UNIMODULAR FOURIER MULTIPLIERS
ON MODULATION SPACES MP? FOR 0<p<1
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1. INTRODUCTION

In this note, we consider the boundedness of the Fourier multiplier operator e!I” on
modulation spaces, where o > 0 and €!P1” is defined by

il D] 1 i€ Lil€]* T
P f(w) = gy [ € Fe)ae

In the case o = 2, u(t, z) = e**IP P ug (x) is the formal solution to the Schrodinger equation

i%(t,x) = Azu(t,z) (t>0, z€R"),

u(0,x) = up(x) (x € R™).

Modulation spaces ML? were introduced by Feichtinger [3, 4] (see also Grochenig [5]).
We recall the definition of modulation spaces. Let 0 < p,q < 00, s € R, and let ¢ € S(R"™)
be such that

(1.1) suppy C [—1,1]" and Z Y(E—k)=1 forall £ € R".
kezn

Then the modulation space MY?(R™) consists of all f € S'(R™) such that

1/q

| Fllagzs = (Z (1+ k)] 9(D k)fll%p) <o,
kezn

where (D — k)f = F (- — k) fl. If s = 0, we simply write MP4(R") instead of

MP(R™). We remark that M2? coincides with the Sobolev space W52,

It is known that ¢//PI” is bounded on LP if and only if p = 2 (Hérmander [7]). However,
¢IP is bounded on MPA(R™) forall 1 < p,q < co (see Grochenig-Heil [6], Toft [10], Wang-
Zhao-Guo [11], Bényi-Grochenig-Okoudjou-Rogers [1]). This is one of differences between
LP-spaces and modulation spaces. Bényi-Grochenig-Okoudjou-Rogers ([1]) proved that if
0 < o < 2 then €Pl” is bounded on MP(R™) for all 1 < p,q < oo. Furthermore, in the
case a > 2, Miyachi-Nicola-Rivetti-Tabacco-Tomita [9] showed that, for 1 < p,q < oo and
s € R, ¢'PI* is bounded from MPY(R™) to MP4(R™) if and only if s > (a —2)n|1/p—1/2|
(see [9] for more general results). In particular, this says that if @ > 2 and p # 2 then
¢l is not bounded on modulation spaces MP:4.

The purpose of this note is to consider the case 0 < p < 1, and our main result is the
following:

Theorem 1.1. Let 0 <p <1, 0< g < o0, a > n(l/p—1) and s € R. Then &!PI” is
bounded from MY (R™) to MP4(R™) if and only if s > max{0,a — 2}n(1/p — 1/2).

We remark that Bényi-Okoudjou [2] considered the cases 0 < a < 2,1 < p < oo and
0<g<oo,and a € {1,2}, n/(n+1) <p < oo and 0 < q < oo. In Remark 3.5, we also
treat the case « > 0,1 <p < oo and 0 < ¢ < o0.
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We end this section by explaining the organization of this note. In Section 2, we give
the relation between LP-boundedness and MP9-boundedness. In Section 3, we give the
proof of Theorem 1.1.

2. RELATION BETWEEN LP-BOUNDEDNESS AND MPY-BOUNDEDNESS

Let S(R™) and S’(R™) be the Schwartz spaces of all rapidly decreasing smooth functions
and tempered distributions, respectively. We define the Fourier transform Ff and the
inverse Fourier transform F~1f of f € S(R") by

1

FIO=FO = [ =@ ama T - ghe [ e
For m € 8'(R™), we define the Fourier multiplier operator m(D) by

m(D)f = F mf]=[F 'm]«f forall fcSER".

To avoid the fact that S(R™) is not dense in MPY(R™) if p = oo or ¢ = oo, we use
the following definition of the boundedness of Fourier multiplier operators on modulation
spaces: We say that m(D) is bounded from M2 (R™) to MP:4(R") if there exists a constant
C > 0 such that |[m(D)f| apra < C| fllpgpa for all f € S(R"), and set

Im(D)ll carps anay = sup{lm(D) fllagma | £ € SR, [[Fllypa = 1}

Similarly, we set

|m(D)|lz(zr,Lay = sup{l|m(D) fllra | f € SR™), || fllzr = 1},
and simply write [m(D) ¢z = [m(D) z(ur0) it p = 1.
The notation A =< B stands for C71A4 < B < C'A for some positive constant C indepen-

dent of A and B. For 1 < p < oo, p’ is the conjugate exponent of p (that is, 1/p+1/p' = 1).
Throughout the rest of this note, ¢ € S(R™) is the same as in (1.1).

Lemma 2.1 ([8, Lemma 2.6]). Let 0 < p < 1, and let " be a compact subset of R™. Then
there exists a constant C > 0 such that

1 * gllze <[ fllzrllgllr

for all f, g € LP(R™) with supp FCE+T andsuppg C & + T, where C > 0 is independent
of £, e R™.

The following is on the relation between LP-boundedness and MP9-boundedness which
is a slight modification of [9, Lemma 2.2]:

Lemma 2.2. Let 0 < p,q < o0, s € R and m € S'(R™). Then m(D) is bounded from
MPYR™) to MP(R™) if and only if there exists a constant C > 0 such that

(2.1) [9(D — k)m(D) fllze < C(1+ |E)*[lv(D — k) f e
for all k € Z" and f € S(R™).

Proof. We assume that (2.1) holds for some constant C' > 0. Then, by our assumption,

1/q
[m(D) fllaaea = (Z [4(D — k)m(D)fH%p>

kezn

1/q
<C (Z (L4 |kl (D — k)fH%;:) = C|| fll papa

kezn

for all f € S, and we obtain the boundedness of m(D) from M to MP4.
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We next assume that 0 < p < 1 and m(D) is bounded from M7 to MP4. Let p € S
be such that ¢ = 1 on supp®, suppy C [-2,2]" and |}, smp(§ — k)] > C > 0 for
1 )
all ¢ € B". Note that | fllypas = (Syep (1+ )]0(D — b)f[4,) 7. Since & = o,
supp (- — (k+¥¢)) C (k+¢) + [—1,1]" and supp (- — k) f C k+ [—1,1]" for all k,¢ € Z™,
we have by Lemma 2.1 and the boundedness of m(D) from MY? to MP4

[9(D = B)ym(D)fllzr = [lp(D = k)(m(D)(D — k) f)| v

1/q
< (Z lp(D = £)(m(D)(D — k)f)ll%p)

Lezm
< Cllm(D)Y(W(D = k) )l ara < Clm(D)| arza aroay[9(D = k) f || g

1/q
= ClIm(D)|| £(arz-, prroay ( > U+ k4 L) (D — (k+ 0))p(D — k‘)f%p)
le|<2vn

1/q

< Cllm(D)|| gaazs yavay | Y L[k + P NF O — (k+ O 10(D — k) fIlE0
le|<2vn

< O+ [KD)* (D)l caazs aawa |IF~ Gl e[ (D — k) fl 2o

for all k € Z" and f € S, where we have used (1 + |k + £])* < (1 + [k[)*(1 + |¢])l.

Hence, we obtain (2.1) with 0 < p < 1. For 1 < p < oo, by using Young’s inequality
(f =glle < IfllL1llgllz») instead of Lemma 2.1, we can prove (2.1) in the same way. [

3. PROOF OF THEOREM 1.1
The proof of the following lemma is based on that of [9, Lemma 3.1]:

Lemma 3.1. Let0 < p < 1, N = [n(1/p—1/2)]4+1 and a > n(1/p—1), where [n(1/p—1/2)]
stands for the largest integer < n(1/p—1/2). If m is a CN (R™\ {0} )-function with compact
support satisfying
07m(€)| < Calg|* 1?1 for all 40 and |5] < N,
then F~1m € LP(R™).
Proof. Assume that suppm C {|¢] < 2j0},‘ where jo € Z. Let ¢ € S be such that
suppp C {1/2 < [§] < 2} and 3,5, 0(§/27) = 1 for all £ # 0. Since suppp(-/27) C
{2j_1 <€ < 2j+1}, we see that
Jo ‘ Jo '
m(&) = D @&/2)m(&) = > m;(£/2),
j=—00 j=—o0
where m;(£) = @(£) m(27¢). By using p < 1, we have
Jo Jo
31 IF T ml, < Y0 I F  m) @) = Y 2 F .
j=—00 Jj=—o0
Let r be the conjugate exponent of 2/p, and set N = [n/(pr)] + 1. Then N = [n(1/p —
1/2)] + 1. By Holder’s inequality and Plancherel’s theorem,
1F e = 1L+ 1€D) N (L + €D Fmy]| e

(3.2) <@+ NN+ EDNF tmyllre < € 110%my )| g2
|BI<N
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for all j € Z, where we have used the fact prN > n. Since suppp C {271 < |¢] < 2}, we
have by our assumption

0°mi () =] D Cpp(079) () 271" (0% m)(27¢)
(3.3) B1+52=p

< D Cpal(0%19)(€)| 217 (0, | 27|72y < 27
B1+B2=p

for all j € Z and |8] < N. On the other hand, suppm; C {27! < |¢| < 2} for all j € Z.
Therefore, by (3.1)-(3.3),

Jjo
|F mlh, < >0 2D F |,

j=—00
Jo jO
<C Z 9—in(1/p=1)p Z 18%m,|[p, < C Z gila—n(l/p=1)p _ oo
=m0 BI<N j=—o00
The proof is complete. U

For a > 0 and k € Z", we set

(3'4) O'a(g) = ‘ﬂa and Ta,k(g) = Ua(g + k) - Ua(k) - (VO’a)(k) &

Lemma 3.2. Let 0 <p <1 and a > n(1/p—1). Then there exists a constant C > 0 such
that

(D = k)P £ 1o < Clp(D = k) fl 1o
for all |k| < 4y/n and f € S(R™).
Proof. Let n be a Schwartz function with compact support. Then
9 [1(€)(e" @ — 1)]| < Cyle]*
for all £ # 0 and . Hence, it follows from Lemma 3.1 that
.7-"_1[77 ewa] = ]-"_1[17(6"”"‘ -1+ Flperr.

Take ¢ € S such that supp ¢ is compact and ¢ = 1 on supp. Then, by Lemma 2.1
and the first part of this proof with n = ¢(- — k), for |k| < 4y/n,

(D = k)P f|| o = (D — k)e' "> PIp(D — k) f 1o
(3.5) < CIIF (- = k) r[$(D — k) £l e
< Cl[¢(D = k)l

for all f € §. This completes the proof. O
Lemma 3.3. Let 0 < p < 1. Then there exists a constant C' > 0 such that

19D = k)&= P) f 1o < ClmextOe=2nUe=D (D — k) f|] 10
for all |k| > 4y/n and f € S(R™).



Proof. Throughout this proof, we assume that |k| > 4\/n and f € S. Let ¢ € S be such
that supp ¢ C [-2,2]" and ¢ = 1 on supp®. Then, by Lemma 2.1,

(D = k)e P f|| 1o = [lp(D — k)e ™ Plp(D — k) | 1o
= [(F'p(- — k) €*=]) x (D — k) || v
< CIF (- — k) €| ol (D — k) f| o
= C|F o eI o |lyp(D — k) £ o

(3.6)

0a(+k)]| 1p. Since

Let us estimate || F~![pe!
Flpd 0 )(z) = oW F o™ (x + (Vo) (k)),

where 7, 1, is defined by (3.4), we see that

(3.7) IF et 1 = || F [ 7] o
By Taylor’s formula,
8 rl
3.8 Tak(§) = 2 i (1 — 1) (0°0a) (k + t€) dt
| oize Pt o
=2

If € € [~2,2]", then |k + t&] < |k| for all 0 < ¢ < 1. Since [0704(n)| < Cy|n|*~1, we have
by (3.8)

1
O rarlOl=| 3 Y Conend () [ (10 @ o)k +16) d
18]=2 M1+72=" 0
<Gy > o) |/ |k 4 te[am1BI=hel gy < O k|22
18]=2 71 +72="

for all multi-indices v. Hence, by noting ]k\max{o’a_2} > 1, we have
|07 (p(&) e+ ®)]

vl

=D D Cunnean (@9(6) (0" 7a(€)) - (0™ o (€)) T ®

N=0 p+vi+-+vN=Y

el

<C Y DT [0l (Cu kT2 L (Coy K] 72)
N=0 ptvi+--+vN=7
< Cwyk‘max{&a—ﬂlvl'

Then, setting o (&) = @(€) e+ we have
(39) |8g[(Payk(g/|k|max{07a_2})]| S nyX[_Qlklmax{O,a—Q}72|k|max{0,a—2}]n(g)

for all multi-indices v, where x4 denote the characteristic function of A. Therefore, by

(3.2), (3.6), (3.7) and (3.9),

[9(D — k)e"P) f|| 1o < CI|IF ool e ll(D — k) fl| o
= C|k[mex{0e=2nQ/p=D 7= o (-/ |k O=2H] | o ][p(D — k) £ e

[yI<N

< C|k|mextOe=2n(1/p=1) ( > m[@a,m-/km{@a2}>]|L2) 14(D — k) f| e
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< CO|k|mexl0a=2imA/p=12) (D — k) f]| 10,

where N = [n(1/p —1/2)] + 1 and C > 0 is independent of k satisfying |k| > 4y/n. The
proof is complete. O

Before proving Theorem 1.1, we give the following remark on the case 0 < o < 2:

Remark 3.4. Let 0 < a < 2 and 1 < p < oo. In this case, ei9a(D) is bounded from
MPY(R™) to MP(R™) only if s > 0.
We first consider the case p = 2. By Plancherel’s theorem,

1/q
1€7P) £ g2 = (Z (D — k)e""aw)flliz)

kezn

1/q
1 0o P ) 1
-\ 2 (e weiie) )
1 . q 1/‘]
= {gzj (WW(‘ - k)fl\p) } = || fllar2.a-

Hence, the boundedness of e19e(D) from MS2 9 to M4 implies the embedding MS2 Ty M2,
Therefore, ¢@a(D) is bounded from MS2 4 to M4 only if s > 0.

We next consider the case 1 < p < co and p # 2. If m(D) is bounded from M2 to MP4
then m(D) is also bounded from MY "4 to MP4. This follows from the facts that m(D) is
bounded from M{? to MP9 if and only if supyezn (1+[k])~*(|Y (D —k)m(D)|| z(1ry < oo (]9,
Lemma 2.2]) and [[¢(D —k)m(D)|| z(z») = ||¢(D—k)m(D)||£(Lp/). Then, by interpolation,
if ¢72(P) is bounded from M?'? to MP? for some s < 0, then €*7*(P) is also bounded from
M2 to M24. Therefore, ¢°2(P) is bounded from MP? to MP4 only if s > 0.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let 0 <p<1l,0<g<o0,a>n(l/p—1)and s € R.
We first assume that s > max{0,a — 2}n(1/p —1/2). By Lemmas 3.2 and 3.3,

[9(D = k)P fll o < O(1+ ||y U2 (D — k) £ 10
< CQA+ kD 0D = k) fllze

for all k € Z" and f € S. Hence, by Lemma 2.2, we have the boundedness of e?=(P) from
MPT to MPA,

We next assume that e“=(P) is bounded from MP? to M™4. By Lemma 2.2, we may
assume ¢ > 1. We note that e?=(P) is bounded on M?? (see Remark 3.4). Hence, it follows
from interpolation with the boundedness on M%¢ that, if s < max{0,a — 2}n(1/p —1/2),
then e@*(P) is bounded from ng to MP9, where 1 < p < 2 and § < max{0,a —
2}n(1/p — 1/2). However, in the case 1 < p < 2, ¢7=(P) is bounded from M2 to MP
only if 5 > max{0,a« —2}n(1/p—1/2) (see Remark 3.4 and [9]). Therefore, s must satisfy
s > max{0,a — 2}n(1/p — 1/2). O

We end this note by giving the following remark on the case 1 <p < oo and 0 < ¢ < 1:

Remark 3.5. Let a > 0, 1 < p < oo and s € R. Lemma 2.2 says that ¢oa(D) is bounded

from MPI(R™) to MP4(R") for some 0 < ¢ < oo if and only if ¢”*(P) is bounded from

MEPY(R™) to MP4(R™) for all 0 < ¢ < co. In particular, the boundedness of ¢*7(P) from

MPYR™) to MP4(R™) with 0 < ¢ < 1 is equivalent to that with 1 < g < co. On the other
6



hand, by [1, 9] and Remark 3.4, ¢?*~(P) is bounded from MP?(R™) to MP(R™) if and only
if s > max{0,a — 2}n|1/p — 1/2|, where 1 < ¢ < co. Combining these facts, we see that
¢7a(D) is bounded from MP?(R™) to MP4(R") if and only if s > max{0, a—2}n|1/p—1/2|,
where 0 < g < 1.
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