 0. Iterating Marchenko equations, we can prove the following (see [2]).

Lemma 2.4. Let N € N, N > 1 and suppose V. € L. Then the functions
B (&, x) satisfy the estimates

(2.6) 1B=(,2)|lpy, | < C(1+max(F2,0)", z€R,
where C' depends on HVHL}v'

The following Lemma follows from Lemma 2.4 and the representation
W(A) =—2i\+ / Vie)my (A o)do.
R

Lemma 2.5. Let x € C§°(R).
(1) Let N € N, N > 1 and assume that V € LY and V is of generic type, then

X
F(W) € L}V—l'

(2) Let N € N, N > 2 and assume that V € L}V and V' is of exceptional type, then

AX

Here W () is the Wronskian of the Jost functions.
Lemma 2.4, Lemma 2.5 and (2.1) imply the following.
Lemma 2.6. Let x € C°(R). Suppose that V € Ly, N > 1. Then

(2.7) [F) =), < C@)™ (14 max(Fz,0), = €R.

1

Furthermore,
(1) If V is of generic type, then
[FOCT O feCaDlly, | <C@ !, zeRr.

(2) If V is of exceptional type and V € L, N > 2, then

[FOXO) e a)llpy | <C@)™ 72, zeR.
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§2.2. The Low Energy Estimates

In this subsection, we prove the following Proposition to complete the proof of
Theorem 1.2.

Proposition 2.7. Let m € N and let x be an even smooth cut-off function such
that x(A\) = 1 close to zero. Suppose that V. € L and V is of generic type, or
VeLi, ,andV is of exceptional type. Let Pp,_1 as in Theorem 1.2. Let

2m —1 if V is of generic type,
S =
2m if V is of exceptional type.

Then
() " (e X (VH) Pac — Pro—1)tl| o < Ct727™|[(2) || 14

for all t > 0.

Proof. We consider the generic case. The proof of the exceptional case is similar
and we omit the proof. Set

K\ z,y)

K()\,:L',y) = T()‘)f—l-()‘vy)f—()‘vaj)v G()‘axvy) = f

We start from the representation

(e" "y (VH)P,ou,v) = i / ‘9_1"»‘2)\)(()\)(R()\2 +i0)u, v)dA
i Jr

1
_27'(' R2

([ G0ty
R
where G(\, z,y) denotes the kernel of —2iR(A\? 4 40) and is given by

- G\, z, for x <y,
(2.8) G\ @,y) = ) fore <y
G\ y,x) forx>uy.

Consider the integral

1 2
(2.9) I(t,G) := — / e N A (NG, z,y)d),
27 R
for + < y. The proof for the case z > y is analogous. Integrating by parts (2.9), we
have
1 y2
(2.10) I(t,G) e (XN G\, z,y))dA.

" it g
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The case m = 1: it suffice to prove that
I(t,G)| < Ct 3 (z)(y), = <.
Using the Fourier inversion formula, we obtain
1(t.Q)] < Ct™3||(Fox ()G )l

for all t > 0 and x < y, where F is the Fourier transform with respect to A\. By Young’s
inequality, Lemma 2.5 (1) and Lemma 2.6, we have

[(FOXG) (s 2, y)llp < Cla)(y), w <y

and this implies

1(t,G)| < Ct~ 3 (z)(y)

for x < y.
The case m > 2: Applying the stationary phase theorem to the integral (2.10), we
have
1 m—1 t___ 2j1 R
Z (O T1G)(0,,y) + 72 S (1, G)
Vmi —~ (j—1)!(4
7j=1
with

[Sm—1(t, G)] < CIFO"XG)(, 2, 9)] 1
<C@)™ Hy)™ <y

For the last inequality, we used Lemma 2.5 (1) and Lemma 2.6. We now define the
coefficients C;_;: since T'(0) = 0, we have

@7 6)0,2,1) = 5O K) 0..9)
Considering the fact that
OV K)(0,2,y) = (07 K)(0,y,7), 2,y €R, j=1,2,...,m
we define Cj_; and P,,_; by

Ci_yu(x) := L / (07 KN (0, 2, y)u(y)dy, = € R,

VAamijl(4i) Jr
m—1

Pm—l = Z t_%_jCj_l.
7=0

(2.11)
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Then we have

() 2™ (e N (VH ) Pag — Prp1 )ul| poe < CE 277 |[(2)*™ M| 1.

By the definition of Cj_; and Corollary 2.3 (1), we can see that

rank C;_; < 27,

and there exists C' > 0 such that

941 2j—1
{z) " Cimaull o < Cl@)™ a1

In particular,

C_l =0.

These complete the proof. O
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