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Abstract

In this paper we consider mixed norm estimates of linear Schrédinger
waves. In [13] Shao obtained some estimates under spherical symmetry
condition. We generalize them and show that the symmetry condition can

be substituted by angular regularity.
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1 Introduction
The free Schrédinger wave is the solution to the Cauchy problem
iug —Au =0 in R 4(0) = in R",n>2. (1.1)

It can be written as

1

u(t, J}) _ (e_itAQO)(JI) _ (27_[_)77, /n ei(x~€+t|€|2)§5(§) dg.

—

Here F(-) = (-) is the Fourier transform defined by

FEO =3 = [ el ds
and its inverse is given by

F(g)(x) = (2m) / e p(€) d.

n

We are concerned with mixed norm estimates of free Schrodinger waves,
especially with ones in Sobolev type spaces, which are defined in spherical co-

ordinates as follows:
H3PH®' = the closure of C§° w.r.t. the norm

(1.2)
[l s v proe = NIVI°DG fllpzre s |s| < n/p,a € R,

where |V| = (-A)2, D, = VI—A,, A, is the Laplace-Beltrami operator

defined on the unit sphere and

o 2 ?
”f”Lng:(/o </s 3 |f(ra)|€da> r"—ldr> , 1<pfl<oo.

Here we denoted LP(r"~'dr) by LP. We also use the time-space normed spaces,

1

q
||U||L‘5H,€*”H?*e = </R ||U("t)||§lﬁ’PH§"e dt) ) 1 < q < o0.

If p=2and £ = 2, then we will use H3H for H3?H?. We remark here that
if « =0 and p = £, then the mixed norm is just Schtrichartz one (see Remark
1 and 2 for definition).

If ¢ = 2, then one can expand any v € Lng’SH > by the spherical harmonics
of orthonomal basis {Y}'}, k > 0,1 < < d(k) (d(k) is the dimension of spherical



harmonics of order k) such that there exists a unique sequence of measurable
functions al (t,7) € L{LP satisfying that
[V|*v(t,r, o) = Z ak(t,r)Y (o) in LILEH®
k>0,1<1<d(k)

and
1
3

ol gy gy = || | S0+ Rk +n — 2))]ak
k.l
’ LIL?
Here, we used the identity —A, Y} = k(k +n — 2)Y}\.

Now let us introduce our main theorem.

Theorem 1.1. Let 1/2 < a < n/2 and n > 2. Suppose that q and « are

numbers such that

(2n+6a—2)/(n—1+a) < q<6,
a=Ba+2)/q— (a+3)/2.

Then for any @ € L? the solution u of (1.1) satisfies

el g < lellze, (13)

where s = "TH

(SN

Theorem 1.1 is a generalization of Shao’s results [13] for spherically sym-
metric data. In particular, if we take o = 1/2, then we can recover his result
for ¢ > ‘21%_'—%. If @« > (3¢ —4)/(6 — q) for ¢ # 6, then we can take a posi-
tive &. Hence we get a slight spatial and angular regularity gain for a > 0,
2n+6a—2)/(n—14a) <qg< (2n+4)/n and n > 6. For another angular
smoothing effects of Strichartz estimate see [10, 19], in which two dimensional

endpoint case was treated.

Remark 1. Applying the Christ-Kiselev lemma (see [4, 19, 1]) and Strichartz
estimate (see [7] for instance), it is possible to consider an inhomogeneous esti-

mate. Let g, @, s be as above. Then we have

t
||/O e~COREW) A | 1y S 1 F g (1.4)

for any pairs (q,7) such that 2/g+n/f =n/2,2 < ¢ < oo and (q,7) # (2,00) if

n = 2. We call such pair admissible one.



Remark 2. We now apply the estimates (1.3) and (1.4) to the mass critical

Schrédinger equations;
iug — Au = V(u)u,u(0) = ¢ € L,V (u) = :|:|u|% or = |z|7% x |ul

The existence of local or small data or spherical symmetric global solutions
is well-known (see [8, 11, 20]). The Strichartz estimate is main tool for that
problem. Actually one can find a solution w in St = Sup g 7).admissible L%,T] LT
Then the estimate (1.4) and standard nonlinear estimate for critical nonlinearity
give us that the solution u is in Lqust. Hence if n > 6, @ > 0 and (2n +
6a—2)/(n—1+a) < q<(2n+4)/n, then the solution u obtain a spatial and
angular regularity.

Theorem 1.1 follows directly from dyadic decomposition and interpolation

between the estimates of linear operator T defined as

Tf(t.z) = xr(z) / (@ EHIER) () dg

where R > 0 is dyadic number and xg is characteristic function on the annulus
{R < |z| < 2R}.

Proposition 1.2. Let f be supported in the annulus {1 < [¢] < 2}. Then we
have
(1) for f € L? and 1/2 < a <n/2

||TRf||L§L3H§‘—1/2 S min(Ra’R%)”f”LZ' (15)
(2) for f€LP for l<p<2andq=3p
| TrflLorgre < min(R™DEZZVD) R F|| iy, (1.6)

The estimates (1.5) and (1.6) can be used to get local or weighted global
smoothing estimates which were obtained by many authors [3, 6, 5, 12, 14, 17,
18, 21]. It is also possible to consider the end point cases (¢,p) = (4,4) and
(00,1). But we will append them in the last section since they are not essential

in proving the main theorem (see Proposition 3.1 below).

2 Proof of Proposition 1.2

2.1 Case R 2 1; Proof of (1)

We first expand f as f(§) = f(po) = > y>01<i<ak) al (p)Y; (o). Then for the
proof of (1.5) we may assume that f € L2HA/*"® and al are supported in



{1 < p < 2} for all k,I. Using the Fourier transform of spherical harmonic

functions (see [16])

n—2+2k

Yl (po) = cnsp™ F T(p)VE(=0)v = (k) = =,

we have
n—2 . n
Taf(6:r7) = S npxntr)r ™ [ oot 1o dovi(-o.

It should be noticed that |c,, x| < C for all k and C' does not depend on k. By

the change of variables Tr f is converted into
1 _n_2 ; n_ 1
5 S nixnr)r T [ el (Dot R dpYi(-o).
k,l

Hence taking L? L2 norm, the Plancherel’s theorem and the reverse change vari-

ables give

2

ITrf(Cor)lEzre S ZXR ("_2)/Iai(p)lzp"_‘q’l«fu(f’p)l%p - (21

To estimate L2 norm of RHS we are going to use some asymptotic behavior
of Bessel function. For this purpose we choose smooth cut-off functions 1, 12
and 93 so that ¥ (r) =1 on {|r| < 3}, ¥1(r) =0 on {|r| > 1}, ¥o(r) =1 on
{1/2 < |r| < 1}, ¢2(r) = 0 on {|r| < 1/4 or |r| > 2}, ¥»3 = 0 on {|s] < 2},
3 = 1 on {|s| > 3}, and ¢ + 2 + 13 = 1. Now we introduce four types of

asymptotic behavior of Bessel function as follows: for v > 1

|J.(r)] < Cexp(—Cv), if 0<r< 5 (2.2)
1, (1| < Cv=3(14+v 5r—p|)"F for all g <r <2, (2.3)
|J,(r)| < Cr~% forall r>2v, (2.4)
o es(2) =173 el b (D) + 0, (D), (25)

3
where |®,(r)] < C%-, [b1| < C and the constant C' is independent of v. For the
proof of (2.2), one can use the Poisson representation formula (2.7) and Stirling’s
formula below. Invoking the Schléfli’s integral representation (see p.176 in [22])

1 ™ . . . o0 )
ar) = [t g S [T e g

™ ™



the two asymptotic behaviors (2.3) and (2.4) follow from the easy estimate

. oo
Sln(Vﬂ-) / e—l/‘r—’r’sinhr drl < c
™ 0 T v+r

and the method of stationary phase for % foﬂ ei(rsin0—19) 49 when v/2<r <2
or r > 2v. For instance see the page 1478 of [19] and Lemma 3 of [2]. For (2.5),
see 5.2 on the page 356 of [15].

Now taking L2 norm on both sides of (2.1) and then changing variables

r— rp, we get
1Tafzr20s £ 3 [ k(o) P> o
Kl
where
()= [ xnr)rla () ar
_ / Xro (PP o (P) 1 () + harfv) + s(rf0)) dr = Iy + o + s,

For the Bessel function estimates we may assume that v > 1. By (2.2),

min(4R,v/2)
I ,S/ e “rdr
R

min(4R,v/2)
< Re_CR/ e~ CY2 gy
R

< Re= /2 < R2%¢=CV/2 because a > 1/2.

By (2.3),
min(4R,2v)
IEBS / v 2B 0| — |7 2 gy
max(R,v/2)
2v
< RQozyl/Q—Qa/ |,,, _ V|_1/2 dr
~ v/2
< RQozyl—Qoz.
By (2.4),

4R
I3 < / ldr < Ry 22,
max(R,2v)

Substituting these estimates into (%), we get the desired estimate.



2.2 Case R 2 1;Proofof(2)

Similarly to the case (1), we expand f as f(po) =3, al (p)Y} (o) and assume
that f € L%HslH/q and afc are supported in {1 < p < 2}. Then we need only
to show that

— — 42 n
Ixrr= 2)/2/6”” p¥aj(p)J(rp) dp| Ls L
< R_(n—l)(1/2—1/Q)V1+1/q||ai:||LP

Using cut-off functions and asymptotic behaviors of Bessel functions, LHS is

bounded by
™02 [ €0 8l (o)1 ) (o) dpl s
+ |[xpr— (22 / ¢ p2 al(p) S, (rp)a(rp/v) dpl| o s
+ ||XRT_("_2)/2/6“’320%@2(P)(TP)_1/2(5+6"’3 +b_e ") dplLapa
+ |[xpr— "2/ / 7 p2al(p) (rp) T2 (bae + b_e ™) (1 — 3 (rp/v)) dpl L
+ IIXRr‘("‘Q)/Q/eitpzp%ai(p)‘lfu(rp)dl?,(f’p/V) dpllsps
= + Iy + I3+ I, + IIs.

Taking L{ norm first and then L? norm, we get the bounds

I < Jlag(p) lxrer ™" 2720, (r)os (/) | al
< e OVR A2/ min(4R, v/2) — R)¥||al ¢

< yie—Cvp—(n—1)(1/2-1/q) ”“”Lq’v
P
for some 0 < § < 4/q

I, s Ha’gc(p)”XRpT_(n_Q)/QJV(r)¢2(r/y)”Lg”Lg’

Q=

min(4R,2v)
< llaf || o R0 A/2= 103 / Y /38012 ) =ba/4 g
g max(R,v/2)

< R—(n—l)(l/z—l/q)y%ﬁ||ag€||Lq/7
:



I 5 llak (o) lIxror =" D21 = w3 (r/0)) | pall o

min(4R,2v) %
<l R-(-00/2-1/0 ( [ m)

< R-(=0A2=Y ) 56k ||

’
a’
Ly

Is s ||a§<(p)||XRpT—"/2¢3(7’/V)||Lz||Lg'

4R
< Jlak |0 R0/ D,3/2 g1/ / Lar
’ max(R,2v)

1
< R=(n=D(1/2-1/a), 145 ||a§c||LZ/'

1
q

It should be noted that ¢’ = (3p’) <pfor 1 <p < 2.
For II3 one can use 2-d oscillatory integral estimate of [15] or Proposition
3.6 of [13] to get

Iy S R-(-20/2710) / 17 p" T aly(p) (b e +b_e ") dp| s
< R~(=2072=1a) 1kl 0 .
~ P

This completes the proof of the case R 2 1 of (2).

2.3 Case R« 1

Now we consider the case when R < 1. More generally we will get for all
2<g<oo,a>0

ITrfllescomy S R f] Lo (2.6)
Using spherical harmonic expansion as above, we have only to show that
—(n— itp2 o g n
202 [ 60 o)1, ) gy S R
In fact, by Hausdorff-Young’s inequality we have
LHS < |xar™ "2 2|lai (0) 1 (rp) | 1 || s

< lak (@) xrpr= =220, () 2l -



And since v > (n — 2)/2, the inner integral is bounded by

4R g
R

(2R)”
I'(v+1/2)

< Rrlag-(n=2)/2+v <i1>
v+ 5

< R~(n=2)/24n/q

< RYe7,
Here we used the Poisson representation formula [15, 22]

Jy(’f’) — (%)V /1 eirs(l _ SQ)V—%dS (27)

Fv+Hr(3) /-

and the Stirling’s formula [9] ['(t) ~ v2xt!~2e~" for large t.

2.4 Proof of Theorem 1.1

Interpolating (1.5) and (1.6) with (g,p) = (6,2), we get for 2 < ¢ <6

nolia  Satn—l

TrfllLscaps S min(R™ T R9)||f] e,

where & = 3(a +2/3)/q — (o 4+ 3)/2. Thus « satisfies the hypothesis and for

2n+6a—2
q > n—1+a«

If @ is supported in {1 < |¢] < 2}, then

the dyadic sum > g 4 oaic | Trf || LaLa s is bounded by || f| =

||U||L§L2Hg S Z ||TR(@||L;1L:£H5 S llellze-
R:dyadic

If supp(p) C {N < [{] < 2N}, by rescaling we get

|ullparams S N~ 2/atn/2) )| 5.

Now we decompose the solution u dyadically in frequency space. For this we
use frequency projection operator Py whose symbol is supported in {N < |¢| <
2N} and then Pyu = e "2 Pyy. Thus by summing w.r.t. dyadic frequency we

get the desired estimate.



3 Endpoint cases

Proposition 3.1. Let f be supported in the annulus {1 < |[¢] < 2}. Then we
have
(1) for feL* and 0 < e < 1

TSl parare S min(R-C=D/4 RT)| ] (3.1)

1.
L2H]
(2) for f e L!

Tl ez ez S min(R™D2 1) fll s, (3-2)

where a > 1/6.

Proof. Write f as 3, alyl. Then in view of Section 2.3 we have only to

consider the case R 2 1 and to show that

—(n— itp? o —(n— T
=272 / ¢ 8 al(p) Ty (rp) dpll s S BV b .

Using cut-off functions and asymptotic behaviors of Bessel functions, LHS
is bounded by

Ixpr— (=272 / " p¥ al(p) I, (ro)vs (rp/v) dpl| 11
Hllar 272 [ 6 0ol (o), (ro)alro /) dpl e
+ IIXRT_("‘ZW/e“”Qp%ai(p)(m)_lﬂ(me"”+b—6_"”)dP|IL;1L¢
Hllear= D72 [ g (p) ) by + b )L~ (/) ol

—(n— itp2 n
+ |xgr=(nm2/2 / " p3ay(p) W, (rp)es(rp/v)dpl para
=1 + W, + Wlls + My + 5.

The terms M;,7 = 1,2,4,5 are treated similarly to I;,7 = 1, 2,4, 5 and their sum
actually has the bound

—(n— z
Rl
P
As for I3 one can follow the proof of Proposition 3.5 in [13] and can get
o3 S R™V ag | e

This proves (1).

10



For the proof of (2) we show that
202 [ 60 (o)1 ) e S ROy
We bound LHS by
Iar 272 [ g8 ak(p)le=C" ot /v) dpl

Hllerr= D72 [ ¥ (o)l v /v) dpl

Hlerr™ 7 [ ¥l rp) 2 dplu
The first term is bounded by

lablls e I R, AR) ()= D2y (/) e S R™D/20 e ok |
the second one by
R_(”_l)/zyé||a§c||L}) because R ~ v

and the last one by R~("=1)/2||al || ry- This completes the proof of Proposition
3.1. O
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