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Spectral theory and inverse problems on

asymptotically hyperbolic manifolds

By

Hiroshi ISOZAKI * and Yaroslav KURYLEV **

Abstract

We shall study spectral properties of Laplace‐Beltrami operators on non‐compact mani‐

folds having asymptotically hyperbolic ends. We introduce a space of solutions of the associated

Helmholtz equation and the \mathrm{S} ‐matrix by observing the asymptotic behavior of solutions at in‐

finity. We then show that this \mathrm{S} ‐matrix determines the Riemannian metric.

§1. Spectral and scattering theory on hyperbolic manifolds

Spectral theory for continuous spectrum of Laplace‐Beltrami operators on asymp‐

totically hyperbolic manifolds has a long history. Apart from the classical works of

Selberg [Se56], Roelcke [Roe66] and Faddeev [Fa67], new issues have been presented on

the basis of the development of spectral and scattering theory for Schrödinger opera‐

tors. Colin de Verdière [Col81] discussed the analytic continuation of Eisenstein series

by that of resolvent on hyperbolic spaces. Agmon [Ag86] used modern spectral theories

for this problem. Hislop [His94] used Mourre�s commutator theory to prove the resol‐

vent estimates for the Laplacian on hyperbolic spaces. The scattering metric proposed

by Melrose [Me95] aims at constructing a general calculus on non‐compact manifolds

on which the scattering theory is developed. Melrose� theory includes the following
model. Let \mathcal{M} be a compact n‐dimensional Riemannian manifold with boundary. As‐

sume that near the boundary, \mathcal{M} is diffeomorphic to M\times(0,1) ,
M being a compact

n-1‐dimensional manifold, and introduce the following metric

ds^{2}=\displaystyle \frac{(dy)^{2}+A(x,y,dx,dy)}{y^{2}}, 0<y<1, x\in M,
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where A(x, y, dx, dy) is a symmetirc covariant tensor such that as y\rightarrow 0

(1.1) A(x, y, dx, dy)\sim A_{0}(x, dx)+yA_{1}(x, dx, dy)+y^{2}A_{2}(x, dx, dy)+\cdots,

A_{0} being the Riemannian metric on M . This generalizes the upper half‐space model of

the hyperbolic space. Spectral structures of the associated Laplace‐Beltarmi operator
were studied by Mazzeo [Ma88] and Mazzeo‐Melrose [\mathrm{M}\mathrm{a}\mathrm{M}\mathrm{e}87] . Related inverse problem
was studied by Joshi‐Sa Barreto [JoSaBa00]. In particular, Sa Barreto [\mathrm{S}\mathrm{a}\mathrm{B}\mathrm{a}05] proved
that the coincidence of the scattering operators gives rise to an isometry of associated

metrics. Here the essential role is played by the boundary control method initiated by
Belishev and developed by Belishev‐Kurylev [Be87], [Be97], [\mathrm{B}\mathrm{e}\mathrm{K}\mathrm{u}92] ,

which makes it

possible to reconstruct a Riemannian manifold from the boundary spectral data of the

associated Laplace‐Beltrami operator.
A feature of Melrose� theory is that it proves the analytic continuation of the

resolvent of Laplace‐Beltrami operator for a broad class of metric so that it enables us

to study the resonance, another important subject in spectral and scattering theory.
Let us mention the recent article of Borthwick [Bo07] which studies the inverse problem
related to the resonance based on Melrose�s theory.

In the case of the Schrödinger operator -\triangle+V(x) on \mathrm{R}^{n}
,
the behavior of solutions

to the Schrödinger equation has a clear difference depending on the decay order of the

potential at infinity. If we assume that V(x)=O(|x|^{- $\rho$}) , |x|\rightarrow\infty ,
the border line is

the case  $\rho$=1 . This is also true on hyperbolic spaces. The difference occurs in the

case  $\rho$=1 of the decay order d_{h}^{- $\rho$} ,
where d_{h} denotes the hyperbolic distance. In (1.1),

y corresponds to e^{-d_{h}} . Hence from the view point of perturbation theory, the theory
of scattering metric deals with the case in which the perturbation term is expanded as

the power of e^{-d_{h}}.

This paper is a résumé of the lecture notes [IK09], in which we are aiming at

developing the spectral theory and inverse problems on the asymptotically hyperbolic
manifolds. We shall deal with the general short‐range peturbation of the Riemannian

metric, i.e. the one which converges to the standard hyperblic metric in the order

O(d_{h}^{-1- $\epsilon$}) at infinity. As the starting point, we prove the limiting absorption principle, or

the existence of the boundary values of the resovent (-\triangle_{g}- $\lambda$\mp i0)^{-1} for  $\lambda$\in$\sigma$_{cont}(-\triangle_{g}) .

For the proof, we employ the classical method of integration by parts due to Eidus [Ei69].
Although it is elementary, it enables us to obtain better results as far as the resovent

estimates are concerned. We then constrcuct the generalized Fourier transform and

characterize the solution space of the Helmholtz equation, by using which we introduce

the \mathrm{S}‐matrix. Our ultimate goal is the inverse problem, i.e. reconstruction of the

Riemannian metric from the \mathrm{S}‐matrix. For this purpose, we adopt the boundary control

method (BC‐method) of Belishev‐Kurylev.
We tried to make our notes as elementary as possible so that one can approach this

problem without any deep preliminary knowledge, which made the notes more than 200

pages long. So, we explain here the outline of the theory by giving precise statements

of Lemmas and Theorems, leaving all the details in [IK09].
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§2. Summary of results

We shall study an n‐dimensional connected Riemannian manifold \mathcal{M} written as a

union of open sets:

\mathcal{M}=\mathcal{K}\cup \mathcal{M}_{1}\cup\cdots\cup \mathcal{M}_{N}.

The basic assumptions are as follows:

(A‐1) \overline{\mathcal{K}} is compact.

(A‐2) \mathcal{M}_{i}\cap \mathcal{M}_{j}=\emptyset, i\neq j.

(A‐3) Each \mathcal{M}_{i}, i=1, \cdots, N ,
is diffeomorphic either to \mathcal{M}_{0}=M\times(0,1) or to

\mathcal{M}_{\infty}=M\times(1, \infty) ,
M being a compact Riemannian manifold of dimension n-1 . Here

the manifold M is allowed to be different for each i.

(A‐4) On each \mathcal{M}_{i} , the Riemannian metric ds^{2} has the following form

ds^{2}=y^{-2}((dy)^{2}+h(x, dx)+A(x, y, dx, dy)) ,

A(x, y, dx, dy)=\displaystyle \sum_{i,j=1}^{n-1}a_{ij}(x, y)dx^{i}dx^{j}+2\sum_{i=1}^{n-1}a_{in}(x, y)dx^{i}dy+a_{nn}(x, y) (dy)2,

where h(x, dx)=\displaystyle \sum_{i,j=1}^{n-1}h_{ij}(x)dx^{i}dx^{j} is a positive definite metric on M
,

and a_{ij}(x, y) ,  1\leq

 i, j\leq n , satisfies the following condition

(2.1) |\overline{D}_{x}^{ $\alpha$}D_{y}^{m}a(x, y)|\leq C_{ $\alpha$ m}(1+|\log y|)^{-m-1-$\epsilon$_{0}}, \forall $\alpha$, m

for some $\epsilon$_{0}>0 . Here D_{y}=y\partial_{y} ,
and \overline{D}_{x}= ỹ(y) \partial , \ovalbox{\tt\small REJECT}(y)\in C^{\infty}((0, \infty)) such that

\ovalbox{\tt\small REJECT}(y)=y fory>2 and \ovalbox{\tt\small REJECT}(y)=1 for0<y<1.

Letting \triangle_{g} be the Laplace‐Beltrami operator of \mathcal{M} ,
we consider the following wave

equation

\left\{\begin{array}{ll}
\partial_{t}^{2}u=\triangle_{g}u & \mathrm{o}\mathrm{n} \mathcal{M},\\
u|_{t=0}=f, & \partial_{t}u|_{t=0}=-i\sqrt{-\triangle_{g}}f,
\end{array}\right.
where f is orthogonal to the point spectral subspace for -\triangle_{g} . Then the wave disappears
from any compact set in \mathcal{M} ,

and on each end \mathcal{M}_{j} ,
it will behave like

\Vert u(t)-u_{j}^{(\pm)}(t)\Vert\rightarrow 0 ,
as t\rightarrow\pm\infty,

where u_{j}^{(\pm)}(t) is the solution to the free wave equation

\left\{\begin{array}{l}
\partial_{t}^{2}u_{j}^{(\pm)}=\triangle_{g_{j}^{0}}u_{j}^{(\pm)}, \mathrm{o}\mathrm{n} \mathcal{M}_{j},\\
u_{j}^{(\pm)}|_{t=0}=f_{j}^{(\pm)}, \partial_{t}u_{j}^{(\pm)}|_{t=0}=-i\sqrt{-\triangle_{g_{j}^{0}}}f_{j}^{(\pm)},
\end{array}\right.
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\triangle_{g_{j}^{0}} being the Laplace‐Beltrami operator associated with the metric y^{-2} ((dy)2 +hj (x, dx) ).
The scattering operator S assigns the asymptotic data in the remote future to that in

the remote past that:

S:(f_{1}^{(-)}, \cdots, f_{N} \rightarrow(f_{1}^{(+)}, \cdots, f_{N}^{(+)}) .

The inverse scattering is an attempt to recover the metric of \mathcal{M} from the scattering
operator S . To study this problem, we first investigate the spectral properties of -\triangle_{g}.
Namely

\bullet Location of the essential spectrum.

\bullet Absence of eigenvalues embedded in the continuous spectrum when one of the ends

is regular, i.e. one \mathcal{M}_{i} is diffeomorphic to M\times(0,1) .

\bullet Discreteness of embedded eigenvalues in the continuous spectrum when all the ends

are cusps, i.e. \mathcal{M}_{i} is diffeomorphic to M\times(1, \infty) .

\bullet Limiting absorption principle for the resolvent and the absolute continuity of the

continuous spectrum.

Oue next issue is the forward problem. Namely

\bullet Construction of the generalized Fourier transform associated with -\triangle_{g}.

\bullet Asymptotic completeness of time‐dependent wave operators.

\bullet Characterization of the space of scattering solutions to the Helmhotz equation in

terms of the generalized Fourier transform.

\bullet Asymptotic expansion of scattering solutions to the Helmholtz equation and the

\mathrm{S}‐matrix.

As a byproduct, we also study

\bullet Representation of the fundamental solution to the wave equation.

\bullet Radon transform and the propagation of singularities for the wave equation.

Finally, we shall discuss the inverse problem. Namely

\bullet Identification of the Riemannian metric from the scattering matrix.

We show that two asymptotically hyperbolic manifolds satisfying the above assumptions
are isometric, if the metrics coincide on one regular end, and also the \mathrm{S}‐matrices coincide

on that end.
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The main part of our results is proved under weaker decay assumption on the metric.

By examining the proof, we see that the forward and inverse problem of scattering can

be solved under the assumption

(2.2) |\overline{D}_{x}^{ $\alpha$}D_{y}^{m}a(x, y)|\leq C_{ $\alpha$ m}(1+|\log y|)^{-1-$\epsilon$_{0}}, \forall $\alpha$, m
instead of (2.1).

§3. Besov type spaces

The Besov type space introduced by Agmon‐Hörmander [\mathrm{A}\mathrm{g}\mathrm{H}\mathrm{o}76] furnishes a nat‐

ural framework to characterize solutions to the Helmholtz equation. We define this

space for the hyperbolic space H.

We introduce an auxiliary Hilbert space \mathrm{H} endowed with norm \Vert\Vert . We decompose

(0, \infty) into (0, \displaystyle \infty)=\bigcup_{k\in \mathrm{Z}}I_{k} ,
where

I_{k}=\left\{\begin{array}{l}
(\exp(e^{k-1}), \exp(e^{k})], k\geq 1\\
(e^{-1}, e], k=0\\
(\exp(-e^{|k|}), \exp(-e^{|k|-1})], k\leq-1.
\end{array}\right.
We fix a natural number n\geq 2 and put

d $\mu$(y)=\displaystyle \frac{dy}{y^{n}}.
Let \mathcal{B} be the space of \mathrm{H}‐valued function on (0, \infty) satisfying

\displaystyle \Vert f\Vert_{B}=\sum_{k\in \mathrm{Z}}e^{|k|/2}(\int_{I_{k}}\Vert f(y)\Vert^{2}d $\mu$(y))^{1/2}<\infty.
The dual space B^{*} is identified with the space equipped with norm

\displaystyle \Vert u\Vert_{B}^{*}=(\sup_{R>e}\frac{1}{\log R}\int_{\frac{1}{R}<y<R}\Vert u(y)\Vert_{\mathrm{H}}^{2}d $\mu$)^{1/2}<\infty,
and the following inequality holds :

|(f, v)|=|\displaystyle \int_{0}^{\infty}(f(y), v(y))_{\mathrm{H}}d $\mu$|\leq C\Vert f\Vert_{B}\Vert v\Vert_{B^{*}}.
The following space is also useful:

u\displaystyle \in L^{2,s}\Leftrightarrow\Vert u\Vert_{s}^{2}=\int_{0}^{\infty}(1+|\log y|)^{2s}\Vert u(y)\Vert_{\mathrm{H}}^{2}d $\mu$(y)<\infty.
We have the following inclusion relations:

(3.1) L^{2,s}\subset \mathcal{B}\subset L^{2,1/2}\subset L^{2}\subset L^{2,-1/2}\subset \mathcal{B}^{*}\subset L^{2,-s}
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For the hyperbolic space \mathrm{H}^{n}
,

we employ the upper half‐space model \mathrm{R}_{+}^{n} ,
and we

represent a point of \mathrm{R}_{+}^{n} as (x, y) , x\in \mathrm{R}^{n-1}, y>0 . We then put \mathrm{H}=L^{2}(\mathrm{R}^{n-1}) .

§4. 1‐dimensional problem

We study the Laplace‐Beltarmi operator in the upper‐half space model by passing
to the partial Fourier transformation with respect to x\in \mathrm{R}^{n-1} and reducing it to the

1‐dimensional case. Let n\geq 2 be an integer, and a parameter  $\zeta$\in \mathrm{C} satisfy {\rm Re} $\zeta$\geq 0.
We consider the differential operator

(4.1) L_{0}( $\zeta$)=y^{2}(-\displaystyle \partial_{y}^{2}+$\zeta$^{2})+(n-2)y\partial_{y}-\frac{(n-1)^{2}}{4}
on the interval (0, \infty) . The Green function of L_{0}( $\zeta$)+v^{2} for {\rm Re} $\zeta$>0 is then written

as follows:

G_{0}( $\zeta$, v)f(y)=\displaystyle \int_{0}^{\infty}G_{0}(y, y'; $\zeta$, v)f(y')\frac{dy'}{(y)^{n}},
where the Green kernel is

G_{0}(y, y'; $\zeta$, v)=\left\{\begin{array}{ll}
(yy')^{(n-1)/2}K_{l $\nu$}( $\zeta$ y)I_{l $\nu$}( $\zeta$ y') , & y>y'>0,\\
(yy')^{(n-1)/2}I_{l $\nu$}( $\zeta$ y)K_{l $\nu$}( $\zeta$ y') , & y'>y>0,
\end{array}\right.
I_{l $\nu$}, K_{l $\nu$} being modified Bessel functions. We define \mathcal{B}, \mathcal{B}^{*} by putting \mathrm{H}=\mathrm{C} in §3. Then

we have

\Vert G_{0}( $\zeta$, v)f\Vert_{B^{*}}\leq C\Vert f\Vert_{B},

where the constant C depends on v
,

but is independent of  $\zeta$ when {\rm Re} $\zeta$>0.
We put for f\in C_{0}^{\infty}((0, \infty)) and k>0

(4.2) (\displaystyle \mathcal{F}_{ $\zeta$}f)(k)=\frac{(2k\sinh(k $\pi$))^{1/2}}{ $\pi$}\int_{0}^{\infty}y^{(n-1)/2}K_{ik}( $\zeta$ y)f(y)\frac{dy}{y^{n}}.
Theorem 4.1. (1) \mathcal{F}_{ $\zeta$} is uniquely extended to a unitary:  L^{2}((0, \infty);dy/y^{n})\rightarrow

 L^{2}((0, \infty);dk) .

(2) For f\in D(L_{0}( $\zeta$)) , (\mathcal{F}_{ $\zeta$}L_{0}( $\zeta$)f)(k)=k^{2}(\mathcal{F}_{ $\zeta$}f)(k) .

(3) For f\in L^{2}((0, \infty);dy/y^{n}) ,
the inversion formula holds:

f=\displaystyle \mathcal{F}_{ $\zeta$}^{*}\mathcal{F}_{ $\zeta$}f=y^{(n-1)/2}\int_{0}^{\infty}\frac{(2k\sinh(k $\pi$))^{1/2}}{ $\pi$}K_{ik}( $\zeta$ y)(\mathcal{F}_{ $\zeta$}f)(k)dk.
By \mathcal{F}_{ $\zeta$}^{*}\mathcal{F}_{ $\zeta$}=1 we have,

f(y)=\displaystyle \int_{0}^{\infty}\int_{0}^{\infty}\frac{2 $\sigma$\sinh( $\sigma \pi$)}{$\pi$^{2}}(yy')^{-1/2}K_{i $\sigma$}(y)K_{i $\sigma$}(y')f(y')dy'd $\sigma$,
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and from \mathcal{F}_{ $\zeta$}\mathcal{F}_{ $\zeta$}^{*}=1,

g( $\sigma$)=\displaystyle \int_{0}^{\infty}\int_{0}^{\infty}\frac{2 $\tau$(\sinh( $\sigma \pi$)\sinh( $\tau \pi$))^{1/2}}{$\pi$^{2}}\frac{K_{i $\sigma$}(y)K_{i $\tau$}(y)}{y}g( $\tau$)d $\tau$ dy,
which are called Kontrovich‐Lebedev�s inversion formulae.

We often use the following type of notation. Given an operator \mathcal{F} from a Hilbert

space \mathcal{H} to another Hilbert space L^{2}((0, \infty);\mathrm{h};dk) ,
\mathrm{h} being an auxiliary Hilbert space,

for k>0 we define an operator \mathcal{F}(k) from a suitable subspace S of \mathcal{H} to \mathrm{h} by

\mathcal{F}(k)f=(\mathcal{F}f)(k) , f\in S.

Conversely if we are given a family of operators \{\mathcal{F}(k)\}_{k>0} ,
with range in \mathrm{h}

,
we define

an operator \mathcal{F} with range in L^{2}((0, \infty);\mathrm{h};dk) by the above formula.

§5. The upper‐half space model

§5.1. Laplace‐Beltrami operator

We turn to the upper‐half space model. The volume element is dxdy/y^{n} . Therefore

L^{2}(\displaystyle \mathrm{H}^{n})=L^{2}(\mathrm{R}_{+}^{n};\frac{dxdy}{y^{n}}) .

The Laplace‐Beltrami operator is given by

-\displaystyle \triangle_{g}=y^{2}(-\partial_{y}^{2}-\triangle_{x})+(n-2)y\partial_{y}, \triangle_{x}=\sum_{i=1}^{n-1}(\partial/\partial x_{i})^{2}
We put

(n-1)^{2}
H_{0}=-\triangle_{g}- \overline{4}

.

The partial Fourier transform \hat{f}( $\xi$, y) of f(x, y) is defined by

(F_{0}f)( $\xi$, y)=\displaystyle \hat{f}( $\xi$, y)=(2 $\pi$)^{-(n-1)/2}\int_{\mathrm{R}^{n-1}}e^{-ix\cdot $\xi$}f(x, y)dx.
Letting L_{0}( $\zeta$) be as in (4.1), we have

\overline{(H_{0}f)}( $\xi$, y)=(L_{0}(| $\xi$|)\hat{f}( $\xi$, \cdot))(y) .

We put

R_{0}(z)=(H_{0}-z)^{-1}, z\in \mathrm{C}\backslash \mathrm{R},
and define the spaces \mathcal{B}, \mathcal{B}^{*} by taking \mathrm{H}=L^{2}(\mathrm{R}^{n-1};dx) in §3.
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Theorem 5.1. (1)  $\sigma$(H_{0})=[0, \infty ).
(2) $\sigma$_{p}(H_{0})=\emptyset.
(3) For  $\lambda$>0 and f\in B ,

the following limit exists in B^{*} in the weak* ‐sense

\displaystyle \lim_{ $\epsilon$\rightarrow 0}R_{0}( $\lambda$\pm i $\epsilon$)f=:R_{0}( $\lambda$\pm i0)f,
and the following inequality holds

(5.1) \Vert R_{0}( $\lambda$\pm i0)f\Vert_{B^{*}}\leq C\Vert f\Vert_{B},

where the constant C does not depend on  $\lambda$ if it varies over a compact set in (0, \infty) .

(4) We put fork>0, f\in C_{0}^{\infty}(\mathrm{R}_{+}^{n}) ,

(\displaystyle \mathcal{F}_{0}^{(\pm)}(k)f)(x)=\frac{(2k\sinh(k $\pi$))^{1/2}}{ $\pi$}(2 $\pi$)^{-(n-1)/2}
(5.2)

\displaystyle \times \int\int e^{ix\cdot $\xi$}(\frac{| $\xi$|}{2})^{\mp ik}y^{(n-1)/2}K_{ik}(| $\xi$|y)\hat{f}( $\xi$, y)\frac{d $\xi$ dy}{y^{n}}.
\mathrm{R}^{n-1}\times(0,\infty)

Then we have

(5.3) \displaystyle \frac{k}{ $\pi$ i}([R_{0}(k^{2}+i0)-R_{0}(k^{2}-i0)]f, f)=\Vert \mathcal{F}_{0}^{(\pm)}(k)f\Vert_{L^{2}(\mathrm{R}^{n-1})}^{2},
and

(5.4) \Vert \mathcal{F}_{0}^{(\pm)}(k)f\Vert_{L^{2}(\mathrm{R}^{n-1})}\leq C\Vert f\Vert_{B},
where the constant C is independent of  $\lambda$ if it varies over a compact set in (0, \infty) .

(5) We put (\mathcal{F}_{0}^{(\pm)}f)(k)=\mathcal{F}_{0}^{(\pm)}(k)f . Then \mathcal{F}_{0}^{(\pm)} is uniquely extended to a unitary
operator fr om \mathrm{L}(\mathrm{H}) to L^{2}((0, \infty);L^{2}(\mathrm{R}^{n-1});dk) . For f\in D(H_{0}) ,

we have

(5.5) (\mathcal{F}_{0}^{(\pm)}H_{0}f)(k)=k^{2}(\mathcal{F}_{0}^{(\pm)}f)(k) .

§5.2. Helmholtz equation

Theorem 5.1 implies

(5.6) \mathcal{F}_{0}^{(\pm)}(k)^{*}\in \mathrm{B}(L^{2}(\mathrm{R}^{n-1});\mathcal{B}^{*}) ,

(5.7) (\displaystyle \mathcal{F}_{0}^{(\pm)}(k)^{*} $\varphi$)(x, y)=\frac{(2k\sinh(k $\pi$))^{1/2}}{ $\pi$}F_{0}^{*}[(\frac{| $\xi$|}{2})^{\pm ik}y^{(n-1)/2}K_{ik}(| $\xi$|y)\hat{ $\varphi$}( $\xi$)],
(5.8)  F_{0}^{*} $\psi$=(2 $\pi$)^{-(n-1)/2}\displaystyle \int_{\mathrm{R}^{n-1}}e^{ix\cdot $\xi$} $\psi$( $\xi$)d $\xi$
and by (5.5)

(H_{0}-k^{2})\mathcal{F}_{0}^{(\pm)}(k)^{*} $\varphi$=0, \forall $\varphi$\in L^{2}(\mathrm{R}^{n-1}) .

One can then prove the following theorem.
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Theorem 5.2. For k>0

\{u\in \mathcal{B}^{*};(H_{0}-k^{2})u=0\}=\mathcal{F}_{0}^{(\pm)}(k)^{*}(L^{2}(\mathrm{R}^{n-1}))

Namely any solution in B^{*} to the Helmholtz equation is written as a Poisson integral
of some L^{2} ‐function on the boundary at infinity. In §10, we extend Theorem 5.2 to the

manifold \mathcal{M} . In the case of \mathrm{H}^{n}
,

the largest solution space for the Helmholtz was

characterized by Helgason [Hel70], who proved that all solutions of the equation (H_{0}-
 $\lambda$)u=0 is written by a Poisson integral of Sato�s hyperfunction on the boundary. This

result was extended to general symmetric spaces by [Mine75], [KKMOOT78]. This

was also extended to the Euclidean space using more general analytic functionals by

[HKMO72].
The space \mathcal{B}^{*} is the smallest (in the following sense) space for the solutions to the

Helmholtz equation. Recall the inclusion relations (3.1) in §3. One can show that if

u\in L^{2,-1/2} satisfies the Helmholtz equation (H_{0}-k^{2})u=0 for k>0 ,
then u=0.

Therefore all the solutions to the Helmholtz equation decays at most like or slower than

the functions in B^{*} . In spite of that, it contains a sufficiently large number of solutions,
since, as will be shown later, the knowledge of this solution space determines the whole

manifold \mathcal{M}.

§6. Modied Radon transform

The Radon transform is usually defined as an integral over some submanifolds. In

this section, we define the Radon transform in terms of the Fourier transform. For

this purpose it is convenient to change its definition slightly. Let F_{0} be the Fourier

transformation on \mathrm{R}^{n-1}.

Denition 6.1. For k\in \mathrm{R}\backslash \{0\} we define operators \mathcal{F}^{0}(k) and \mathcal{F}_{0}(k) by

\displaystyle \mathcal{F}^{0}(k)f(x)=\sqrt{\frac{2}{ $\pi$}}k\sqrt{\frac{\sinh(k $\pi$)}{k $\pi$}}F_{0}^{*}((\frac{| $\xi$|}{2})^{-ik}\int_{0}^{\infty}y^{\frac{n-1}{2}}K_{ik}(| $\xi$|y)\hat{f}( $\xi$, y)\frac{dy}{y^{n}}) ,

\displaystyle \mathcal{F}_{0}(k)=\frac{ $\Omega$(k)}{\sqrt{2}}\mathcal{F}^{0}(k) ,  $\Omega$(k)=\frac{-i}{ $\Gamma$(1-ik)}\sqrt{\frac{k $\pi$}{\sinh(k $\pi$)}}.
Here g(k) :=(k $\pi$/\sinh(k $\pi$))^{1/2} is defined on \mathrm{C}\backslash \{i $\tau$; $\tau$\in(-\infty, 1]\cup[1, \infty)\} as a single‐
valued analytic function. In particular, g(k)=g(k) for k>0.

Note that, \mathcal{F}^{0}(k)=\mathcal{F}_{0}^{(+)}(k) for k>0 ,
and | $\Omega$(k)|=1.

Lemma 6.2. (1) \mathcal{F}_{0} is uniquely extended to an isometry fr om \mathrm{L}(\mathrm{H}) to \hat{\mathcal{H}}
:=L^{2}(\mathrm{R};L^{2}(\mathrm{R}^{n-1});dk) ,

and it diagonalizes H_{0} :

(\mathcal{F}_{0}H_{0}f)(k, x)=k^{2}(\mathcal{F}_{0}f)(k, x) .
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(2) Let r+be the projection onto the subspace \hat{\mathcal{H}}+:=L^{2}((0, \infty);L^{2}(\mathrm{R}^{n-1});dk) . Then

the range of r_{+}\mathcal{F}_{0} is \hat{\mathcal{H}}+\cdot
(3)  g\in\hat{\mathcal{H}} belongs to the range of \mathcal{F}_{0} if and only if

\displaystyle \hat{g}(-k,  $\xi$)=\frac{ $\Gamma$(1-ik)}{ $\Gamma$(1+ik)}(\frac{| $\xi$|}{2})^{2ik}\hat{g}(k,  $\xi$) , \forall k>0.
We then define the modified Radon transform associated with H_{0} by

Denition 6.3. For s\in \mathrm{R} ,
we define

(\displaystyle \mathcal{R}_{0}f)(s, x)=\frac{1}{\sqrt{2 $\pi$}}\int_{-\infty}^{\infty}e^{iks}(\mathcal{F}_{0}f)(k, x)dk.
Recall that \mathcal{F}_{0} is written explicitly as

\displaystyle \mathcal{F}_{0}(k)f(x)=\frac{-ik}{\sqrt{ $\pi$} $\Gamma$(1-ik)}F_{0}^{*}((\frac{| $\xi$|}{2})^{-ik}\int_{0}^{\infty}y^{\frac{n-1}{2}}K_{ik}(| $\xi$|y)\hat{f}( $\xi$, y)\frac{dy}{y^{n}}) .

Theorem 6.4. \mathcal{R}_{0} is an isometry fr om \mathrm{L}(\mathrm{H}) to \hat{\mathcal{H}} . Moreover we have

\mathcal{R}_{0}H_{0}=-\partial_{s}^{2}\mathcal{R}_{0}.

Recall that the solution to the wave equation

\left\{\begin{array}{l}
\partial_{t}^{2}u+H_{0}u=0,\\
u|_{t=0}=f, \partial_{t}u|_{t=0}=g
\end{array}\right.
is written as

u(t)=\cos(t\sqrt{H_{0}})f+\sin(t\sqrt{H_{0}})\sqrt{H_{0}}^{-1}g.
Theorem 6.5. For any f\in L^{2}(\mathrm{H}^{n}) ,

we have as  t\rightarrow\infty

\displaystyle \Vert\cos(t\sqrt{H_{0}})f-\frac{y^{(n-1)/2}}{\sqrt{2}}(\mathcal{R}_{0}f)(-\log y-t, x)\Vert_{L^{2}(\mathrm{H}^{n})}\rightarrow 0,
\displaystyle \Vert\sin(t\sqrt{H_{0}})f-\frac{iy^{(n-1)/2}}{\sqrt{2}}(\mathcal{R}_{0}h(-i\partial_{s})f)(-\log y-t, x)\Vert_{L^{2}(\mathrm{H}^{n})}\rightarrow 0,

where

h(-i\displaystyle \partial_{s}) $\phi$(s)=\frac{1}{2 $\pi$}\iint_{\mathrm{R}^{1}\times \mathrm{R}^{1}}e^{ik(s-s')}h(k) $\phi$(s')ds'dk,
and where h(k)=1(k>0) , h(k)=-1(k<0) .

Corollary 6.6. For any f\in L^{2}(\mathrm{H}^{n}) ,
we have as  t\rightarrow\infty

\sqrt{2}e^{(n-1)(s+t)/2}(\cos(t\sqrt{H_{0}})f)(x, e^{-s-t})\rightarrow(\mathcal{R}_{0}f)(s, x) in L^{2}(\mathrm{R}^{n}) .
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§7. Radon transform and the wave equation

§7.1. Radon transform and horosphere

The fundamental solution for the wave equation on \mathrm{H}^{n} is written explicitly in terms

of spherical mean. For n=3 ,
it has the following form:

(7.1) \displaystyle \cos(t\sqrt{H_{0}})f(z)=\frac{\partial}{\partial t}(\frac{1}{4 $\pi$\sinh(t)}\int_{S(z,t)}f(z')dS) ,

where S(z;t)=\{z';d_{h}(z', z)=t\} ,
and d_{h}(z', z) is the hyperbolic distance, that is,

S(z, t)=\{(x', y');|x'-x|^{2}+|y'-\cosh(t)y|^{2}=\sinh^{2}(t)y^{2}\}.
Therefore dS=\sinh^{2}(t)y^{2}d $\omega$,  d $\omega$ being the Euclidean surface element on  S^{2} ,

and

\displaystyle \cos(t\sqrt{H_{0}})f(z)=\frac{\partial}{\partial t}(\frac{\sinh(t)y^{2}}{4 $\pi$}\int_{S^{2}}f((x, \cosh(t)y)+\sinh(t)y $\omega$)d $\omega$)
Let  t\rightarrow\infty and  y\rightarrow 0 keeping t+\log y=-s . Then

(x, \displaystyle \cosh(t)y)+\sinh(t)y $\omega$\rightarrow(x, \frac{e^{-s}}{2})+\frac{e^{-s}}{2} $\omega$,
Therefore the sphere S(z, t) converges

 $\Sigma$(s, x)=\displaystyle \{(x', y');|x'-x|^{2}+|y'-\frac{e^{-s}}{2}|^{2}=\frac{e^{-2s}}{4}\},
which is the horosphere tangent to \{y'=0\} . We then have

\displaystyle \cos(t\sqrt{H_{0}})f(z)\sim\frac{-y}{8 $\pi$}\frac{\partial}{\partial s}(e^{-s}\int_{ $\Sigma$(s,x)}fd $\omega$) ,

which, compared with Theorem 5.5, implies that

\displaystyle \mathcal{R}_{0}f(s, x)=\frac{-\sqrt{2}}{8 $\pi$}\frac{\partial}{\partial s}(e^{-s}\int_{ $\Sigma$(s,x)}fd $\omega$)
From this formula, one can easily see that if f is supported in the region y> $\delta$>0,
\mathcal{R}_{0}f(s, x)=0 for  e^{-s}< $\delta$ . The converse is also true. Namely, if \mathcal{R}_{0}f(s, x)=0
for e^{-s}< $\delta$, f(x, y) vanishes for  y< $\delta$ . This is the support theorem for the Radon

transform.

§7.2. 1‐dimensional wave equation

In the Euclidean space, there are 3 ways of constructing fundamental solutions to

the wave equation : (1) the method of spherical means, (2) the method of plane waves
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and (3) the method of Fourier transforms. In the hyperbolic space, the first method

is usually adopted. For example, in the work of Helgason [Hel84], a generalization of

Asgeirsson�s mean value theorem on two‐point homogeneous space is used to derive the

formula (7.1). In the following we shall apply the Fourier analysis to the fundamental

solution. Let us start with the 1‐dimensional case. The basic formula is the following
one ( [\mathrm{D}\mathrm{i}\mathrm{F}\mathrm{e}33] , p. 302).

Lemma 7.1. For x>0, y>0, |{\rm Re} v|<1/4 ,
we have

K_{l $\nu$}(x)K_{l $\nu$}(y)=\displaystyle \frac{ $\pi$}{2\sin(v $\pi$)}\int_{\log(y/x)}^{\infty}J_{0}(\sqrt{2xy\cosh t-x^{2}-y^{2}})\sinh(vt)dt.
We put

 $\rho$(k)=\displaystyle \frac{2k\sinh( $\pi$ k)}{$\pi$^{2}},
and define for  $\zeta$>0

U_{adv}(t, y, y'; $\zeta$)=\displaystyle \frac{(yy')^{\frac{n-1}{2}}}{2 $\pi$}\int_{\mathrm{R}^{2}}\frac{K_{ik}( $\zeta$ y)K_{ik}( $\zeta$ y')}{k^{2}-( $\omega$+i0)^{2}} $\rho$(k)e^{-it $\omega$}dkd $\omega$,
U_{ret}(t, y, y'; $\zeta$)=\displaystyle \frac{(yy')^{\frac{n-1}{2}}}{2 $\pi$}\int_{\mathrm{R}^{2}}\frac{K_{ik}( $\zeta$ y)K_{ik}( $\zeta$ y')}{k^{2}-( $\omega$-i0)^{2}} $\rho$(k)e^{-it $\omega$}dkd $\omega$.

Lemma 7.2. (1) For t>0 and y, y'>0 ,
we have

U_{adv}(t, y, y'; $\zeta$)=(yy')^{\frac{n-1}{2} $\theta$(t-}|\displaystyle \log\frac{y}{y}|)J_{0}( $\zeta$\sqrt{2yy'\cosh t-y^{2}-(y')^{2}}) ,

and fort<0,
U_{adv}(t, y, y'; $\zeta$)=0.

(2) For t\in \mathrm{R},

U_{ret}(t, y, y'; $\zeta$)=U_{adv}(-t, y, y'; $\zeta$) .

Lemma 7.3. (1) For f\in C_{0}^{\infty}((0, \infty we put

 u_{+}(t, y,  $\zeta$)=\displaystyle \int_{0}^{\infty}U_{adv}(t, y, y'; $\zeta$)f(y')\frac{dy'}{(y)^{n}}.
Then the following formulas hold:

(7.2) (L_{0}( $\zeta$)-\partial_{t}^{2})u_{+}(t, y,  $\zeta$)=f(y) $\delta$(t) ,

(7.3) u(t, y,  $\zeta$)=0 for t<0,

(7.4) (\partial_{t}u)(+0, y,  $\zeta$)=f(y) .
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We now define

U(t, y, y'; $\zeta$)=\displaystyle \frac{1}{2}(U_{adv}(t, y, y'; $\zeta$)-U_{ret}(t, y, y'; $\zeta$)) .

Lemma 7.4. For f\in C_{0}^{\infty}((0, \infty we put

 u(t, y,  $\zeta$)=\displaystyle \int_{0}^{\infty}U(t, y, y'; $\zeta$)f(y')\frac{dy'}{(y)^{n}}.
Then we have

(\partial_{t}^{2}-L_{0}( $\zeta$))u(t, y,  $\zeta$)=0,

u(0, y,  $\zeta$)=0,

\partial_{t}u(0, y,  $\zeta$)=f(y) .

§7.3. Wave equation in \mathrm{H}^{n}

We define an operator P(t, y, y') by

(7.5) P(t, y, y')f(x)=(2 $\pi$)^{-}\overline{2}n-1\displaystyle \int_{\mathrm{R}^{n-1}}e^{ix\cdot $\xi$}p( $\xi$;t, y, y')\hat{f}( $\xi$)d $\xi$,
p( $\xi$;t, y, y')=J_{0}(| $\xi$|\sqrt{2yy'\cosh(t)-y^{2}-(y')^{2}}) ,

which is a Fourier multiplier acting on functions of x\in \mathrm{R}^{n-1} , depending on parameters

t, y, y' . Since J(z) is an even function of z, p( $\xi$;t, y, y') is smooth with respect to  $\xi$ and

all the other parameters  y, y' and t . The solution of the Cauchy problem

\left\{\begin{array}{l}
\partial_{t}^{2}u+H_{0}u=0,\\
u(0)=0, \partial_{t}u(0)=f
\end{array}\right.
is written as

u(t, x, y)=\displaystyle \frac{1}{2}\int_{0}^{\infty}(yy')^{\frac{n-1}{2}}( $\theta$(t-|\log\frac{y}{y}|)- $\theta$(-t-|\log\frac{y}{y} (P(t, y, y')f(\cdot, y (x)\frac{dy'}{(y)^{n}}.
Differentiating this formula with respect to t

,
we get the fundamental solution.

Theorem 7.5. Let P be defined by (7.5). Then we have the following formula:

\cos(t\sqrt{H_{0}})f(x, y)

=\displaystyle \frac{1}{2}\int_{0}^{\infty}(yy')^{\frac{n-1}{2}}( $\delta$(t-|\log\frac{y}{y}|)+ $\delta$(t+|\log\frac{y}{y}|))P(t, y, y')f(\cdot, y')(x)\frac{dy'}{(y)^{n}}
+\displaystyle \frac{1}{2}\int_{0}^{\infty}(yy')^{\frac{n-1}{2}}( $\theta$(t-|\log\frac{y}{y}|)- $\theta$(-t-|\log\frac{y}{y}|))\partial_{t}P(t, y, y')f(\cdot, y')(x)\frac{dy'}{(y)^{n}}.
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In view of Corollary 6.6, we can derive an explicit form of the modified Radon

transform \mathcal{R}_{0}f by letting  t\rightarrow\infty and  y\rightarrow 0 keeping -t-\log y=s.

Theorem 7.6. For f\in C_{0}^{\infty}(\mathrm{H}) and s\in \mathrm{R} , we have

\displaystyle \mathcal{R}_{0}f(s, x)=\frac{e^{(n-1)s/2}}{\sqrt{2}}f(x, e^{-s})-\frac{e^{-s}}{\sqrt{2}}\int_{0}^{e^{-\mathrm{s}}}y^{-\frac{n-1}{2}}A(s, y)f(\cdot, y)\frac{dy}{y},
where A(s, y)f (, y) is defined by

A(s, y)f(\displaystyle \cdot, y)=(2 $\pi$)^{-(n-1)/2}\int_{\mathrm{R}^{n-1}}e^{ix\cdot $\xi$}A( $\xi$;s, y)\hat{f}( $\xi$, y)d $\xi$,
A( $\xi$;s, y)=\displaystyle \frac{| $\xi$|^{2}}{2}B(| $\xi$|\sqrt{e^{-s}y-y^{2}}) , B(z)=\frac{J_{1}(z)}{z}.

Passing to the Fourier transform we get the following formula.

Lemma 7.7. For y>0

\displaystyle \frac{1}{ $\pi$}\int_{-\infty}^{\infty}e^{iks}\frac{-ik}{ $\Gamma$(1-ik)}2^{ik}K_{ik}(y)dk=2e^{-s} $\delta$(e^{-s}-y)-e^{-s} $\theta$(e^{-s}-y)B(\sqrt{e^{-s}y-y^{2}}) ,

where  $\theta$ is the Heaviside function and  B(z)=J_{1}(z)/z.

§8. Classication of 2‐dimensional hyperbolic manifolds

The hyperbolic manifold is, by definition, a complete Riemannian manifold with all

sectional curvatures equal to -1 . General hyperbolic manifolds are constructed by the

action of discrete groups on the upper‐half space. The resulting quotient manifold is

either compact, or non‐compact but finte volume, or non‐compact with infinite volume.

In the latter two cases, the manifold can be split into bounded part and unbounded

part, this latter being called the end. To study the general structure of ends is beyond
our scope. We briefly look at the 2‐dimensional case.

Recall that \mathrm{c}_{+}=\{z=x+iy;y>0\} is a 2‐dimensional hyperbolic space equipped
with the metric

(8.1) ds^{2}=\displaystyle \frac{(dx)^{2}+(dy)^{2}}{y^{2}}.
Let \partial \mathrm{C}+=\partial \mathrm{H}^{2}=\{(x, 0) ; x\in \mathrm{R}\}\cup\infty=\mathrm{R}\cup\infty . For a matrix

 $\gamma$=\left(\begin{array}{l}
ba\\
cd
\end{array}\right)\in SL(2, \mathrm{R})
the Möbius transformation is defined by

(8.2) \displaystyle \mathrm{c}_{+}\ni z\rightarrow $\gamma$ z:=\frac{az+b}{cz+d},
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which is an isometry on H. This transformation  $\gamma$ is classified into 3 categories :

elliptic \Leftrightarrow there is only one fixed point in \mathrm{c}_{+}

\Leftrightarrow|\mathrm{t}\mathrm{r} $\gamma$|<2,

parabolic \Leftrightarrow there is only one degenerate fixed point on \partial \mathrm{C}+

\Leftrightarrow|\mathrm{t}\mathrm{r} $\gamma$|=2,

hyperbolic \Leftrightarrow there are two fixed points on \partial \mathrm{C}+

\Leftrightarrow|\mathrm{t}\mathrm{r} $\gamma$|>2.

Let  $\Gamma$ be a discrete subgroup of  SL(2, \mathrm{R}) ,
which is usually called a Fuchsian group. Let

\mathcal{M}= $\Gamma$\backslash \mathrm{H}^{2} be the fundamental domain for the action (8.2).  $\Gamma$ is said to be geometrically
finite if \mathcal{M} is chosen to be a finite‐sided convex polygon. The sides are then geodesics
of H. The geometric finiteness is equivalent to that  $\Gamma$ is finitely generated.

As a simple example, consider the cyclic group  $\Gamma$ generated by the action  z\rightarrow

 z+1 . This is parabolic with fixed point \infty . The associated fundamental domain is

\mathcal{M}=(-1/2,1/2]\times(0, \infty) ,
which is a hyperbolic manifold with metric (8.1). It has

two infinities : (-1/2,1/2] \times\{0\} and \infty . The part (-1/2,1/2] \times(0,1) has an infinite

volume, which we call regular infinity in this paper. The part (-1/2,1/2] \times(1, \infty) has

a finite volume, and is called the cusp. The sides x=\pm 1/2 are geodesics.
Another simple example is the cyclic group generated by the hyperbolic action

z\rightarrow $\lambda$ z,  $\lambda$>1 . The sides of the fundamental domain \mathcal{M}=\{1\leq|z|\leq $\lambda$\} are

semi‐circles orthogonal to \{y=0\} ,
which are geodesics. The quotient manifold is

diffeomorphic to S^{1}\times(-\infty, \infty) . It is parametrized by (t, r) ,
where t\in \mathrm{R}/\log $\lambda$ \mathrm{Z} and r

is the signed distance from the segment \{(0, t) ; 1\leq t\leq $\lambda$\} . The metric is then written

as

(8.3) ds^{2}= (dr )2 +\cosh^{2}r (dt).

The part x>0 (or x<0 ) is called the funnel. Letting y=2e^{-r} ,
one can rewrite (8.3)

as

ds^{2}=(\displaystyle \frac{dy}{y})^{2}+(\frac{1}{y}+\frac{y}{4})^{2} (dt )2

This means that the funnel is a small perturbation of the regular infinity.
Let  $\Lambda$( $\Gamma$) be the set of all limit points of the orbit \{ $\gamma$ z; $\gamma$\in $\Gamma$\} ,

i.e. w\in $\Lambda$( $\Gamma$) if

there exist z_{0}\in \mathrm{c}_{+} and  $\gamma$_{n}\in $\Gamma$ such that  $\gamma$_{n} z_{0}\rightarrow w . Since  $\Gamma$ acts discontinuously
on \mathrm{c}_{+},  $\Lambda$( $\Gamma$)\subset\partial \mathrm{H}^{2} . If  $\Lambda$( $\Gamma$) is a finite set,  $\Gamma$ is said to be elementary. In this case,

\mathcal{M} is either \mathrm{H}^{2}
,

or the quotient manifold by hyperbolic, or parabolic cyclic groups. For

non‐elementary case, we have the following theorem.

Theorem 8.1. Let \mathcal{M}= $\Gamma$\backslash \mathrm{H}^{2} be a non‐elementary geometrically finite hyper‐
bolic manifold. Then there exists a compact subset \mathcal{K} such that \mathcal{M}\backslash \mathcal{K} is a finite disjoint
union of cusps and funnels.
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We need to add a remark about Theorem 8.1. Let  $\Gamma$ be a Fuchsian group. For a

point  z_{0}\in\overline{\mathrm{R}_{+}^{2}} , we put

$\Gamma$_{z_{0}}=\{ $\gamma$\in $\Gamma$; $\gamma$\cdot z_{0}=z_{0}\}.

If $\Gamma$_{z_{0}}\neq\{1\}, z_{0} is called a fixed point of  $\Gamma$ . A fixed point in \mathrm{R}_{+}^{2} is called an elliptic
fixed point. Let \mathcal{M}_{sing} be the set of elliptic fixed points of  $\Gamma$ . By a suitable choice of

local coordinates, \mathcal{M}= $\Gamma$\backslash \mathrm{H}^{2} becomes a Riemann surface, moreover by introducing the

metric y^{-2}((dx)^{2}+(dy)^{2} ) ) , \mathcal{M}\backslash Ming is a hyperbolic manifold. However, this metric

is singular around the points from \mathcal{M}_{sing} . Around the elliptic fixed point z_{0}\in \mathcal{M},

\mathcal{M}_{sing} admits a covering space compatible with the local coorodiante system, and \mathcal{M}

is called orbifold. Theorem 8.1 also holds for the orbifold case. In this note, we do not

enter into the orbifold structure.

§9. Model space

By the above classification, it is natural to consider the manifolds whose ends are

close to a part of  $\Omega$=M\times(0, \infty) ,
M being a compact manifold, and the metric of  $\Omega$

is given by

(9.1)  ds^{2}=\displaystyle \frac{(dy)^{2}+h(x,dx)}{y^{2}},
where h(x, dx)=\displaystyle \sum_{i,j=1}^{n-1}h_{ij}(x)dx^{i}dx^{j} is the metric on M, x being local coordinates

on M . Let \triangle_{M} be the Laplace‐Beltrami operator on M,  0=$\lambda$_{1}<$\lambda$_{2}\leq\cdots be the

eigenvalues, and $\varphi$_{m}(x) the associated complete orthonormal system of eigenvectors of

\triangle_{M} . The Laplace‐Beltrami operator on  $\Omega$ is given by

 H_{0}=-y^{2}(\displaystyle \partial_{y}^{2}+\triangle_{M})+(n-2)y\partial_{y}-\frac{(n-1)^{2}}{4}.
Spectral properties of H_{0} can be studied in essentially the same way as in §5. We have

only to replace the space L^{2}(\mathrm{R}^{n-1}) by L(M) and the Fourier transform by the Fourier

series. Here the Fourier coefficient of f(x, y) is denoted by

(9.2) \displaystyle \hat{f}_{m}(y)=\int_{M}f(x, y)\overline{$\varphi$_{m}(x)}\sqrt{g_{M}}dx,
with g_{M}=\det(h_{ij}(x)) . For f\in C_{0}^{\infty}( $\Omega$) ,

we have

\overline{(H_{0}f)}_{m}(y)=(L_{0}(\sqrt{$\lambda$_{m}})\hat{f}_{m}(\cdot))(y) ,

where L_{0}( $\zeta$) is defined by (4.1). For $\lambda$_{m}\neq 0 ,
the Green operator of  L_{0}(\sqrt{$\lambda$_{m}})- $\lambda$\mp i $\epsilon$ is

(L_{0}(\sqrt{$\lambda$_{m}})- $\lambda$\mp i $\epsilon$))^{-1}=G_{0}(\sqrt{$\lambda$_{m}}, \mp i\sqrt{ $\lambda$\pm i $\epsilon$}) .
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The Fourier transformation associated with L_{0}(\sqrt{$\lambda$_{m}}) is given in (4.2):

(F_{0m}f)(k)=\displaystyle \frac{(2k\sinh(k $\pi$))^{1/2}}{ $\pi$}\int_{0}^{\infty}y^{(n-1)/2}K_{ik}(\sqrt{$\lambda$_{m}}y)f(y)\frac{dy}{y^{n}}.
Then we obtain the following theorem.

Theorem 9.1. Let $\lambda$_{m}\neq 0.
(1) F_{0m} is a unitary operator fr om L^{2}((0, \infty);dy/y^{n}) onto L^{2}((0, \infty), dk) .

(2) For f\in D(L_{0}(\sqrt{$\lambda$_{m}}))

(F_{0m}L_{0}(\sqrt{$\lambda$_{m}})f)(k)=k^{2}(F_{0m}f)(k) .

(3) For f\in L^{2}((0, \infty);dy/y^{n}) the inversion formula holds :

f=(F_{0m})^{*}F_{0m}f

=y^{(n-1)/2}\displaystyle \int_{0}^{\infty}\frac{(2k\sinh(k $\pi$))^{1/2}}{ $\pi$}K_{ik}(\sqrt{$\lambda$_{m}}y)(F_{0m}f)(k)dk.
We consider the case $\lambda$_{m}=0 ,

i.e. m=0 :

L_{0}(0)=-y^{2}\displaystyle \partial_{y}^{2}+(n-2)y\partial_{y}-\frac{(n-1)^{2}}{4}.
Since this is Euler�s operator, we have

(L_{0}(0)- $\lambda$\mp i $\epsilon$))^{-1}=G_{0}(\mp i\sqrt{ $\lambda$\pm i $\epsilon$}) ,

(9.3) G_{0}(v)f(y)=\displaystyle \int_{0}^{\infty}G_{0}(y, y';v)f(y')\frac{dy'}{(y)^{n}},

(9.4) G_{0}(y, y', v)=\displaystyle \frac{1}{2v}\left\{\begin{array}{ll}
y^{\frac{n-1}{2}+l $\nu$}(y')^{\frac{n-1}{2}-l $\nu$}, & 0<y<y',\\
y^{\frac{n-1}{2}-l $\nu$}(y')^{\frac{n-1}{2}+l $\nu$}, & 0<y'<y.
\end{array}\right.
Then we can prove

\displaystyle \Vert G_{0}(v)f\Vert_{B^{*}}\leq\frac{C}{|v|}\Vert f\Vert_{B},
where the constant C is independent of v . The Fourier transformation associated with

L(0) is

(F_{0}f)(k)=(F_{0}^{(+)}(k)f, F_{0} (k)f) ,

F_{0}^{(\pm)}(k)f=\displaystyle \frac{1}{\sqrt{2 $\pi$}}\int_{0}^{\infty}y^{\frac{n-1}{2}\pm ik}f(y)\frac{dy}{y^{n}}.
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Theorem 9.2. (1) F_{0} is unitary fr om L^{2}((0, \infty);dy/y^{n}) to (L^{2}((0, \infty);dk))^{2}.
(2) For f\in D(L_{0}(0)) ,

(F_{0}L_{0}(0)f)(k)=k^{2}(F_{0}f)(k) .

(3) For f\in L^{2}((0, \infty);dy/y^{n}) ,
the inversion formula holds:

f=F_{0}^{*}F_{0}f

=\displaystyle \frac{1}{\sqrt{2 $\pi$}}\int_{0}^{\infty}y^{(n-1)/2} (y^{-ik}F_{0}^{(+)}(k)f+y^{ik}F_{0} (k)f)dk.
We now return to the operator H_{0} . Recall that the generalized Fourier trans‐

formation is derived from the asymptotic behavior of the resolvent at infinity. For

 $\Omega$=M\times(0, \infty) ,
there are two infinities ; y=0 and  y=\infty ,

the former corresponding
to the funnel or the regular infinity of the parabolic cylinder, the latter to the cusp.

We put the suffix reg or  c for the Fourier transforms associated with regular infinity or

cusp.

Denition 9.3. We define

\mathrm{h}=L^{2}(M)\oplus \mathrm{C}, \hat{\mathcal{H}}=L^{2}((0, \infty);\mathrm{h};dk) ,

\mathcal{F}_{0}^{(\pm)}=(\mathcal{F}_{0reg}^{(\pm)}, \mathcal{F}_{0c}^{(\pm)}) ,

(9.5) (\displaystyle \mathcal{F}_{0reg}^{(\pm)}f)(k, x)=\sum_{j=0}^{\infty}C_{m}^{(\pm)}(k)$\varphi$_{m}(x)(F_{0m}^{(\pm)}\hat{f}_{m}(\cdot))(k) ,

(9.6) F_{0m}^{(\pm)}=\left\{\begin{array}{l}
F_{0m}($\lambda$_{m}\neq 0)\\
F_{0}^{(\pm)}($\lambda$_{m}=0) ,
\end{array}\right.

(9.7) C_{m}^{(\pm)}(k)=\left\{\begin{array}{l}
(\frac{\sqrt{$\lambda$_{m}}}{2})^{\mp ik} ($\lambda$_{m}\neq 0)\\
\frac{\pm i}{k $\omega$\pm(k)}\sqrt{\frac{ $\pi$}{2}} ($\lambda$_{m}=0) ,
\end{array}\right.
(9.8) (\displaystyle \mathcal{F}_{0c}^{(\pm)}f)(k)=\frac{1}{\sqrt{|M|}}(F_{0}^{(\mp)}\hat{f_{0}}(\cdot))(k) ,

where |M| is the volume of M.

We define \mathcal{B}, \mathcal{B}^{*} by putting \mathcal{H}=L(M) in §3, and let R_{0}(z)=(H_{0}-z)^{-1}.
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Theorem 9.4. (1)  $\sigma$(H_{0})=[0, \infty ).
(2) $\sigma$_{p}(H_{0})=\emptyset.
(3) For  $\lambda$>0, f\in B ,

the following limit exists in the* ‐weak sense

\displaystyle \lim_{ $\epsilon$\rightarrow 0}R_{0}( $\lambda$\pm i $\epsilon$)f=:R_{0}( $\lambda$\pm i0)f.
Moreover

\Vert R_{0}( $\lambda$\pm i0)f\Vert_{B^{*}}\leq C\Vert f\Vert_{B},

where the constant C does not depend on  $\lambda$ if  $\lambda$ varies over a comapct set in (0, \infty) .

(4) Letting \mathcal{F}_{0}^{(\pm)}(k)f=(\mathcal{F}_{0}^{(\pm)}f)(k) ,
we have

\Vert \mathcal{F}_{0}^{(\pm)}(k)f\Vert_{\mathrm{h}}\leq C\Vert f\Vert_{B},

where the constant C does not depend on  $\lambda$ if  $\lambda$ varies over a comapct set in (0, \infty) .

(5) \mathcal{F}_{0}^{(\pm)} is uniquely extended to a unitary operator fr om L() to \hat{\mathcal{H}} . Moreover if
f\in D(H_{0})

(\mathcal{F}_{0}^{(\pm)}H_{0}f)(k)=k^{2}(\mathcal{F}_{0}^{(\pm)}f)(k) .

The relation of \mathcal{F}_{0}^{(\pm)} and the asymptotic behavior of the resolvent is as follows.

Theorem 9.5. For k>0, f\in \mathcal{B} , we have

(9.9) \displaystyle \lim_{R\rightarrow\infty}\frac{1}{\log R}\int_{1/R<y<1}\Vert R_{0}(k^{2}\pm i0)f-v_{reg}^{(\pm)}\Vert_{L^{2}(M)}^{2}\frac{dy}{y^{n}}=0,
v_{reg}^{(\pm)}= $\omega$\pm(k)y^{(n-1)/2\mp ik}\mathcal{F}_{0reg}^{(\pm)}(k)f,

(9.10) \displaystyle \lim_{R\rightarrow\infty}\frac{1}{\log R}\int_{1<y<R}\Vert R_{0}(k^{2}\pm i0)f-v_{c}^{(\pm)}\Vert_{L^{2}(M)}^{2}\frac{dy}{y^{n}}=0,
v_{c}^{(\pm)}=$\omega$_{\pm}^{(c)}(k)y^{(n-1)/2\pm ik}\displaystyle \mathcal{F}_{0c}^{(\pm)}(k)f, $\omega$_{\pm}^{(c)}(k)=\pm\frac{i}{k}\sqrt{\frac{ $\pi$}{2}}.

§10. Manifolds with hyperbolic ends

§10.1. Resolvent estimates

We study the manifold \mathcal{M} satisfying the assumptions (A‐1) \sim (A‐4) in §2. Let

us note that the upper half‐space \mathrm{H}^{n} satisfies these assumptions. In fact, we take \mathcal{M}

to be \mathcal{K}\cup \mathcal{M}_{1}, \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathcal{M}_{1} is diffeomorphic to S^{n-1}\times(1, \infty) equipped with the metric

(dr) +\sinh^{2}r(d $\theta$)^{2} ,
the hyperbolic mertic written by geodesic polar coordinates. Taking

e^{r}=2/y ,
we arrive at at the above model.



48 Hiroshi Isozaki and Yaroslav Kurylev

If \mathcal{M}_{i} is diffeomorphic to M\times(0,1) ,
one can transfom the above metric into the

form

(10.1) ds^{2}=y^{-2}((dy)^{2}+h(x, dx)+\displaystyle \sum_{i,j=1}^{n-1}a_{ij}(x, y)dx^{i}dx^{j})
where each a_{ij}(x, y) satisfies the condition (2.1).

Theorem 10.1. (1) H|_{C_{0}^{\infty}(\mathcal{M})} is essentially self‐ adjoint.

(2) $\sigma$_{e}(H)=[0, \infty) .

We shall prove the limiting absorption by using the method of integration by parts

(see e.g. [Ei69]). We explain the main idea by adopting H_{0}=-\triangle_{g} in the upper‐half
space model \mathrm{R}_{+}^{n} . Let us note that u\pm=R_{0}( $\lambda$\pm i0)f behaves like

û \pm ( $\xi$, y)\sim C_{m}( $\xi$)y^{(n-1)/2\mp i\sqrt{ $\lambda$}} (y\rightarrow 0) .

Therefore we infer

(y\displaystyle \partial_{y}-(\frac{n-1}{2}\mp i\sqrt{ $\lambda$}))u\pm=o(y^{(n-1)/2}) (y\rightarrow 0) .

This suggests the importance of the term (y\displaystyle \partial_{y}-(\frac{n-1}{2}\mp i\sqrt{ $\lambda$}))u\pm \mathrm{t}\mathrm{o} derive the esti‐

mates for  u\pm\cdot We put

 $\sigma$\displaystyle \pm=\frac{n-1}{2}\mp i\sqrt{z}.
Here for z=re, r>0, - $\pi$< $\theta$< $\pi$ ,

we take the branch of \sqrt{z} as \sqrt{r}e^{i $\theta$/2} . In

the following, we estimate u=R_{0}( $\lambda$+i0) . The first step is to rewrite the equation

(H_{0}-z)u=f as follows:

(10.2) D_{y}(D_{y}- $\sigma$\pm)u=$\sigma$_{\mp}(D_{y}- $\sigma$\pm)u-D_{x}^{2}u-f.
Let (, ) , \Vert\cdot\Vert denote the inner product and norm of  L^{2}(\mathrm{R}^{n-1}) , respectively. The proof
of the limiting absorption principle is reduced to the following 3 \mathrm{a}‐priori estimates.

Lemma 10.2. Let  $\varphi$(y)\in C^{1}((0, \infty);\mathrm{R}) and 0<a<b<\infty.

(1) For any w\in C_{0}^{\infty}(\mathrm{H}^{n}) ,
we have

{\rm Re}\displaystyle \int_{a}^{b} $\varphi$(D_{y}w, w)\frac{dy}{y^{n}}=-\frac{1}{2}\int_{a}^{b}(D_{y} $\varphi$)\Vert w\Vert^{2}\frac{dy}{y^{n}}+[\frac{ $\varphi$\Vert w\Vert^{2}}{2y^{n-1}}]_{y=a}^{y=b}+\frac{n-1}{2}\int_{a}^{b} $\varphi$\Vert w\Vert^{2}\frac{dy}{y^{n}}.
(2) For any u\in C_{0}^{\infty}(\mathrm{H}^{n}) ,

we have

{\rm Re}\displaystyle \int_{a}^{b} $\varphi$((D_{y}- $\sigma$\pm)u, -D_{x}^{2}u)\frac{dy}{y^{n}}
=[\displaystyle \frac{ $\varphi$\Vert D_{x}u\Vert^{2}}{2y^{n-1}}]_{y=a}^{y=b}-\frac{1}{2}\int_{a}^{b}(D_{y} $\varphi$)\Vert D_{x}u\Vert^{2}\frac{dy}{y^{n}}+(\frac{n-3}{2}-{\rm Re} $\sigma$\pm)\int_{a}^{b} $\varphi$\Vert D_{x}u\Vert^{2}\frac{dy}{y^{n}}.
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Lemma 10.3. Let u=R(z)f with {\rm Im}\sqrt{z}\geq 0 . Put w\pm=(D_{y}- $\sigma$\pm)u . Then

for any C^{1}\ni $\varphi$\geq 0 and constants 0<a<b ,
we have

-\displaystyle \int_{a}^{b}(D_{y} $\varphi$)\Vert w+\Vert^{2}\frac{dy}{y^{n}}+[\frac{ $\varphi$(\Vert w_{+}\Vert^{2}-\Vert D_{x}u\Vert^{2})}{y^{n-1}}]_{y=a}^{y=b}(10.3)

\displaystyle \leq-\int_{a}^{b}(D_{y} $\varphi$+2 $\varphi$)\Vert D_{x}u\Vert^{2}\frac{dy}{y^{n}}-2{\rm Re}\int_{a}^{b} $\varphi$(f, w_{+})\frac{dy}{y^{n}},

\displaystyle \int_{a}^{b}(D_{y} $\varphi$)\Vert w_{-}\Vert^{2}\frac{dy}{y^{n}}-[\frac{ $\varphi$(\Vert w_{-}\Vert^{2}-\Vert D_{x}u\Vert^{2})}{y^{n-1}}]_{y=a}^{y=b}(10.4)

\displaystyle \leq\int_{a}^{b}(D_{y} $\varphi$+2 $\varphi$)\Vert D_{x}u\Vert^{2}\frac{dy}{y^{n}}+2{\rm Re}\int_{a}^{b} $\varphi$(f, w_{-})\frac{dy}{y^{n}}.
Lemma 10.4. We put u=R_{0}(z)f for f\in \mathcal{B} and let z vary over the region

J=\{z\in \mathrm{C};a\leq{\rm Re} z\leq b, 0<{\rm Im} z<1\},

where 0<a<b are arbitrarily chosen constants. Then for any  $\epsilon$>0 ,
there exists a

constant C_{ $\epsilon$}>0 such that

\displaystyle \int_{0}^{\infty}\Vert D_{x}u\Vert^{2}\frac{dy}{y^{n}}\leq $\epsilon$\Vert u\Vert_{B^{*}}^{2}+C_{ $\epsilon$}\Vert f\Vert_{B}^{2}.
As in the case of [Ei69], an important role is played by the radiation condition. We

put

 $\sigma$\displaystyle \pm( $\lambda$)=\frac{n-1}{2}\mp i\sqrt{ $\lambda$}.
We say that a solution u\in \mathcal{B}^{*} of the equation

(H- $\lambda$)u=f\in \mathcal{B}

satisfies the outgoing radiation condition, when \mathcal{M}_{i} has a regular infinity

(10.5) \displaystyle \lim_{R\rightarrow\infty}\frac{1}{\log R}\int_{1/R}^{1/2}\Vert(D_{y}-$\sigma$_{+}( $\lambda$))u(\cdot, y)\Vert_{L^{2}(\mathrm{E}_{i})}^{2}\frac{dy}{y^{n}}=0,
and when \mathcal{M}_{i} has a cusp

(10.6) \displaystyle \lim_{R\rightarrow\infty}\frac{1}{\log R}\int_{2}^{R}\Vert(D_{y}-$\sigma$_{-}( $\lambda$))u(\cdot, y)\Vert_{L^{2}(\mathrm{E}_{i})}^{2}\frac{dy}{y^{n}}=0.
The incoming radiation condition is defined similarly with $\sigma$_{+}( $\lambda$) replaced by $\sigma$_{-}( $\lambda$) .

Theorem 10.5. Let  $\lambda$>0 and suppose u\in B^{*} satisfies (H- $\lambda$)u=0 and the

radiation condition. Then:

(1) If one of \mathcal{M}_{i} �s has a regular infinity, then u=0.

(2) If all \mathcal{M}_{i} have a cusp, u\in L^{2,s}, \forall s>0.
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These preparations are sufficient to prove the limiting absortion principle for H.

Theorem 10.6. For  $\lambda$\in$\sigma$_{e}(H)\backslash $\sigma$_{p}(H) ,
there exists a limit

\displaystyle \lim_{ $\epsilon$\rightarrow 0}R( $\lambda$\pm i $\epsilon$)\equiv R( $\lambda$\pm i0)\in \mathrm{B}(B;B^{*})
in the weak* ‐sense. Moreover for any compact interval I\subset$\sigma$_{e}(H)\backslash $\sigma$_{p}(H) there exists

a constant C>0 such that

\Vert R( $\lambda$\pm i0)f\Vert_{B^{*}}\leq C\Vert f\Vert_{B},  $\lambda$\in I.

For f\in B ,
we put u=R( $\lambda$\pm i0)f . Then u is a unique solution to the equation

(H- $\lambda$)u=f satisfy ing the outgoing (for the case +), incoming (for the case −)
radiation condition. For f, g\in B, (R( $\lambda$\pm i0)f, g) is continuous with respect to  $\lambda$>0.

§10.2. Fourier transforms associated with H

We use the following partition of unity. Fix x_{0}\in \mathcal{K} arbitrarily, and pick $\chi$_{0}\in

 C_{0}^{\infty}(\mathcal{M}) such that

$\chi$_{0}(x)=\left\{\begin{array}{ll}
1, & \mathrm{d}\mathrm{i}\mathrm{s}(x, x_{0})<R,\\
0, & \mathrm{d}\mathrm{i}\mathrm{s} (x, x_{0})>R+1.
\end{array}\right.
Taking R large enough, we define $\chi$_{j}\in C^{\infty}(\mathcal{M}) such that

$\chi$_{j}(x)=\left\{\begin{array}{ll}
1-$\chi$_{0}(x) , & x\in \mathcal{M}_{j},\\
0, & x\not\in \mathcal{M}_{j}.
\end{array}\right.
Then we have

(10.7) \left\{\begin{array}{ll}
\sum_{j=0}^{N}$\chi$_{j}=1, & \\
\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p} $\chi$_{j}\subset \mathcal{M}_{j}, & 1\leq j\leq N,\\
$\chi$_{0}=1 \mathrm{o}\mathrm{n} \mathcal{K}. & 
\end{array}\right.
For 1\leq j\leq N ,

we construct \overline{ $\chi$}_{j}\in C^{\infty}(\mathcal{M}) such that

supp \overline{ $\chi$}_{j}\subset \mathcal{M}_{j}, \overline{ $\chi$}_{j}=1 on \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}$\chi$_{j}.

Let H_{0j} be the Laplace‐Beltrami operator on M_{j}\times(0, \infty) and $\chi$_{j} as in (10.7). Since

(H_{0j}- $\lambda$)$\chi$_{j}R( $\lambda$\pm i0)=$\chi$_{j}+([H_{0j}, $\chi$_{j}]-$\chi$_{j}V)R( $\lambda$\pm i0) ,

letting

R_{0j}(z)=(H_{0j}-z)^{-1},
we have

$\chi$_{j}R( $\lambda$\pm i0)=R_{0j}( $\lambda$\pm i0)$\chi$_{j}+R_{0j}( $\lambda$\pm i0)([H_{0j}, $\chi$_{j}]-$\chi$_{j}V)R( $\lambda$\pm i0) .
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This resolvent equation enables us to construct the Fourier transformation for H by the

perturbation argument.

Definition of \mathcal{F}_{0j}^{(\pm)}(k) . We define \mathcal{F}_{0j}^{(\pm)}(k) as follows. Let $\lambda$_{j,1} , $\lambda$_{j,2}, \cdots be the eigenvalues
of the Laplace‐Beltrami operator on  M_{j} and $\varphi$_{j,1} , $\varphi$_{j,2},

\cdots be the associated eigenvectors.

(i) For  1\leq j\leq M (the case of regular infinity)

(\displaystyle \mathcal{F}_{0j}^{(\pm)}(k)f)(x)=\sum_{m\geq 0}C_{m}^{(\pm)}(k)$\varphi$_{j,m}(x)F_{0,m}^{(\pm)}(k)\hat{f}_{m}(\cdot) ,

where the right‐hand side is defined by (9.5), (9.6) with M replaced by M_{j} ,
and C_{m}^{(\pm)}(k)

is from (9.7).

(ii) For M+1\leq j\leq N (the case of cusp)

\displaystyle \mathcal{F}_{0j}^{(\pm)}(k)f=\frac{1}{\sqrt{|\mathrm{E}_{\mathrm{j}}|}}F_{0,0}^{(\mp)}(k)\hat{f}(0, \cdot) .

We put

(10.8) \mathcal{F}_{j,m}^{(\pm)}(k)=F_{0,m}^{(\pm)}(k)($\chi$_{j}+([H_{0j}, $\chi$_{j}]-$\chi$_{j}V)R(k^{2}\pm i0))

Definition of \mathcal{F}^{(\pm)}(k) . The Fourier transformation associated with H is defined by

\mathcal{F}^{(\pm)}(k)=(\mathcal{F}_{1}^{(\pm)}(k), \cdots, \mathcal{F}_{N}^{(\pm)}(k)) ,

where for 1\leq j\leq M

\mathcal{F}_{j}^{(\pm)}(k)=\mathcal{F}_{0j}^{(\pm)}(k)[$\chi$_{j}+([H_{0j}, $\chi$_{j}]-$\chi$_{j}V)R(k^{2}\pm i0)]

=\displaystyle \sum_{m\geq 0}C_{m}^{(\pm)}(k)$\varphi$_{j,m}(x)\mathcal{F}_{j,m}^{(\pm)}(k) ,

and for M+1\leq j\leq N

\mathcal{F}_{j}^{(\pm)}(k)=\mathcal{F}_{0j}^{(\pm)}(k)[$\chi$_{j}+([H_{0j}, $\chi$_{j}]-$\chi$_{j}V)R(k^{2}\pm i0)]
(10.9)

=\displaystyle \frac{1}{\sqrt{|M_{j}|}}\mathcal{F}_{j,0}^{(\pm)}(k) .

For functions f, g\in \mathcal{B}^{*} on \mathcal{M} , by f\simeq g we mean that on each end

\displaystyle \lim_{R\rightarrow\infty}\frac{1}{\log R}\int_{1<y<R}\Vert f(y)-g(y)\Vert_{L^{2}(M_{i})}^{2}\frac{dy}{y^{n}}=0,
\displaystyle \lim_{R\rightarrow\infty}\frac{1}{\log R}\int_{\log(1/R)<y<1}\Vert f(y)-g(y)\Vert_{L^{2}(M_{i})}^{2}\frac{dy}{y^{n}}=0.
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Theorem 10.7. Let f\in B, k^{2}\in$\sigma$_{e}(H)\backslash $\sigma$_{p}(H) ,
and $\chi$_{j} the partition of unity

fr om (10. 7). Then we have

R(k^{2}\displaystyle \pm i0)f\simeq $\omega$\pm(k)\sum_{j=1}^{M}$\chi$_{j}y^{(n-1)/2\mp ik}\mathcal{F}_{j}^{(\pm)}(k)f
+$\omega$_{\pm}^{(c)}(k)\displaystyle \sum_{j=M+1}^{N}$\chi$_{j}y^{(n-1)/2\pm ik}\mathcal{F}_{j}^{(\pm)}(k)f.

We put

(10.10) \mathrm{h}_{\infty}=(\oplus_{i=1}^{M}L^{2}(M_{i}))\oplus(\oplus_{i=M+1}^{N}\mathrm{C}) ,

and for  $\varphi$,  $\psi$\in \mathrm{h}_{\infty} we define the inner product by

( $\varphi$,  $\psi$)_{\mathrm{h}_{\infty}}=\displaystyle \sum_{i=1}^{M}($\varphi$_{i}, $\psi$_{i})_{L^{2}(M_{i})}+\sum_{j=M+1}^{N}$\varphi$_{j}\overline{$\psi$_{j}}|M_{j}|.
We also put

\mathcal{F}^{(\pm)}(k)f=(\mathcal{F}_{1}^{(\pm)}(k)f, \cdots, \mathcal{F}_{N}^{(\pm)}(k)f)
\hat{\mathcal{H}}=L^{2}((0, \infty);\mathrm{h}_{\infty};dk) .

Theorem 10.8. We define (\mathcal{F}^{(\pm)}f)(k)=\mathcal{F}^{(\pm)}(k)f forf\in \mathcal{B} . Then \mathcal{F}^{(\pm)} is

uniquely extended to a bounded operator fr om L^{2}() to \hat{\mathcal{H}} with the following properties.

(1) Ran \mathcal{F}^{(\pm)}=\hat{\mathcal{H}}.
(2) \Vert f\Vert=\Vert \mathcal{F}^{(\pm)}f\Vert for  f\in \mathcal{H}_{ac}(H) .

(3) \mathcal{F}^{(\pm)}f=0 for f\in \mathcal{H}_{p}(H) .

(4) (\mathcal{F}^{(\pm)}Hf)(k)=k^{2}(\mathcal{F}^{(\pm)}f)(k) for  f\in Dom  H.

(5) \mathcal{F}^{(\pm)}(k)^{*}\in \mathrm{B}(\mathrm{h}_{\infty};\mathcal{B}^{*}) and (H-k^{2})\mathcal{F}^{(\pm)}(k)^{*}=0 for k2\in(0, \infty)\backslash $\sigma$_{p}(H) .

(6) For f\in \mathcal{H}_{ac}(H) ,
the inversion formula holds:

f=(\displaystyle \mathcal{F}^{(\pm)})^{*}\mathcal{F}^{(\pm)}f=\sum_{j=1}^{N}\int_{0}^{\infty}\mathcal{F}_{j}^{(\pm)}(k)^{*}(\mathcal{F}_{j}^{(\pm)}f)(k)dk.
§10.3. S matrix

Theorem 5.2 is extended to \mathcal{M}.

Theorem 10.9. If k^{2}\not\in$\sigma$_{p}(H) ,
we have

\mathcal{F}^{(\pm)}(k)B=\mathrm{h}_{\infty},

\{u\in \mathcal{B}^{*};(H-k^{2})u=0\}=\mathcal{F}^{(\pm)}(k)^{*}\mathrm{h}_{\infty}.
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We derive an asymptotic expansion of solutions to the Helmholtz equation. Let V_{q}
be the differential operator defined by

V_{q}=-[H_{0q}, $\chi$_{q}]+V$\chi$_{q} (1\leq q\leq N) .

For 1\leq p\leq M, 1\leq q\leq N ,
we define

\displaystyle \hat{S}_{pq}(k)=$\delta$_{pq}J_{p}(k)-\frac{ $\pi$ i}{k}\mathcal{F}_{p}^{(+)}(k)V_{q}^{*}(\mathcal{F}_{0q}^{(-)}(k))^{*},

J_{p}(k) $\psi$=\displaystyle \sum_{m\geq 1}(\frac{\sqrt{$\lambda$_{p,m}}}{2})^{-2ik}$\varphi$_{p,m}(x)\hat{ $\psi$}_{m} (1\leq p\leq M) .

For M+1\leq p\leq N, 1\leq q\leq N ,
we define

\displaystyle \hat{S}_{pq}(k)=-\frac{ $\pi$ i}{k}\mathcal{F}_{p}^{(+)}(k)V_{q}^{*}(\mathcal{F}_{0q}^{(-)}(k))^{*}
Theorem 10.10. For  $\psi$=($\psi$_{1}, \cdots, $\psi$_{N})\in \mathrm{h}_{\infty} ,

we have

(\displaystyle \mathcal{F}^{(-)}(k))^{*} $\psi$=\sum_{p=1}^{N}(\mathcal{F}_{p}^{(-)}(k))^{*}$\psi$_{p}
\displaystyle \simeq\frac{ik}{ $\pi$}$\omega$_{-}(k)\sum_{p=1}^{M}$\chi$_{p}y^{(n-1)/2+ik}$\psi$_{p}
+\displaystyle \frac{ik}{ $\pi$}$\omega$_{-}(k)\sum_{p=M+1}^{N}$\chi$_{p}y^{(n-1)/2-ik}\hat{ $\psi$}_{p0}

M N
ik

-- $\omega$+(k)\displaystyle \sum\sum$\chi$_{p}y^{(n-1)/2-ik}\hat{S}_{pq}(k)$\psi$_{q} $\pi$
 p=1q=1

N N

-\displaystyle \underline{ik}_{$\omega$_{+}^{(c)}}(k) \sum \sum$\chi$_{p}y^{(n-1)/2+ik}\hat{S}_{pq}(k)$\psi$_{q}. $\pi$
 p=M+1q=1

We define an operator‐valued N\times N matrix S(k) by

\hat{S}(k)=(\hat{S}_{pq}(k)) .

Theorem 10.11. (1) For any u\in B^{*} satisfy ing (H-k^{2})u=0 ,
there exists a

unique $\psi$^{(\pm)}\in \mathrm{h}_{\infty} such that

M N

u\displaystyle \simeq$\omega$_{-}(k)\sum$\chi$_{p}y^{(n-1)/2+ik}$\psi$_{p}^{(-)}+$\omega$_{-}(k) \sum $\chi$_{p}y($\psi$_{p0}
p=1 p=M+1

M N

-$\omega$_{+}(k)\displaystyle \sum$\chi$_{p}y^{(n-1)/2-ik}$\psi$_{p}^{(+)}-$\omega$_{+}^{(c)}(k) \sum $\chi$_{p}y^{(n-1)/2+ik}$\psi$_{p}^{(+)}.
p=1 p=M+1
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(2) For any  $\psi$ \in \mathrm{h}_{\infty} , there exists a unique $\psi$^{(+)}\in \mathrm{h}_{\infty} and u\in B^{*} satisfy ing (H-
k^{2})u=0 , for which the expansion (1) holds. Moreover

$\psi$^{(+)}=\hat{S}(k)$\psi$^{(-)}.

Theorem 10.12. S(k) is unitary on \mathrm{h}_{\infty} and

\mathcal{F}^{(+)}(k)=\hat{S}(k)\mathcal{F}^{(-)}(k) .

§11. Singularity expansion of the Radon transform

We look at the upper‐half space model \mathrm{R}_{+}^{n} from a different view point. We shall

assume that the perturbed metric has the following properties:

ds^{2}=y^{-2}((dx)^{2}+(dy)^{2}+A(x, y, dx, dy)) ,

where A(x, y, dx, dy) is a symmetric covariant tensor of the form

A(x, y, dx, dy)=\displaystyle \sum_{i,j=1}^{n-1}a_{ij}(x, y)dx^{i}dx^{j}+2\sum_{i=1}^{n-1}a_{in}(x, y)dx^{i}dy+a_{nn}(x, y) (dy)2,

and each a_{ij}(x, y)(1\leq i, j\leq n) is assumed to satisfy the condition

(11.1) |\overline{D}_{x}^{ $\alpha$}D_{y}^{ $\beta$}a(x, y)|\leq C_{ $\alpha \beta$}(1+d_{h}(x, y))^{- $\beta$-1-$\epsilon$_{0}}, $\epsilon$_{0}>0,
where d_{h}(x, y) is the hyperbolic distance between (x, y) and (0,1) .

Recall that the homogeneous distribution (s)_{\pm}^{ $\alpha$} is defined for {\rm Re} $\alpha$>-1 by

(s)_{\pm}^{ $\alpha$}=\left\{\begin{array}{l}
|s|^{ $\alpha$}/ $\Gamma$( $\alpha$+1) , \pm s>0,\\
0, \pm s<0,
\end{array}\right.
and for n=1

, 2, 3, \cdots and {\rm Re} $\alpha$>-1

(s)_{\pm}^{ $\alpha$-n}=(\displaystyle \pm\frac{d}{ds})^{n}(s)_{\pm}^{ $\alpha$}.
Then one can constuct the generalized Fourier tansform by using the method in §10
and define the modified Radon transform associated with this metric in the same way

as in §6.

Theorem 11.1. Let s_{0}>-\log y_{0}/4 ,
and take sufficienlly large N>0 . Then

\displaystyle \mathcal{R}_{+}=\sum_{j=0}^{N}\mathcal{R}_{+}^{(j)}+R_{N},
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where R_{N} is a local regularizer of order N with respect to s>s_{0} ,
and

(\displaystyle \mathcal{R}_{+}^{(j)}f)(s, x)=\int_{0}^{\infty}(s+\log y)_{-}^{j-1}y^{-\frac{n-1}{2}}P_{j}(y)f(x, y) $\chi$(y)\frac{dy}{y},

P_{j}(y)=\displaystyle \frac{(-i)^{j}}{\sqrt{2}}a_{j}(x, y, -i\partial_{x})^{*}
Here a_{j}(x, y,  $\xi$) is is a polynomial in  $\xi$ of order  2j . Hence a_{j}(x, y, -i\partial_{x}) is a dif‐

ferential operator of order 2j . The above theorem in particular yields the following
expression

(11.2) (\mathcal{R}_{+}^{(j)}f)(s, x)=\left\{\begin{array}{l}
\frac{e^{(n-1)s/2}}{\sqrt{2}} $\chi$(e^{-s})f(x, e^{-s}) , (j=0) ,\\
\int_{0}^{e^{-\mathrm{s}}}\frac{(s+\log y)^{j-1}}{(j-1)!}y^{-\frac{n-1}{2}}P_{j}(y)f(x, y) $\chi$(y)\frac{dy}{y}, (j\geq 1) ,
\end{array}\right.
where  $\chi$(y)\in C^{\infty}(\mathrm{R}) such that  $\chi$(y)=1(y<y_{0}/4) ,  $\chi$(y)=0(y>y_{0}/3) . This is a

generalization of Theorem 7.6 in the sense of singularity expansion.

§12. Inverse problems for hyperbolic ends

§12.1. Inverse scattering at regular ends

Let \mathcal{M} be a manifold satisfying the assumptions (A.1) \sim (A.4) in §2 with ends of

number  N\geq 1 . We assume that at least one of the ends has a regular infinity. Let \mathcal{M}_{1}
be such an end. Nemely, in the notation §2, \mathcal{M}_{1} is diffeomorphic to M\times(0,1) . Let

 $\Gamma$\subset \mathcal{M} be a compact submanifold of codimension 1 such that \mathcal{M} is split into 2 parts

\mathcal{L}_{1} and \mathcal{K}_{1} in the following way:

\mathcal{M}=\mathcal{L}_{1}\cup \mathcal{K}_{1}, \mathcal{L}_{1}\cap \mathcal{K}_{1}= $\Gamma$,

where \mathcal{L}_{1} and \mathcal{K}_{1} are assumed to be submanifolds of \mathcal{M} with boundary  $\Gamma$ inheriting
the Riemannian structure of \mathcal{M} . Assume also that \mathcal{L}_{1} is non‐compact and has infinity
common to \mathcal{M}_{1}.

Let \triangle_{g} be the Laplace‐Beltrami operator on \mathcal{M} ,
and H() and H() be -\triangle_{g}-

(n-1)^{2}/4 on \mathcal{L}_{1} and \mathcal{K}_{1} with Neumann boundary condition on the boundary  $\Gamma$ . Then

one can solve the Neumann problem on \mathcal{K}_{1} :

\left\{\begin{array}{l}
(H(\mathcal{K}_{1})- $\lambda$)u=0 \mathrm{i}\mathrm{n} \mathcal{K}_{1},\\
\partial_{l $\nu$}u=f \mathrm{o}\mathrm{n}  $\Gamma$,
\end{array}\right.
where we assume the outgoing radiation condition if \mathcal{K}_{1} is non‐compact. Using the

solution u of this equation, we define the Neumann to Dirichlet map (N‐D map) by
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$\Lambda$^{(+)}( $\lambda$)f=u|_{\partial $\Omega$} . Note that $\Lambda$^{(+)}( $\lambda$) is also defined for z\in $\sigma$(H(\mathcal{K}_{1})) ,
and $\Lambda$^{(+)}( $\lambda$) is

the boundary value of  $\Lambda$(z) as z\rightarrow $\lambda$+i0 . Therefore $\Lambda$^{(+)}( $\lambda$) defined for  $\lambda$>0 has a

unique analytic continuation to \mathrm{C}\backslash  $\sigma$(H(\mathcal{K}_{1})) .

Since \mathcal{M} has N‐ends, the \mathrm{S}‐matrix for \mathcal{M} is an N\times N‐matrix:

\hat{S}(k)=(\hat{S}_{ij}(k))_{1\leq i,j\leq N}.
Theorem 12.1. Suppose k^{2}\neq 0 is not a Neumann eigenvalue for H^{(1)} and H^{(2)}

on \mathcal{K}_{1} . Let $\Lambda$_{j}^{(+)}(k) be the N‐D map for H^{(j)}, j=1 , 2, on \mathcal{K}_{1} . Suppose G^{(1)}=G^{(2)} on

\mathcal{L}_{1} . Then \hat{S}_{11}^{(1)}(k)=\hat{S}_{11}^{(2)}(k) if and only if $\Lambda$_{1}^{(+)}(k^{2})=$\Lambda$_{2}^{(+)} (k2).

Recall that \mathcal{K}_{1} is a non‐compact manifold with compact boundary  $\Gamma$ . The oper‐

ator  H(\mathcal{K}_{1})=-\triangle_{g} has two parts of spectral representations: the generalized Fourier

transform, which we denote by \mathcal{F}_{c}^{(+)} here, corresponding to the absolutely continuous

spectrum for H(\mathcal{K}_{1}) ,
and the discrete Fourier transform, denoted by \mathcal{F}_{p} , corresponding

to the point specrum for H(\mathcal{K}_{1}) .

We put $\Omega$_{ex}=\mathcal{K}_{1} and \partial$\Omega$_{ex}= $\Gamma$ . Let  r_{ $\Gamma$}\in \mathrm{B}(H^{1}($\Omega$_{ex});H^{1/2}( $\Gamma$)) be the trace

operator to  $\Gamma$ . Define  $\delta$_{ $\Gamma$}\in \mathrm{B}(H^{-1/2}( $\Gamma$);H^{-1} as its adjoint:

($\delta$_{ $\Gamma$}f, w)_{L^{2}($\Omega$_{\mathrm{e}x})}=(f, r_{ $\Gamma$}w)_{L^{2}( $\Gamma$)}, f\in H^{-1/2}( $\Gamma$) , w\in H^{1}($\Omega$_{ex}) .

Accordingly, we write as

r_{ $\Gamma$}=$\delta$_{ $\Gamma$}^{*}.

Lemma 12.2. The N‐D map  $\Lambda$(z) defined for z\in \mathrm{C}\backslash \mathrm{R} is split ito two parts

(12.1)  $\Lambda$(z)=\displaystyle \int_{0}^{\infty}\frac{$\delta$_{ $\Gamma$}^{*}\mathcal{F}_{c}^{(+)}(k)^{*}\mathcal{F}_{c}^{(+)}(k)$\delta$_{ $\Gamma$}}{k^{2}-z}dk+\sum_{i}\frac{$\delta$_{ $\Gamma$}^{*}P_{i}$\delta$_{ $\Gamma$}}{$\lambda$_{i}-z}.
Let us call the set

(12.2) \{$\delta$_{ $\Gamma$}^{*}\mathcal{F}_{c}^{(+)}(k)^{*}\mathcal{F}_{c}^{(+)}(k)$\delta$_{ $\Gamma$};k>0\}\cup\{($\lambda$_{i}, $\delta$_{ $\Gamma$}^{*}P_{i}$\delta$_{ $\Gamma$})\}_{i=1}^{\infty}
the boundary spectral projection (BSP) for H(\mathcal{K}_{1}) . By (12.1), we have

(12.3)  $\Lambda$(z)=$\delta$_{ $\Gamma$}^{*}(H(\mathcal{K}_{1})-z)^{-1}$\delta$_{ $\Gamma$}.

Lemma 12.3. Knowing the N‐D map $\Lambda$^{(+)}(k) for all k such that k^{2}\not\in$\sigma$_{p}H()
is equivalent to knowing BSP for H() .

We now pass to the boundary control method (BC‐method) to reconstruct the

manifold from BSP. The BC‐method does not rely on the special manifold structure,
and works if we know the N‐D map for the asoociated Laplace‐Beltrami operator. The
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BC‐method was first applied to compact manifolds ([\mathrm{B}\mathrm{e}\mathrm{K}\mathrm{u}92]) ,
and was extended to

non‐compact manifolds (see e.g. [Be97], [KK98]).
Let us formulate the inverse problem on non‐compact Riemannian manifolds. Let

M^{(1)} and M^{(2)} be Riemannian manifolds (not necessarily compact) with boundary, on

which is inhelited the Riemannian metric induced from M^{(r)} . We say that M^{(1)} and

M^{(2)} have a common part $\Gamma$^{(1)}=$\Gamma$^{(2)} on the boundary if there exists an open set

$\Gamma$^{(r)}\subset\partial M^{(r)} and a diffeomorphism  $\phi$ :  $\Gamma$^{(1)}\rightarrow$\Gamma$^{(2)} . Let $\Lambda$^{(r)}(z) be the N‐D map for

the Laplace‐Beltrami operator on M^{(r)} . Then we define

(12.4) $\Lambda$^{(1)}(z)|_{ $\Gamma$(1)}=$\Lambda$^{(2)}(z)|_{ $\Gamma$(2)}\Leftrightarrow $\phi$\circ$\Lambda$^{(1)}(z)|_{ $\Gamma$(1)}=$\Lambda$^{(2)}(z)|_{ $\Gamma$(2)}\circ $\phi$.
One can then show that (with some additional assumptions) if M^{(1)} and M^{(2)} have  $\Gamma$

in common and the same N‐D map on  $\Gamma$ (in thse sense that the above (12.4) holds for

all  z\not\in \mathrm{R}) ,
then M^{(1)} and M^{(2)} are isometric. Assuming this for the moment, we have

proven the following theorem.

Theorem 12.4. Let \mathcal{M} be a manifold satisfy ing the assumptions (A.1)\sim (A.4)
in §2. We assume that one of the ends has a regular infinity, and denote it by \mathcal{M}_{1}.

Suppose we are given two metrics G^{(j)}, j=1 , 2, on \mathcal{M} satisfy ing (A‐3). Assume that

G^{(1)}=G^{(2)} on \mathcal{M}_{1} . If \hat{S}_{11}(k)=\hat{S}_{11}(k) for all k>0 ,
then G^{(1)} and G^{(2)} are isometric

on \mathcal{M}.

We can actually prove a stronger version of Theorem 12.4, i.e. it is valid for two

manifolds whose number of of ends are not known \mathrm{a}‐priori.

Theorem 12.5. Let \mathcal{M}^{(p)}, p=1 , 2, be manifolds satisfy ing the assumptions

(A.1)\sim (A.4) in §2 endowed with metric  G^{(p)}, p=1 ,
2. We assume that for both of

\mathcal{M}^{(1)} and \mathcal{M}^{(2)} one of the ends has a regular infinity, and denote it by \mathcal{M}_{1}^{(p)}, p=1 ,
2.

Assume that \mathcal{M}_{1}^{(1)} and \mathcal{M}_{1}^{(2)} are isometric, and \hat{S}_{11}(k)=\hat{S}_{11}(k) for all k>0 . Then

\mathcal{M}^{(1)} and \mathcal{M}^{(2)} are isometric.

§13. Brief introduction to the boundary control method

§13.1. Wave equation and Gel�fand inverse problem

In the remaining sections, we give a brief explanation of the BC method. Let M

be an n‐dimensional connected Riemannian manifold with boundary \partial M . We shall

consider the IBVP (initial‐boundary value problem) for the wave equation

\partial_{t}^{2}u=\triangle_{g}u on M\times(0, \infty) .

We impose the initial condition

u|_{t=0}=\partial_{t}u|_{t=0}=0,
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and the boundary condition

\partial_{l $\nu$}u|_{\partial M\times(0,\infty)}=f\in C_{0}^{\infty}(\partial M\times(0, \infty)) .

Here v is the outer unit normal to \partial M . Let u^{f}(x, t) be the solution to the above IBVP.

We measure u^{f} on \partial M\times(0, \infty) ,
and call

(13.1) $\Lambda$^{h} : f\rightarrow u^{f}|_{\partial M\times(0,\infty)}
a hyperbolic Neumann‐Dirichlet map. The basic question we address is the following
one.

Question Assume we know $\Lambda$^{h} . Can we determine (M, g) ,
i.e. the manifold M and the

metric g?

This is the Gel�fand inverse problem (stated in a slightly different form). Note that

$\Lambda$^{h} is an opeartor defined on \partial M\times(0, \infty) . Starting from the knowledge on \partial M\times(0, \infty) ,

the first issue is the topology of M
,

and the second issue is the Riemannian structure.

The answer to the above question is affirmative when M is compact, and also for

non‐compact M with some additional geometric assumptions. To fix the idea, in the

following, M means either any compact connected Riemannian manifold with boundary,
or when dealing with the non‐compact case, the manifold \mathcal{K}_{1} discussed in the previous
section. However, the arguments given below also work for non‐compact manifolds

possesing the spectral representation as in the case of \mathcal{K}_{1} . Note that in both cases \partial M

is compact.

§13.2. Spectral formulation

Let us begin with the compact manifold case. Consider the Neumann Laplacian
A_{N} :

A_{N}u=-\triangle_{g}u, u\in H^{2}(M) , \partial_{l $\nu$}u|_{\partial M}=0.
The spectrum of A_{N} consists of real numbers

0=$\lambda$_{1}<$\lambda$_{2}\leq$\lambda$_{3}\leq. . . \rightarrow\infty.

Let $\varphi$_{k} be the associated eigenvectors

-\triangle_{g}$\varphi$_{k}=$\lambda$_{k}$\varphi$_{K}, \partial_{l $\nu$}$\varphi$_{k}|_{\partial M}=0.
Without loss of generality we can assume $\varphi$_{k} to be real‐valued. We call \{($\lambda$_{k}, $\varphi$_{k}|_{\partial M})\}_{k=1}^{\infty}
the boundary spectral data (BSD). The original Gel�fand inverse problem is:

Question Given BSD, can we determine (M, g) ?

The relation of BSD to the hyperbolic Neumann‐Dirichlet map is represented by
the following (formal) formula:

($\Lambda$^{h}f)(x, t)=\displaystyle \int_{\partial M}\int_{\mathrm{R}_{+}}G(x, y, t-s)f(y, s)dS_{y}ds.
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(13.2) G(x, y, t)=\displaystyle \sum_{k=1}^{\infty}\frac{\sin(\sqrt{$\lambda$_{k}}t)}{\sqrt{$\lambda$_{k}}}$\varphi$_{k}(x)$\varphi$_{k}(y)|_{\partial M\times\partial M}.
The Boundary Control (BC) method goes back to the famous results by M. G.

Krein, in the mid‐fifties, on the 1dimensional inverse scattering theory. Compared
with the fundamental methods by Gel�fand‐Levitan and Marchenko, the method of

Krein is distinguished by the systematic use of the finite propagation speed for the wave

equation. However, the ideas based upon the domain of influence, etc. coming from

this finite velocity are
�

disguised� in the work of Krein due to their formulation in the

frequency domain (or the stationary equation), where they turn out to be conditions

on analyticity of the corresponding Fourier transform of the solution. This principal

hyperbolic nature of Krein�s method was revealed by Blagovestchenskii who was working
in the time‐domain (or the time‐dependnet equation) using the finite velocity of the wave

propagation and ideas of controllability in the filled domain to derive a Volterra‐type
equation for unknown functions. These ideas have become crucial for the extension

of the method to multidimensions pioneered by Belishev [Be87], [\mathrm{B}\mathrm{e}\mathrm{K}\mathrm{u}92] . One more

important ingredient of the BC‐method, namely, the possibility to evaluate the inner

product of waves sent into M from \partial M also goes back to the 1‐dimensional case to the

work of Blagovestchenskii.
The BC method has the following features.

(1) BC method is hyperbolic.
Since the propagation speed of wave motion is finite, and singularities of waves are

related with geodesics, this implies the close connection of BC method with geometry.

(2) BC method is not perturbative.
We do not assume that the given metric is close to some standard one. In this

sense, the BC method does not have the character of perturbation theory.

§13.3. Outline of the procedure

The crucial tool of the BC‐method is the space of boundary distance functions

R(M) to be defined in §16, and the reconstruction of the manifold M is done by the

following 3 steps:

\bullet BSP determines  R(M) (§19).

\bullet  R(M) is topologically isomorphic to M (§16).

\bullet  R(M) determines the Riemannian metric of M (§18).

This is an effective interplay of linear partial differential equations and geometry.
The main ingredients of the 1st step are Blagovestchenskii�s idenitity, which represents
the solution of IBVP of the wave equation by BSD, and Tatar�s uniqueness theorem,
which guarantees the conrollablity of IBVP. The 2nd step is of character of general
topology. The 3rd step is purely from differential geometry, in which the coordinate

system of M is constructed by R(M) and the metric tensor is computed.
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§14. Blagovestchenskii idenitity

Given a solution u^{f} of the wave equation

(14.1) \left\{\begin{array}{l}
\partial_{t}^{2}u=\triangle_{g}u,\\
\partial_{l $\nu$}u|_{\partial M\times \mathrm{R}_{+}}=f\in C_{0}^{\infty}(\partial M\times(0, \infty\\
 u|_{t=0}=\partial_{t}u|_{t=0}=0,
\end{array}\right.
we have when M is compact

(14.2) u_{k}^{f}(t)=\displaystyle \int_{0}^{t}ds\int_{\partial M}dS_{g}\frac{\sin(\sqrt{$\lambda$_{k}}(t-s))}{\sqrt{$\lambda$_{k}}}f(y, s)$\varphi$_{k}(y) .

This formula shows that u_{k}^{f}(t) is represented by $\lambda$_{k} and $\varphi$_{k}|_{\partial M} ,
i.e. BSD.

Lemma 14.1. The following Blagovestchenskii idenitity holds:

(14.3) (u^{f}(t), u^{h}(s))=\displaystyle \sum_{k}u_{k}^{f}(t)\overline{u_{k}^{h}(s)}, \forall t, s\in \mathrm{R}, \forall f, h\in C_{0}^{\infty}(\partial M\times \mathrm{R}_{+})
Lemma 14.1 is the first corner stone of BC method. We let

(14.4) S(t,  $\lambda$)=\displaystyle \frac{\sin(\sqrt{ $\lambda$}t)}{\sqrt{ $\lambda$}}, \overline{S}(t, s,  $\lambda$)=S(t,  $\lambda$)S(s,  $\lambda$) ,

and rewrite the right‐hand side of (14.3) as

(14.5) \displaystyle \sum_{i}\int_{0}^{t}\int_{0}^{s}dt'ds'\overline{S}(t-t', s-s', $\lambda$_{i})($\delta$_{ $\Gamma$}^{*}P_{i}$\delta$_{ $\Gamma$}f(t'), h(s')) .

This implies the following corollary.

Corollary 14.2. The inner product (u^{f}(t), u^{h}(s)) is written only by BSP.

This is also true when -\triangle_{g} has the continuous spectrum. The Laplace‐Beltrami

operator on \mathcal{K}_{1} admits the spectral representation \mathcal{F}_{c}^{(+)} . In this case, to modify the

formula (14.3), we have only to add the integral of \mathcal{F}_{c}^{(+)}(k)^{*}\mathcal{F}_{c}^{(+)}(k) to the right‐hand
side of (14.5):

\displaystyle \int_{0}^{\infty}dk\int_{0}^{t}\int_{0}^{s} dt�ds� \overline{S}(t-t's-s', k^{2})($\delta$_{ $\Gamma$}^{*}\mathcal{F}_{c}^{(+)}(k)^{*}\mathcal{F}_{c}^{(+)}(k)$\delta$_{ $\Gamma$}f(t'), h(s'))
(14.6)

+\displaystyle \sum_{i}\int_{0}^{t}\int_{0}^{s}dt'ds'\overline{S}(t-t', s-s', $\lambda$_{i})($\delta$_{ $\Gamma$}^{*}P_{i}$\delta$_{ $\Gamma$}f(t'), h(s')) .

Again (u^{f}(t), u^{h}(s)) is written only by BSP.
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§15. Controllabilty and observability

§15.1. Controllability

Let u^{f} be a unique solution to IBVP (14.1). We take a bounded open set S on the

boundary, S\subset\partial M ,
and put for t_{0}>0

M(S, t_{0})=\{x\in M;d(x, S)\leq t_{0}\}.

Lemma 15.1. If supp f \subset S\times(0, \infty) ,
then

supp u t_{0})\subset M(S, t_{0}) , \forall t_{0}>0.

For a measurabe subset D\subset M and f\in L^{2}(D) ,
we define f=0 on M\backslash D and

regard L(D) as a closed subspace of L^{2}(M) . In view of Lemma 15.1, we can define the

map W_{t_{0}} by

W_{t_{0}} : C_{0}^{\infty}(S\times(0, t_{0}))\ni f\rightarrow u^{f}|_{t=t_{0}}\in L^{2}(M(S, t0)) .

The crucial fact is the following theorem due to Tataru ([Ta95]).

Theorem 15.2. \overline{\mathrm{R}\mathrm{a}\mathrm{n}(W_{t_{0}})}=L^{2}(M(S, t0)) .

By this theorem, for any  $\epsilon$>0 and a\in L(M) such that supp a \subset M(S, t_{0}) ,
there

exists f=f_{ $\epsilon$,a}\in C_{0}^{\infty}(S\times(\mathrm{o}, t)) satisfying \Vert u^{f} t_{0} ) -a\Vert_{L^{2}(M)}< $\epsilon$ . Therefore the

property described in Theorem 15.2 should be called approximate controllability.

§15.2. Observability

Let us also consider the adjoint problem of (14.1):

(15.1) \left\{\begin{array}{l}
\partial_{t}^{2}v=\triangle_{g}v \mathrm{i}\mathrm{n} M\times \mathrm{R},\\
\partial_{l $\nu$}v|_{\partial M\times \mathrm{R}}=0,\\
v|_{t=t_{0}}=0, \partial_{t}v|_{t=t_{0}}= $\psi$\in L^{2}(M) .
\end{array}\right.
We define the observability operator by

\mathcal{O}_{t_{0}} $\psi$=v^{ $\psi$}|_{S\times(0,t_{0})},  $\psi$\in L^{2}(M(S, t_{0}
where v^{ $\psi$} is the weak solution to (15.1). Note that v^{ $\psi$}|_{\partial M\times \mathrm{R}}\in C(\mathrm{R}, H^{1/2}(\partial M)) ,

and

(15.2) \Vert \mathcal{O}_{t_{0}} $\psi$\Vert_{L^{2}(S\times(0,t_{0}))}\leq C\Vert $\psi$\Vert_{L^{2}(M)},

where C=C_{t_{0}} is a constant. We can show that

Lemma 15.3. For any f\in C_{0}^{\infty}(S\times(0, t_{0}  $\psi$\in L^{2}(M(S, t_{0} we have

(W_{t_{0}}f,  $\psi$)_{L^{2}(M(S,t_{0}))}=-(f, \mathcal{O}_{t_{0}} $\psi$)_{L^{2}(S\times}(0,t_{0})) .
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Lemma 15.3 imply that

(15.3) W_{t_{0}}=-\mathcal{O}_{t_{0}}^{*}\in \mathrm{B}(L^{2}(S\times(0, t_{0} L^{2}(M)) .

Therefore Theorem 15.2 is equivalent to the statement that

(15.4) \mathrm{K}\mathrm{e}\mathrm{r}\mathcal{O}_{t_{0}}=\{0\}.

This property is called observability. The claim (15.4) means the following:

Assume v satisfies

\left\{\begin{array}{l}
\partial_{t}^{2}v=\triangle_{g}v \mathrm{i}\mathrm{n} M\times \mathrm{R},\\
v|_{t=t_{0}}=0, \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p} \partial_{t}v|_{t=t_{0}}\subset M(S, t_{0}) ,\\
\partial_{l $\nu$}v|_{\partial M\times(0,t_{0})}=0, v|_{S\times(0,t_{0})}=0.
\end{array}\right.
Then \partial_{t}v|_{t=t_{0}}=0.

§15.3. Uuiqueness theorem

If we put u(t)=v(t+t_{0}) ,
then u(t)=-u(t) and the above claim is formulated

as follows.

Assume u satisfies

\left\{\begin{array}{l}
\partial_{t}^{2}u=\triangle_{g}u \mathrm{i}\mathrm{n} M\times \mathrm{R},\\
u|_{t=0}=0, \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p} \partial_{t}u|_{t=0}\subset M(S, t_{0}) ,\\
\partial_{l $\nu$}u|_{\partial M\times(-t_{0},t_{0})}=0, u|_{S\times(-t_{0},t_{0})}=0.
\end{array}\right.
Then \partial_{t}u|_{t=0}=0.

Actually, we can prove a stronger version of this claim. Namely:

Theorem 15.4. Assume u\in C^{\infty}(M\times(-t_{0}, t)) satisfies

\left\{\begin{array}{l}
\partial_{t}^{2}u=\triangle_{g}u \mathrm{i}\mathrm{n} M\times(-t_{0}, t_{0}) ,\\
\partial_{l $\nu$}u|_{S\times(-t_{0},t_{0})}=0, u|_{S\times(-t_{0},t_{0})}=0.
\end{array}\right.
Then u|_{t=0}=0 in the double cone of influence K(S, t_{0}) ,

i.e.

K(S, t_{0})=\{(x, t);d(x, S)\leq t_{0}-|t|\}.

This sort of theorem (Holmgren‐John type uniqueness theorem) has a long story,

starting from the classical result by Holmgren:
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Theorem 15.5. Let u be a classical, i.e. C^{2} ,
solution to the partial differential

equation P(x, D_{x})u=0 with analytic coeffcients. If u=0 in one side of a non‐

characteristic surfa ce  $\Sigma$
,

then supp u \cap $\Sigma$=\emptyset , i.e.  u=0 near  $\Sigma$.

Recall that for a differential operator P(x, D_{x})=\displaystyle \sum_{| $\alpha$|<m}p_{ $\alpha$}(x)D_{x}^{ $\alpha$} defined on an

open set U in \mathrm{R}^{n}
,
its principal part is defined by P_{m}(x,  $\xi$)=\overline{\sum}_{| $\alpha$|=m}p_{ $\alpha$}(x)$\xi$^{ $\alpha$} . A surface

 $\Sigma$ of co‐dimension 1 in  U is said to be non‐characteristic to P(x, D_{x}) ,
if P_{m}(x, v_{x})\neq 0

for any  x\in $\Sigma$ and normal  v_{x} to  $\Sigma$ at  x . Theorem 4.6 was first proved by E. Holmgren in

1901 and extended by F. John in 1949. This theorem has been tried to be extended to

the C^{\infty} ‐coefficient case by Robbiano or Hörmander, and finally Tataru [Ta95] succeeded

in obtaining the result in full generality. The importance of non‐analyticity should be

strongly emphasized in applications to inverse problems.

§16. Topological reconstruction of M by R(M)

§16.1. Reconstruction from boundary distance functions

The key idea of the BC‐method is to reconstruct the boundary distance function,
r_{x}(z) ,

defined as follows: For any x\in M, r_{x} is defined by

r_{x}(z)=d(x, z) , z\in\partial M,

d(x, y) being the distance of x, y\in M . We define the map R by

R : M\ni x\rightarrow r_{x} \in C(\partial M) .

If \partial M is compact, R(M) becomes a metric space by the distance

d_{\infty}(r_{1}, r_{2})=\Vert r_{1} -r_{2} \Vert_{L^{\infty}(\partial M)},

and the following inclusion relation hold

R(M)\subset C^{0,1}(\partial M)\subset L^{\infty}(\partial M) ,

where C^{0,1}(\partial M) is the space of Lipschitz continuous functions on \partial M . The utility of

the boundary distance function is seen in the following lemma.

Lemma 16.1. If \partial M is compact, (R(M), d_{\infty}) is homeomorphic to (M, d) .

R(M) is a set of functions indexed by the points x\in M . However in the inverse

problem we are now considering, we know neither M nor x
,

since they are the objects
we are trying to reconstruct. So, changing the notation, we let r_{1}=r_{x}, r_{2}=r_{y},
where x, y\in M . Assume we can find new distance \hat{d}(r_{1}, r_{2}) from d_{\infty}(r_{1}, r_{2}) so that

\hat{d}(r_{1}, r_{2})=d(x, y) for x, y such that r_{1}=r_{x}, r_{2}=r_{y} . Then (R(M),\hat{d)} becomes

isometric, as a metric space, to (M, d) . By the Myers‐Steenrod theorem, this implies that
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there is a unique Riemannian manifold structure on R(M) such that R:M\rightarrow R(M)
is isometry. In the following, we give a direct way of reconstructing the Riemannian

manifold structure on R(M) to make R a Riemannian isometry from M to R(M) ,

without leaning over the abstract nature of the Myers‐Steenrod theorem.

§17. Boundary cut locus

To introduce a Riemannian manifold structure on R(M) ,
we use geodesics emanat‐

ing from the boundary \partial M . We then need to discuss the maximal region on which we

can introduce the boundary normal coordinates, and also the structure of the cut locus.

The geometrical tools necessary for this step are standard, which we shall explain in

this section. For a Riemannian manifold M
,

let T(M) be the tangent space at x\in M.

Recall that for  $\xi$,  $\eta$\in T_{x}(M) ,
the inner product and the length are defined by

g_{x}( $\xi$,  $\eta$)=g_{ij}(x)$\xi$^{i}$\eta$^{j}=\displaystyle \sum_{i,j=1}^{n}g_{ij}(x)$\xi$^{i}$\eta$^{j}, | $\xi$|_{g}=\sqrt{g_{x}( $\xi,\ \xi$)}
Put S_{x}(M)=\{ $\xi$\in T_{x}(M);| $\xi$|_{g}=1\} . Let T(M) and T^{*}(M) be the tangent bundle and

the cotangent bundle of M
, respectively.

§17.1. Variation and Jacobi fields

Let c(t) be a curve on M . For a vector field X(t) on M
,

with components

(X1(t), \cdots, X^{n}(t)) in local coordinates, the covariant diffe rential \displaystyle \frac{D}{dt}X(t) along c(t)
is defined by

\displaystyle \frac{D}{dt}X^{k}(t)=\dot{X}^{k}(t)+$\Gamma$_{ij}^{k}(c(t))c^{i}(t)X^{j}(t) ,

where we used the abbreviation \displaystyle \dot{f}(t)=\frac{df(t)}{dt} . A vector field Z(t) is said to be parallel

along c(t) if it satisfies \displaystyle \frac{D}{dt}Z(t)=0 . In particular, c(t) is a geodesic if and only if c(t) is

parallel along c(t) . The energy of the curve c(t) is defined by

E(c)=\displaystyle \frac{1}{2}\int_{a}^{b}g_{c(t)}(\dot{c}(t),\dot{c}(t))dt.
A C^{\infty} ‐map : [a, b]\times (,  $\epsilon$)\ni(t, s)\rightarrow H(t, s)\in M is said to be a variation of c(t) if

H(t, 0)=c(t)(a\leq t\leq b) . The curvature tensor R is defined by

(R(X, Y)Z)^{l}=R_{ijk}^{l}X^{i}Y^{j}Z^{k},

R_{ijk}^{l}=\displaystyle \frac{\partial$\Gamma$_{jk}^{l}}{\partial x^{i}}-\frac{\partial$\Gamma$_{ik}^{l}}{\partial x^{j}}+$\Gamma$_{ir}^{l}$\Gamma$_{jk}^{r}-$\Gamma$_{jr}^{l}$\Gamma$_{ik}^{r},
where X, Y, Z are vector fields on M.
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Lemma 17.1. Let H(t, s) be a variation of c(t) ,
and put c_{s}(t)=H(t, s) . We

define the vector field Y(t) along c(t) by

Y(t)=\displaystyle \frac{\partial}{\partial s}H(t, s)|_{s=0}.
Then the following formulas hold.

(1) The 1st variation formula:

\displaystyle \frac{d}{ds}E(c_{s})|_{s=0}=g_{c(b)}(Y(b),\dot{c}(b))-g_{c(a)}(Y(a),\dot{c}(a))-\int_{a}^{b}g_{c(t)}(Y(t), \displaystyle \frac{D}{dt}\dot{c}(t))dt,
where D/dt is the covariant diffr ential along c(t) .

(2) The 2nd variation formula:

\displaystyle \frac{d^{2}}{ds^{2}}E(c_{s})|_{s=0}=g_{c(b)}(S(b),\dot{c}(b))-g_{c(a)}(S(a),\dot{c}(a))
+\displaystyle \int_{a}^{b}\{g_{c(t)}(\frac{D}{dt}Y(t), \frac{D}{dt}Y(t))-g_{c(t)}(R(Y(t),\dot{c}(t))\dot{c}(t), Y(t))

-g_{c(t)}(S(t), \displaystyle \frac{D}{dt}\dot{c}(t))\}dt,
where letting D/ds be the covariant differential along the curve C(s) : s\rightarrow H(t, s) ,

S(t)=\displaystyle \frac{D}{ds}\frac{\partial H(t,s)}{\partial s}|_{s=0}.
Note that if C(s) is a geodesic, S(t)=0.

If c(t) is a geodesic, Y(t) is called the Jacobi field along c(t) .

Lemma 17.2. Let c(t)(a\leq t\leq b) be a geodesic on M. Then a vector field Y(t)
is a Jacobi field along c(t) if and only if Y(t) satisfies

(17.1) (\displaystyle \frac{D}{dt})^{2}Y+R(Y, c)\dot{c}=0, a\leq t\leq b,
where D/dt is the covariant differential along c(t) .

§17.2. Focal point

In the following, we consider the boundary normal geodesic, denoted by $\gamma$_{z}(t) or

\exp_{\partial M}(z, t) , starting from z\in\partial M with initial direction the inner unit normal at z.

Fixing t
,

we define the map \exp_{\partial M}(t) by

\exp_{\partial M}(t) : \partial M\ni z\rightarrow$\gamma$_{z}(t)\in M.

Let d_{\partial M}\exp_{\partial M}(t)|_{z=z_{0}} : T_{z_{0}}(\partial M)\rightarrow T_{$\gamma$_{z_{0}}(t)}(M) be the differential of \exp_{\partial M}(t) evalu‐

ated at z_{0}.
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Denition 17.3. Let $\gamma$_{z_{0}}(t) be the boundary normal geodesic starting from  z_{0}\in

\partial M . The point $\gamma$_{z_{0}}(t_{0})=\exp_{\partial M}(z_{0}, t_{0}) is called a focal point along $\gamma$_{z_{0}}(t) if

rank (d_{\partial M}\exp_{\partial M}(t_{0})|_{z=z_{0}})<\dim M-1.
Lemma 17.4. Let $\gamma$_{z_{0}}(t)=\exp_{\partial M}(z_{0}, t) be the boundary normal geodesic ema‐

nating fr om z_{0}\in\partial M . If $\gamma$_{z_{0}}(t) is a focal point for some t_{0}>0 ,
there exists a Jacobi

field Y(t) along $\gamma$_{z_{0}}(t) such that

(17.2) Y(t_{0})=0, 0\neq Y(0)\in T_{z_{0}}(\partial M) ,

(17.3) g_{z_{0}}(\displaystyle \frac{DY}{dt}(0), Y(0))=0,
where D/dt is the covariant differential along $\gamma$_{z_{0}}(t) .

The above geometric preliminaries are sufficient to prove the following lemma.

Lemma 17.5. Let c(t)=$\gamma$_{z_{0}}(t)(0\leq t\leq t_{0}) be a boundary normal geodesic
starting fr om z_{0}\in\partial M . If $\gamma$_{z_{0}}(t) is a focal point along c(t) for some 0<t_{1}<t_{0} ,

there

is a curve with end points z_{0} and $\gamma$_{z_{0}}(t) which is strictly shorter than the geodesic c(t)
(0\leq t\leq t_{0}) .

Lemma 17.5 implies that the distance from $\gamma$_{z}(t) to \partial M is shorter than the length
of $\gamma$_{z}(t)(0\leq t\leq t_{0}) and is attained by a boundary normal geodesic $\gamma$_{w}(t) ,

where

w\in\partial M, w\neq z_{0}.

§17.3. Boundary cut point

Let $\gamma$_{z} be a boundary normal geodesic starting from z\in\partial M . A point $\gamma$_{z}(t)
is said to be uniquely minimizing along the geodesic $\gamma$_{z} if t=d($\gamma$_{z}(t), \partial M) and

t<d($\gamma$_{z}(t), w) for any w\in\partial M such that w\neq z ,
i.e. \{$\gamma$_{z}(s);0\leq s\leq t\} is a unique

shortest geodesic from $\gamma$_{z}(t) to \partial M . Uniquely minimizing points have the following
property: If $\gamma$_{z}(t) is uniquely minimizing along $\gamma$_{z} ,

then so is $\gamma$_{z}(s) for any 0<s<t.

This property implies that either there is a value  0<t<\infty such that $\gamma$_{z}(s) is

uniquely minimizing for any 0<s<t ,
and $\gamma$_{z}( $\tau$) is not uniquely minimizing for any

 $\tau$>t ,
or $\gamma$_{z}(t) is uniquely minimizing for any t>0.

Denition 17.6. Along the boundary normal geodesic $\gamma$_{z} starting from z\in\partial M,
there is a critical distance, which is denoted by  $\tau$(z) ,

such that \{$\gamma$_{z}(s);0\leq s\leq t\} is a

unique shortest curve from $\gamma$_{z}(t) to \partial M when t< $\tau$(z) ,
but \{$\gamma$_{z}(s);0\leq s\leq t\} is no more

a unique shortest curve when t> $\tau$(z) ,
i.e. there is w\in\partial M such that d(w, $\gamma$_{z}(t))<t.

Such a point $\gamma$_{z}( $\tau$(z)) is called a boundary cut point of z along $\gamma$_{z} . If  $\tau$(z)=\infty ,
we say

that there is no boundary cut point along the boundary normal geodesic $\gamma$_{z}.
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Lemma 17.7. For z_{0}\in\partial M ,
let  $\tau$(Z) be as in Definition 17.6. At the boundary

cut point, d($\gamma$_{z_{0}}( $\tau$(z_{0})), z_{0})= $\tau$(z_{0}) ,
and at least one (possibly both) of the following

statements holds:

(a) $\gamma$_{z_{0}}( $\tau$(Z)) is an ordinary boundary cut point, i.e. there is w\in\partial M such that w\neq z_{0}
and $\gamma$_{z_{0}}( $\tau$(z_{0}))=$\gamma$_{w}( $\tau$(z_{0})) .

(b) $\gamma$_{z_{0}}( $\tau$(Z)) is the first focal point along $\gamma$_{z_{0}} ,
i.e.

rank (d_{\partial M}\exp_{\partial M}(t)|_{z=z_{0}})=\dim M-1 if t< $\tau$(z_{0}) ,

rank (d_{\partial M}\exp_{\partial M}(t)|_{z=z_{0}})<\dim M-1 if t= $\tau$(z_{0}) .

We introduce a topology in \text{∪\infty by taking intervals( and( \infty \infty\text{∪\inftyWe introduce a topology in \mathrm{R}_{+}\cup\infty by taking intervals (a, b) and (a, \infty] =(a, \infty)\cup\infty
as a base for the open sets.

Lemma 17.8. The function  $\tau$(z) in Definition 17.6 is continuous from \partial M to

\mathrm{R}_{+}\cup\infty.

§17.4. Boundary cut locus

Denition 17.9. The boundary cut locus  $\omega$ is defined by

 $\omega$=\{x=$\gamma$_{z}( $\tau$(z));z\in\partial M\},

where $\gamma$_{z}( $\tau$(z)) is the boundary cut point of z along the boundary normal geodesic $\gamma$_{z}

in Definition 17.6.

Let us investigate the structure of  $\omega$ . We put

 B_{n}(M)=\displaystyle \bigcup_{z\in\partial M}\{\exp_{\partial M}(z, t) ; 0\leq t< $\tau$(z)\}.
Lemma 17.10. (1) M=B_{n}(M)\cup $\omega$, B_{n}(M)\cap $\omega$=\emptyset.

(2) B(M) is an open set.

(3)  $\omega$ is a closed set of measure  0 with no interior points.

Example 17.11. (1) Let M=B^{1}=\{|x|<1\} equipped with the Euclidean

metric. Then  $\omega$=\{0\} ,
which is both a boundary cut point and the first focal point. In

fact, letting z=(\cos $\theta$, \sin $\theta$)\in\partial B^{1} ,
we have $\gamma$_{z}(t)=(1-t)(-\cos $\theta$, -\sin $\theta$) .

(2) Let M be the inside of an ellipse : M=\{(x, y)\in \mathrm{R}^{2};x^{2}/a^{2}+y^{2}/b^{2}<1\}, (a>b>0)
equipped with the Euclidean metric. Then  $\omega$=\{(x, 0);|x|\leq(a^{2}-b^{2})/a\} . The end

points (\pm(a^{2}-b^{2})/a, 0) are focal points (note that they are not the focus points in

the sense of classical conic curves), and all the points in the open interval \{(x, 0);|x|\leq
(a^{2}-b^{2})/a\} are boundary cut points.
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§17.5. Boundary normal coordinates

Denition 17.12. For  x\in B_{n}(M)=M\backslash  $\omega$ ,
there exists a unique  z(x)\in\partial M

such that d(x, w)>d(x, z(x)) if z(x)\neq w\in\partial M . By the boundary normal coordinates

we mean the map

(17.4) M\backslash  $\omega$\ni x\rightarrow(z(x), d(z(x), x)) .

In this case, x=$\gamma$_{z(x)}(t) with t=d(x, \partial M) ,
i.e. x is on the boundary normal

geodesic starting from z(x) .

§18. Boundary distance coordinates

§18.1. Conjugate point

The boundary cut locus is different from the standard notion of cut locus on the

manifold without boundary. To study this difference is important to consider the dif‐

ferentiable structure near the boundary cut locus. In manifolds with boundary, the

geodesic may hit the boundary. In this case, there occurs a difficulty in extending the

notion of cut locus. To avoid it, we shall assume in this section that the manifold M

is embedded in a complete manifold without boundary \overline{M} . This is the case for our

application of asymptotically hyperbolic manifolds.

Denition 18.1. Let c(t)(a\leq t\leq b) be a geodesic on \overline{M} . Two points c(a)
and c(b) are said to be conjugate along c(t) if there exists a non‐trivial Jacobi field Y(t)
along c(t) such that Y(a)=0, Y(b)=0 . We also say that c(b) is conjugate to c(a) along
c(t) .

For y\in\overline{M} , let $\gamma$_{y}(v, t)=\exp_{y}(\mathrm{t}\mathrm{v}) be the geodesic starting from y with initial

direction v\in S_{y}(\overline{M}) .

Lemma 18.2. Let c(t)=$\gamma$_{y}(v, t)=\exp_{y}(tv)(0\leq t\leq t_{0}, v\in S(M)) be a

geodesic on M. Then c(t) is conjugate to y along c(t) if and only if there exists

0\neq k\in T_{y}(\overline{M})=T_{t_{0}v}(T_{y}(M)) such that

d\exp_{y}|_{t_{0}v}k=0.
Lemma 18.3. Let c(t)(a\leq t\leq b) be a geodesic on M. If there exists a< $\tau$<b

such that c( $\tau$) is conjugate to c(a) along c(t) ,
there is a curve with end points c(a) and

c(b) which is strictly shorter than the geodesic c(t)(a\leq t\leq b) .

Denition 18.4. Let y\in\overline{M} and v\in S_{y}(\overline{M}) . By the cut locus distance of
(y, v) in the Riemannian normal coordinates, we mean a number $\tau$^{R}(y, v) such that if

t<$\tau$^{R}(y, v) , $\gamma$_{y}(v, \cdot) is the shortest path from $\gamma$_{y}(v, t) to y ,
and for t>$\tau$^{R}(y, v) ,

there

exists a strictly shorter path from $\gamma$_{y}(v, t) to y.
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Note that d(y, $\gamma$_{y}(v, $\tau$^{R}(y, v))=$\tau$^{R}(y, v) . The point $\gamma$_{y}(v, $\tau$^{R}(y, v)) is called the cut

point for y along the geodesic $\gamma$_{y}(v, \cdot) . This should not be confused with the boundary
cut point of Definition 17.6, where we considered the distance to \partial M.

Lemma 18.5. The mapping $\tau$^{R}(y, v) :  T(\overline{M})\rightarrow \mathrm{R}+\cup\infty is continuous.

Lemma 18.6. Let  z\in\partial M ,
and v be the inner unit normal to \partial M at z . Then

$\tau$^{R}(z, v)> $\tau$(z) ,
where  $\tau$(z) is the distance fr om z to the boundary cut locus.

Let z\in\partial M and $\gamma$_{z} be the boundary normal geodesic from z . Then by Lemma

18.6, there exists  $\epsilon$>0 such that for  $\tau$(z)- $\epsilon$<t< $\tau$(z)+ $\epsilon$, $\gamma$_{z} is still the shortest

geodesic (lying inside M ) from z to $\gamma$_{z}(t) .

Lemma 18.7. The first conjugate point on a normal geodesic always appears

strictly beyond the boundary cut point.

§18.2. Hamilton�s equation

Let (g^{ij})=(g_{ij})^{-1} ,
and define a C^{\infty} ‐function on T^{*}(M) by H(x,  $\xi$)=\displaystyle \frac{1}{2}g^{ij}(x)$\xi$_{i}$\xi$_{j}.

The equation of geodesic is rewritten as Hamiltons�s canonical equation

(18.1) \left\{\begin{array}{l}
dx^{i} \partial H\\
\overline{dt}=\overline{\partial$\xi$_{i}}=g^{ij}(x)$\xi$_{j},\\
\frac{d$\xi$_{i}}{dt}=-\frac{\partial H}{\partial x^{i}}=-(\frac{\partial g^{kl}(x)}{\partial x^{i}})$\xi$_{k}$\xi$_{l}.
\end{array}\right.
Fix a point y\in M and let x(t) ,  $\xi$(t) be the solution to (18.1) with initial data x(0)=
y,  $\xi$(0)=$\xi$_{0} ,

where $\xi$_{0} satisfies g^{ij}(y)$\xi$_{0i}$\xi$_{0j}=1 . Then by the energy conservation law,

(18.2) g^{ij}(x(t))$\xi$_{i}(t)$\xi$_{j}(t)=1.
Let v^{i}(t)=dx^{i}(t)/dt=g^{ij}(x(t))$\xi$_{j}(t) ,

and put v(t)=(v^{1}(t), \cdots, v^{n}(t)) , v_{0}=v(0) .

Then x(t) is a geodesic starting from y with initial direction v_{0} . Assume that the map

: S_{y}(M)\times(0, t_{0})\ni(v_{0}, t)\rightarrow x(t) is a diffeomorphism for some t_{0}>0 . Then t and v_{0}

become functions of x depending on a parameter y : t=t(x, y) , v_{0}=v_{0}(x, y) . Hence

so is  $\xi$= $\xi$(x, y) . Since t(x, y)=\displaystyle \int_{y}^{x}$\xi$_{i}dx^{i} ,
we have

(18.3) \displaystyle \frac{\partial t(x,y)}{\partial x^{i}}=$\xi$_{i}(x, y) .

This equality is rewritten as

(18.4) (\displaystyle \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{x}t(x, y))^{i}=g^{ij}(x)\frac{\partial t}{\partial x^{j}}(x, y)=v^{i}(x, y) .

§18.3. Boundary distance coordinates

Near the cut loci, we cannot use the boundary normal coordinates. However, the

boundary distance coordinates constructed below can be used everywhere on M.
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Lemma 18.8. For any x_{0}\in M ,
there exist points z_{1}, \cdots, z_{n}\in\partial M such that

the functions ($\rho$_{1}(x), \cdots, $\rho$_{n}(x)) ,
where $\rho$_{i}(x)=d(x, z_{i}) , give local coordinates in a small

neighborhhood of x_{0}.

Example 18.9. Let M be a Euclidean sphere: M=\{|x|<1\} . Then the

boundary normal coordinate system is the polar coordinate with center at the origin.
The center is the cut locus. To define the local coordinate around the origin, we have

only to take n points w_{1}, \cdots, w_{n} on \partial M such that the vectors \vec{Ow_{i}}, i=1, \cdots, n
,

are

linearly independent, and regard the distance from w_{i} as the coordinate function.

§18.4. Reconstruction of the metric

The following lemma is a key trick to reconstruct the Riemannian metric.

Lemma 18.10. On M
,

we can recover the metric tensor g_{ij}(x) from the bound‐

ary distance function \partial M\ni w\rightarrow d(x, w) .

§19. Reconstruction of R(M) from BSP

In this section, we shall prove that if two manifolds M^{(1)} and M^{(2)} have the same

BSP, the spaces of boundary distance functions R(M^{(1)}) and R(M^{(2)}) coincide. We

shall consider the wave equation (14.1) and make use of Blagovestcenskii identity to

convert the knowledge of BSP to that of boundary normal geodesic.
We use the expression �BSP determines the quantity A�

to mean the following: Let

A^{(1)} and A^{(2)} be the quantities associated to the manifolds M^{(1)} and M^{(2)}
, respectively.

Then if M^{(1)} and M^{(2)} have the same BSP, A^{(1)}=A^{(2)} holds.

§19.1. Projection to the domain of inuence

For a subset  $\Gamma$\subset\partial M and  $\tau$>0 ,
we put

M( $\Gamma$,  $\tau$)=\{x\in M;d(x,  $\Gamma$)< $\tau$\}.

We also define for z\in\partial M

M(z,  $\tau$)=\{x\in M;d(x, z)< $\tau$\}.

Let $\chi$_{M( $\Gamma,\ \tau$)}(x) be the characteristic function of M( $\Gamma$,  $\tau$) . We define the projection on

L(M) by

P_{ $\Gamma,\ \tau$}f(x)=$\chi$_{M( $\Gamma,\ \tau$)}(x)f(x) , f\in L^{2}(M) .

For a domain  $\Omega$\subset M ,
we regard L() as a subspace of L(M) by extending the

elements to be 0 outside  $\Omega$ . Let  u^{f}(t) be the solution to IBVP (14.1).
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Lemma 19.1. Let f\in C_{0}^{\infty}(\partial M\times(0, \infty)) and  $\tau$, t>0 . Let  $\Gamma$\subset\partial M be an

open set. Then BSP determines the sequence f_{j}\in C_{0}^{\infty}( $\Gamma$\times(0,  $\tau$)) such that  u^{f}j(t)\rightarrow
 P_{ $\Gamma,\ \tau$}u^{f}(t) .

Lemma 19.2. Let f, h\in C_{0}^{\infty}(\partial M\times(0, \infty)) and $\tau$_{1}, $\tau$_{2}, t, s>0.

(1) Let $\Gamma$_{1}, $\Gamma$_{2}\subset\partial M be open sets. Then BSP determines the inner product

(P_{$\Gamma$_{1},$\tau$_{1}}u^{f}(t), P_{$\Gamma$_{2},$\tau$_{2}}u^{h}(s))_{L^{2}(M)}
(2) Let z_{1}, z_{2}\in\partial M . Then BSP determines the inner product

(P_{z_{1},$\tau$_{1}}u^{f}(t), P_{z_{2},$\tau$_{2}}u^{h}(s))_{L^{2}(M)}.

§19.2. Domain of inuence and R(M)

We trace the boundary normal geodesic along solutions to IBVP (14.1).

Lemma 19.3. Let $\gamma$_{y} be the boundary normal geodesic starting fr om y\in\partial M,
and s>0 . Then the following 3 assertions are equivalent.

(1) d($\gamma$_{y}(s), y)=d($\gamma$_{y}(s), \partial M) .

(2)  M( $\Gamma$, s)\backslash M(\partial M, s- $\epsilon$)\neq\emptyset for any  $\epsilon$>0 and any neighborhood  $\Gamma$\subset\partial M of y.

(3) For any neighborhood  $\Gamma$\subset\partial M of y ,
there exists h\in C_{0}^{\infty}( $\Gamma$\times(0, s)) such that

\Vert u^{h}(s)\Vert>\Vert P_{\partial M,s- $\epsilon$}u^{h}(s)\Vert.

Lemma 19.4. Let $\gamma$_{y} be the boundary normal geodesic starting fr om y\in\partial M,
and s>0 be such that d($\gamma$_{y}(s), y)=d($\gamma$_{y}(s), \partial M) . Let z\in\partial M and t>0 . Then the

following 3 assertions are equivalent.

(1) t>d($\gamma$_{y}(s), z) .

(2) There exist a neighborhood  $\Gamma$\subset\partial $\Omega$ of  y and  $\epsilon$>0 such that

M( $\Gamma$, s)\subset M(\partial M, s- $\epsilon$)\cup M(z, t- $\epsilon$) .

(3) There exist a neighborhood  $\Gamma$\subset\partial $\Omega$ of  y and  $\epsilon$>0 such that for any  h\in C_{0}^{\infty}( $\Gamma$\times
(0, s))

\Vert u^{h}(s)\Vert^{2}=\Vert P_{\partial M,s- $\epsilon$}u^{h}(s)\Vert^{2}+\Vert P_{z,t- $\epsilon$}u^{h}(s)\Vert^{2}-(P_{\partial M,s- $\epsilon$}u^{h}(s), P_{z,t- $\epsilon$}u^{h}(s)) .

§19.3. Main theorem

We are now in a position to prove the following theorem.

Theorem 19.5. Let (M, g) be a connected Riemannian manifold with compact

boundary. Suppose we are given the boundary spectral projections of the Neumann Lapla‐
cian on M. Then these data determine (M, g) uniquely.
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Proof. We take y\in\partial M and solve IBVP (14.1) with data in a small neighborhood
of y . Then by Lemma 19.3, we can determine whether or not $\gamma$_{y}([0, s]) is the shortest

geodesic to \partial M by using BSP. By Lemma 19.4, if $\gamma$_{y}([0, s]) is the shortest geodesic to

\partial M ,
we can compute d($\gamma$_{y}(s), z) for any z\in\partial M by using BSP. Lemma 17.10 shows

that by varying y\in\partial M and s\in[0,  $\tau$(y)] ,
i.e. for s such that $\gamma$_{y}([0, s]) is the shortest

geodesic to \partial M ,
we can recover all points x\in M . With the aid of Lemma 19.4, one

can compute d(x, z) for all x\in M and  z\in\partial ,
i.e. all boundary distance functions by

BSP. We can then reconstruct  M topologically using BSP by Lemma 16.1. By Lemma

18.10, we can recover the metric by BSP. \square 
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