UNIMODULAR FOURIER MULTIPLIERS ON MODULATION SPACES $M^{p,q}$ FOR 0

NAOHITO TOMITA

1. Introduction

In this note, we consider the boundedness of the Fourier multiplier operator $e^{i|D|^{\alpha}}$ on modulation spaces, where $\alpha > 0$ and $e^{i|D|^{\alpha}}$ is defined by

$$e^{i|D|^{\alpha}}f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} e^{i|\xi|^{\alpha}} \widehat{f}(\xi) d\xi.$$

In the case $\alpha = 2$, $u(t,x) = e^{it|D|^2}u_0(x)$ is the formal solution to the Schrödinger equation

$$\begin{cases} i \frac{\partial u}{\partial t}(t, x) = \Delta_x u(t, x) & (t > 0, x \in \mathbb{R}^n), \\ u(0, x) = u_0(x) & (x \in \mathbb{R}^n). \end{cases}$$

Modulation spaces $M_s^{p,q}$ were introduced by Feichtinger [3, 4] (see also Gröchenig [5]). We recall the definition of modulation spaces. Let $0 < p, q \le \infty, s \in \mathbb{R}$, and let $\psi \in \mathcal{S}(\mathbb{R}^n)$ be such that

(1.1)
$$\operatorname{supp} \psi \subset [-1,1]^n \quad \text{and} \quad \sum_{k \in \mathbb{Z}^n} \psi(\xi - k) = 1 \quad \text{for all } \xi \in \mathbb{R}^n.$$

Then the modulation space $M_s^{p,q}(\mathbb{R}^n)$ consists of all $f \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$||f||_{M_s^{p,q}} = \left(\sum_{k \in \mathbb{Z}^n} (1+|k|)^{sq} ||\psi(D-k)f||_{L^p}^q\right)^{1/q} < \infty,$$

where $\psi(D-k)f = \mathcal{F}^{-1}[\psi(\cdot -k)\widehat{f}]$. If s=0, we simply write $M^{p,q}(\mathbb{R}^n)$ instead of $M^{p,q}_0(\mathbb{R}^n)$. We remark that $M^{2,2}_s$ coincides with the Sobolev space $W^{s,2}$.

It is known that $e^{i|D|^2}$ is bounded on L^p if and only if p=2 (Hörmander [7]). However, $e^{i|D|^2}$ is bounded on $M^{p,q}(\mathbb{R}^n)$ for all $1 \leq p,q \leq \infty$ (see Gröchenig-Heil [6], Toft [10], Wang-Zhao-Guo [11], Bényi-Gröchenig-Okoudjou-Rogers [1]). This is one of differences between L^p -spaces and modulation spaces. Bényi-Gröchenig-Okoudjou-Rogers ([1]) proved that if $0 \leq \alpha \leq 2$ then $e^{i|D|^{\alpha}}$ is bounded on $M^{p,q}(\mathbb{R}^n)$ for all $1 \leq p,q \leq \infty$. Furthermore, in the case $\alpha > 2$, Miyachi-Nicola-Rivetti-Tabacco-Tomita [9] showed that, for $1 \leq p,q \leq \infty$ and $s \in \mathbb{R}$, $e^{i|D|^{\alpha}}$ is bounded from $M^{p,q}_s(\mathbb{R}^n)$ to $M^{p,q}(\mathbb{R}^n)$ if and only if $s \geq (\alpha - 2)n|1/p - 1/2|$ (see [9] for more general results). In particular, this says that if $\alpha > 2$ and $p \neq 2$ then $e^{i|D|^{\alpha}}$ is not bounded on modulation spaces $M^{p,q}$.

The purpose of this note is to consider the case 0 , and our main result is the following:

Theorem 1.1. Let $0 , <math>0 < q \le \infty$, $\alpha > n(1/p-1)$ and $s \in \mathbb{R}$. Then $e^{i|D|^{\alpha}}$ is bounded from $M_s^{p,q}(\mathbb{R}^n)$ to $M_s^{p,q}(\mathbb{R}^n)$ if and only if $s \ge \max\{0, \alpha - 2\}n(1/p - 1/2)$.

We remark that Bényi-Okoudjou [2] considered the cases $0 \le \alpha \le 2$, $1 \le p \le \infty$ and $0 < q \le \infty$, and $\alpha \in \{1,2\}$, $n/(n+1) and <math>0 < q \le \infty$. In Remark 3.5, we also treat the case $\alpha \ge 0$, $1 \le p \le \infty$ and $0 < q \le \infty$.

We end this section by explaining the organization of this note. In Section 2, we give the relation between L^p -boundedness and $M^{p,q}$ -boundedness. In Section 3, we give the proof of Theorem 1.1.

2. Relation between L^p -boundedness and $M^{p,q}$ -boundedness

Let $\mathcal{S}(\mathbb{R}^n)$ and $\mathcal{S}'(\mathbb{R}^n)$ be the Schwartz spaces of all rapidly decreasing smooth functions and tempered distributions, respectively. We define the Fourier transform $\mathcal{F}f$ and the inverse Fourier transform $\mathcal{F}^{-1}f$ of $f \in \mathcal{S}(\mathbb{R}^n)$ by

$$\mathcal{F}f(\xi) = \widehat{f}(\xi) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi} f(x) dx \quad \text{and} \quad \mathcal{F}^{-1}f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} f(\xi) d\xi.$$

For $m \in \mathcal{S}'(\mathbb{R}^n)$, we define the Fourier multiplier operator m(D) by

$$m(D)f = \mathcal{F}^{-1}[m\,\widehat{f}] = [\mathcal{F}^{-1}m] * f \text{ for all } f \in \mathcal{S}(\mathbb{R}^n).$$

To avoid the fact that $\mathcal{S}(\mathbb{R}^n)$ is not dense in $M_s^{p,q}(\mathbb{R}^n)$ if $p=\infty$ or $q=\infty$, we use the following definition of the boundedness of Fourier multiplier operators on modulation spaces: We say that m(D) is bounded from $M_s^{p,q}(\mathbb{R}^n)$ to $M^{p,q}(\mathbb{R}^n)$ if there exists a constant C>0 such that $\|m(D)f\|_{M^{p,q}} \leq C\|f\|_{M^{p,q}}$ for all $f\in\mathcal{S}(\mathbb{R}^n)$, and set

$$||m(D)||_{\mathcal{L}(M^{p,q}_{s},M^{p,q})} = \sup\{||m(D)f||_{M^{p,q}} \mid f \in \mathcal{S}(\mathbb{R}^{n}), ||f||_{M^{p,q}_{s}} = 1\}.$$

Similarly, we set

$$||m(D)||_{\mathcal{L}(L^p,L^q)} = \sup\{||m(D)f||_{L^q} \mid f \in \mathcal{S}(\mathbb{R}^n), ||f||_{L^p} = 1\},$$

and simply write $||m(D)||_{\mathcal{L}(L^p)} = ||m(D)||_{\mathcal{L}(L^p,L^p)}$ if p = q.

The notation $A \times B$ stands for $C^{-1}A \leq B \leq CA$ for some positive constant C independent of A and B. For $1 \leq p \leq \infty$, p' is the conjugate exponent of p (that is, 1/p+1/p'=1). Throughout the rest of this note, $\psi \in \mathcal{S}(\mathbb{R}^n)$ is the same as in (1.1).

Lemma 2.1 ([8, Lemma 2.6]). Let $0 , and let <math>\Gamma$ be a compact subset of \mathbb{R}^n . Then there exists a constant C > 0 such that

$$||f * g||_{L^p} \le ||f||_{L^p} ||g||_{L^p}$$

for all $f, g \in L^p(\mathbb{R}^n)$ with supp $\widehat{f} \subset \xi + \Gamma$ and supp $\widehat{g} \subset \xi' + \Gamma$, where C > 0 is independent of $\xi, \xi' \in \mathbb{R}^n$.

The following is on the relation between L^p -boundedness and $M^{p,q}$ -boundedness which is a slight modification of [9, Lemma 2.2]:

Lemma 2.2. Let $0 < p, q \le \infty$, $s \in \mathbb{R}$ and $m \in \mathcal{S}'(\mathbb{R}^n)$. Then m(D) is bounded from $M_s^{p,q}(\mathbb{R}^n)$ to $M^{p,q}(\mathbb{R}^n)$ if and only if there exists a constant C > 0 such that

(2.1)
$$\|\psi(D-k)m(D)f\|_{L^p} \le C(1+|k|)^s \|\psi(D-k)f\|_{L^p}$$

for all $k \in \mathbb{Z}^n$ and $f \in \mathcal{S}(\mathbb{R}^n)$.

Proof. We assume that (2.1) holds for some constant C > 0. Then, by our assumption,

$$||m(D)f||_{M^{p,q}} = \left(\sum_{k \in \mathbb{Z}^n} ||\psi(D-k)m(D)f||_{L^p}^q\right)^{1/q}$$

$$\leq C \left(\sum_{k \in \mathbb{Z}^n} (1+|k|)^{sq} ||\psi(D-k)f||_{L^p}^q\right)^{1/q} = C||f||_{M_s^{p,q}}$$

for all $f \in \mathcal{S}$, and we obtain the boundedness of m(D) from $M_s^{p,q}$ to $M^{p,q}$.

We next assume that 0 and <math>m(D) is bounded from $M_s^{p,q}$ to $M^{p,q}$. Let $\varphi \in \mathcal{S}$ be such that $\varphi = 1$ on $\operatorname{supp} \psi$, $\operatorname{supp} \varphi \subset [-2,2]^n$ and $|\sum_{k \in \mathbb{Z}^n} \varphi(\xi-k)| \geq C > 0$ for all $\xi \in \mathbb{R}^n$. Note that $||f||_{M_s^{p,q}} \asymp \left(\sum_{k \in \mathbb{Z}^n} (1+|k|)^{sq} ||\varphi(D-k)f||_{L^p}^q\right)^{1/q}$. Since $\psi = \varphi \psi$, $\operatorname{supp} \psi(\cdot -(k+\ell)) \subset (k+\ell) + [-1,1]^n$ and $\operatorname{supp} \psi(\cdot -k) \widehat{f} \subset k + [-1,1]^n$ for all $k, \ell \in \mathbb{Z}^n$, we have by Lemma 2.1 and the boundedness of m(D) from $M_s^{p,q}$ to $M^{p,q}$

$$\|\psi(D-k)m(D)f\|_{L^p} = \|\varphi(D-k)(m(D)\psi(D-k)f)\|_{L^p}$$

$$\leq \left(\sum_{\ell \in \mathbb{Z}^n} \|\varphi(D-\ell)(m(D)\psi(D-k)f)\|_{L^p}^q\right)^{1/q}$$

 $\leq C \|m(D)(\psi(D-k)f)\|_{M^{p,q}} \leq C \|m(D)\|_{\mathcal{L}(M_s^{p,q},M^{p,q})} \|\psi(D-k)f\|_{M_s^{p,q}}$

$$= C \|m(D)\|_{\mathcal{L}(M_s^{p,q}, M^{p,q})} \left(\sum_{|\ell| \le 2\sqrt{n}} (1 + |k + \ell|)^{sq} \|\psi(D - (k + \ell))\psi(D - k)f\|_{L^p}^q \right)^{1/q}$$

$$\leq C \|m(D)\|_{\mathcal{L}(M_s^{p,q},M^{p,q})} \left(\sum_{|\ell| \leq 2\sqrt{n}} (1 + |k + \ell|)^{sq} \|\mathcal{F}^{-1}[\psi(\cdot - (k + \ell))]\|_{L^p}^q \|\psi(D - k)f\|_{L^p}^q \right)^{1/q}$$

$$\leq C(1+|k|)^{s}||m(D)||_{\mathcal{L}(M_{s}^{p,q},M^{p,q})}||\mathcal{F}^{-1}\psi||_{L^{p}}||\psi(D-k)f||_{L^{p}}$$

for all $k \in \mathbb{Z}^n$ and $f \in \mathcal{S}$, where we have used $(1 + |k + \ell|)^s \leq (1 + |k|)^s (1 + |\ell|)^{|s|}$. Hence, we obtain (2.1) with $0 . For <math>1 \leq p \leq \infty$, by using Young's inequality $(\|f * g\|_{L^p}) = \|f\|_{L^1} \|g\|_{L^p}$ instead of Lemma 2.1, we can prove (2.1) in the same way. \square

3. Proof of Theorem 1.1

The proof of the following lemma is based on that of [9, Lemma 3.1]:

Lemma 3.1. Let 0 , <math>N = [n(1/p-1/2)]+1 and $\alpha > n(1/p-1)$, where [n(1/p-1/2)] stands for the largest integer $\leq n(1/p-1/2)$. If m is a $C^N(\mathbb{R}^n \setminus \{0\})$ -function with compact support satisfying

$$|\partial^{\beta} m(\xi)| \le C_{\beta} |\xi|^{\alpha - |\beta|}$$
 for all $\xi \ne 0$ and $|\beta| \le N$,

then $\mathcal{F}^{-1}m \in L^p(\mathbb{R}^n)$.

Proof. Assume that supp $m \subset \{|\xi| \leq 2^{j_0}\}$, where $j_0 \in \mathbb{Z}$. Let $\varphi \in \mathcal{S}$ be such that supp $\varphi \subset \{1/2 \leq |\xi| \leq 2\}$ and $\sum_{j \in \mathbb{Z}} \varphi(\xi/2^j) = 1$ for all $\xi \neq 0$. Since supp $\varphi(\cdot/2^j) \subset \{2^{j-1} \leq |\xi| \leq 2^{j+1}\}$, we see that

$$m(\xi) = \sum_{j=-\infty}^{j_0} \varphi(\xi/2^j) \, m(\xi) = \sum_{j=-\infty}^{j_0} m_j(\xi/2^j),$$

where $m_j(\xi) = \varphi(\xi) m(2^j \xi)$. By using p < 1, we have

Let r be the conjugate exponent of 2/p, and set N = [n/(pr)] + 1. Then N = [n(1/p - 1/2)] + 1. By Hölder's inequality and Plancherel's theorem,

$$\|\mathcal{F}^{-1}m_{j}\|_{L^{p}} = \|(1+|\xi|)^{-N}(1+|\xi|)^{N}\mathcal{F}^{-1}m_{j}\|_{L^{p}}$$

$$\leq \|(1+|\xi|)^{-pN}\|_{L^{r}}^{1/p}\|(1+|\xi|)^{N}\mathcal{F}^{-1}m_{j}\|_{L^{2}} \leq C \sum_{|\beta| \leq N} \|\partial^{\beta}m_{j}\|_{L^{2}}$$
(3.2)

for all $j \in \mathbb{Z}$, where we have used the fact prN > n. Since supp $\varphi \subset \{2^{-1} \le |\xi| \le 2\}$, we have by our assumption

$$(3.3) |\partial^{\beta} m_{j}(\xi)| = \left| \sum_{\beta_{1}+\beta_{2}=\beta} C_{\beta_{1},\beta_{2}}(\partial^{\beta_{1}}\varphi)(\xi) 2^{j|\beta_{2}|}(\partial^{\beta_{2}}m)(2^{j}\xi) \right| \\ \leq \sum_{\beta_{1}+\beta_{2}=\beta} C_{\beta_{1},\beta_{2}}|(\partial^{\beta_{1}}\varphi)(\xi)| 2^{j|\beta_{2}|}(C_{\beta_{2}}|2^{j}\xi|^{\alpha-|\beta_{2}|}) \leq C_{\beta}2^{j\alpha}$$

for all $j \in \mathbb{Z}$ and $|\beta| \leq N$. On the other hand, supp $m_j \subset \{2^{-1} \leq |\xi| \leq 2\}$ for all $j \in \mathbb{Z}$. Therefore, by (3.1)-(3.3),

$$\begin{split} \|\mathcal{F}^{-1}m\|_{L^{p}}^{p} &\leq \sum_{j=-\infty}^{j_{0}} 2^{jn(p-1)} \|\mathcal{F}^{-1}m_{j}\|_{L^{p}}^{p} \\ &\leq C \sum_{j=-\infty}^{j_{0}} 2^{-jn(1/p-1)p} \sum_{|\beta| < N} \|\partial^{\beta}m_{j}\|_{L^{2}}^{p} \leq C \sum_{j=-\infty}^{j_{0}} 2^{j(\alpha-n(1/p-1))p} < \infty. \end{split}$$

The proof is complete.

For $\alpha > 0$ and $k \in \mathbb{Z}^n$, we set

(3.4)
$$\sigma_{\alpha}(\xi) = |\xi|^{\alpha}$$
 and $\tau_{\alpha,k}(\xi) = \sigma_{\alpha}(\xi + k) - \sigma_{\alpha}(k) - (\nabla \sigma_{\alpha})(k) \cdot \xi$.

Lemma 3.2. Let $0 and <math>\alpha > n(1/p-1)$. Then there exists a constant C > 0 such that

$$\|\psi(D-k)e^{i\sigma_{\alpha}(D)}f\|_{L^{p}} < C\|\psi(D-k)f\|_{L^{p}}$$

for all $|k| < 4\sqrt{n}$ and $f \in \mathcal{S}(\mathbb{R}^n)$.

Proof. Let η be a Schwartz function with compact support. Then

$$|\partial_{\varepsilon}^{\beta}[\eta(\xi)(e^{i\sigma_{\alpha}(\xi)}-1)]| \le C_{\beta}|\xi|^{\alpha-|\beta|}$$

for all $\xi \neq 0$ and β . Hence, it follows from Lemma 3.1 that

$$\mathcal{F}^{-1}[\eta e^{i\sigma_{\alpha}}] = \mathcal{F}^{-1}[\eta(e^{i\sigma_{\alpha}} - 1)] + \mathcal{F}^{-1}\eta \in L^{p}.$$

Take $\varphi \in \mathcal{S}$ such that supp φ is compact and $\varphi = 1$ on supp ψ . Then, by Lemma 2.1 and the first part of this proof with $\eta = \varphi(\cdot - k)$, for $|k| < 4\sqrt{n}$,

(3.5)
$$\|\psi(D-k)e^{i\sigma_{\alpha}(D)}f\|_{L^{p}} = \|\varphi(D-k)e^{i\sigma_{\alpha}(D)}\psi(D-k)f\|_{L^{p}}$$

$$\leq C\|\mathcal{F}^{-1}[\varphi(\cdot-k)e^{i\sigma_{\alpha}}]\|_{L^{p}}\|\psi(D-k)f\|_{L^{p}}$$

$$\leq C\|\psi(D-k)f\|_{L^{p}}$$

for all $f \in \mathcal{S}$. This completes the proof.

Lemma 3.3. Let 0 . Then there exists a constant <math>C > 0 such that

$$\|\psi(D-k)e^{i\sigma_{\alpha}(D)}f\|_{L^{p}} \le C|k|^{\max\{0,\alpha-2\}n(1/p-1/2)}\|\psi(D-k)f\|_{L^{p}}$$

for all $|k| > 4\sqrt{n}$ and $f \in \mathcal{S}(\mathbb{R}^n)$.

Proof. Throughout this proof, we assume that $|k| \ge 4\sqrt{n}$ and $f \in \mathcal{S}$. Let $\varphi \in \mathcal{S}$ be such that supp $\varphi \subset [-2,2]^n$ and $\varphi = 1$ on supp ψ . Then, by Lemma 2.1,

(3.6)
$$\|\psi(D-k)e^{i\sigma_{\alpha}(D)}f\|_{L^{p}} = \|\varphi(D-k)e^{i\sigma_{\alpha}(D)}\psi(D-k)f\|_{L^{p}}$$

$$= \|(\mathcal{F}^{-1}[\varphi(\cdot -k)e^{i\sigma_{\alpha}}]) * \psi(D-k)f\|_{L^{p}}$$

$$\leq C\|\mathcal{F}^{-1}[\varphi(\cdot -k)e^{i\sigma_{\alpha}}]\|_{L^{p}}\|\psi(D-k)f\|_{L^{p}}$$

$$= C\|\mathcal{F}^{-1}[\varphi e^{i\sigma_{\alpha}(\cdot +k)}]\|_{L^{p}}\|\psi(D-k)f\|_{L^{p}}.$$

Let us estimate $\|\mathcal{F}^{-1}[\varphi e^{i\sigma_{\alpha}(\cdot+k)}]\|_{L^p}$. Since

$$\mathcal{F}^{-1}[\varphi e^{i\sigma_{\alpha}(\cdot+k)}](x) = e^{i\sigma_{\alpha}(k)}\mathcal{F}^{-1}[\varphi e^{i\tau_{\alpha,k}}](x + (\nabla\sigma_{\alpha})(k)).$$

where $\tau_{\alpha,k}$ is defined by (3.4), we see that

(3.7)
$$\|\mathcal{F}^{-1}[\varphi e^{i\sigma_{\alpha}(\cdot+k)}]\|_{L^{p}} = \|\mathcal{F}^{-1}[\varphi e^{i\tau_{\alpha,k}}]\|_{L^{p}}.$$

By Taylor's formula,

(3.8)
$$\tau_{\alpha,k}(\xi) = 2\sum_{|\beta|=2} \frac{\xi^{\beta}}{\beta!} \int_0^1 (1-t) \left(\partial^{\beta} \sigma_{\alpha}\right) (k+t\xi) dt.$$

If $\xi \in [-2, 2]^n$, then $|k + t\xi| \approx |k|$ for all $0 \le t \le 1$. Since $|\partial^{\gamma} \sigma_{\alpha}(\eta)| \le C_{\gamma} |\eta|^{\alpha - |\gamma|}$, we have by (3.8)

$$\begin{aligned} |\partial^{\gamma} \tau_{\alpha,k}(\xi)| &= \left| \sum_{|\beta|=2} \sum_{\gamma_1 + \gamma_2 = \gamma} C_{\beta,\gamma_1,\gamma_2} \partial^{\gamma_1}(\xi^{\beta}) \int_0^1 (1-t) \, t^{|\gamma_2|} \, (\partial^{\beta+\gamma_2} \sigma_{\alpha})(k+t\xi) \, dt \right| \\ &\leq C_{\beta} \sum_{|\beta|=2} \sum_{\gamma_1 + \gamma_2 = \gamma} |\partial^{\gamma_1}(\xi^{\beta})| \int_0^1 |k+t\xi|^{\alpha-|\beta|-|\gamma_2|} \, dt \leq C_{\beta} |k|^{\alpha-2} \end{aligned}$$

for all multi-indices γ . Hence, by noting $|k|^{\max\{0,\alpha-2\}} \geq 1$, we have

$$\begin{split} &|\partial^{\gamma}(\varphi(\xi) \, e^{i\tau_{\alpha,k}(\xi)})| \\ &= \left| \sum_{N=0}^{|\gamma|} \sum_{\mu+\nu_1+\dots+\nu_N=\gamma} C_{\mu,\nu_1,\dots,\nu_N}(\partial^{\mu}\varphi(\xi)) \, (\partial^{\nu_1}\tau_{\alpha,k}(\xi)) \dots (\partial^{\nu_N}\tau_{\alpha,k}(\xi)) \, e^{i\tau_{\alpha,k}(\xi)} \right| \\ &\leq C_{\gamma} \sum_{N=0}^{|\gamma|} \sum_{\mu+\nu_1+\dots+\nu_N=\gamma} \|\partial^{\mu}\varphi\|_{L^{\infty}} (C_{\nu_1}|k|^{\alpha-2}) \dots (C_{\nu_N}|k|^{\alpha-2}) \\ &\leq C_{\gamma} |k|^{\max\{0,\alpha-2\}|\gamma|}. \end{split}$$

Then, setting $\varphi_{\alpha,k}(\xi) = \varphi(\xi) e^{i\tau_{\alpha,k}(\xi)}$, we have

$$(3.9) |\partial_{\xi}^{\gamma}[\varphi_{\alpha,k}(\xi/|k|^{\max\{0,\alpha-2\}})]| \le C_{\gamma}\chi_{[-2|k|^{\max\{0,\alpha-2\}},2|k|^{\max\{0,\alpha-2\}}]^{n}}(\xi)$$

for all multi-indices γ , where χ_A denote the characteristic function of A. Therefore, by (3.2), (3.6), (3.7) and (3.9),

$$\begin{split} & \|\psi(D-k)e^{i\sigma_{\alpha}(D)}f\|_{L^{p}} \leq C\|\mathcal{F}^{-1}\varphi_{\alpha,k}\|_{L^{p}}\|\psi(D-k)f\|_{L^{p}} \\ & = C|k|^{\max\{0,\alpha-2\}n(1/p-1)}\|\mathcal{F}^{-1}[\varphi_{\alpha,k}(\cdot/|k|^{\max\{0,\alpha-2\}})]\|_{L^{p}}\|\psi(D-k)f\|_{L^{p}} \\ & \leq C|k|^{\max\{0,\alpha-2\}n(1/p-1)}\left(\sum_{|\gamma|\leq N}\|\partial^{\gamma}[\varphi_{\alpha,k}(\cdot/|k|^{\max\{0,\alpha-2\}})]\|_{L^{2}}\right)\|\psi(D-k)f\|_{L^{p}} \end{split}$$

$$\leq C|k|^{\max\{0,\alpha-2\}n(1/p-1/2)}\|\psi(D-k)f\|_{L^p},$$

where N = [n(1/p - 1/2)] + 1 and C > 0 is independent of k satisfying $|k| \ge 4\sqrt{n}$. The proof is complete.

Before proving Theorem 1.1, we give the following remark on the case $0 \le \alpha \le 2$:

Remark 3.4. Let $0 \le \alpha \le 2$ and $1 \le p \le \infty$. In this case, $e^{i\sigma_{\alpha}(D)}$ is bounded from $M_s^{p,q}(\mathbb{R}^n)$ to $M^{p,q}(\mathbb{R}^n)$ only if $s \ge 0$.

We first consider the case p = 2. By Plancherel's theorem,

$$\begin{split} \|e^{i\sigma_{\alpha}(D)}f\|_{M^{2,q}} &= \left(\sum_{k\in\mathbb{Z}^n} \|\psi(D-k)e^{i\sigma_{\alpha}(D)}f\|_{L^2}^q\right)^{1/q} \\ &= \left\{\sum_{k\in\mathbb{Z}^n} \left(\frac{1}{(2\pi)^{n/2}} \|\psi(\cdot-k)e^{i\sigma_{\alpha}}\widehat{f}\|_{L^2}\right)^q\right\}^{1/q} \\ &= \left\{\sum_{k\in\mathbb{Z}^n} \left(\frac{1}{(2\pi)^{n/2}} \|\psi(\cdot-k)\widehat{f}\|_{L^2}\right)^q\right\}^{1/q} = \|f\|_{M^{2,q}}. \end{split}$$

Hence, the boundedness of $e^{i\sigma_{\alpha}(D)}$ from $M_s^{2,q}$ to $M^{2,q}$ implies the embedding $M_s^{2,q} \hookrightarrow M^{2,q}$. Therefore, $e^{i\sigma_{\alpha}(D)}$ is bounded from $M_s^{2,q}$ to $M^{2,q}$ only if $s \geq 0$.

We next consider the case $1 \leq p \leq \infty$ and $p \neq 2$. If m(D) is bounded from $M_s^{p,q}$ to $M^{p,q}$, then m(D) is also bounded from $M_s^{p',q}$ to $M^{p',q}$. This follows from the facts that m(D) is bounded from $M_s^{p,q}$ to $M^{p,q}$ if and only if $\sup_{k \in \mathbb{Z}^n} (1+|k|)^{-s} \|\psi(D-k)m(D)\|_{\mathcal{L}(L^p)} < \infty$ ([9, Lemma 2.2]) and $\|\psi(D-k)m(D)\|_{\mathcal{L}(L^p)} = \|\psi(D-k)m(D)\|_{\mathcal{L}(L^{p'})}$. Then, by interpolation, if $e^{i\sigma_{\alpha}(D)}$ is bounded from $M_s^{p,q}$ to $M^{p,q}$ for some s < 0, then $e^{i\sigma_{\alpha}(D)}$ is also bounded from $M_s^{p,q}$ to $M^{p,q}$ to $M^{p,q}$ only if $s \geq 0$.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let $0 , <math>0 < q \le \infty$, $\alpha > n(1/p - 1)$ and $s \in \mathbb{R}$. We first assume that $s \ge \max\{0, \alpha - 2\}n(1/p - 1/2)$. By Lemmas 3.2 and 3.3,

$$\|\psi(D-k)e^{i\sigma_{\alpha}(D)}f\|_{L^{p}} \leq C(1+|k|)^{\max\{0,\alpha-2\}n(1/p-1/2)}\|\psi(D-k)f\|_{L^{p}}$$
$$\leq C(1+|k|)^{s}\|\psi(D-k)f\|_{L^{p}}$$

for all $k \in \mathbb{Z}^n$ and $f \in \mathcal{S}$. Hence, by Lemma 2.2, we have the boundedness of $e^{i\sigma_{\alpha}(D)}$ from $M_s^{p,q}$ to $M_s^{p,q}$.

We next assume that $e^{i\sigma_{\alpha}(D)}$ is bounded from $M_s^{p,q}$ to $M^{p,q}$. By Lemma 2.2, we may assume $q \geq 1$. We note that $e^{i\sigma_{\alpha}(D)}$ is bounded on $M^{2,q}$ (see Remark 3.4). Hence, it follows from interpolation with the boundedness on $M^{2,q}$ that, if $s < \max\{0, \alpha - 2\}n(1/p - 1/2)$, then $e^{i\sigma_{\alpha}(D)}$ is bounded from $M_{\widetilde{s}}^{\widetilde{p},q}$ to $M^{\widetilde{p},q}$, where $1 < \widetilde{p} < 2$ and $\widetilde{s} < \max\{0, \alpha - 2\}n(1/p - 1/2)$, only if $\widetilde{s} \geq \max\{0, \alpha - 2\}n(1/\widetilde{p} - 1/2)$ (see Remark 3.4 and [9]). Therefore, s must satisfy $s \geq \max\{0, \alpha - 2\}n(1/p - 1/2)$.

We end this note by giving the following remark on the case $1 \le p \le \infty$ and 0 < q < 1:

Remark 3.5. Let $\alpha \geq 0$, $1 \leq p \leq \infty$ and $s \in \mathbb{R}$. Lemma 2.2 says that $e^{i\sigma_{\alpha}(D)}$ is bounded from $M_s^{p,q}(\mathbb{R}^n)$ to $M^{p,q}(\mathbb{R}^n)$ for some $0 < q \leq \infty$ if and only if $e^{i\sigma_{\alpha}(D)}$ is bounded from $M_s^{p,q}(\mathbb{R}^n)$ to $M^{p,q}(\mathbb{R}^n)$ for all $0 < q \leq \infty$. In particular, the boundedness of $e^{i\sigma_{\alpha}(D)}$ from $M_s^{p,q}(\mathbb{R}^n)$ to $M^{p,q}(\mathbb{R}^n)$ with 0 < q < 1 is equivalent to that with $1 \leq q \leq \infty$. On the other

hand, by [1, 9] and Remark 3.4, $e^{i\sigma_{\alpha}(D)}$ is bounded from $M_s^{p,q}(\mathbb{R}^n)$ to $M^{p,q}(\mathbb{R}^n)$ if and only if $s \ge \max\{0, \alpha - 2\}n|1/p - 1/2|$, where $1 \le q \le \infty$. Combining these facts, we see that $e^{i\sigma_{\alpha}(D)}$ is bounded from $M_s^{p,q}(\mathbb{R}^n)$ to $M^{p,q}(\mathbb{R}^n)$ if and only if $s \ge \max\{0, \alpha - 2\}n|1/p - 1/2|$, where 0 < q < 1.

Acknowledgement

The author gratefully acknowledges helpful discussions with Professor Akihiko Miyachi. He also thanks the referee for his/her valuable comments.

References

- [1] Á. Bényi, K. Gröchenig, K. Okoudjou and L.G. Rogers, Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal. 246 (2007), 366-384.
- [2] Á. Bényi and K. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces, Bull London Math. Soc. 41 (2009), 549-558.
- [3] H.G. Feichtinger, Modulation spaces on locally compact abelian groups, in: M. Krishna, R. Radha and S. Thangavelu (Eds.), Wavelets and their Applications, Chennai, India, Allied Publishers, New Delhi, 2003, pp. 99-140, Updated version of a technical report, University of Vienna, 1983.
- [4] H.G. Feichtinger, Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process. 5 (2006), 109-140.
- [5] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
- [6] K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory 34 (1999), 439-457.
- [7] L. Hörmander, Estimates for translation invariant operators in L^p -spaces, Acta Math. 104 (1960), 93-140.
- [8] M. Kobayashi, Modulation spaces $M^{p,q}$ for $0 < p, q \le \infty$, J. Funct. Spaces Appl. 4 (2006), 329-341.
- [9] A. Miyachi, F. Nicola, S. Rivetti, A. Tabacco and N. Tomita, Estimates for unimodular Fourier multipliers on modulation spaces, Proc. Amer. Math. Soc. 137 (2009), 3869-3883.
- [10] J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus-I, J. Funct. Anal. 207 (2004), 399-429.
- [11] B. Wang, L. Zhao and B. Guo, Isometric decomposition operators, function spaces $E_{p,q}^{\lambda}$ and applications to nonlinear equation, J. Funct. Anal. 233 (2006), 1-39.

Naohito Tomita, Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: tomita@math.sci.osaka-u.ac.jp