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Asymptotically affine and asymptotically conformal

circle endomorphisms

By

Frederick P. GARDINER* and Yunping JIANG **

Abstract

We show that every uniformly asymptotically affine circle endomorphism has a uniformly
asymptotically conformal extension.

Introduction

First we summarize basic properties of uniformly asymptotically affine circle de‐

gree d>1 endomorphisms. Then we use the Beurling‐Ahlfors extension to realize any

uniformly asymptotically affine system as the restriction to the circle of a uniformly

asymptotically conformal system. Theorem 1 is a well‐known characterization of sym‐

metric homeomorphisms of the real axis in terms of possible quasiconformal extensions.

Theorem 2 is an exposition of calculations given by Cui in [4]. Theorem 3 is a special
case of a theorem for any one‐dimensional Markov map with bounded geometry in [8, 9]
(see also [10]). Theorem 4 is the main new result. Since it is known that the Teichmüller

space of uniformly asymptotically affine expanding maps is complete with Teichmüller�s

metric (see, for example [7, 5, 10]), this theorem shows that the uniformly asymptoti‐

cally conformal expanding maps also form a complete metric space with Teichmüller�s
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metric. In a subsequent paper we will exploit this fact to construct a dual dynamical

system corresponding to every UAA circle expanding map.

We take this opportunity to express our gratitude to the referee for several impor‐

tant and helpful corrections.

§1. Circle endomorphisms

Let \mathrm{S}^{1}=\{z\in \mathbb{C} : |z|=1\} be the unit circle. The map  $\pi$ : \mathbb{R}\rightarrow \mathrm{S}^{1} defined by

 $\pi$(x)=e^{2 $\pi$ ix}

realizes \mathbb{R} as the universal covering of \mathrm{S}^{1} with covering  $\pi$ and covering group \mathbb{Z}.  $\pi$

induces an isomorphism from \mathbb{R}/\mathbb{Z} onto \mathrm{S}^{1}.

Let m be the degree of an orientation preserving covering f from \mathrm{S}^{1} onto itself and

assume 1<m<\infty. f is an endomorphism of \mathrm{S}^{1} and it necessarily has one fixed point p.

By selecting an orientation preserving Möbius transformation A that preserves the unit

disk with A(p)=1 ,
we may shift consideration of the map f to the map \tilde{f}=A\circ f\circ A^{-1}.

\tilde{f} has the same dynamical properties as f and it fixes the point 1. Therefore, without

loss of generality, we may assume to begin with that f fixes the point p=1 . We denote

the homeomorphic lift of f by F. F is uniquely determined by f if we assume it has the

following properties:

i) F is a homeomorphism of \mathbb{R},

ii)  $\pi$\circ F=f\circ $\pi$,

iii) F(0)=0.
Note that F(x+1)=F(x)+m . In this paper we refer either to f or to its unique

corresponding lift F as a circle endomorphism. We denote the n‐fold composition of f
with itself by f^{n} . Similarly, F^{n} is the n‐fold composition of F.

Suppose h is an orientation‐preserving circle homeomorphism. Let H be the lift of

h to \mathbb{R} such that 0\leq H(0)<1 . Then H(x+1)=H(x)+1 and h and H are one‐to‐one

correspondences.

Definition 1. A circle homeomorphism h is called M‐quasisymmetric if there

is a constant M\geq 1 such that for all real numbers x and for all y>0,

(1) \displaystyle \frac{1}{M}\leq\frac{H(x+y)-H(x)}{H(x)-H(x-y)}\leq M.
The expression

$\rho$_{H}(x, y)=\displaystyle \frac{H(x+y)-H(x)}{H(x)-H(x-y)}, x, y\neq 0\in \mathbb{R},
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is called the quasisymmetric distortion function for H . We also need the skew qua‐

sisymmetric distortion function for H
,

which is defined by

$\rho$_{H}(x, y, k)=\displaystyle \frac{H(x+ky)-H(x)}{H(x)-H(x-y)}, x, y\neq 0\in \mathbb{R}, 0<k\leq 1.
The following lemma is well‐known for a quasisymmetric homeomorphism of the

real line. One can prove it by using quasiconformal mapping theory (see, for exam‐

ple, [11]). However, we need to use it for a quasisymmetric homeomorphism of a com‐

pact interval. For quasisymmetric homeomorphisms of compact intervals, the proof by

using quasiconformal mapping theory does not work since a M‐quasisymmetric homeo‐

morphism of a compact interval is not necessarily a restriction of a M‐quasisymmetric

homeomorphism of the real line. However, there is a proof for a quasisymmetric home‐

omorphism of a compact interval by using elementary real analysis methods (see, for

example, [10]). For the convenience of the reader we also give the proof here. First

we define the notion of quasisymmetry for a homeomorphism of a compact interval.

An orientation‐preserving homeomorphism H of a closed interval [a, b] is called M‐

quasisymmetric if

M^{-1}\displaystyle \leq\frac{H(x+t)-H(x)}{H(x)-H(x-t)}\leq M, \forall x, x+t, x-t\in[a, b].

Lemma 1. There is a function  $\zeta$(M)>0 satisfy ing  $\zeta$(M)\rightarrow 0 as M\rightarrow 1

such that for any M ‐quasisymmetric homeomorphism H of [0 ,
1 ] with H(0)=0 and

H(1)=1,
|H(x)-x|\leq $\zeta$(M) , \forall x\in[0, 1].

Proof. Consider points x_{n}=1/2^{n}, n=0 , 1, . . .. The M‐quasisymmetry condition

implies that

H(\displaystyle \frac{1}{2^{n-1}})-H(\frac{1}{2^{n}})\leq M.
M^{-1}\leq\overline{H(\frac{1}{2^{n}})-H(0)}

From this and the fact that H(0)=0 ,
we get

(1+M^{-1})H(\displaystyle \frac{1}{2^{n}})\leq H(\frac{1}{2^{n-1}})\leq(1+M)H(\frac{1}{2^{n}})
This gives

\displaystyle \frac{1}{1+M}H(\frac{1}{2^{n-1}})\leq H(\frac{1}{2^{n}})\leq\frac{1}{1+M^{-1}}H(\frac{1}{2^{n-1}})
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Using H(1)=1 ,
we get

(2) (\displaystyle \frac{1}{1+M})^{n}\leq H(\frac{1}{2^{n}})\leq(\frac{1}{1+M^{-1}})^{n}, \forall n\geq 1.
Furthermore, from M‐quasisymmetry we claim that

(3) (\displaystyle \frac{1}{1+M})^{n}\leq H(\frac{i}{2^{n}})-H(\frac{i-1}{2^{n}})\leq(\frac{1}{1+M^{-1}})^{n}
for all n\geq 1 and 1\leq i\leq 2^{n} . To justify this claim we use induction on n . First from (2),
(3) is true for n=1

,
that is,

\displaystyle \frac{1}{1+M}\leq H(\frac{1}{2})\leq\frac{1}{1+M-1} and \displaystyle \frac{1}{1+M}\leq 1-H(\frac{1}{2})\leq\frac{1}{1+M-1}.
Suppose (3) is true for n-1\geq 1 ,

that is, for all1 \leq j\leq 2^{n-1},

(4) (\displaystyle \frac{1}{1+M})^{n-1}\leq H(\frac{j}{2^{n-1}})-H(\frac{j-1}{2^{n-1}})\leq(\frac{1}{1+M^{-1}})^{n-1}
Then for any i/2^{n} with odd i (a similar argument works if i-1 is odd) (i-1)/2^{n} and

(i+1)/2^{n} can be written as (j-1)/2^{n-1} and j/2^{n-1} for some 1\leq j\leq 2^{n-1} . Using
M‐quasisymmetry, we get

1+M^{-1}\displaystyle \leq\frac{H(\frac{i+1}{2^{n}})-H(\frac{i-1}{2^{n}})}{H(\frac{i}{2^{n}})-H(\frac{i-1}{2^{n}})}=\frac{H(\frac{i+1}{2^{n}})-H(\frac{i}{2^{n}})}{H(\frac{i}{2^{n}})-H(\frac{i-1}{2^{n}})}+1\leq 1+M.
Taking reciprocals, we get

\displaystyle \frac{1}{1+M}\leq\frac{H(\frac{i}{2^{n}})-H(\frac{i-1}{2^{n}})}{H(\frac{i+1}{2^{n}})-H(\frac{i-1}{2^{n}})}\leq\frac{1}{1+M^{-1}}.
Thus

\displaystyle \frac{1}{1+M}(H(\frac{j}{2^{n-1}})-H(\frac{j-1}{2^{n-1}}))\leq H(\frac{i}{2^{n}})-H(\frac{i-1}{2^{n}})
\displaystyle \leq\frac{1}{1+M-1}(H(\frac{j}{2^{n-1}})-H(\frac{j-1}{2^{n-1}})) .

Thus (3) follows from (4) which proves the inductive step.

Let

$\tau$_{n}=\displaystyle \max\{(\frac{M}{M+1})^{n}-\frac{1}{2^{n}}, \displaystyle \frac{1}{2^{n}}-(\frac{1}{M+1})^{n}\}, n=1
, 2, . . . .
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Then for n=1,

|H(\displaystyle \frac{1}{2})-\frac{1}{2}|\leq$\tau$_{1}=\frac{1}{2}\frac{M-1}{M+1},
and for any n>1 ,

we have

0\displaystyle \leq i\leq 2^{n}\max|H(\frac{i}{2^{n}})-\frac{i}{2^{n}}|\leq 0\leq i\leq 2^{n-1}\max|H(\frac{i}{2^{n-1}})-\frac{i}{2^{n-1}}|+$\tau$_{n}
By summing over k for 1\leq k\leq n ,

we obtain

0\displaystyle \leq i\leq 2^{n}\max|H(\frac{i}{2^{n}})-\frac{i}{2^{n}}|\leq$\delta$_{n}=\sum_{k=1}^{n}$\tau$_{k}.
If we put  $\zeta$(M)=\displaystyle \sup_{1\leq n<\infty}\{$\delta$_{n}\} , by summing geometric series, we obtain

 $\zeta$(M)=1\displaystyle \leq n<\infty\max\{M-1+\frac{1}{2^{n}}-M(\frac{M}{1+M})^{n}, 1-\frac{1}{M}+\frac{1}{M}(\frac{1}{M})^{n}-\frac{1}{2^{n}}\}.
Clearly,  $\zeta$(M)\rightarrow 0 as M\rightarrow 1

,
and since the dyadic points

\{i/2^{n} n=1, 2, . . . ; 0\leq i\leq 2^{n}\}

are dense in [0 ,
1 ] ,

we conclude

|H(x)-x|\leq $\zeta$(M) \forall x\in[0, 1],

which proves the lemma. \square 

Corollary 1. Let  $\theta$(M)=M-1+M $\zeta$(M) . Then for any homeomorphism H of
\mathbb{R} and any x, y>0\in \mathbb{R} , if H restricted to the interval [xy, x+y] is M ‐quasisymmetric,
then

\displaystyle \max\{|$\rho$_{H}(x, y, k)-k|, |$\rho$_{H}(x, -y, k)-k|\}\leq $\theta$(M) , 0<\forall k\leq 1.

Proof. Consider \hat{H}(k)=(H(x+ky)-H(x))/(H(x+y)-H(x)) . Then \hat{H}(1)=1
and \hat{H}(0)=0 . Also, \hat{H} is quasisymmetric because

\hat{H}(k+j)-\hat{H}(k) H(x+ky+jh)-H(x+ky)
\overline{\hat{H}(k)-\hat{H}(k-j)}=\overline{H(x+ky)-H(x+ky-jy)}

for any 0\leq k\leq 1 and j>0 such that [k-j, k+j]\subset[0 ,
1 ] and this is bounded above

by M and below by 1/M because H is M‐quasisymmetric. So, from Lemma 1,

k- $\zeta$(M)\displaystyle \leq\frac{H(x+ky)-H(x)}{H(x+y)-H(x)}\leq k+ $\zeta$(M) .
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Thus

(k- $\zeta$(M))$\rho$_{H}(x, y)\displaystyle \leq\frac{H(x+ky)-H(x)}{H(x)-H(x-y)}\leq(k+ $\zeta$(M))$\rho$_{H}(x, y) .

Since 1/M\leq$\rho$_{H}(x, y)\leq M and we are assuming that 0<k\leq 1 ,
this implies that

|$\rho$_{H}(x, y, k)-k|\leq $\theta$(M)=M-1+M $\zeta$(M) .

Similarly, we have that

|$\rho$_{H}(x, -y, k)-k|\leq $\theta$(M)=M-1+M $\zeta$(M) .

\square 

Definition 2. A bounded positive function  $\epsilon$(y) defined for positive values of t

is called vanishing if  $\epsilon$(y)\rightarrow 0^{+} as y\rightarrow 0^{+}.

Definition 3. A quasisymmetric circle homeomorphism h is called symmetric

(or asymptotically affine) if it is quasisymmetric and if there exists a vanishing function

 $\epsilon$(y) such that

(5) \displaystyle \frac{1}{1+ $\epsilon$(y)}\leq$\rho$_{H}(x, y)\leq 1+ $\epsilon$(y) ,

for all real numbers x and all y>0.

We say asymptotically affine in this definition since the ratio in the middle expres‐

sion in (5) is identically equal to one if and only if H is affine, that is, if H(x)=ax+b,
for some a\neq 0.

Lemma 2. A quasisymmetric circle homeomorphism is symmetric if, and only

if, there is a vanishing function  $\epsilon$(y) such that

(6) \displaystyle \max\{|$\rho$_{H}(x, y, k)-k|, |$\rho$_{H}(x, -y, k)-k|\}\leq $\epsilon$(y)

for all real numbers x and y>0 and for all k with 0<k\leq 1.

Proof. Since H is symmetric, by picking y>0 sufficiently small, we obtain a

number M arbitrarily close to 1, such that

\displaystyle \frac{1}{M}\leq$\rho$_{H}(s, t)\leq M
for all numbers s and t for which s-t, s and s+t lie in the interval [x-y, x+y] . By

Corollary 1, this implies that there is a vanishing function $\epsilon$'(y) such that

\displaystyle \max\{|$\rho$_{H}(x, y, k)-k|, |$\rho$_{H}(x, -y, k)-k|\}\leq$\epsilon$'(y) ,
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for all real numbers x
,

all y>0 and all k with 0\leq k\leq 1.

Conversely, (6) with k=1 implies

|$\rho$_{H}(x, y)-1|\leq $\epsilon$(y) ,

and this implies the existence of a vanishing function $\epsilon$'(y) for which

\displaystyle \frac{1}{1+$\epsilon$'(y)}\leq $\rho$(x, y)\leq 1+$\epsilon$'(y) .

\square 

Definition 4. A circle endomorphism f of degree d is called uniformly sym‐

metric or uniformly asymptotically affine (UAA) if all of the inverse branches of f^{n},
n=1

, 2, . . .

,
are symmetric uniformly. More precisely, f^{n} is UAA if there is a vanishing

function  $\epsilon$(y) such that, for all positive integers n and all real numbers x and y>0,

(7) \displaystyle \frac{1}{1+ $\epsilon$(y)}\leq$\rho$_{F-n}(x, y)=\frac{F^{-n}(x+y)-F^{-n}(x)}{F^{-n}(x)-F^{-n}(x-y)}\leq 1+ $\epsilon$(y) .

We say uniformly since the ratio in the middle expression in (7) approaches 1 when

y approaches 0 independently of the number n of compositions of F.

§2. Beurling‐Ahlfors Extensions

By definition, a homeomorphism G from a plane domain  $\Omega$ onto another plane do‐

main  G() is quasiconformal if it is orientation preserving and if it has locally integrable
distributional first partial derivatives G_{Z} and G_{z} satisfying the inequality

(8) |G_{\overline{z}}(z)|\leq k|G_{z}(z)|

for some number k with 0\leq k<1 and for almost all z . The complex valued Beltrami

coefficient  $\mu$=$\mu$_{G} for G is defined by the equation

(9) G_{\overline{z}}(z)= $\mu$(z)G_{z}(z)

where || $\mu$(z)||_{\infty}<1 . It is standard to call the quantity

(10) K_{z}(G)=\displaystyle \frac{|G_{z}(z)|+|G_{\overline{z}}(z)|}{|G_{z}(z)|-|G_{\overline{z}}(z)|}=\frac{1+| $\mu$(z)|}{1-| $\mu$(z)|}
the dilatation of G at the point z

,
and to call

K(G)=\displaystyle \mathrm{e}\mathrm{s}\sup_{z\in $\Omega$}K_{z}(G)=\frac{1+|| $\mu$||_{\infty}}{1-|| $\mu$||_{\infty}}
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the dilatation of G on the domain  $\Omega$ . Thus, the homeomorphism  G is quasiconformal
on  $\Omega$ if  K(G)<\infty . We will also use the nonstandard notation  K(G, z) for the same

fraction that appears in (10) without the absolute value signs, that is,

K(G, z)=\displaystyle \frac{G_{z}(z)+G_{\overline{z}}(z)}{G_{z}(z)-G_{\overline{z}}(z)}.
Note that K(G, z) is complex valued and |K(G, z)|\leq K(G) . In all of these notations,

$\mu$_{G}, K_{z}(G) , K(G) and K(G, z) ,
we omit reference to the mapping G if this is clear from

the context.

Consider all possible extensions of quasisymmetric self‐mappings H of the real axis

to quasiconformal self‐mappings \tilde{H} of the upper half plane \mathbb{H}
,

and define K(H) by the

formula

 K(H)=\displaystyle \inf {  K(\tilde{H}):\tilde{H} extends H}.

From the theory of quasiconformal mappings, if K(H)=1 ,
then H is affine, that

is, H(x)=ax+b, a\neq 0 . Similarly, H is also affine if M=M(H)=1 in the \mathrm{M}‐condition

(1). Thus, we may take both M(H) and K(H) as measurements of the extent to which

H fails to be affine. A well‐known result of Beurling and Ahlfors [3] shows that M(H)
and K(H) are simultaneously finite and there are estimates for M(H) in terms of K(H)
and vice‐versa. Moreover, M(H) and K(H) simultaneously approach 1.

The Beurling‐Ahlfors extension procedure provides a canonical extension \tilde{H} of any

quasisymmetric homeomorphism H such that the Beltrami coefficient  $\mu$ of \tilde{H} satisfies

\Vert $\mu$\Vert_{\infty}<1 . Furthermore, it satisfies the following well‐known theorem [6].

Theorem 1. The Beurling‐AhlfO rs extension of a quasisymmetric self‐ mapping
H of the real axis has a Beltrami coefficient  $\mu$ with | $\mu$(x+iy)|\leq $\eta$(y) for some vanishing

function  $\eta$(y) if, and only if, there is a vanishing function  $\epsilon$(y) such that

\displaystyle \frac{1}{1+ $\epsilon$(y)}\leq$\rho$_{H}(x, y)\leq 1+ $\epsilon$(y) .

In this paper we require a similar estimate that allows the comparison between

distortion functions of two quasisymmetric homeomorphisms of the real axis H_{0} and H_{1}

fixing 0 ,
1 and \infty . The following theorem which was stated in [4] would be a corollary

of Theorem 1 if the Beurling‐Ahlfors extension procedure defined a homomorphism.
That is, if the Beurling‐Ahlfors extension of  H_{1} composed with the Beurling‐Ahlfors
extension of H_{2} were equal to the Beurling‐Ahlfors extension of H_{1}\circ H_{2} . But that is

not the case. However, the result is still true and we will give a complete proof.
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Theorem 2 (Cui [4]). Suppose the skew quasisymmetric distortion functions

$\rho$_{0}(x, y, k) and $\rho$_{1}(x, y, k) of H_{0} and H_{1} satisfy the inequality

|$\rho$_{0}(x, y, k)-$\rho$_{1}(x, y, k)|, |$\rho$_{0}(x, -y, k)-$\rho$_{1}(x, -y, k)|\leq $\epsilon$(y)

forx, y>0\in \mathbb{R} and 0<k\leq 1 ,
where  $\epsilon$(y) is a vanishing function. Suppose furthermore

that $\mu$_{1} and $\mu$_{2} are the Beltrami coefficients of the Beurling‐AhlfO rs extensions \tilde{H}_{0} and

\tilde{H}_{1} ,
that is,

$\mu$_{0}(z)=\displaystyle \frac{\tilde{H}_{0\overline{z}}}{\tilde{H}_{0z}} and $\mu$_{1}(z)=\displaystyle \frac{\tilde{H}_{1\overline{z}}}{\tilde{H}_{1z}}.
Then there is a vanishing function  $\eta$(y) depending only on  $\epsilon$(y) such that

|$\mu$_{0}(x+iy)-$\mu$_{1}(x+iy)|\leq $\eta$(y) .

Conversely, given two quasiconfO rmal maps \tilde{H}_{0} and \tilde{H}_{1} preserving the real axis and

a vanishing function  $\eta$(y) such that

|$\mu$_{0}(z)-$\mu$_{1}(z)|\leq $\eta$(y) ,

then there is a vanishing function  $\epsilon$(y) such that

|$\rho$_{0}(x, y, k)-$\rho$_{1}(x, y, k)|, |$\rho$_{0}(x, -y, k)-$\rho$_{1}(x, -y, k)|\leq $\epsilon$(y)

for x, y>0\in \mathbb{R} and 0<k\leq 1 ,
where H_{0} and H_{1} are the restrictions of \tilde{H}_{0} and \tilde{H}_{1} to

the real axis.

Proof. We take the following formulas as the definition of the Beurling‐Ahlfors
extension:

\overline{H}=U+iV,

where

(11) U(x, y)=\displaystyle \frac{1}{2y}\int_{x-y}^{x+y}H(s)ds=\frac{1}{2}\int_{-1}^{1}H(x+ky)dk
and

(12) V(x, y)=\displaystyle \frac{1}{y}\int_{x}^{x+y}H(s)ds-\frac{1}{y}\int_{x-y}^{x}H(s)ds.
In (11) and (12) we have chosen a normalization slightly different from the one given
in [1]. It has the property that the extension of the identity is the identity and the

extension is affinely natural, by which we mean that for affine maps A and B,

\overline{id_{\mathbb{R}}}= id \mathbb{C}
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and

A\circ H\circ B=A\circ\overline{H}\circ B.

Note that

(13) \displaystyle \int_{0}^{1} $\rho$(x, y, k)dk=\frac{1}{H(x)-H(x-y)}(\frac{1}{y}\int_{x}^{x+y}H(s)ds-H(x))
and

(14) \displaystyle \int_{0}^{1} $\rho$(x, -y, k)dk=\frac{1}{H(x+y)-H(x)}(H(x)-\frac{1}{y}\int_{x-y}^{x}H(s)ds)
Let

L=H(x)-H(x-y)
R=H(x+y)-H(x)

(15) L'=H(x)-\displaystyle \frac{1}{y}\int_{x-y}^{x}H(s)ds,
R'=\displaystyle \frac{1}{y}\int_{x}^{x+y}H(s)ds-H(x) .

and let  $\rho$+(x, y)=\displaystyle \int_{0}^{1} $\rho$(x, y, k)dk and $\rho$_{-}(x, y)=\displaystyle \int_{0}^{1} $\rho$(x, -y, k)dk . Let  $\rho$(x, y)=

$\rho$_{H}(x, y) . Then

 $\rho$(x, y) =R/L
(16)  $\rho$+(x, y)=R'/L

$\rho$_{-}(x, y)=L'/R.

Notice that for symmetric homeomorphisms the quantity  $\rho$ approaches 1 and the two

quantities  $\rho$+ and $\rho$_{-} approach 1/2 as y approaches zero. The complex dilatation of \tilde{H}

is given by

 $\mu$(z)=\displaystyle \frac{K(z)-1}{K(z)+1}
where

K(z)=\displaystyle \frac{\tilde{H}_{z}+\tilde{H}_{\overline{z}}}{\tilde{H}_{z}-\tilde{H}_{\overline{z}}}=\frac{(U+iV)_{z}+(U+iV)_{\overline{z}}}{(U+iV)_{z}-(U+iV)_{\overline{z}}}
=\displaystyle \frac{(U+iV)_{x}-i(U+iV)_{y}+(U+iV)_{x}+i(U+iV)_{y}}{(U+iV)_{x}-i(U+iV)_{y}-(U+iV)_{x}-i(U+iV)_{y}}
=\displaystyle \frac{U_{x}+iV_{x}}{V_{y}-iU_{y}}.

Thus

K(z)=\displaystyle \frac{1+ia}{b-ic},
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where a=V_{x}/U_{x}, b=V_{y}/U_{x} and c=U_{y}/U_{x}.
To find estimates for these three ratios we must find expressions for the four partial

derivatives of U and V in (11) and (12). In the notation of (15)

U_{x}=\displaystyle \frac{1}{2y}(R+L) ,

V_{x}=\displaystyle \frac{1}{y}(R-L) ,

V_{y}=\displaystyle \frac{1}{y}(R+L)-\frac{1}{y}(R'+L
U_{y}=\displaystyle \frac{1}{2y}(R-L)-\frac{1}{2y}(R'-L') .

Thus

a(1+ $\rho$)=2\displaystyle \frac{R-L}{R+L} \displaystyle \frac{R+L}{L},
b(1+ $\rho$)=2\displaystyle \frac{R+L-R'-L'}{R+L} \displaystyle \frac{R+L}{L}=2(R/L+1-R'/L-(R/L)(L'/R)) ,

c(1+ $\rho$)=\displaystyle \frac{R-L-R'+L'}{R+L} \displaystyle \frac{R+L}{L}=R/L-1-R'/L+(R/L)(L'/R) .

Finally, we obtain

a=\displaystyle \frac{2( $\rho$-1)}{ $\rho$+1},
(17) b=\displaystyle \frac{2( $\rho$+1-$\rho$_{+}- $\rho \rho$_{-})}{ $\rho$+1},

c=\displaystyle \frac{ $\rho$-1-$\rho$_{+}+ $\rho \rho$_{-}}{ $\rho$+1}.
Since K(z)=(1+ia)/(b-ic) , K(z)+1=(1+ia+b-ic)/(b-ic) ,

we have

$\mu$_{1}(z)-$\mu$_{0}(z)=\displaystyle \frac{K_{1}(z)-1}{K_{1}(z)+1}-\frac{K_{0}(z)-1}{K_{0}(z)+1}=2\frac{K_{1}(z)-K_{0}(z)}{(K_{1}(z)+1)(K_{0}(z)+1)}
=2\displaystyle \frac{(1+ia_{1})(b_{0}-ic_{0})-(1+ia_{0})(b_{1}-ic_{1})}{(1+ia_{1}+b_{1}-ic_{1})(1+ia_{0}+b_{0}-ic_{0})}

(18) =2\displaystyle \frac{(a_{1}-a_{0})(ib_{1}+c_{1})+(b_{0}-b_{1})(1+ia_{1})+(c_{1}-c_{0})(i-a_{1})}{(1+ia_{1}+b_{1}-ic_{1})(1+ia_{0}+b_{0}-ic_{0})}.
From the equation for b in (17) and the inequalities  $\rho$+< $\rho$ and  $\rho \rho$_{-}<1 ,

we see

that b>0 . Since this inequality is true for b_{1} and for b_{0} ,
it follows that the denominator

in (18) is greater than 1. These equations show that if a_{0}, b_{0}, c_{0} converge to a_{1}, b_{1}, c_{1} ,
as y
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approaches zero, then $\mu$_{0} approaches $\mu$_{1} . Clearly $\rho$_{0} approaches $\rho$_{1} implies a_{0} approaches

a_{1}.

From the hypothesis

|$\rho$_{0}(x, y, k)-$\rho$_{1}(x, y, k)|, |$\rho$_{0}(x, -y, k)-$\rho$_{1}(x, -y, k)|\leq $\epsilon$(y)

for x, y>0\in \mathbb{R} and 0<k\leq 1 ,
we have that

|$\rho$_{1+}(x, y)-$\rho$_{0+}(x, y)|\displaystyle \leq\int_{0}^{1}|$\rho$_{1}(x, y, k)-$\rho$_{0}(x, y, k)|dk\leq $\epsilon$(y)
and

|$\rho$_{1-}(x, y)-$\rho$_{0-}(x, y)|\displaystyle \leq\int_{0}^{1}|$\rho$_{1}(x, -y, k)-$\rho$_{0}(x, -y, k)|dk\leq $\epsilon$(y) .

This implies that b_{0}, c_{0} converge to b_{1}, c_{1} ,
as y approaches zero. This completes the

proof of the first half of the theorem.

Since the subsequent arguments do not require the second half, we only sketch the

proof. Notice that if \tilde{H}_{0} and \tilde{H}_{1} are quasiconformal self‐maps of the complex plane

preserving the real axis with Beltrami coefficients $\mu$_{0} and $\mu$_{1} satisfying

|$\mu$_{0}(z)-$\mu$_{1}(z)|\leq $\epsilon$(y)

for a vanishing function  $\epsilon$(y) ,
then the quasiconformal map \tilde{H}_{1}\circ(\tilde{H}_{0})^{-1} has Beltrami

coefficient  $\sigma$ with

| $\sigma$(z)|\leq$\epsilon$'(y)

for another vanishing function $\epsilon$'(y) . Then \tilde{H}_{1}\circ(\tilde{H}_{0})^{-1} carries the extremal length prob‐
lem for the family of curvesjoining [, \tilde{H}_{0}(xy)] to [\tilde{H}_{0}(x), \tilde{H}_{0}(x+ky)] to the extremal

length problem for the family of curves joining [, \tilde{H}_{1}(x-y)] to [\tilde{H}_{1}(x), \tilde{H}_{1}(x+ky)].
If $\Lambda$_{0}(x, y, k) and $\Lambda$_{1}(x, y, k) are these two extremal lengths, then by the Grötzsch ar‐

gument there is another vanishing function $\epsilon$''(y) such that

|\displaystyle \log\frac{$\Lambda$_{0}(x,y,k)}{$\Lambda$_{1}(x,y,k)}|\leq$\epsilon$''(y) .

In [2, pages 74‐76] Ahlfors shows that if  $\Lambda$ is the extremal length of the curve family
that joins the interval [-\infty, -1] to [0, m],  $\Lambda$ is an increasing real analytic function of  m.

In particular,

(19) |\displaystyle \log\frac{m_{0}}{m_{1}}|< $\dagger$ if and only if |\displaystyle \log\frac{$\Lambda$_{0}}{$\Lambda$_{1}}|<$\epsilon$'
and  $\dagger$ and  $\dagger$

�

approach zero simultaneously.
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Hence by (19) there is another vanishing function  $\eta$(y) such that

|\displaystyle \frac{H_{0}(x+ky)-H_{0}(x)}{H_{0}(x)-H_{0}(x-y)}-\frac{H_{1}(x+ky)-H_{1}(x)}{H_{1}(x)-H_{1}(x-y)}|\leq $\eta$(y) .

Similarly, we have that

|\displaystyle \frac{H_{0}(x)-H_{0}(x-ky)}{H_{0}(x+y)-H_{0}(x)}-\frac{H_{1}(x)-H_{1}(x-ky)}{H_{1}(x+y)-H_{1}(x)}|\leq $\eta$(y) .

This completes the proof of the second half of the theorem. \square 

§3. The UAA Teichmüller space

The endomorphism p(z)=z^{m} of \mathrm{S}^{1} is a degree m circle endomorphism and its

lift via the covering mapping  $\pi$ is  P(x)=mx . That is, P(0)=0 and  $\pi$ \mathrm{o}P=p\mathrm{o} $\pi$.

Obviously, p^{n} is UAA with constant M=1 . In fact, the restriction to the unit circle of

the ratio of Blaschke products,

f(z)=\displaystyle \frac{\prod_{j=1}^{k+m}\frac{z-$\alpha$_{j}}{1-\overline{$\alpha$_{j^{Z}}}}}{\prod_{j=1^{\frac{z-$\beta$_{j}}{1-\overline{$\beta$_{j}}z}}}^{k}},
for sufficiently small |$\alpha$_{j}| and |$\beta$_{j}| ,

is also a degree m UAA circle endomorphism. The

following theorem has been proved for any one‐dimensional Markov maps with bounded

geometry. A UAA map of the circle is a Markov map with bounded geometry. The

reader may refer to [8, 9, 10] for a detailed proof. However, for the convenience of the

reader, we outline a proof.

Theorem 3. Given any degree m UAA circle endomorphism f ,
there exists a

unique quasisymmetric map h such that hopoh‐1 =f ,
where p(z)=z^{m}.

Proof. We begin by using the dynamics of the iterations of p and f to construct

a self map H of \mathbb{R} satisfying

i) H(0)=0,
ii) H\circ T=T\circ H and

iii) H\circ P=F\circ H.

From H(0)=0 and H\circ T^{k}(0)=T^{k}\circ H(0) ,
we conclude that H(k)=k . Note that

F\circ T(0)=T^{m}\circ F(0) and F(0)=0 implies that F(1)=m . Also, F\mathrm{o}T=T^{m}\mathrm{o}F

implies

F^{n}\circ T(0)=T^{m^{n}}(0)
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and so F^{n}(1)=m^{n} . Since F is an increasing homeomorphism, F(0)=0 and F^{n}(1)=
m^{n}

,
we may select numbers a_{j,n} between 0 and 1 such that F^{n}(a_{j,n})=j for integers j

and n with 0<j<m^{n} . Then, by definition, if we put H(j/m^{n})=a_{j,n} ,
we obtain

H\circ P^{n}(j/m^{n})=H(j)=j and F^{n}\circ H(j/m^{n})=F^{n}(a_{j.n})=j.

This defines H on a dense set of the unit interval with the property that for points x

in the dense set H\mathrm{o}P(x)=F\mathrm{o}H(x) . We extend H to a dense subset of the interval

[k-1, k] by requiring that H\mathrm{o}T^{k}=T^{k}\mathrm{o}H . If we put x=j/m^{n} and t=1/m^{n} ,
then

we obtain

\displaystyle \frac{1}{M}\leq\frac{a_{j+1,n}-a_{j,n}}{a_{j,n}-a_{j-1,n}}\leq M.
Now let c be any number of the form j/m^{n} and t any positive number. Select k so

that 1/m^{k}\leq t\leq 1/m^{k-1} . Then

\displaystyle \frac{H(c+t)-H(c)}{H(c)-H(c-t)}\leq\frac{H(c+1/m^{k-1})-H(c)}{H(c)-H(c-1/m^{k})}\leq M',
where M'=1+M+M^{2}+\cdots+M^{m} ,

which depends only on m and M . The same type

of argument yields the lower bound

\displaystyle \frac{1}{M'}\leq\frac{H(c+t)-H(c)}{H(c)-H(c-t)}.
Since H is continuous and the set of points j/m^{n} for variable integers j and n is dense,

we conclude that H is quasisymmetric. \square 

Definition 5. The Teichmüller space \mathcal{T}(m) consists of all UAA circle endomor‐

phisms of degree m>1 factored by an equivalence relation. Two endomorpisms f_{0} and

f_{1} representing elements of \mathcal{T}(m) are equivalent if, and only if, there is a symmetric

homeomorphism h of \mathrm{S}^{1} such that ho f_{0}\circ h^{-1}=f_{1} . Since the dynamics of the mappings

T, P and F uniquely determine the points a_{j,n} ,
the mapping H is unique.

§4. UAC Endomorphisms

If f is a UAA circle endomorphism, it is possible that f has a reflection invariant

extension \tilde{f} defined in a small annulus r<|z|<1/r such that

\tilde{f}(1/Z)=1/\overline{\tilde{f}(z)},
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and such that for every  $\epsilon$>0 there exists a possibly smaller annulus U=\{z:r'<|z|<
1/r'\} such that

(20)  K_{z}(\tilde{f}^{-n})<1+ $\epsilon$

for all  z in U. Here K(g) is the dilatation of g at z and inequality (20) is meant to hold

for almost every z in U and for all positive integers n . If such an extension exists, then

\tilde{f} is called a uniformly asymptotically conformal (UAC) dynamical system.

Lemma 3. If \tilde{f} is a UAC degree m map defined in a neighborhood of \mathrm{S}^{1}
,

then

the restriction f of \tilde{f} to \mathrm{S}^{1} is a degree m UAA circle endomorphism.

Lemma 4. For any degree m UAC map \tilde{f} acting on a neighborhood of \mathrm{S}^{1} with

\tilde{f}(1)=1 ,
there is a unique lift \tilde{F} to an infinite strip containing \mathbb{R} and bounded by lines

parallel to \mathbb{R} such that

1.  $\pi$\circ\tilde{F}=\tilde{f}\circ $\pi$,

2. \tilde{F}(0)=0

3. \tilde{F}\circ T=T^{m}\circ\tilde{F}
,

and

4. \tilde{F} preserves the real axis and \tilde{F}(Z)=\overline{\tilde{F}(z)}.

Lemma 5. In the notation of the previous lemma, if \tilde{f} is UAC then \tilde{F} is UAC

in the sense that for every  $\dagger$>0 ,
there is a  $\delta$>0 such that if the absolute value of

y=Imz is less than  $\delta$
,

then

(21)  K_{z}(\tilde{F}^{-n})<1+ $\epsilon$.

Conversely, if \tilde{F} is UAC in the sense that (21) is satisfied and \tilde{F}(T(z))=T^{m}\circ\tilde{F}(z) ,

then the induced map \tilde{f} satisfy ing  $\pi$ 0\tilde{F}=\tilde{f}\circ $\pi$ is UAC.

Theorem 4. If  f is a UAA circle endomorphism, then there exists a UAC map

\tilde{f} of a neighborhood of the circle such that the restriction of \tilde{f} to the circle is equal to f.

Proof. Let F be the lift to the real axis of f such that F(0)=0, F\mathrm{o}T=T^{m}\mathrm{o}F

and such that  $\pi$\circ F=f\circ $\pi$ . By Theorem 3 there is a quasisymmetric homeomorphism
 H of \mathbb{R} fixing 0 and 1 such that

i) H\circ P\circ H^{-1}=F where P(x)=mx ,
and

ii) H\circ T\circ H^{-1}=T where T(x)=x+1.
By Lemma 5 it will suffice to find an extension \tilde{F} of F such that
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i) \tilde{F}\mathrm{o}T(z)=T^{m}\mathrm{o}\tilde{F}(z)
and

ii) the Beltrami coefficients $\mu$_{F^{-}-n} of \tilde{F}^{-n} satisfy

|$\mu$_{\tilde{F}-n}(x+iy)|\leq $\epsilon$(y)

where  $\epsilon$(y) is independent of n and x.

We define \tilde{F} to be \tilde{H}\mathrm{o}P\mathrm{o}\tilde{H}^{-1} . Since \tilde{H} extends H
, clearly \tilde{F} extends F.

Suppose that $\rho$_{1}(x, y, k) and $\rho$_{2}(x, y, k) are the skew quasisymmetric distortions of

F^{-n}\circ H and H . By Corollary 1, there is a vanishing function  $\epsilon$(y) such that

|$\rho$_{1}(x, y, k)-$\rho$_{2}(x, y, k)|, |$\rho$_{1}(x, -y, k)-$\rho$_{2}(x, -y, k)|\leq $\epsilon$(y)

for all real numbers x
,

all y>0 ,
all k with 0<k\leq 1 and all n\geq 1 . Applying

Theorem 2, there is another vanishing function  $\eta$(y) such that the Beltrami coefficients

$\mu$_{F^{-n}\overline{\circ}H} and $\mu$_{H^{-}} satisfy

|$\mu$_{F\overline{-n_{\circ H}}}(z)-$\mu$_{\tilde{H}}(z)|\leq $\eta$(y) , \forall n>0.

Since

F^{-n}\mathrm{o}H=H\mathrm{o}P-n=\tilde{H}\mathrm{o}P^{-n},

we conclude that

|$\mu$_{\tilde{H}}(m^{-n}z)-$\mu$_{\tilde{H}}(z)|\leq $\eta$(y) .

Also, since the Beurling‐Ahlfors extension is affinely natural, $\mu$_{H^{-}}(T(z))=$\mu$_{H^{-}}(z) and

\tilde{H}\mathrm{o}T\mathrm{o}\tilde{H}^{-1}(z)=T(z) . We conclude that \tilde{F}=\tilde{H}\mathrm{o}M\mathrm{o}\tilde{H}^{-1} is a uniformly asymptotically
conformal circle endomorphism of degree m. \square 
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