Dispersive estimates for Schrödinger equations in dimension one

By

HARUYA MIZUTANI*

Abstract

We study the time decay of scattering solutions to one dimensional Schrödinger equations and prove a weighted dispersive estimate with stronger time decay than the case of unweighted estimates. Furthermore an asymptotic expansion in time of scattering solutions is given.

§ 1. Introduction

This report is concerned with the time decay of scattering solutions $e^{-itH}P_{ac}u$ to Schrödinger equations

$$i\partial_t u = Hu$$
,

where

$$H = -\frac{d^2}{dx^2} + V(x), \ x \in \mathbb{R}$$

is a one dimensional Schrödinger operator and P_{ac} is the projection onto the absolutely continuous subspace for H. We assume that V(x) is real valued and $V \in L_1^1$ at least, where L_{γ}^p is the weighted L^p space:

$$L_{\gamma}^{p} := \{ f \mid \langle x \rangle^{\gamma} f \in L^{p}(\mathbb{R}) \}, \ ||f||_{L_{\gamma}^{p}} := ||\langle x \rangle^{\gamma} f||_{L^{p}},$$
$$\langle x \rangle := \sqrt{1 + |x|^{2}}, \ 1 \le p \le \infty, \ \gamma \in \mathbb{R}.$$

Under the above conditions, H is self-adjoint on $L^2(\mathbb{R})$ with form domain $H^1(\mathbb{R})$ and the absolutely continuous spectrum of H is the half line $[0, \infty)$, the singular continuous spectrum of H is absent, and the eigenvalues of H are strictly negative.

Received March 28, 2009. Revised June 30, 2009.

2000 Mathematics Subject Classification(s): Primary 34E05; Secondary 35J10

Key Words: Dispersive estimates, Schrödinger equation:

Partly supported by JSPS Research Fellowships for Young Scientists

*Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku Tokyo 153-8914, Japan.

e-mail: mizutani@ms.u-tokyo.ac.jp

^{© 2010} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Let $H_0 = -\frac{d^2}{dx^2}$. It is well known that the propagator e^{-itH_0} has the following asymptotic expansion in $\mathcal{B}(L_s^2, L_{-s}^2)$ for sufficiently large s > 0:

$$e^{-itH_0} = t^{-\frac{1}{2}}C_{-1} + t^{-\frac{3}{2}}C_0 + \cdots, \ t \to \infty,$$

where C_{j-1} are given by

$$C_{j-1}u(x) := \frac{1}{\sqrt{4\pi i} j! (4i)^j} \int_{\mathbb{R}} (i|x-y|)^{2j} u(y) dy,$$

and $\mathcal{B}(X,Y)$ denotes the Banach spaces of bounded operators form X to Y. The asymptotic expansion of e^{-itH} as $t \to \infty$ in $\mathcal{B}(L_s^2, L_{-s}^2)$ was proved by Murata [14], under the assumption that $|V(x)| \leq C\langle x \rangle^{-\sigma}$ for sufficiently large $\sigma > 7$. In higher dimension, such expansions were proved by [11, 10, 14]. In this paper we prove an asymptotic expansion of $e^{-itH}P_{ac}$ in $\mathcal{B}(L_s^1, L_{-s}^\infty)$ as $t \to \infty$.

In order to state our results, we introduce a few notations. The Jost functions $f_{\pm}(\lambda, x)$ are the solutions to the equation

$$-f''(\lambda, x) + V(x)f(\lambda, x) = \lambda^2 f(\lambda, x), \quad \lambda, x \in \mathbb{R}$$

satisfying following asymptotic conditions

$$|f_{\pm}(\lambda, x) - e^{\pm i\lambda x}| \to 0 \text{ as } x \to \pm \infty.$$

It is well known (see [3]) that if $V \in L_1^1$, then the Jost functions are uniquely defined for all $\lambda, x \in \mathbb{R}$. We denote by $W(\lambda)$ their Wronskian

$$W(\lambda) := f_{+}(\lambda, x) \cdot \partial_{x} f_{-}(\lambda, x) - \partial_{x} f_{+}(\lambda, x) \cdot f_{-}(\lambda, x).$$

 $W(\lambda)$ is independent of x and does not vanish for $\lambda \neq 0$.

Definition 1.1. We say that the potential V is of generic type if $W(0) \neq 0$ and is of exceptional type if W(0) = 0. We also say that zero is a resonance of H if the potential V is of exceptional type.

Theorem 1.2. Let m be a positive integer. Suppose that $V \in L^1_{2m}$ and V is of generic type, or $V \in L^1_{2m+2}$ and V is of exceptional type. Let

$$s = \begin{cases} 2m - 1 & \text{if } V \text{ is of generic type,} \\ 2m & \text{if } V \text{ is of exceptional type.} \end{cases}$$

Then

$$(1.1) ||\langle x \rangle^{-s} (e^{-itH} P_{ac} - P_{m-1}) u||_{L^{\infty}} \le C t^{-\frac{1}{2} - m} ||\langle x \rangle^{s} u||_{L^{1}}$$

for all t > 0, where P_{m-1} is given by

$$P_{m-1} = \sum_{j=0}^{m-1} t^{-\frac{1}{2}-j} C_{j-1}.$$

Furthermore, the coefficients C_{j-1} satisfy the following:

(1) If V is of generic type, then $C_{-1} \equiv 0$, rank $C_{j-1} \leq 2j$ and

$$||\langle x \rangle^{-2j+1} C_{j-1} u||_{L^{\infty}} \le C||\langle x \rangle^{2j-1} u||_{L^{1}}, \ j = 1, 2, ...m - 1.$$

(2) If V is of exceptional type, then rank $C_{j-1} \leq 2j+1$ and

$$||\langle x \rangle^{-2j} C_{j-1} u||_{L^{\infty}} \le C||\langle x \rangle^{2j} u||_{L^{1}}, \ j = 0, 1, ...m - 1.$$

Remark. In exceptional case, we can compute C_{-1} explicitly:

$$C_{-1}u = \frac{1}{\sqrt{4\pi i}} \langle u, f_0 \rangle f_0,$$

where f_0 is a non trivial bounded solution to the equation Hf = 0 normalized as

$$\lim_{x \to +\infty} \frac{1}{2} (|f_0(x)|^2 + |f_0(-x)|^2) = 1.$$

Dispersive estimates for Schrödinger equations have been studied by many authors. L^1-L^∞ estimates:

(1.2)
$$||e^{-itH}P_{ac}u||_{L^{\infty}} \le C|t|^{-\frac{d}{2}}||u||_{L^{1}},$$

was proved by [12] under the suitable decay and regularity assumptions for V. Later (1.2) has been proved by [6, 7, 9, 15, 17, 18, 19, 21, 22] under various assumptions on the potential V and the assumption that zero is neither an eigenvalue nor a resonance of H. When zero is either an eigenvalue or a resonance of H, similar estimates were studied by [4, 23]. Such estimates are very important since (1.2) implies Strichartz estimates which can be applied to prove well-posedness for nonlinear Schrödinger equations. The time decay $t^{-\frac{1}{2}}$ in d=1 is not integrable at infinity and is unsuitable for applying to NLS. We hence are interested in a dispersive estimate whose time decay is integrable at infinity. Goldberg [8] also proved (1.1) with m=1 under the assumptions that $V \in L_3$ and V is of generic type, or $V \in L_4$ and V is of exceptional type. Compared to his results, our assumptions on the potential V(x), which are used in Theorem 1.2, are weaker.

§ 2. Sketch of the proof

To prove Theorem 1.2, we use the representation

$$\langle e^{-itH} P_{ac} u, v \rangle = \frac{1}{\pi i} \int_{\mathbb{R}} e^{-it\lambda^2} \lambda \langle R(\lambda^2 + i0) u, v \rangle d\lambda,$$

where we denote an extended resolvent $\lim_{\varepsilon \to +0} (H - (\lambda + i\varepsilon)^2)^{-1}$ by $R(\lambda^2 + i0)$. We split the propagator into high and low energy parts. For the high energy part, the following proposition holds.

Proposition 2.1. Suppose $V \in L_N^1$, $N \in \mathbb{N}$ and set $\lambda_0 := ||V||_{L_N^1}$. Let χ be an even smooth cut-off function such that $\chi(\lambda) = 1$ for $|\lambda| \le \lambda_0$ and $\chi(\lambda) = 0$ for $|\lambda| \ge 2\lambda_0$. Then

$$||\langle x \rangle^{-N} e^{-itH} (1 - \chi(\sqrt{H})) u||_{L^{\infty}} \le C t^{-\frac{1}{2} - N} ||\langle x \rangle^{N} u||_{L^{1}}, \ u \in L^{2} \cap L^{1}_{N}$$

for all t > 0.

Proof. Set $\tilde{\chi}(\lambda) := 1 - \chi(\lambda)$. Let η be an even smooth function on \mathbb{R} such that $\eta(\lambda) = 1$ if $|\lambda| \leq 1$, $\eta(\lambda) = 0$ if $|\lambda| \geq 2$ and let $\tilde{\chi}_L(\lambda) := \eta(\lambda/L)\tilde{\chi}(\lambda)$ for $L \geq 1$. Using the Born series expansion of $R(\lambda^2 + i0)$, we have

$$\langle e^{itH} \tilde{\chi}_L(\sqrt{H}) u, v \rangle = \frac{1}{\pi i} \sum_{n=0}^{\infty} \frac{1}{(-2i)^{n+1}} \int_{\mathbb{R}^{n+3}} e^{-it\lambda^2 + i\lambda \sum_{j=0}^n |x_{j+1} - x_j|} \frac{\tilde{\chi}_L(\lambda)}{\lambda^n} \times u(x_0) \prod_{j=1}^n V(x_j) v(x_{n+1}) d\lambda dx_0 ... dx_{n+1}.$$

Let us consider the oscillatory integral

$$\Phi(t,a) = \int_{\mathbb{R}} e^{-it\lambda^2 + ia\lambda} \frac{\tilde{\chi}_L(\lambda)}{\lambda^n} d\lambda, \ a \in \mathbb{R}.$$

Using integration by parts and Fourier inversion formula, we have

$$\begin{split} |\Phi(t,a)| &\leq C t^{-\frac{1}{2}-N} ||\mathcal{F}P_{\lambda}^{N}(e^{ia\lambda}\tilde{\chi}_{L}(\lambda)\lambda^{-n})||_{L^{1}} \\ &\leq C t^{-\frac{1}{2}-N} \sum_{k=0}^{N} |a|^{N-k} ||\mathcal{F}\partial_{\lambda}^{k}(\tilde{\chi}_{L}(\lambda)\lambda^{-n-N})||_{L^{1}}, \end{split}$$

where $P_{\lambda} = \frac{\partial}{\partial_{\lambda}} \frac{1}{\lambda}$ and \mathcal{F} is the Fourier transform with respect to λ . A direct computation yields

$$\sup_{L\geq 1} \sup_{0\leq k\leq N} ||\mathcal{F}\partial_{\lambda}^{k}(\tilde{\chi}_{L}(\lambda)\lambda^{-n-N})||_{L^{1}} \leq C(n+2N)^{N}\lambda_{0}^{-n-N}$$

for $n \geq 0$. Since

$$\sum_{j=0}^{n} |x_{j+1} - x_j| \le \prod_{j=1}^{n} (1 + |x_j|),$$

we conclude that

$$\begin{split} &\sup_{L\geq 1} |\langle e^{itH} \tilde{\chi}_L(\sqrt{H}) u, v \rangle| \\ &\leq C t^{-\frac{1}{2}-N} \sum_{n=0}^{\infty} 2^{-n} n^N \lambda_0^{-n-N} ||(1+|x|)^N V||_{L^1}^n ||(1+|x|)^N u||_{L^1} ||(1+|x|)^N v||_{L^1} \\ &\leq C t^{-\frac{1}{2}-N} ||\langle x \rangle^N u||_{L^1} ||\langle x \rangle^N v||_{L^1} \end{split}$$

for all t > 0.

§ 2.1. Jost Functions

Using the Jost functions and their Wronskian, the integral kernel of the resolvent $R(\lambda^2 \pm i0)$ is given by

$$\frac{f_{+}(\pm\lambda,y)f_{-}(\pm\lambda,x)}{W(\pm\lambda)}\chi_{\{x< y\}} + \frac{f_{+}(\pm\lambda,x)f_{-}(\pm\lambda,y)}{W(\pm\lambda)}\chi_{\{x> y\}}.$$

In this subsection, we collect results on the Jost functions $f_{\pm}(\lambda, x)$ needed later. $f_{+}(\lambda, x)$ and $f_{+}(-\lambda, x)$ are independent for $\lambda \neq 0$ since their Wronskian

$$W[f_{+}(\lambda, \cdot), f_{+}(-\lambda, \cdot)] := f_{+}(\lambda, x) \cdot \partial_{x} f_{+}(-\lambda, x) - \partial_{x} f_{+}(\lambda, x) \cdot f_{+}(-\lambda, x)$$

$$= \lim_{x \to +\infty} [e^{i\lambda x} (-i\lambda) e^{-i\lambda x} - i\lambda e^{i\lambda x} e^{-i\lambda x}]$$

$$= -2i\lambda \neq 0.$$

Similarly $W[f_{-}(\lambda,\cdot), f_{-}(-\lambda,\cdot)] = 2i\lambda$. These imply the relations

(2.1)
$$T(\lambda)f_{-}(\lambda,x) = R_{1}(\lambda)f_{+}(\lambda,x) + f_{+}(-\lambda,x),$$
$$T(\lambda)f_{+}(\lambda,x) = R_{2}(\lambda)f_{-}(\lambda,x) + f_{-}(-\lambda,x),$$

where $T(\lambda)$, $R_1(\lambda)$ and $R_2(\lambda)$ are called the *transmission* and *reflection* coefficients, respectively. It is well known that

$$|T(\lambda)|^2 + |R_j(\lambda)|^2 = 1, \quad j = 1, 2.$$

Furthermore the following holds (see [3], [13] and [1]).

Lemma 2.2. (1) Suppose that V is of generic type and $V \in L_N^1$, $N \ge 1$. Then T, R_1 and $R_2 \in C^{N-1}(\mathbb{R})$ and for $1 \le k \le N-1$,

(2.2)
$$|\partial_{\lambda}^{k} T(\lambda)| + |\partial_{\lambda}^{k} R_{1}(\lambda)| + |\partial_{\lambda}^{k} R_{2}(\lambda)| \leq C \langle \lambda \rangle^{-1}, \ \lambda \in \mathbb{R}.$$

Furthermore, we have

$$T(\lambda) = \alpha \lambda + o(\lambda), \quad \alpha \neq 0, \quad \lambda \to 0,$$

 $R_1(0) = R_2(0) = -1.$

(2) Suppose that V is of exceptional type and $V \in L_N^1$, $N \geq 2$. Then T, R_1 and $R_2 \in C^{N-2}(\mathbb{R})$ and (2.2) holds for $1 \leq k \leq N-2$. Furthermore, as $\lambda \to 0$, we have

$$T(\lambda) = \frac{2a}{1+a^2} + o(1),$$

$$R_1(\lambda) = \frac{1-a^2}{1+a^2} + o(1),$$

$$R_2(\lambda) = \frac{a^2 - 1}{1+a^2} + o(1),$$

with $a := \lim_{x \to -\infty} f_{+}(0, x) \neq 0$.

The following inequality was proved by Artbazar and Yajima [1]:

(2.3)
$$|\partial_{\lambda}^{k} f_{\pm}(\lambda, x)| \leq C \langle x \rangle^{k} (1 + \max(\mp x, 0)), \ (\lambda, x) \in \mathbb{R}^{2}.$$

for $0 \le k \le N - 1$. Using Lemma 2.2, we can improve the above estimates.

Lemma 2.3. (1) Suppose that V is of generic type and $V \in L_N^1$, $N \ge 1$. Then $|\partial_{\lambda}^k(T(\lambda)f_{\pm}(\lambda,x))| \le C\langle x\rangle^k$, $\lambda \ne 0$, $x \in \mathbb{R}$,

for $0 \le k \le N-1$. If in addition $N \ge 2$, then

$$|\partial_{\lambda}^{k} f_{\pm}(0, x)| \le C \langle x \rangle^{k}, \quad x \in \mathbb{R},$$

for $1 \le k \le N - 1$ and k odd.

(2) Suppose that V is of exceptional type and $V \in L_N^1$, $N \geq 2$, then

$$|\partial_{\lambda}^{k} f_{\pm}(\lambda, x)| \le C \langle x \rangle^{k}, \quad (\lambda, x) \in \mathbb{R}^{2}.$$

for $0 \le k \le N - 2$.

Lemma 2.3 follows from (2.1), (2.3) and Lemma 2.2, and we omit the proof. We next study Fourier properties of the Jost functions. Set

$$B_{\pm}(\xi, x) := \int_{\mathbb{D}} e^{2i\lambda\xi} (m_{\pm}(\lambda, x) - 1) d\lambda,$$

where $m_{\pm}(\lambda, x) := e^{\pm i\lambda x} f_{\pm}(\lambda, x)$ are the modified Jost functions. Then the function $B_{+}(\xi, x)$ satisfies the Marchenko equation:

(2.4)
$$B_{+}(\xi, x) = \int_{x+\xi}^{\infty} V(\sigma)d\sigma + \int_{0}^{\xi} d\zeta \int_{x+\xi-\zeta}^{\infty} V(\sigma)B_{+}(\zeta, \sigma)d\sigma$$

and $B_{-}(\xi, x)$ also satisfies a corresponding equation. It is well known (see [3]) that if

 $V \in L_1^1$, then the function $B_+(\xi, x)$ is well defined for $\xi \geq 0$, $x \in \mathbb{R}$ and satisfies the following estimates

(2.5)
$$|B_{+}(\xi, x)| \le e^{\gamma(x)} \eta(x+\xi), \quad \xi \ge 0, \ x \in \mathbb{R},$$

where $\eta(x)=\int_x^\infty |V(\sigma)|d\sigma$, $\gamma(x)=\int_x^\infty (\sigma-x)|V(\sigma)|d\sigma$. $B_-(\xi,x)$ also satisfies a similar inequalities. Since $\gamma(x)$ is dominated by $||V||_{L^1_1}$ for all $x\geq 0$, (2.5) implies $||B_+(\cdot,x)||_{L^1}$ is bounded for $x\geq 0$ with the bound depending on $||V||_{L^1_1}$. Similarly $||B_-(\cdot,x)||_{L^1}$ is bounded for $x\leq 0$. Iterating Marchenko equations, we can prove the following (see [2]).

Lemma 2.4. Let $N \in \mathbb{N}$, $N \geq 1$ and suppose $V \in L_N^1$. Then the functions $B_{\pm}(\xi, x)$ satisfy the estimates

(2.6)
$$||B_{\pm}(\cdot, x)||_{L^{1}_{N-1}} \le C(1 + \max(\mp x, 0))^{N}, \quad x \in \mathbb{R},$$

where C depends on $||V||_{L^1_N}$.

The following Lemma follows from Lemma 2.4 and the representation

$$W(\lambda) = -2i\lambda + \int_{\mathbb{R}} V(\sigma)m_{+}(\lambda, \sigma)d\sigma.$$

Lemma 2.5. Let $\chi \in C_0^{\infty}(\mathbb{R})$.

(1) Let $N \in \mathbb{N}$, $N \geq 1$ and assume that $V \in L_N^1$ and V is of generic type, then

$$\mathcal{F}(\frac{\chi}{W}) \in L^1_{N-1}.$$

(2) Let $N \in \mathbb{N}$, $N \geq 2$ and assume that $V \in L_N^1$ and V is of exceptional type, then

$$\mathcal{F}(\frac{\lambda \chi}{W}) \in L^1_{N-2}.$$

Here $W(\lambda)$ is the Wronskian of the Jost functions.

Lemma 2.4, Lemma 2.5 and (2.1) imply the following.

Lemma 2.6. Let $\chi \in C_0^{\infty}(\mathbb{R})$. Suppose that $V \in L_N^1$, $N \geq 1$. Then

(2.7)
$$||\mathcal{F}(\chi(\cdot)f_{\pm}(\cdot,x))||_{L^{1}_{N-1}} \le C\langle x\rangle^{N-1}(1+\max(\mp x,0)), \ x \in \mathbb{R}.$$

Furthermore,

(1) If V is of generic type, then

$$||\mathcal{F}(\chi(\cdot)T(\cdot)f_{\pm}(\cdot,x))||_{L^{1}_{N-1}} \leq C\langle x\rangle^{N-1}, \ x \in \mathbb{R}.$$

(2) If V is of exceptional type and $V \in L_N^1$, $N \geq 2$, then

$$||\mathcal{F}(\chi(\cdot)f_{\pm}(\cdot,x))||_{L^{1}_{N-2}} \leq C\langle x\rangle^{N-2}, \ x \in \mathbb{R}.$$

§ 2.2. The Low Energy Estimates

In this subsection, we prove the following Proposition to complete the proof of Theorem 1.2.

Proposition 2.7. Let $m \in \mathbb{N}$ and let χ be an even smooth cut-off function such that $\chi(\lambda) = 1$ close to zero. Suppose that $V \in L^1_{2m}$ and V is of generic type, or $V \in L^1_{2m+2}$ and V is of exceptional type. Let P_{m-1} as in Theorem 1.2. Let

$$s = \begin{cases} 2m - 1 & \text{if } V \text{ is of generic type,} \\ 2m & \text{if } V \text{ is of exceptional type.} \end{cases}$$

Then

$$||\langle x \rangle^{-s} (e^{-itH} \chi(\sqrt{H}) P_{ac} - P_{m-1}) u||_{L^{\infty}} \le C t^{-\frac{1}{2} - m} ||\langle x \rangle^{s} u||_{L^{1}}$$

for all t > 0.

Proof. We consider the generic case. The proof of the exceptional case is similar and we omit the proof. Set

$$K(\lambda, x, y) := T(\lambda) f_{+}(\lambda, y) f_{-}(\lambda, x), \ G(\lambda, x, y) := \frac{K(\lambda, x, y)}{\lambda}.$$

We start from the representation

$$\langle e^{-itH} \chi(\sqrt{H}) P_{ac} u, v \rangle = \frac{1}{\pi i} \int_{\mathbb{R}} e^{-it\lambda^2} \lambda \chi(\lambda) \langle R(\lambda^2 + i0) u, v \rangle d\lambda$$
$$= \frac{1}{2\pi} \int_{\mathbb{R}^2} \left(\int_{\mathbb{R}} e^{-it\lambda^2} \lambda \chi(\lambda) \tilde{G}(\lambda, x, y) d\lambda \right) u(y) \overline{v(x)} dy dx,$$

where $\tilde{G}(\lambda, x, y)$ denotes the kernel of $-2iR(\lambda^2 + i0)$ and is given by

(2.8)
$$\tilde{G}(\lambda, x, y) = \begin{cases} G(\lambda, x, y) & \text{for } x < y, \\ G(\lambda, y, x) & \text{for } x > y. \end{cases}$$

Consider the integral

(2.9)
$$I(t,G) := \frac{1}{2\pi} \int_{\mathbb{R}} e^{-it\lambda^2} \lambda \chi(\lambda) G(\lambda, x, y) d\lambda,$$

for x < y. The proof for the case x > y is analogous. Integrating by parts (2.9), we have

(2.10)
$$I(t,G) = \frac{1}{4\pi i t} \int_{\mathbb{R}} e^{-it\lambda^2} \partial_{\lambda}(\chi(\lambda)G(\lambda,x,y)) d\lambda.$$

The case m = 1: it suffice to prove that

$$|I(t,G)| \le Ct^{-\frac{3}{2}} \langle x \rangle \langle y \rangle, \ x < y.$$

Using the Fourier inversion formula, we obtain

$$|I(t,G)| \le Ct^{-\frac{3}{2}} ||(\mathcal{F}\partial_{\lambda}\chi(\cdot)G(\cdot,x,y))||_{L^{1}}$$

for all t > 0 and x < y, where \mathcal{F} is the Fourier transform with respect to λ . By Young's inequality, Lemma 2.5 (1) and Lemma 2.6, we have

$$||(\mathcal{F}\partial_{\lambda}\chi G)(\cdot, x, y)||_{L^{1}} \leq C\langle x\rangle\langle y\rangle, \ x < y$$

and this implies

$$|I(t,G)| \le Ct^{-\frac{3}{2}} \langle x \rangle \langle y \rangle$$

for x < y.

The case $m \geq 2$: Applying the stationary phase theorem to the integral (2.10), we have

$$I(t,G) = \frac{1}{\sqrt{\pi i}} \sum_{j=1}^{m-1} \frac{t^{-\frac{1}{2}-j}}{(j-1)!(4i)^j} (\partial_{\lambda}^{2j-1} G)(0,x,y) + t^{-\frac{1}{2}-m} S_{m-1}(t,G)$$

with

$$|S_{m-1}(t,G)| \le C||(\mathcal{F}\partial_{\lambda}^{2m-1}\chi G)(\cdot,x,y)||_{L^{1}}$$

$$\le C\langle x\rangle^{2m-1}\langle y\rangle^{2m-1}, \ x < y.$$

For the last inequality, we used Lemma 2.5 (1) and Lemma 2.6. We now define the coefficients C_{j-1} : since T(0) = 0, we have

$$(\partial_{\lambda}^{2j-1}G)(0,x,y) = \frac{1}{2j}(\partial_{\lambda}^{2j}K)(0,x,y).$$

Considering the fact that

$$(\partial_{\lambda}^{2j}K)(0,x,y) = (\partial_{\lambda}^{2j}K)(0,y,x), \ x,y \in \mathbb{R}, \ j = 1,2,...,m,$$

we define C_{j-1} and P_{m-1} by

(2.11)
$$C_{j-1}u(x) := \frac{1}{\sqrt{4\pi i}j!(4i)^j} \int_{\mathbb{R}} (\partial_{\lambda}^{2j}K)(0, x, y)u(y)dy, \ x \in \mathbb{R},$$
$$P_{m-1} := \sum_{j=0}^{m-1} t^{-\frac{1}{2}-j}C_{j-1}.$$

Then we have

$$||\langle x \rangle^{-2m+1} (e^{-itH} \chi(\sqrt{H}) P_{ac} - P_{m-1}) u||_{L^{\infty}} \le C t^{-\frac{1}{2}-m} ||\langle x \rangle^{2m-1} u||_{L^{1}}.$$

By the definition of C_{j-1} and Corollary 2.3 (1), we can see that

rank
$$C_{i-1} \leq 2j$$
,

and there exists C > 0 such that

$$||\langle x\rangle^{-2j+1}C_{j-1}u||_{L^{\infty}} \le C||\langle x\rangle^{2j-1}u||_{L^{1}}.$$

In particular,

$$C_{-1} \equiv 0.$$

These complete the proof.

References

- [1] Artbazar, G. and Yajima, K., The L^p -continuity of wave operators for the one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo., 7 (2000), 221–240.
- [2] D'Ancona, P. and Fanelli, L., L^p -boundedness of the wave operators for the one dimensional Schrödinger operator, Comm. Math. Phys., **268** (2006), 415–438.
- [3] Deift,P. and Trubowitz, E., Inverse scattering on the line, Comm. Pure Appl. Math., 33 (1979), 121–251.
- [4] Erdoğan, B. and Schlag, W., Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I, textitDyn. Partial Differ. Equ., 1 (2004), 359–379.
- [5] Erdoğan, B. and Schlag, W., Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II, *J. Anal. Math.*, **99** (2006), 199–248.
- [6] Goldberg, M., Dispersive estimates for the three-dimensional Schrödinger equation with rough potentials, *Amer. J. Math.*, **128** (2006), 731–750.
- [7] Goldberg, M., Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials, *Geom. Funct. Anal.*, **16** (2006), 517–536.
- [8] Goldberg, M., Transport in the one-dimensional Schrödinger equation, *Proc. Amer. Math. Soc.*, **135** (2007), 3171–3179.
- [9] Goldberg, M. and Schlag, W., Dispersive estimates for Schrödinger operators in dimensions one and three, *Comm. Math. Phys.*, **251** (2004), 157–178.
- [10] Jensen, A. and Kato, T., Spectral properties of Schrödinger operators and time-decay of the wave functions, *Duke Math. J.*, **46** (1979), 583–611.
- [11] Jensen, A., Spectral properties of Schrödinger operators and time-decay of the wave functions, Results in $L^1(\mathbb{R}^m)$, m > 5, Duke Math. J., 47 (1980), 57–80.
- [12] Journé, J.-L., Soffer, A. and Sogge, C. D., Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573–604.

- [13] Klaus, M., Low-energy behaviour of the scattering matrix for the Schrödinger equation on the line, *Inverse Problems*, 4 (1988), 505–512.
- [14] Murata, M., Asymptotic expansions in time for solution of Schrödinger-type equations, *J. Funct. Anal.*, **49** (1982), 10–56.
- [15] Rodnianski, I. and Schlag, W., Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, *Invent. Math.*, **155** (2004), 451–513.
- [16] Schlag, W., Dispersive estimates for Schrödinger operators: a survey, *Mathematical aspects of nonlinear dispersive equations*, 255-285, *Ann. of Math. Stud.*, 163, Princeton Univ. Press, Princeton, NJ, 2007.
- [17] Schlag, W., Dispersive estimates for Schrödinger operators in dimension two, *Comm. Math. Phys.*, **257** (2005), 87–117.
- [18] Vodev, G., Dispersive estimates of solutions to the Schrödinger equation, Ann. Henri Poincaré., 6 (2005), 1179–1196.
- [19] Vodev, G., Dispersive estimates of solutions to the Schrödinger equation in dimensions $n \ge 4$, Asymptot. Anal., 49 (2006), 61–86.
- [20] Weder, R., The $W_{k,p}$ -continuity of the Schrödinger wave operators on the line, Comm. Math. Phys., **208** (1999), 507–520.
- [21] Weder, R., $L^p L^{p'}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, J. Funct. Anal., 170 (2000), 37–68.
- [22] Yajima, K., The $W_{k,p}$ -continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan., 47 (1995), 551–581.
- [23] Yajima, K., Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue, *Comm. Math. Phys.*, **259** (2005), 475–509.