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1 Introduction
We consider the Cauchy problems for Navier-Stokes equations
Ou—Au+ (u-Viu+Vr=0 for (t,z) € (0,00) x R",

(P)qddivu=0 for (t,z) € (0,00) x R",
u(0, ) = up(x) for =z € R",

in modulation spaces which is defined as follows.

Definition 1.1 (Modulation spaces) Let {pg}rezn C CG°(R™) be a partition of unity sat-
isfying the following. Let ¢ € C§°(R™) satisfy

suppp C{ EER™ | )<V}, S e~k =1 forany¢eR"

kezn

Let ¢y, be defined by

wr(§) == p(§ — k),
Uy = f_lgok]:.

—_ =
[N
N’ N

For1<gq,0 <o00,—0 < s < o0, we define M;”U(R") by

Mz, (R = { £ € SR | [1fllagg o) < o0

%Q(Rn)) 7 fOT 1 S ag < OO,

(S wions

Mg, (R) = { “keZ

sup (k)°[|D |
kezn

i

La(R™) for o= o0,
where (k) := (1 + |k[?)z.

On the study of applications to partial differential equations in modulation spaces,
Wang, Zhao and Guo [21] have considered local solutions for nonlinear Schrédinger equa-
tions and Navier-Stokes equations for initial data ug in M3, (R"). Wang and Hudzik [20]
have considered global solutions for nonlinear Schrédinger and Klein-Gordon equations
with nonlinear term u? for ug in M5 ,(R") when 0 = 1 and s = 0 for Schrodinger equa-
tions, and when 1 < o < np/(np +2s — 1) and s = (n + 2)/n(p + 1) for Klein-Gordon



equations. The local and global solutions for nonlinear heat equations and Navier-Stokes
equations in M ,(R") are obtained by our previous work [8].

In this paper, we extend our results in [8] for Navier-Stokes equations and nonlinear
heat equations. In particular, we treat the derivative index s € R. It is important to
consider the nonlinear partial differential equations in function spaces which have scaling
invariance, such as Lebesgue spaces, Sobolev spaces, Besov spaces, Lizorkin-Triebel spaces.
In fact, if initial data of the problem (P) is in the Lebesgue space L"(R"™) and sufficiently
small, there exists a global solution, which was proved by Kato [10], and the index n of
Lebesgue space L™(R™) is the critical index which is obtained by the scaling argument for
Navier-Stokes equations (P).

On the property of modulation spaces, the scaling argument does not work in general
since we define the partition of unity {¢x }xez» in modulation spaces using the translations
of the smooth function with compact support. The detail is studied in the result by
Sugimoto and Tomita [17], who have studied the dilation property of modulation spaces.
In the result [8] in modulation spaces, the global behavior is controlled by the index ¢
and this point is just same in this paper. Roughly speaking about our theorem, the local
behavior of solutions is controlled by the indices s and o, and the global behavior is
controlled by the index ¢. Here, local behavior is the singularity at ¢ = 0 related to the
smoothing effect of linear heat equations, and global behavior is the decay rate as t — oo.

For Navier-Stokes equations (P), Fujita and Kato [6] considered the Cauchy problems
in Hy*(Q), where Q is a bounded domain in R? in 1964. Kato [10] proved the existence of
solutions in Lebesgue spaces L"(R™) and showed that the solution exists globally in time
when initial data ug € L"(R™) is sufficiently small. In 1985, Giga and Miyakawa [7] con-
sidered the Cauchy problems in LP(2), where 2 is a bounded domain in R". Cannone [4]
and Planchon [14] considered global solutions in the case of n = 3 for small initial data
up in B, 1F9(R?) (3 < ¢ < 6) and L3(R®). Koch and Tataru [11] studied local solutions
for initial data uy € vmo~! and global solutions for small initial data ug € BMO™!.
Miura [13] studied the local solutions, which have time continuity in gmo™!, for initial
data ug € vmo~' N gmo~!. On the Cauchy problems in modulation spaces, Wang, Zhao
and Guo [21] proved the existence of local solutions for initial data uy € M3, (R"). In our
previous work [8], we proved the existence of local solutions for initial data ug € M, (R™)
if 1 <g<oo,1<0 <n/(n—1). Addition to the condition of the existence of local
solutions, we obtain the global solutions if ¢ < n and initial data is sufficiently small.

We study the following integral equation
t
(NS) u(t) = e®ug — / Vel=2P(u @ u)(7)dr,
0
where P := 14 (=A)™'Vdiv and ® denotes tensor product. Let PM;  (R") be defined

by
PM; (R") :={ ue [M; (R")]" | divu=0inS'(R") },

n
wllagymy o= D Mgl eny,s
i=1



where u = (uq, -+, u,). To state our theorems, we introduce the following function spaces
157 (L7(0,T; LY(R™))) which were introduced by Wang, Hudzik [20].

Definition 1.2 For s e R, 1 < o,r,q < o0 and 0 < T < oo, we define the function
spaces 157 (L (0, T; LY(R™))) by

IZ7(L7(0,T; LYR"))) :={ f € 'R xR") | 1 iz (2 0,m500(ny)) < 00 1

1

<Z ((kf)S|\Dkf||Lr(o,T;Lq(Rn))> >0 if o< o0,
“f”la”(LT(O,T;Lq(Rn))) = kezn _

kSUZp <k>s||Dkf||LT(O,T;LQ(]Rn)) if 0=o00

e n

where Oy, is defined by (1.2).
Theorem 1.3 Let n, s, q, o satisfy

n(o—1)

n>2 1<g<o0, 1<0<o0, —1<s.

Then, for any ug € PM; ,(R") there exists T > 0 such that (N.S) has a unique solution
u 1 X, where

Xri={ uwe [C(0,T), M,(R")]" | [fullx, < oo, divu=0},
ullxr = ﬁyp)||ﬂ(t)quﬂ(Rn)+-IMLHZ,
Hqu%l(LQ(O,T;LQ(Rn))) if s =—
Lsl .
sup 2 [lu(?)| ag, rn) if —1<s<0,
Jullz = { <" | |

sup ¢30577) |w(®)]ars &) Z'fSZL_)—120 OTOSSSM,
te(0,7) B o o
0 otherwise,

where v is an arbitrary real number satisfying

1 1 1 n(lc—1)—os
— -
o v o 20m

In addition, let u,v € Xp be each solution for initial data ug, vg, respectively, it holds that
|u—vlx; =0 asvo— ug in [M;, (R")]".

Furthermore, if ¢ < n and initial data ug is sufficiently small, the solution exists globally
m time.

Remark 1.4 If s > n(oc — 1)/o — 1, or initial data ug is sufficiently small, we can take
the existence time T' > 0 depending only on the norm of initial data ug. If not so, we take
T > 0 small for each initial data ug. We prove them in Section 3 together with the proof
of Theorem 1.35.



Remark 1.5 The range of s is in the interval [—1,00) and this lower bound —1 is optimal.
In fact, we can show the ill-posedness for Navier-Stokes equations (NS) in PM; (R™) if
s < =1 and 1 < o < oo, which is proved in the appendiz of this paper in the way of
the result by Bejenaru and Tao [1]. In their way, we show that continuous dependence on
wnitial data fails.

Remark 1.6 In some cases, we can show that initial data in Theorem 1.3 is included in
the results by Koch and Tataru [11], or Miura [13]. If the derivative index s = —1, we
have 0 =1 and

M, (R") Cvmo~ ' Ngmo™" if 1<q< o0. (1.3)
Therefore, if s = —1, initial data uy for local solutions is included in the result by
Miura [13] who proved the existence of local solutions for uy € vmo™* N gmo~t. For
global solutions, we have

n(o—1)

M;,(R") C BMO™" if —1<s<0,s=
’ o

—1land1<qg<n. (1.4)
Therefore, if —1 < s < 0, nitial data ug for global solutions is included in the result
by Koch, Tataru [11] who proved the existence of global solutions for ug € BMO™'. The
proofs of (1.3) and (1.4) are given in [9]. However, we don’t know such relations in the
case s =n(oc —1)/o —1 > —1 for local solutions, and the case s = n(c —1)/c —1 >0
for global solutions.

Remark 1.7 The global solutions in Theorem 1.3 are obtained by the smoothing effect of
the propagator e'®. In fact, the solution u(t) in Theorem 1.3 is small and in the Lebesque
space L™(R™) if 0 < t < 1 and initial data ug is sufficiently small. Therefore, the solution
u(t) exists globally in time by the result of Kato [10], who proved the existence of global
solutions for small initial data ug € L™(R™).

In this paper, we show some properties of modulation spaces and the propagator e® in
the modulation spaces in Section 2. We prove the theorems for Navier-Stokes equations
in Section 3 and the claim of Remark 1.5 in Section 4.

2 Preliminaries

In this section, we consider the properties of modulation spaces and the function spaces
I57(L7(0,T; LI(R™))), and the estimates for the propagator of €' in those function spaces.
For simplicity, we put [*7L5 L9 := I57(L7(0, T; LYR"))) and || - [z, == || - [[ag, &) in
the following sections. The constant C' denotes an absolute positive constant which can
change in each line.

2.1 Modulation spaces and 1*° L7, L4

In this section, we introduce some properties of modulation spaces and [*? L7, L9.

Proposition 2.1 [5,18,20] Let1 < q,q1,q2,0,01,02 < 00. Then we have the following
continuous embeddings.



(i) If1/g+1/q¢ =1, then

M(?,min{q,q’}(]Rn) - Lq(Rn) - Rn)

; (
g,max{q,q'}

(i) If @1 < @, 01 < 09, $1 > S, then

Mg, (R™) < M2, (R™).

1,01 2,02

(111) .[fO'l > 09, 81> 89, 81 — 89 > n(l/O'g — 1/0'1), then
MPL(R™) — M (R™).

q,01 q,02

Remark 2.2 Similar embeddings to (ii) and (iii) in Proposition 2.1 also hold. That is,
let1<r<oo, T >0 andsj,q;,0; (j =1,2) be same as Proposition 2.1, we have

S1,01 JT T4q1 §2,02 TT TQq2
PV L0 s [0 L [0

if @ < qo,01 < 09,81 > Sg 0T 01 > 09,81 > S9,81 — So > n(1/oy — 1/01). In addition, the
embedding in (iii) of Proposition 2.1 does not hold if sy — so = n(1/oy — 1/0y) (see [20]).

Proposition 2.3 Let s > 0,1 < ¢q,r,0,q;,7j,0; <00 (j =1,2,3,4),0 < T < 0o satisfy
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 492 g3 4 ror Ty T3 Ty g 01 02 03 04

There exists C > 0 such that for any f € IS LFL® N I%B3LELB g € (920202 N
(274 LA L% we have

I1fg ornLe < Cllf o1l Ln ||g||l0’”2L;2L’12 + C||f||10’"3L’"T3L43||9 o444 (2.1)
Remark 2.4 In modulation spaces, it is known that
1£glls, < Cllfllass . gllus, . +Cllfllu, . Ngllass . (2.2)

These q,q;,0,0; (j = 1,2,3,4) correspond to those of Proposition 2.3, which is proved in
the similar way to the proof of (2.2) in [8].

Lemma 2.5 Let 1 < 0,01,09 <00, 0 <a<n/o,0<<n(l+1/c—1/0y) — «a satisfy
1/o — (a+ B)/n = 1/o1 + 1/oe — 1, and 0 > oy, there exists C > 0 such that for any
f e L (R™) and g € L7*(R™), we have

llzl= (- 177)  9) < Ollf e @9l oz,

Lo(Rm) —

Remark 2.6 Similar lemma to Lemma 2.5 can be verified in sequence spaces instead of
Lebesgue spaces. That is, for any {ag}rezn € 17(Z™) and {bg }rezn € 172(Z™), we have

H{<’“>_a 2 <k—af_$>ﬂb’”}

< Cl{atreznllion @y {0 keznllirs zny»  (2:3)
la(Zn)




where o,01,09,a, 3 are same as Lemma 2.5. We can also obtain the same estimate on
the condition of o > o9 instead of o > oy.

The proof of Lemma 2.5 is given in [9]. The following proposition is necessary for the
critical case of Theorem 1.3, which is the case of s =n(c —1)/0 — 1.

Proposition 2.7 Let1 < q,q1,¢q2, < 00,1 < 0,071,090 <00,0<T <o0and0 < s<njo.

If
1 1
—=—+—, 020,09
a q
1 1 1
L Y (2.4)
g n 01 09

Then, there exists C > 0 such that, for any uw € M? , (R") and v € M}

41,01 q2,02

(R™), we have

[Vl g (2.5)

||uv||Ms < CHUHMS 92,09

q9,0 — q1,01

Proof. To prove (2.5), we have

laoley, ey < 3 (09 5 NTnullzngeny S 10k -tllonn )

Kezn kyezn ko | <3/
<C ( > F) IOk ull Lo @ny D |\Dk—k1—k20||L‘I2(R”))
kezn Neezn ks | <o/

+C Y (X 1Buullinen ¥ (k= = k) |Detitllire )

kEZ™ NkyeZn ke |<v/m
Here, we used (k)* < C({k1)* + (k — k1 — k2)®) if |ko| < 3y/n. Therefore, we obtain the

desired estimate applying (2.3). In fact, the first term in the right hand side is estimated
by (2.3) with

a = 0, ﬂ =S, ay = <k>s Z HDk—kzan"?(R")? bk = <k>SHDkUHLq1(Rn).
|k2|<v/n

The second term follows similarly. O

2.2 The properties for e®

In this section, we consider the properties of e® in modulation spaces.
Proposition 2.8 Let 1 < q,r,o0,v <o00,5,5 € R.

(i) If ¢ > r, there exists a constant C' > 0 such that

n

_nel_1
1" fllazz, < O+ )27 fl[agg, - (2.6)



(ii) If o < v, there exists a constant C' > 0 such that

(iii) If s < 8, there exists constant C' > 0 such that

1€ fllag, < C(L+ )| fllasg,,- (2.8)

Proof. (i) and (ii) was proved in [8]. Therefore, we prove (iii) and only treat the case
s =0 and s < 0 for simplicity. On the low frequency part of the norm, that is, let k satisfy
|k| < 3y/n, we have from L(R") boundedness of 4

> Bk fl7. < C 30 (R ITAIT < Cl Al -
Ik|<3vn k|<3vn

On the high frequency part of the norm, we use Lemma 2.5 in [8];
10k fllze < Ce |0 flle if |k| > 3v/n. (2.9)

So that, we have

—Ci S —ﬂ S
15" llze < ORI (k) |06 fl o < CFF (k) |108S 2o
Taking the sequence norm [?(Z™), we obtain the desired estimate. |

Proposition 2.9 Let 1 <g¢g<oo,1<v<o<oo,seERanda>0. Ifa>0o0rv<o,
then we have

lim sup ¢2+2G7) ||etAf||M o =0 for any f € My, (R").
T\Ote(0,1) ’

Proof. This proposition is proved in the similar way to Proposition 2.8 in [§]. |

Proposition 2.10 Let 1 <g¢g<o0, 1 <o <0 and 0 < a <1, then we have

(@) [l ] SCOA+TH)|fllyze  for any [ € M2 (R").

lO"LO‘L'I

.. . tA o -« n
() Jim 21,2, =0 for any f € M2 (R".

lOvoL:% La

Remark 2.11 The way of the proof of Proposition 2.10 is using (2.9) and the argument
of Proposition 2.8 in [8]. The details are given in [9)].

Proposition 2.12 Let s e R, 1 <r,q,0 < o0 and 0 < T < 0.

(i) There exists C > 0 such that for any f € [%°LLL?, we have

/Ot e(t_T)Af(T)dT

sup
te(0,T)

<C|f

1oLk La-

a0



(ii) There exists C > 0 such that for any f € 1*"#°LLLY, we have

<CA+T7)|f

150 L3 L4

H/ot e(t_T)Af(T)dT

=l

Proof. We show (i). Since [J;, and e’ are commutative and e’ is a bounded operator
in Lebesgue spaces, we have

t
HDk/ e(t_T)Af(T)dT
0

T
< | I8 F Dl zagendr

La(R®
Summing over k € Z" after multiplying (k)® in both sides, we obtain the desired estimate.

We show (ii) in the case s = 0 for simplicity. We treat the low and high frequency
separately. First, we consider the estimate of low frequency. In this case, we assume
|k| < 3y/n, and applying the boundedness of the propagator €', we have

T
< CT* [ 10f () ey

< CT+ (k) |0 f |l 1 1

t
HDk/ 6(t_T)Af(7')d7'
0

Ly.La

(2.10)

We treat the high frequency next. In this case, we assume |k| > 34/n and have from (2.9)

t
HDk/ €(t_T)Af(7')d7'
0

t
< | [ 18t ()l ey d7
L;L‘I 0 L
Applying Hausdorff-Young’s inequality, we have

el(d [wi e (2.11)

LyLa

Taking the sequence norm [?(Z"), we obtain the estimate (ii) by (2.10) and (2.11). a

2.8 The boundedness of the operator P
We show a kind of boundedness of P =1+ (—=A)~'V div in modulation spaces.

Lemma 2.13 Let 1 < ¢ < o0, f € S'(R™).
(i) If |k| < 3y/n, we have

OV P fllLa@ny < OOk flla@ny i Ok f ||l La@ny < oo

(ii) If |k| > 3y/n, we have

|IOkP fllzaeny < CllOkfllaeny i |Orfl|a@ny < 00



Proof. We prove (i) first. We use the homogeneous Besov space Bg’l(R”), let {¢;};ez be

Littlewood Paley’s decomposition. We have from the embedding Bgyl(R") — LI(R™) and
the boundedness of P in the homogeneous Besov spaces

IOVPflla@ny <C > 2|y % (Ouf) || o@ny < COS | Logn)-

—oo<j<n

This is the desired estimate. We can also prove (ii) since the operator P is the bounded
operator in the homogeneous Besov spaces and k is away from the origin. |

From Lemma 2.13, we obtain the following proposition.

Proposition 2.14 Let s e R, 1 <r,q,0 < oo and T > 0. Then, there exists C > 0 such
that we have

IVPfllary, < Cllfllagsr if f € MR

q,0 —
||VPf ls,nLTTL(] S CHf ls+1,0LTTL(1 Zf f S lS-I—l,O'LT’TLq.

3 Proof of Theorem 1.3

We consider the following integral equation;
W (u)(t) = eug — /Ot Vel 2 P(u @ u)dr,
and for simplicity, we define || - ||y by
ully == sup [Ju(t)]a;,-
te(0,T)

We treat the case s = —1 in Step 1, the case —1 < s < 0 in Step 2, the case s =
n(c—1)/c—1>0o0r 0<s<{n(c—1)—n}/oin Step 3, and the last case in Step 4.
The claim of Remark 1.4 in the case of initial data being sufficiently small is shown in
Step 1, and the case of s > —1 and s > n(c — 1)/0 — 1 can be proved by the following
estimate in each case. There exists 7' > 0 «, f > 0 such that

1(w)lx, < Cllullag, + CT +T7)|lull%,,
which we show in the following steps.

Step 1. By the condition of Theorem 1.3, we have ¢ = 1 if s = —1. We show the
following estimates.

1T @)lly < Clluolly-2 + Cllullz, (3.1)
W@z < leuollz + C(1+T%)]ull3. (3.2)



On the norm | - ||y, the first term in the right hand side is obtained by (2.7). We have
from Proposition 2.14, Proposition 2.12, Proposition 2.3 and Remark 2.2

<C

-1
M%1

t t
/ Vel=2P(u @ u)dr / e (u @ u)dr
0 0

0
M,

< C“U ® UHIO,IL%HLQ
< O“UHZZOJLQTL?‘I
< Cllul3-

On the norm || - ||z, we apply Proposition 2.14, Proposition 2.12 and Remark 2.2

<C

t
/ Ve DAP(u ® u)dr
0 z

t
/ e(t—T)A(u ® U)dT
0

ILrL2 Le
<CO+T)|u®ullpay o

< O(L+T%)][ull3.
Therefore, we obtain the desired estimate. ; From Proposition 2.10, the norm ||e®ug|z is
small for sufficiently small 7" > 0, which depend on each ug and isn’t taken depending only
on the norm of ug. And we can apply Banach’s fixed point theorem in a certain complete
metric space to obtain the desired solution. In fact, the way of the proof is similar to that
of [8]. That is, we define the complete metric space for small £ > 0;

{we[eqmMi@)]" | lully < Clluolly: +2, llulz <2},
d(u,v) = Jlu—vlly + |lu— vz,
and can apply Banach’s fixed point theorem.

Step 2. By the condition of Theorem 1.3, we have 0 < 2 if s < 0, n > 2 and s >
n(oc —1)/o — 1. We show the following estimate. There exists oy, > 0 and Sy, 5> > 0
such that we have

1 (u)lly < Clluollag, +C(T* +T7)|ullZ, (3.3)
1 (w)llz < lleCuollz + C(T* + T7)|ull7.

We define a real number v satisfying 1/v = 2/6 — 1. On the norm || - ||y, we apply
Proposition 2.14, (2.7), (2.8), (2.2) and Proposition 2.1 and have

t
/ Vel ™A P(u @ u)dr
0

t
—7)A
<O A @ w)| e
q,0
t

<O (147" F 30 lu@ulag, dr

0
t
< C’Hu||22/ (14t —7) 5 367D) rar
0

14s n/ 1

< Cllulfy (T4 + 7% 3G,

10



Here, it is necessary that the exponent of 7" being nonnegative, and it is satisfied by
s >mn(oc—1)/o —1. On the norm || - ||z, we apply Proposition 2.14, (2.7), (2.8), (2.2) and
Proposition 2.1, and have

sl
<tz

4

¢
/ Vel=2P(u @ u)dr
0

t
/ e (u @ u)dr
0 M,

s t 1_n¢1_ 1
< Ct%/ (1+ (t—ﬂ‘ﬂ ) @ wllug, dr
0 "

Mg

,o

It is necessary that the exponent of ¢ being nonnegative, and it is satisfied by s > n(o —
1)/o — 1. Therefore, we can apply Banach’s fixed point theorem and obtain the desired
solution.

Step 3. We show the following estimate. There exists aq,as > 0 and 1,3 > 0 such
that we have

1 @)lly < Clluollary, +C(T* +T7)]ull?,
1)z < lle®uollz + C(T* + T7)|ul.

We define v satisfying

1 s 2
———==—--1 (3.5)
v on v

By the conditions for s, 0, v in the theorem, we have o < 7 < co. On the norm || - ||y, we

apply Proposition 2.14, (2.7) and (2.8) and have

t

(t_T)AP(u ® u)dr

Mg, 0

From the relationship (3.5), we apply (2.5) and Proposition 2.1, and have

/ Vel=MAP(y @ u) d7'

< c/ (t—7) 386D Juldyy dr

1 _n/1 1

= C||u||Z/ (1+ (= 7)" 5 2GD) 7Gx
< CHUHZ (T1 n(———) + T2 %(;—%)—n(%—% ) .

Here, it is necessary that the exponent of 7" being nonnegative, and it is satisfied by
s >n(oc—1)/o —1. On the norm || - ||z, we also apply Proposition 2.14, (2.7), (2.8), (2.5)
and Proposition 2.1 similarly and have

t21/<7

‘/ Vel 2 P(u @ u)dr

<oritod |
- 0

< C”’LLH?Zt%(%_%) <t1—n(%_%) + t%—%(%—%)_n(%_;)> ‘

t

It is necessary that the exponent of ¢ being nonnegative, and it is satisfied by s > n(o —
1)/o — 1. Therefore, we can apply Banach’s fixed point theorem.

11



Step 4. The first term of ¥(u) is estimated by (2.7);
le" 2 uolly < Clluollagg,,-

Let v satisfy

N s
o< <00, =
n o
d Proposition 2.1, we have

1
1%
) an

Applying Proposition 2.14, (2.7), (2.8), (2.5

t
<C [ (14 -5 ju @ ul gy, dr
Mg, 0 o

¢
/ Velt=2P(u @ u)dr
0

1 n,(l 1

< Cllulfy (T+71273G9).

Here, the integrability is guaranteed by s > n(oc — 1)/o — 1. And the condition v < oo is
satisfied by s > {n(c —1) —n}/o. The existence time 7" > 0 can be taken depending only
on the norm of ug since the exponent of 1" is positive.

3.1 lll-posedness for (NS)

We show the claim of Remark 1.5 that states ill-posedness for (NS) in PM; (R")
if s < —1. We show that continuous dependence on initial data fails by the way of
Bejenaru and Tao [1]. It is sufficient by their way to show that for s < —1, the map from

(Bp, | - ||M25’1> to (Bs, [ - ”C([O,I],M;(,)> defined by

t
f— / Velt=MAp ((eTAf) ® (eTAf)> dr
0
is discontinuous, where

Bp = {f € PMy{(R") || fll2 <€},
Bs = {w e [C([0,1], My (R™)]" | ull o,y ey + Nallgi 22 < Ce },

and € > 0 is a small constant. We remark that we can take the existence time 7" > 0 being
greater than 1 by Remark 1.4 if the initial data is sufficiently small. To show discontinuous,
we show there exists a bounded sequence {fy}%_; in PM;(R") such that we have

[ fnllag, — 0 as N — oo, (3.6)

t
sup / Velt=DAP(e™ ) @ (€72 fu)dT > ¢ for any large N, (3.7)
0

te(0,1)

S
2,0
where ¢ is a positive constant.

For j = 1,2, we define j-th component of F[fy] by

N(=177' 1 {x(§ = Nep) + x(—=€ — Ney) + x(§ — Nea) + x(—€ — Nea)}, (3.8)
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where e; := (1,0,---0) and es := (0,1,0,---0) are unit vectors on R", £ = (&§1,&2, -+, &)
and Y is a characteristic function whose support is the following set;

{eR"|1<¢ <2forj=1,2,---,n}.

For j = 3,--- ,n, we define j-th component by 0. We remark that fy satisfies div fy = 0.
Then, we have
I fnllag, < CoN'H (3.9)

and obtain (3.6). Though we must consider eCy ' fy € Bp, we omit the absolute constant
eCyt and consider fy for simplicity.

To prove (3.7), we take t = 1/N? and will show

1
/N2 e(x7 A py ((eTAfN) ® (eTAfN)) dr > c. (3.10)
0 M,
We have from Plancherel’s theorem
N (FE1A py ((eTAfN) ® (eTAfN)> dr
1
/ N2 FlZ_T)APV ((eTAfN) ® (eTAfN)) dr 2 (3‘11)
L2(R)
W

>

/0 §006_(—7 —7)|¢1? ( |€|2 Z€l> ij [ TAfN ( TAfjl\f):| dr

L2(B)

where f]{, denotes the j-th component of fy, the last inequality is obtained by considering
the first component, and E satisfies E C supppo U {§ € R*|1/100 < §; < 1for j =
1,2,--- ,n} and

( E Z§l> >0 foréekE. (3.12)

And we also have for £ € E and 7 € (0, N72)

F (€2 B f3)] = N2 (=177 e X (€ = Nea) J + {&7 e ™ x (=€ = New)}
+ N2(—1Y g e Py (—¢ — Ney) b« {67 e x (€ — New) }
+ N?(=1)'~ {5_1 —Tlel? X(€ — N€2} {511€_T|§|2 (=€ - N€2)}
1)

+ N2 (—1) g5 e x(—€ — Nea) |+ {&7 e x (€ — New) }

For j =1, we have

|L| + || < CN?’N~? =C, (3.13)

|11, + IVy| > e¢N*, (3.14)
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For 7 = 2, we have

|Iy + I, + 11, + IVa| < CN*N~' = CN, (3.15)

Therefore, we have from (3.11), (3.12), (3.13), (3.14) and (3.15)

| V(- py (2 fx) @ (78 fn)) dr
0

S
M3,

¢ |0 (1 - é% Z@) {ant—ceny [™ar

=1

>

L2(E)
>c

for sufficiently large N € N. Therefore, we obtain (3.7).
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