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1 Introduction

This article is based on an unpublished paper of A. Miyachi. His ideas are
collected in [24]. See [32], for the detail of this report.

In this report we discuss the bilinear estimate of the form;

1#97glLx < e(IFIxIV gm0 + 9" Fllsrollgllx ) &

with a nonnegative integer m and a quasi-Banach space X. In particular,
we consider cases in which X is Herz space, K a7, or Morrey space, MP. We
refer to Section 2, for the definitions of these spaces.

This estimate, with m =1 and X = L?, (1 < p < o0), was used in [14] to
prove that the weak solution v = (uy, - ,u,) of the Navier-Stokes equation,
with divergence-free initial data belonging to L?, on (0,7 satisfying

rot u = (jup — Opttj)1<jren € L'((0,T); BMO(R™))™"

or
Def u := (0jux + Okuj)1<jk<n € Ll((O, T); BMO(R™))""

fulfills the energy equality;
t
lu(®)1Z + 2/ IVu(r)||Zedr = |lu(s)|[72 for all 0 <s<t<T.

By using (1) with m = 1 and X = L? and the energy equality, Kozono and
Taniuchi obtained results on the continuation of the strong solution and the
regularity criterion on the weak solution in the term of rot v and Def .
Their proof of (1) with m =1 and X = LP is based on the boundedness of
the bilinear Fourier multipliers due to Coifman-Meyer [6]. There are other
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bilinear estimates for fg in several function spaces by using the paraproduct
initiated by Bony, [5], [12], [13], etc...

Our purpose is to extend Kozono-Taniuchi’s bilinear estimate, i.e. (1)
fromm =1and X = L? (1 < p < o0) to various function spaces with general
order m, by following the ideas of Miyachi, i.e. by using the sharp maximal
function which was studied by DeVore-Sharpley in [7]. We introduce the
notations before we define the sharp maximal function. By a “ cube ” @), we
mean a cube in R™ with sides parallel to the coordinate axes. Its side length
and center will be denoted by [(Q) and ¢(Q), respectively. Also, for a > 0,
a@) means the cube with the same center as ) whose side length is a times
that of Q). Let Q be a set of all dyadic cubes. For a measurable set F, the

1
slashed integral ][ fdz denotes the average fr = E / fdz, where |E| is
E E

the Lebesgue measure of E. For 0 < p < oo, we write p, = max(p, 1). Let [s]
denote the integer part of real number of s. The sharp maximal function flﬁ(:)
is defined as follows; for 0 <r < oo,l € N_; :=NU{0} U{-1},0 <7 < 0

and an open set 2 C R",

i(r),Q — inf —7/n _p rd r
(%)= s ot 1017 (f 1)~ Pr)

zeQcQ PEP;

where the supremum is taken over all cubes () containing x and included in
2, and P; is the space of all polynomials of degree at most [ for [ € Ny :=
NU {0} and P_; = {0}. Also, we write fﬁ(:) = l’{(TT)’Rn. This type maximal
function was firstly introduced in [4]. See also [2], [16], [20] and [29], for
several variants of the sharp maximal function. It is clear that for » < 1 and
[ € N_y, fl%r) < fl%l) < fé‘fo” —: f% where f* is the Fefferman-Stein sharp
maximal function, [8]. Note that || f||gymo = [|f*|z~ and BMO strictly
includes L*>°. Our main tools are the sharp maximal inequality with flﬁ’(:)
and the pointwise estimate of the sharp maximal function of fV™g. The

sharp maximal inequality is an inequality of the form;

1F1lx < el - (2)

See [8], [22], for this inequality in the case X = L. We extend (2) in Section
3. The sharp maximal function f* is useful for pointwise estimates of several
operators, for example, Calderén-Zygmund operators, pseudodifferential op-
erators and commutators. In particular, for a Calderén-Zygmund operator
T the pointwise estimate

(Tf)(z) < M, f(x)



holds, where M, f = M(|f|")"/" and M is the Hardy-Littlewood maximal
operator, and the sharp maximal inequality (2) with X = LP lead us directly
to the LP-boundedness of T" without the weak type estimate and interpolation
theory. See [1], [15] and [23], for applications of the sharp maximal function
to the theory of partial differential equations.

We explain the structure of this report. In Section 2, we define the two
function spaces and their Hardy type variants. These four spaces are used as
X in (1) in Section 4. In Section 3, we recall some properties of the general
sharp maximal function fﬁ(:) and state the sharp maximal inequality with
fﬁ(:) which is stronger than (2), and pointwise estimate of the sharp maximal
function of fV™g. In Section 4, we apply the results in Section 3 to bilinear
estimates for fV™g by following Miyachi’s idea. The main result in Section
4 are more general than what we discussed in the actual seminar delivered
in the conference, because we can take the exponent ¢ <1 which appears in
K ;7 and M?. It seems that the parameter ¢ in K -7 and MP describes local
regularlty

2 Function spaces

In this section, we introduce the function spaces which extend LP. Moreover,
we define the Hardy spaces for these spaces which are used as substitutes for
these spaces in the case ¢ < 1 in our bilinear estimates. We begin to recall
the definition of Herz space and Morrey space.

Definition 2.1. Let 0 < p,q < 0o and a € R. One defines the (homoge-
neous) Herz space K7 as

. 1/p
Re?(R") = {f € L, RNOD: [f iz i= (0200 i) < o0,

keZ
where Ay = (=2¥, 24"\ (<251, 28-2)".

Definition 2.2. Let 0 < ¢ < p < co. One defines the Morrey space M?(R™)
as

M) = 1] € L | g = sup Q1 f f1tdy) " < oo},

where the supremum is taken over all cubes.



1/q
A geometric observation shows || f||re ~ sup |Q|1/p (][ |f|qdy> .
QeQ Q

The two function spaces above extends Lebesgue spaces; for all 0 < p <
OO’
op _ Tp
K,? =LV = MJ.

Furthermore, Herz spaces include also the Lebesgue spaces with power weight,
ie.

K8 = LP(|z|*dw).

Note that, for the nonhomogeneous Herz space, we have
K = LP({z)*"dx)

where (x) = (1 + |z|?)1/2.
Morrey spaces have the following inclusion property;

ME=LP CLP® C My CMp for0<g <q <p<oo.

Here, LP*> is the Lorentz space which is defined as the set of all measurable
functions f such that

[ Flliree := sup Al{z € R [ f(z)] > AHYP < oo
>

For the sake of convenience for readers, we supply the proof of LP> C M? ;
for any cube @,

Qr(f 1smaz) ™
— |Q|1/p+1/q1(

< |Q|1/p+1/q1(

"X e Qi) > Apan)

o]

PURE b))
7 min(|Q, [ f|7.A")

A

< [QIYrHHa( [ AT QldA

S— —

1/Q1

[ @ an) ™ (A= Q)

< el fllzroe-

Many authors studied the mapping properties of several operators on Herz
spaces and Morrey spaces, see [3], [17], etc... For example, the boundedness



of the powered Hardy-Littlewood maximal operator; for 0 < r < oo and open
subset 2 C R”

M f(z) == sup ][ |f|’dy ,for0<r<oo
TEQCN

is well-known. Note that M, = MX" and M = M}".
We invoke the following results on boundedness of the maximal operator
M.

Proposition 2.1 ([17]). M is a bounded operator on K;“’p if0<p<oo, 1<
g <ooand —n/q < a <n(l—1/q).

Proposition 2.2 ([3]). M is a bounded operator on M? if 1 < q < p < oo.
To pass from these function spaces to the Hardy-type variants, we fix a
test function ¢ € C§° which is supported in the unit ball B(0, 1) and whose

integral is not zero. For a distribution f € 2’ we define the radial maximal
function ¢, (f) by

o4 (f)(x) = sup [(f, de(z —-))

0<t<oo
where ¢y(x) =t "¢(z/t).
Definition 2.3 ([17], [18], [19]). Let p and q be the same as in Definition
2.2 and —n/q < a < 0o. One defines the Herz-type Hardy space HK{P as
HEZPR") = {f € D" fllsrror = 16+l gegr}-

Definition 2.4 ([10], [25]). Let p and q be the same as in Definition 2.5.
One defines the Hardy-Morrey space HMY as

HMGR") :={f € Z"; || flluag = 6+ ()llaag}-

A helpful remark on the properties of the function spaces may be in order.

Remark 2.1. 1. HK;“’Z’ and HM?Y are independent of the choice of ¢ €
C(B(0,1)) with /qﬁ dx # 0.

If0 <p<oo,l<q<oo,—nfg<a<n(l—1/q), then HK(‘;"I’ =
Kj]”p. Similarly, if 1 < ¢ < p < oo, then HMY = Mb. These facts are
consequences of Propositions 2.1 and 2.2.

3. If 0 < p < oo, then HKI?’p = H? = HM?Y, where H? is the usual Hardy

space, [8]. In paticular, if 1 < p, then HKB’I’ =[P =HM?
See [10], [18], [19], [21], [31], etc... for these Hardy-type spaces.



3 Properties of the sharp maximal function
and main tools

Feffereman-Stein’s inequality (2) asserts that the magnitude of f* can con-

trol that of f. The general sharp maximal function fﬁ(:) informs us of the
smoothness of function f and can dominate the magnitude of the derivative
of f. The following properties are known. In paticular, (iii) was shown by
Miyachi in the case m = 1 and plays an important role in Section 4.

Proposition 3.1. (i), [[7, Theorem 5.6]]; For 1 < p < oo, m € N and
fewmp,

VTS| < S < MV, ae. z
(ii), [[7, Theorem 2.5]); If f be a locally integrable function and 0 < 7 < 1,
then

1f(z) = F@)] < clz —y["(fiP () + £D W), ae. 2,y

(iii); Let f be a locally integrable function and m € N. If 8*f € L},. for all
la| = m, then

fim<e D00 NEy-

|a|=m

For the sake of convenience for reader, we give the proof of (ii) above.
Let z and y be Lebesgue points of f and h := y—z. Let R the smallest cube
containing x and y = x + h. It is well known that

lim = f(x+jh), 7 =0,1.
o m  Je f@+jh), j

For a cube 7 C R containing x + jh, we take a family of cubes {Qi Z’:Jrll

such that . . . .
Q]:lecQJzC"'CanH:Ra

|Qi+1| - 2n|Qi|’ (k; - ]-7 , M — 1) and |Qin+1| = |R| S 2n|an| Thena we

have

[f@i = Jal < Z oy — fQi;H' = Z][qu B f%+1|dy
k=1 k=1 k

<231 S My <2 1) Y (@l
— k=1

< ¢|R["f3D (x + jh)



from which one obtains

T+ jh) — < lim ;i — < c|R|™ n(l)x—k'h.
o)~ fal <t (for = ful < RIS o+ h)

Therefore, we have the desired inequality

f(x) = f(x+ h)| < |f(2) = frl + | f(z +h) — fl
< c|R["(fiD (@) + fi (@ + ).

Remark 3.1. 1. (i) and the boundedness of M on LP imply that ||V™ f||» ~

(1)
||fm—1,m”Lp'
2. Thanks to (ii), it is not hard to see that f € Lip, is equivalent to fgf,l) €
L.

The function spaces which are defined by ff(:) have the some embedding

relation to the homogeneous Besov spaces B;,q. Also, in [27] and [30], it was
proved that the function spaces, which are defined by the more general func-
tion than flﬁ’(:), are equivalent to the homogeneous Triebel-Lizorkin spaces

.
Proposition 3.2 (7, Theorem 7.1]). Let 1 < p < oo and s > 0. Then we
have the embedding inequalities;

_ 1
Mgy < WA < el £]

he .
BP;P

Next, we state the sharp maximal inequality with fﬁ(:) which is the one
of main tools. We omit the proofs of theorems whose key is the good-\
inequality.

Theorem 3.1. Let 0 < p < o0, 0 < ¢q,7,8 < 00, —n/q < a < oo and
I € Ng. Then, there exists a constant ¢ such that for f € Lj . satisfying

loc
1/r
(][ |f|"dy) — 0 as j — oo,
Aj

1z < el 2 g
Theorem 3.2. Let0 < qg<p<oo, 0 <r,s<ooandl € Nyg. Then, there
1/r
exists a constant ¢ such that for f € L] . satisfying that (][ |f|’"dy) —0

loc ]
29Q
as j — oo, for some cube @,

1 llae < el A5 ez



Theorems above are immediate consequences of the following lemmas.

Lemma 3.1 (Miyachi, [24], [32]). Let 0 < r < oo and | € Ny. Then, there
exist B = B(n,r,l) > 1, ¢ = ¢(n,r,l) > 0 so that for each Q € Q, f € Lj

loc’
1/r
)\>(][Q|f|’”dy) and 0 <6 <1

o € QiNI2f(2) > B, TA° <o) < e(2) 1o € @: T2 () > A},

where ]\7,9 f and ﬁg)’Q mean the dyadic maximal function and the dyadic
sharp mazimal function of f, respectively.

Lemma 3.2 ([32]). Let 0 < p < o0, 0 < q,r < 00, —n/q < a < 0o and
I € Ng. Then, there exists a constant ¢ so that for f € L] . satisfying that

loc
1/r
(f 1fras)” —0asj— o,
Aj

1£ 1l geor < el £ iz
where ag = v +n(1/q —1/r).

Lemma 3.3 ([26], [32]). Let 0 < g <p<oo, 0<r <pandl e Ny. Then,
1/r
there exists a constant ¢ so that for f € L] . satisfying (][ |f|’"dy) —0
21Q

loc

as j — 00, for some cube Q),

£ llae < el 5 e

For example, because, by using Lemma 3.1, we can prove

1 llige < (1A kgo + 1 goemiamsins ),

Theorem 3.1 follows from this inequality and Lemma 3.2. See [32], for the
detail.

Remark 3.2. 1. Theorem 3.1 still holds for the non-homogeneous Herz
spaces KgP.
2. In [11], Komori showed the inequality (ii) in the context of the nonho-

mogeneous Herz space with o = —n/q in the following sense; for 1 < g < oo
and f € L}

loc?

| Fllesion < ell fo0" | msace:



where CMOY is the space of all functions of central mean oscillation and
equipped with the norm

1
Hf||CMOq ‘= sup (][ |f - fB(o,R)|qd?/) /q-
R>1\J B(O,R)

3. Since we can take r < 1 in Theorems 3.1 and 3.2, these theorems are
stronger than classical Fefferman-Stein’s inequality (2).

4. Theorems 3.1 and 3.2 in the case Kg,p = Mp = L¥ were proved by
Miyachi in his unpublished paper. Also, in the case 1 < g < p < oco,r =1
and | = 0, that inequality in Theorem 3.2 was shown by Sawano-Tanaka [26]
i the context of non-doubling measures.

5. The decay condition in Theorem 3.2 was firstly introduced by Fujii in [9].

To formulate our new sharp maximal operator control, we define the
grand maximal function f}.

Definition 3.1. Let k € Ny. For z € R" and 0 < t < oo, we define
Ti(x,t) as the set of all functions ¢ € C§° so that supp ¢ C B(w,t) and
10%¢|| e < t77710l for |a| < k. For f € 9', we set

fi(@) = sup{[(f, 9)]; & € Voci<ooTr(, 1)}

Using above notation, we can prove pointwise estimates of the sharp
maximal function of fV™g. See [24] or [32], for the proof of the proposition
below.

Proposition 3.3. Let 0 < r < s < o0, 1/r = 1/u+ 1/v, m € N and
a multi-index with |3| = m. Then, there exists a constant ¢ such that the
following (i) and (ii) hold.

(i): If fe Ly, andge€ L} ., then

loc loc’

(e (@) < e(Muf @)l (@) + 135 (2) Mog(@)).

(ii): If f € L. and g € 2" with 3%g € L}, then for k> 1,

loc loc’
(F079)ih(@) < e(Muf (@)@ 957 (@) + [0 (@)gilx) ).

Remark 3.3. In the case || = 1, Miyachi proved the following pointwise
estimate in his unpublished paper;

(F09)5 (2) < (Mo f (@)@ )57 (@) + i (2) Mg (a) ).

This is slightly weaker than (ii), because we have gi < cMg.



4 Application to bilinear estimates

We shall prove our bilinear estimates below by using Theorems 3.1 and 3.2
and Proposition 3.3.

Theorem 4.1. (I): Let 0 < p < o0, 0 < ¢ < o0 and —n/q < a < co.
(i): There exists a constant ¢ such that for any f,g € K" N BMO,

179lize < (I kg lgllmao + I fllsaollglliz»)-

(ii): Let m € N. There exists a constant ¢ such that for any f € K;,p with
V™ f € BMO and g € HKXP with V™g € BMO,

159"l < (1 iz IV glma0 + IV Fllmaso iy » )

(IT): Let 0 < ¢ < p < 0.
(i): There exists a constant ¢ such that for any f,g € M? N BMO,

1£9llaeg < (U laglgllnio + 1 suollglag )

(ii): Let m € N. There exists a constant ¢ such that for any f € M? with
v f e BMO and g € HM? with V™™g € BMO,

119"l < (17 1aez 19 gllato + 9™ Fllsarollgll e )

Finally we make a remark on our main results.

Remark 4.1. 1. It is easy to see that the inequality

197l iz < e(I1F 1ol T gl iz + 19 Fllice»lgllmavo )

dose not generally hold for f € BMO with V™ f € K;”’p and g € BMO with

V™mg € HKP. As the example f =1 shows that the inequality above fails.
2. The following local substitute can be shown; for 0 < q,r < 00, each
cube Q and f,g € LY(Q) with V™ f,V™g € BMO(Q),

V™3l Laq) < C(||f||Lq(Q)||Vm9||BMO(Q) + V™ fllsao@ll9ll Laq)
QMY V@)

with a constant ¢ not depending on f,g and (). Needless to say, this substitute
inequality is significant only when 0 <r < g < 0o.
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Proof. Because the proof of (IT) is similar to that of (I), we omit the proof
of (II).
(I-i): Let r < ¢/2. Since

1/r .
(f 1raran)” <220 ) enlglgom — 0,05 — oo,
Aj

we can use Theorem 3.1 and hence, combining Proposition 2.1 with (i) of
Proposition 3.3, we have the required inequality.

(I-ii): Since V™g € BMO, as we can find in [[28] pp.141];

][ |h — hB(0’1)|d£E < Ckf”h”BMo, fO?" all k> O,
B(0,2F)

we have ][ |IV™gldy = O(j) as j — oo, from which it follows that for any
A.

J

e>0, 27% ][ |IV™gldy — 0 as j — oo. Consequently, one obtains that

Aj
(f o) =

as j — oo for all 0 < r < min(1,q/(¢+ 1)). Indeed, if 1/r = 1/q + 1, then
we have

1/r _jn/
(f vmran)” <2, {979l
J

Aj
< 2_j(a+n/q)||f||f<g’p][ |IV™glde — 0, as j — oc.
j

Here we have used the condition —n/q < «. Hence, with the decay condition
established, we are in the position of applying our sharp maximal inequality
for fV™g to obtain;

£V gl geor < ell(FV™ ) seor

with sufficiently small ». Combining the above inequality with (iii) of Propo-
sition 3.1 and (ii) of Proposition 3.3 lead us to the following estimate; for
sufficiently large k,

179" glliz < (1 kg IV gl st + 1197 Fllsasollgil g )

Finaly, the estimate [|g;|| zo» < c[|g]l o+ follows from Uchiyama’s pointwise
estimate in [33];
95(®) < My (0+(9)) ().
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Remark 4.2. Thanks to Miyachi’s idea, we can establish the same bilinear
estiomates as Theorem 4.1 for function spaces X with a quasi-norm || - || x
satisfying

(A1). the sharp maximal inequality holds
(A2). the Hardy-Littlewood maximal operator M, is bounded for some
r € (0,00)
(A3). quasi-norm || - || x fulfills that if [f| < |g| a.e. then || f]lx < |g]x-

For example, some Orlicz spaces satisfy these properties.
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