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Abstract

We present the minimum norm or Dirichlet principle for measured foliations on a Riemann

surface of finite type. In this setting the principle says that if you minimize total energy in a

given measure class, you will find a unique representative which is harmonic and represented by
the imaginary part of a holomorphic quadratic differential. We include as part of this principle
the notion of extremal length of a measured foliation and the extremal length functional on

Teichmüller space. We show that this functional is differentiable and that its derivative is

represented by the unique holomorphic quadratic differential whose heights are equal to the

heights of the initially given measured foliation.

In previous publications, [6], [7], [8], [9], [10], [12], [13], [14], some of them more than

twenty years old, a Dirichlet principle for measured foliations has been developed. But

nowhere has the principle been fully stated in a single theorem. Moreover, its analogy
to the solution of the classical Dirichlet problem for finding a harmonic function with

given boundary values is not explained. In this largely expository paper we take the

opportunity to emphasize these points. There is also a part which is not expository and

involves the introduction of the new concept of a partial measured foliation. A partial
measured foliation does not necessarily determine leaves. Roughly speaking, it is only
a family of real valued functions v_{j} defined on open subsets U_{j} of a Riemann surface R

with the property that

(1) v_{j}=\pm v_{k}+c_{jk}
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where c_{jk} is constant on overlapping sets U_{j}\cap U_{k} . We do not require that the open sets

U_{j} to form a covering of R ,
but we do require that the family \{v_{j}\} has finite Dirichlet

integral. That is, we require

\displaystyle \int\int_{R}(v_{x}^{2}+v_{y}^{2})dxdy<\infty.
Since R is a Riemann surface and the family \{v_{j}\} satisfies the cocycle condition (1),
this integral is well defined.

Another part of this exposition that has not previously been emphasized is that

the solution of this Dirichlet problem implies the theorem of Hubbard and Masur [10],
which says that associated to any compact Riemann surface R and measured F foliation

on that surface, there is a unique holomorphic quadratic differential whose horizontal

trajectories and vertical measure realize the measure class of F. The Dirichlet principle
has the advantage that it yields this result for any surface of finite analytic type, \mathrm{a}

case that was not included in Hubbard and Masur�s original paper. It is likely that the

principle also applies to surfaces of infinite type, but we do not discuss this situation

here.

Before elaborating further, we first review the idea for the Dirichlet problem. \mathrm{A}

continuous function is defined on the smooth boundary of a multiply connected plane
domain or on the boundary of a Riemann surface. The problem is to find a harmonic

function in the interior whose continuous extension to the boundary coincides with the

given function. For purposes of illustration temporarily we assume we have a plane do‐

main bounded by a finite number of analytic curves. We are given a continuous function

f on the boundary and the Dirichlet problem is to find a function u(z) continuous on

the closure of D satisfying

(2) u_{xx}(z)+u_{yy}(z)=0 for z in the interior of D and

(3) u(p)=f(p) for p on the boundary of D.

Solutions to this problem appear in many introductory books on complex analysis,
see for example [1]. If the domain is the unit disc, one can use the Poisson integral
formula:

(4) u(re^{i $\phi$})=\displaystyle \frac{1}{2 $\pi$}\int_{0}^{2 $\pi$}\frac{1-r^{2}}{1-2r\cos( $\theta$- $\phi$)+r^{2}}f(e^{i $\theta$})d $\theta$.
Note that

2 {\rm Re}\displaystyle \frac{1+z}{1-z}=(\frac{1+z}{1-z}+\frac{1+\overline{z}}{1-\overline{z}})=2\frac{1-r^{2}}{1-2r\cos $\theta$+r^{2}},
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and so the Poisson kernel in (4) is the real part of a holomorphic function. Since the

formula is the convolution of this kernel with the function f(e^{i $\theta$}) ,
it produces a harmonic

function u(x, y) ,
that is, u_{xx}(z)+u_{yy}(z)=0 . Moreover, if z=g( $\zeta$) is a conformal map

from a simply connected domain onto \{|z|<1\} ,
then (uo g)_{ $\xi \xi$}( $\zeta$)+(u\circ g)_{ $\eta \eta$}( $\zeta$)=0,

where  $\zeta$= $\xi$+i $\eta$ . Since Riemann mappings on Jordan domains extend continuously to

the boundary, this allows one to transport a solution in the unit disc to a solution in an

arbitrary Jordan domain.

Perron�s principle and the method of subharmonic functions provides another ap‐

proach that applies to arbitrary plane domains as well as to Riemann surfaces. This

approach involves many steps. First one finds a subharmonic function in the domain

with the desired boundary values. Then one replaces the subharmonic function by a

new subharmonic function which coincides with the old function outside of an open disc

with smooth boundary and is harmonic inside. The new function is again subharmonic

and one applies this replacement procedure successively infinitely many times over vari‐

able discs with smooth boundary and contained in the domain. Convergence relies on

Harnack�s principle.
Another approach is called the Schwarz alternating procedure [3]. It yields a so‐

lution on the union of two domains with non‐empty intersection provided there is a

certain geometric condition on the way their boundaries intersect and provided it is

already known how to find the solution on each of the domains separately.
Riemann [15] proposed a different method. For simplicity, we suppose that  D is a

multiply connected plane domain bounded by a finite number of smooth simple closed

curves. Riemann considers the family \mathcal{F} of u(z) with z=x+iy defined and continuous

on the closure of D such that

\bullet  u(p)=f(p) for every point p in the boundary of D and

\bullet  u(z) has continuous second partial derivatives in D.

From among functions with these properties one finds a function u such that its Dirichlet

integral,

(5) \displaystyle \int\int_{D}(u_{x}^{2}+u_{y}^{2})dxdy,
takes the smallest possible value. The claim is that if such a function can be found, it

will be the unique harmonic function in D that has the boundary values prescribed by

f . This method has an important physical interpretation. Since the Dirichlet integral

represents the net energy of a physical system, it means that while minimizing energy

with given boundary values, the system will converge towards harmonic equilibrium.
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If the method is to succeed, one must show that there is a function u(z) in \mathcal{F} that

realizes the minimum in (5), that its boundary values coincide with the values of the

given function f ,
and finally, that the minimizing function is harmonic, that is, that it

satisfies the equation u_{xx}(z)+u_{yy}(z)=0 for all z in the domain.

This last step is surprisingly simple. If (5) is minimized by a function u(z) ,
we

select an arbitrary C^{1} function  $\delta$ u(z) that vanishes in a neighborhood of the boundary
of D . If that is the case, then u(z)+t $\delta$ u(z) is a competing function for every real number

t
,

and so

(6) \displaystyle \int\int_{D}(u_{x}^{2}+u_{y}^{2})dxdy\leq\int\int_{D}((u+t $\delta$ u)_{x}^{2}+(u+t $\delta$ u)_{y}^{2})dxdy.
Expanding out the right hand side of (6) one obtains

0\displaystyle \leq 2t\int\int_{D}(u_{x} $\delta$ u_{x}+u_{y} $\delta$ u_{y})dxdy+t^{2}\int\int_{D}( $\delta$ u_{x}^{2}+ $\delta$ u_{y}^{2})dxdy.
Dividing by t and letting t approach zero first through positive and then through neg‐

ative values yields

\displaystyle \int\int_{D}(u_{x} $\delta$ u_{x}+u_{y} $\delta$ u_{y})dxdy=0.
Finally, since  $\delta$ u has compact support, integration by parts leads to

(7) \displaystyle \int\int_{D}(u_{xx}+u_{yy}) $\delta$ udxdy=0
for every C^{1} function  $\delta$ u with compact support in D . This implies

(8) u_{xx}+u_{yy}=0 in D.

We omit further discussion of these steps because they are useful only insofar as they

provide an analogy to a similar problem for measured foliations.

Before describing the problem for measured foliations, we want to mention a di‐

rection for research. It concerns discrete versions of the Dirichlet problem. A nice

introduction to this topic is given in the book by Doyle and Snell [4] where there is

an exposition of Polya�s famous result concerning the qualitative difference between

random walks on a rectilinear grid in two and three dimensions. Estimates that would

show that when the Dirichlet integral is nearly extremal the resulting function u is nearly
harmonic would be interesting. A formulation and solution to this type of problem for

measured foliations would also be interesting.
Unlike functions, measured foliations do not have boundary values and it is not

possible to evaluate a measured foliation at a point. On the other hand, the measure
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of a measured foliation makes it possible to evaluate the vertical distance between level

sets and this is what makes it possible to set up an extremal problem for measured

foliations analogous to the extremal problem in (5).
To this end, we make the following definition.

Definition. A partial measured foliation |dv| on a Riemann surface R consists

of two things:

(i) a family of open subsets U_{i} of R,

(ii) an assignment of a real valued, Lipschitz continuous function v_{i} defined on U_{i}

such that if there is any non‐empty intersection of two of the sets U_{i} and U_{j} ,
then for

every z in U_{i}\cap U_{j},

v_{i}(z)=\pm v_{j}(z)+c_{ij},

for some constant c_{ij}.

Remark. Note that we do not require the subsets U_{i} to form a covering of R.

Let U=\displaystyle \bigcup_{j}U_{j} and

\displaystyle \int_{ $\gamma$}|dv|=\int_{ $\gamma$\cap U}|dv|+\int_{ $\gamma$\cap(R-U)}|dv|.
By definition, put the second integral equal to zero and we are left with defining the

first integral. Let  $\gamma$ be parameterized by  t with 0\leq t\leq 1 and let \mathcal{P} be a partition of

the unit interval 0=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=1 and let I_{k}=\{t:t_{k-1}\leq t\leq t_{k}\} . We

define the integral over the partition \mathcal{P} by

\displaystyle \int_{\mathcal{P}}|dv|=\sum|v( $\gamma$(t_{k}))-v( $\gamma$(t_{k-1}))|,
where the sum is over those terms for which the entire arc  $\gamma$(I) is contained in one of

the open sets U_{j} . If for any such term the arc  $\gamma$(I) is contained in another one of the

open sets U_{\ell} ,
then because of property (ii)

|v_{k}( $\gamma$(t_{k}))-v_{k}( $\gamma$(t_{k-1}))|=|v_{l}( $\gamma$(t_{k}))-v_{\ell}( $\gamma$(t_{k-1}))|.

As usual, we define the mesh of the partition \mathcal{P} by

mesh (\displaystyle \mathcal{P})=1\leq k\leq n\max(t_{k}-t_{k-1}) ,

and finally, by definition,

\displaystyle \int_{ $\gamma$\cap U}|dv|=\lim_{mesh(}\sup_{\mathcal{P})\rightarrow 0}\int_{\mathcal{P}}|dv|.
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We define the line integral of the free homotopy class [ $\gamma$] of  $\gamma$ in  R by

\displaystyle \int_{[ $\gamma$]}|dv|=\inf_{\tilde{ $\gamma$}}\int_{\tilde{ $\gamma$}}|dv|,
where the infimum is taken over all curves or arcs \tilde{ $\gamma$} in R freely homotopic to  $\gamma$ ,

and we

call this infimum the height of |dv| with respect to [ $\gamma$] . That is, by definition,

(9) ht(|dv|,  $\gamma$)=\displaystyle \int_{[ $\gamma$]^{\tilde{ $\gamma$}}}|dv|=\inf_{\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{i}\mathrm{c}\mathrm{o}}  $\gamma$\int_{\tilde{ $\gamma$}}|dv|.
In this definition, we need to define free homotopy. Let \mathrm{S}^{1} be the unit circle and

I be the unit interval. Any other closed curve \tilde{ $\gamma$} is freely homotopic to  $\gamma$ if there is a

continuous function  h(s, t) defined on \mathrm{S}^{1}\times I and mapping into R such that h(s, 0)= $\gamma$(s) ,

h(s, 1)=\tilde{ $\gamma$}(s) . Two arcs \tilde{ $\alpha$} and  $\alpha$ with endpoints on boundary contours of  R are freely

homotopic if there is a continuous function h(s, t) defined on I\times I and mapping into

R\cup\partial R such that h(s, 0)= $\alpha$(s) , h(s, 1)=\tilde{ $\alpha$}(s) , h(0, t) lies on the same boundary
contour for every t\in I ,

and h(1, t) lies on the same boundary contour for every t\in I.

In the version of the Dirichlet principle we are going to state we will assume R is

of finite type. This means R can be obtained by deleting a finite number of points and

open discs from a compact Riemann surface \tilde{R} of finite genus. We let the genus of R

be g ,
the number of deleted discs be r and the number of deleted points be n.

If r>0 ,
then by Fuchsian uniformization one can see that R has a natural double

R^{d}=R\cup j(R) where j is an anti‐conformal involution. In fact, if we uniformize R

by a Fuchsian group acting on the upper half plane, then j is realized by j(z)=Z.
Every simple arc  $\alpha$ with endpoints on a boundary curve of  R reflects to an arc j( $\alpha$) and

 $\alpha$\cup j( $\alpha$) is a simple closed curve on R^{d} . And every system of multi‐curves and multi‐arcs

on R is the restriction of a j‐invariant system of closed multicurves on R^{d}.

By definition the Dirichlet norm of a partial measured foliation |dv| defined on R

is equal to

(10) Dir(|dv|)=\displaystyle \int\int_{R}(v_{x}^{2}+v_{y}^{2})dxdy.
The star operation on 1‐forms extends to a well defined operation on partial measured

foliations. In particular, after choosing a representative v of |dv| up to plus or minus

sign and an additive constant, one puts

*dv=*(v_{x}dx+v_{y}dy)=-v_{y}dx+v_{x}dy,

which is also defined only up to plus or minus sign. Then

dv+i*dv=v_{x}dx+v_{y}dy+i(-v_{y}dx+iv_{x}dy)=(v_{x}-iv_{y})dx+(iv_{x}+v_{y})dy

=(v_{x}-iv_{y})(dx+idy) .
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Using the complex notation,

\displaystyle \frac{\partial v}{\partial z}=\frac{1}{2}(\frac{\partial v}{\partial x}-i\frac{\partial v}{\partial y}) ,

we see that if we put q_{v}=(dv+i*dv)^{2} ,
then

q=(2\displaystyle \frac{\partial v}{\partial z}d\mathrm{z})^{2}=((v_{x}-iv_{y})(dx+idy))^{2}=(dv+i*dv)^{2}
Thus q=q_{v} is a quadratic differential on R , although not necessarily holomorphic.

Moreover,

||q_{v}||=\displaystyle \int\int_{R}|q|=\int\int_{R}|\sqrt{q}\sqrt{\overline{q}}|
=\displaystyle \int\int_{R}|[(v_{x}-iv_{y})dx+i(v_{x}-iv_{y})dy]\wedge[(v_{x}+iv_{y})dx-i(v_{x}+iv|
=\displaystyle \int\int_{R}|-i(v_{x}-iv_{y})(v_{x}+iv_{y})dxdy-i(v_{x}-iv_{y})(v_{x}+iv_{y})dxdy|
=2\displaystyle \int\int_{R}(v_{x}^{2}+v_{y}^{2})dxdy=2Dir(|dv|) .

So we see that the L^{1} ‐norm of the quadratic differential q_{v} is equal to twice the Dirichlet

norm of the partial measured foliation |dv| . Although the partial measured foliations

do not form a linear space, the correspondence |dv|\mapsto q_{v} realizes the partial measured

foliations as a subset of the vector space of quadratic differentials. Furthermore, any

problem of minimizing the Dirichlet integral Dir(dv) under certain conditions is equiv‐

alent to the problem of minimizing the norm ||q_{v}|| of the quadratic differential q_{v} under

corresponding conditions.

Having made these observations and definitions, we can now state

The Dirichlet problem.

For a given partial measured foliation |d\tilde{v}| on a Riemann surfa ce of finite analytic type,

find a measured foliation |dv| with the same heights as the heights of|d\tilde{v}| on all simple

closed curves  $\gamma$ such that |dv| has the smallest possible Dirichlet integral.

A version of this problem is discussed by Ahlfors in [2, pages 65‐70] but there the

infimum of the Dirichlet integrals is taken over functions and partial measured foliations

are not considered. Because the class over which the infimum is taken includes only

functions, the richness of the topological possibilities for the trajectory structure of the

level lines of the foliations is lost.
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Before giving a solution, we need several more definitions. If one is given a holo‐

morphic quadratic differential q on R ,
it induces a natural parameter w_{j}=u_{j}+iv_{j}

determined up to plus or minus sign and an additive constant by the equation

w_{j}=u_{j}+iv_{j}=\displaystyle \pm\int(\sqrt{q_{j}(z)}) dz.

Thus there is an open covering U_{j} of R\backslash { \mathrm{t}\mathrm{h}\mathrm{e} zeroes of q} and for this open covering

u_{j} and v_{j} satisfy the equations

u_{j}=\pm u_{k}+{\rm Re} c_{jk} and

v_{j}=\pm v_{k}+ {\rm Im} c_{jk}

in any overlapping set U_{j}\cap U_{k} . Because u_{j} and v_{j} are locally the real and imaginary

parts of a holomorphic function, they are harmonic, that is,

u_{xx}+u_{yy}=0 and

v_{xx}+v_{yy}=0.

The level sets determined by the equation v_{j}=a constant are called the horizontal

trajectories for q=q(z)(dz)^{2}, |dv| is its vertical measure and sets determined by the

equation u_{j}=a constant are called the vertical trajectories and |du| is its horizontal

measure.

Definition. A measured foliation on a surface R is a partial measured folia‐

tion such that at every point p in R there is a neighborhood N_{p} for which there is a

homeomorphism h from N_{p} onto a neighborhood of the origin in the complex plane

carrying p onto 0 and carrying the level sets of |dv| onto the horizontal trajectories of

{\rm Im}(\sqrt{z^{n}}d\mathrm{z}) . If n=0, p is called a regular point, and if n>0, p is called an n+2

pronged singularity.

Remark. Locally a level set of a measured foliation is an arc or several arcs joined
at singular points. This is not necessarily the case for a partial measured foliation.

Moreover, a partial measured foliation assigns values on certain open subsets, but these

open sets do not necessarily form a covering of R.

The Dirichlet principle makes three assertions:

I. For a measured foliation |d\tilde{v}| on a Riemann surfa ce offinite analytic type, the infimum

(11) M(|d\displaystyle \tilde{v}|)=\inf\{\int\int_{R}(v_{x}^{2}+v_{y}^{2})dxdy\},
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taken over all partial measured foliations |dv| such that

ht(|dv|,  $\gamma$)\geq ht(|d\tilde{v}|,  $\gamma$) for all simple closed curves  $\gamma$ in  R,

is realized by a unique measured foliation |dv_{0}| . Moreover, all of the heights of homotopy
classes of simple closed curves with respect to |dv_{0}| coincide with the heights of the given

partial measured foliation |d\tilde{v}|.

II. The minimizing measured foliation |dv_{0}| in (11) is the vertical part of a holomorphic

quadratic differential q_{0} and this differential is uniquely determined by the heights of

|d\tilde{v}| on homotopy classes of simple closed curves.

III. The quantity M(|d\tilde{v}|) defined by (11) is a diffe rentiable function on Te ichmüller

space T(R) of R and, if the Riemann surfa ce R is chosen as the base point for T(R)
and if R_{t $\mu$} is the surfa ce R with variable conformal structure determined by  t $\mu$ where  $\mu$

is a bounded Beltrami coefficient multiplied by a small complex factor  t
,

then

(12) \displaystyle \log M_{t $\mu$}(|d\tilde{v}|)=\log M(|d\tilde{v}|)+\frac{2}{||q_{0}||}{\rm Re} t\int\int_{R}q_{0} $\mu$ dxdy+o(t) .

Furthermore, \log M_{ $\tau$}(|d\tilde{v}|) is a C^{1} function of the point  $\tau$ in Teichmüller space.

In a subsequent paper we give further details for the proofs of these results and

discuss their consequences for the the extremal length geometry of Teichmüller space

as developed by Gardiner and Masur in [9] and Miyachi in [14].
Several closely related extremal problems for extremal metrics and for quadratic

differentials are considered by Strebel [16] and Jenkins [11] but neither of these papers

introduces the rôle of measured foliations. In some physical applications consideration

of quadratic differentials with double poles and infinite norm is important [19]. Formu‐

lation of the minimum norm principle in this setting requires introducing a notion of

reduced norm.
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