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Abstract

We formulate conjectures linking Selmer structures for Hida‐theoretic and

Iwasawa‐theoretic families of ordinary eigenforms to Euler systems built from generalized
Heegner points on towers of modular curves. We prove part of these conjectures using the

method of Euler systems, control theorems and descent for Selmer complexes.

§1. Introduction

Let p be an odd prime and E be an elliptic curve over \mathbb{Q} of conductor N with good

ordinary reduction at p . Let K be a quadratic imaginary number field such that all

primes dividing N split in K and let K_{\infty} be the \mathbb{Z}_{p} ‐extension of K such that \mathrm{G}\mathrm{a}1(K_{\infty}/\mathbb{Q})
is a pro‐dihedral group. The complex L‐function L(E, s) of E being equal to the complex
L‐function of a modular form by [21], the completed L‐function L(E/K, s) is equal (up
to the conventional choice of the central line) to the Rankin‐Selberg L‐function of the

base change to K of the automorphic representation of \mathrm{G}\mathrm{L}_{2}(\mathrm{A}_{\mathbb{Q}}) attached to f . Hence,
it satisfies the functional equation:

L(E/K, s)= $\epsilon$(E/K, s)L(E/K, 2-s) .

The requirement on the behavior of primes dividing N forces  $\epsilon$(E/K, 1) to be -1,
and thus L(E/K, 1) to vanish at an odd order r . When r is exactly equal to 1, the

Received March 26, 2009. Revised in final form May 26, 2010.

2000 Mathematics Subject Classification(s): 11\mathrm{F}33, 11\mathrm{F}80, 11\mathrm{G}18, 11\mathrm{G}40,11\mathrm{R}23,11\mathrm{R}34
Key Words: p‐adic families of automophic forms, Iwasawa Main Conjecture, Euler systems
Supported by JSPS

* Graduate school of science, Osaka University, 560‐0043, Japan.
\mathrm{e}‐mail: olivier.fouquet@polytechnique. org

© 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



256 Olivier Fouquet

general formalism of the Tamagawa Number Conjecture predicts that this vanishing
is accounted for by a point z of infinite order on E(K) and that the special value of

L'(E/K, s) at 1 is linked to the height of z
,

and it is indeed known by [7, 13] that the

projection of Heegner points from the modular curve X(N) to E give rises to such

a point. Even when r is greater than 1, it was conjectured by Mazur and proved by
C.Cornut and V.Vatsal that the generic order of vanishing of L(E,  $\chi$, s) at 1 is equal to 1,
where L(E,  $\chi$, s) is the L‐function of the Rankin‐Selberg product of E with a finite order

character of \mathrm{G}\mathrm{a}1(K_{\infty}/K) . The Equivariant Tamagawa Number Conjecture (or ETNC

for short) then predicts that the determinant of a well‐chosen cohomology complex with

coefficients in the anticyclotomic Iwasawa algebra $\Lambda$_{anti}=\mathbb{Z}_{p}[[\mathrm{G}\mathrm{a}1(K_{\infty}/\mathrm{K})]] (here and

elsewhere in the text, the subscript anti is meant to suggest the word anticyclotomic)
should be trivialized by the p‐adic height of a generic Heegner point. The Iwasawa Main

Conjecture in this context, which is a p‐adic variant of the Birch and Swinnerton‐Dyer

conjecture, then states that this trivialization should coincide with the Rankin‐Selberg

p‐adic L‐function L_{p}'(E)\in $\Lambda$.
Using again the modularity of E and appealing to Hida theory, we see that the G_{K^{-}}

representation T_{p}E also belongs to a p‐adic family of modular Galois representations

parametrized by weights, or equivalently that T_{p}E occurs as a specialization of the

inverse limit on s of the ordinary part e^{ord}H_{et}^{1}(X_{1}(Np), \mathrm{Z})(1) of the étale cohmology
of the tower of modular curves X_{1}(Np) . The ETNC then predicts again that there

exists a p‐adic L‐function L_{p}^{Hi}(k) interpolating the value at s=k/2 of L(f_{k}, s) ,
that L_{p}^{Hi}

is an element of the ordinary Hecke algebra \mathrm{T}_{\infty}^{\mathrm{o}\mathrm{r}\mathrm{d}} and that it induces a trivialization of the

determinant of a suitably chosen cohomology complex coinciding with the trivialization

given by the p‐adic height of a family of Heegner points.
One drawback of the ETNC is that it itself requires several hard conjectures even

to be formulated, for instance the existence of a motivic cohomology theory with good

properties and the non‐degeneracy of certain height pairings. The aim of this article is

to build a conceptual framework allowing for a study of these questions independently
of any conjectures. The first section is devoted to recalling necessary facts mostly due to

H.Hida and B.Howard. Then, we state variants of the ETNC involving Euler systems,
examine their compatibilities by specialization in theorem 2.8 and give indications of

their proofs in theorem 2.9. Theorem 2.8 is a consequence of [6], which is a joint work

with T.Ochiai. The complete proof of 2.9, under the hypotheses of this introduction

but also in a significantly more general context, is the object of [5]. In the last section,
we mention generalizations to totally real fields F and to Galois representations coming
from automorphic representation of the adelic point of the multiplicative group of a

quaternion algebra over F split at at most one infinite place.
The author sincerely thanks the referee for his patience and generosity in providing
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many valuable corrections and comments. He would like to dedicate this article to

G.Frey, as a small token of gratitude for the wonderful help he received from him

during several critical stages of his career.

§2. The ETNC for p‐adic families of modular G_{K}‐representations

§2.1. Galois representations attached to ordinary eigenforms

General notations Let \hat{\mathbb{Z}} be the pro‐finite completion of Z. For an abelian group

G ,
let \hat{G} be G\otimes_{\mathbb{Z}}\hat{\mathbb{Z}} . Fix p\geq 5 a prime and embeddings of \overline{\mathbb{Q}} into \overline{\mathbb{Q}}_{p} and of \overline{\mathbb{Q}}_{p} into

C. For F a finite extension of \mathbb{Q} or \mathbb{Q}_{\ell} ,
let G_{F} be the absolute Galois group \mathrm{G}\mathrm{a}1(\overline{F}/F) .

The symbol Fr denotes geometric Frobenius morphism.
Let N be a positive integer prime to p and k\geq 2 an integer. The ring of diamond

operators of level p^{s} is the ring \mathbb{Z}_{p}[(\mathbb{Z}/p^{S}\mathbb{Z})^{\times}] . Let \mathrm{T}_{k}(N, s) be the image of the \mathbb{Z}_{p^{-}}
algebra generated by all Hecke operators T(\ell) with \ell fN and all diamond operators

<a> of level p^{S} inside the endomorphism ring of the cuspforms of weight k for the

congruence subgroup $\Gamma$_{0}(N)\cap$\Gamma$_{1}(p^{s}) . Let  $\phi$ be a Dirichlet character of (\mathbb{Z}/p\mathbb{Z})^{\times} . Let

f\in S_{k}($\Gamma$_{0}(Np),  $\phi$) be an eigencuspform for the congruence group $\Gamma$_{0}(N)\cap$\Gamma$_{1}(p) and

let $\lambda$_{f} be the map such that for all T(\ell)\in \mathrm{T}_{k}(N, s) and all <a>, $\lambda$_{f}(T(\ell))=a(f)
and $\lambda$_{f}(<a>)= $\phi$(a) . Let L_{\mathfrak{p}} be a fixed finite extension of \mathbb{Q}_{p} containing the image
of $\lambda$_{f} ,

let \mathcal{O} be its ring of integers and \mathrm{F} the residue field of \mathcal{O} . Let \mathrm{T}_{k}(N, s, \mathcal{O}) be

\mathrm{T}_{k}(N, s)\otimes_{\mathbb{Z}_{p}}\mathcal{O} . We assume that f is new outside p and that it is ordinary at p ,
i.e

that a(f) belongs to \mathcal{O}^{\times}.

Let K be a quadratic imaginary extension of \mathbb{Q} in which all primes dividing N

split. Let  $\Sigma$ be a finite set of finite places containing all places above Np and let  G_{K, $\Sigma$}
be the Galois group of the maximal extension of K unramified outside  $\Sigma$.

For G equal to a quotient of G_{K, $\Sigma$} or G_{K_{v}} and for M a p‐adic representation of G,
let C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G, M) be the complex of continuous cochains with values in M . Whenever a

complex appears in this article, it is a bounded complex whether or not this is explicitly
mentioned.

Galois representations of eigenforms To f is attached an odd semi‐simple resid‐

ual G_{\mathbb{Q}} ‐representation (\overline{T}(f),\overline{ $\rho$}_{f})_{\mathrm{F}} and an absolutely irreducible p‐adic GQ‐represen‐
tation (V(f), $\rho$_{f})_{L_{\mathfrak{p}}} . The G_{\mathbb{Q}} ‐representation V(f) is unramified outside Np. For \ell f Np,
the trace and determinant of the geometric Frobenius \mathrm{F}\mathrm{r}() are equal respectively to

a(f) and to  $\phi$(\ell)$\chi$_{cyc}^{k-1} () ,
or equivalently to $\lambda$_{f}(T()) and $\lambda$_{f}(<\ell>) . Henceforth, we

consistently assume that \overline{ $\rho$}_{f} is irreducible, hence absolutely irreducible, and that f does

not acquire residual complex multiplication, that is to say that \overline{ $\rho$}_{f} restricted to G_{K} is

still absolutely irreducible. Then there is a unique p‐adic representation (T(f), $\rho$_{f})_{\mathcal{O}}
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with the same trace as V(f) . We note that T(f) can also be considered as a free rank

2 module over \mathrm{T}_{k}(N, s) .

As V(f) is of dimension 2 over L_{\mathfrak{p}} ,
its dual V(f)^{*} is isomorphic to V(f)(k-1)\otimes $\phi$.

The form f being non‐trivial, the characters $\chi$_{cyc}^{k-2} and  $\phi$ have the same parity so the

character  $\chi$_{cyc}^{2-k} $\phi$ factors through a group with no 2‐torsion. Fix a character  $\psi$ such

that  $\psi$^{2}=$\chi$_{cyc}^{k-2}$\phi$^{-1} . We let (V,  $\rho$)_{L_{\mathfrak{p}}}, (T,  $\rho$)_{\mathcal{O}} and (\overline{T},\overline{ $\rho$})_{\mathrm{F}} be respectively the self‐dual

G_{\mathbb{Q}} ‐representation obtained by twisting V(f)(1) , T(f)(1) and \overline{T}(f)(1) by  $\psi$.
Let v be a place of \mathcal{O}_{K} above p . The fact that a_{p} belongs to \mathcal{O}^{\times} implies that the

local G_{K_{v}} ‐representation T fits in a short exact sequence of non‐trivial \mathcal{O}[\mathrm{G}] ‐modules:

0\rightarrow T_{v}^{+}\rightarrow T\rightarrow T_{v}^{-}\rightarrow 0.

We assume that \overline{ $\rho$}_{f} is p‐distinguished, that is to say that the semi‐simplification of \overline{ $\rho$}_{f}
restricted to G_{K_{v}} for v|p is not scalar.

Review of Hida theory Let  $\Gamma$ be the torsion‐free part of \displaystyle \lim_{\mathrm{s}}\leftarrow(\mathbb{Z}/p^{s}\mathbb{Z})^{\times} and  $\Lambda$ be

the regular local ring \mathcal{O}[[ $\Gamma$]] ,
which is also the torsion‐free part of the inverse limit on

s of the ring of diamond operators. Let  $\gamma$ be a topological generator of  $\Gamma$ . We allow

ourselves to consider  $\gamma$ as an element of  G_{\mathbb{Q}} using the fact that  $\Gamma$ is isomorphic to the

Galois group of the \mathbb{Z}_{p} ‐extension of Q. For k\geq 2 an integer and  $\epsilon$ a finite order character

of  $\Gamma$
,

an arithmetic point of weight  k and character  $\epsilon$ of  $\Lambda$ is an \mathcal{O}‐algebra morphism:

 $\phi$: $\Lambda$\rightarrow\overline{\mathbb{Q}}_{p} ;

 $\gamma$\ovalbox{\tt\small REJECT} $\epsilon$( $\gamma$)$\chi$_{cyc}^{k-2}( $\gamma$) .

Here,  $\gamma$ is considered as an element of  G_{\mathbb{Q}} via the identification of  $\Gamma$ with the Galois

group of the unique \mathbb{Z}_{p} ‐extension of Q. For a finite  $\Lambda$‐algebra  R ,
an arithmetic point of

R is an \mathcal{O}‐algebra morphism whose restriction to  $\Lambda$ coincides with an arithmetic point
of  $\Lambda$ and an arithmetic prime is the kernel of an arithmetic point.

The ring \mathrm{T}_{k}(N, s, \mathcal{O}) is a finite, flat and reduced \mathcal{O}‐algebra and an \mathcal{O}[(\mathbb{Z}/p^{S}\mathbb{Z})^{\times}] ‐

algebra by the inclusion of the diamond operators. Let e^{ord} be Hida�s projector, this is

to say the idempotent:

e^{ord}=\displaystyle \lim_{n\rightarrow\infty}T(p)^{n!}
The Hida ordinary Hecke algebra \mathrm{T}_{\infty}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, \mathcal{O}) is the inverse limit on s of e^{ord}\mathrm{T}_{k}(N, s, \mathcal{O}) .

It is a torsion‐free  $\Lambda$‐algebra independent of  k
,

finite as  $\Lambda$‐module. The \mathcal{O}‐algebra

morphism $\lambda$_{f} is an arithmetic point of \mathrm{T}_{\infty}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, \mathcal{O}) and conversely, arithmetic points of

weight k of \mathrm{T}_{\infty}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, \mathcal{O}) are attached to ordinary eigenforms in S_{k}($\Gamma$_{0}(N)\cap$\Gamma$_{1}(p^{S})) .

Let \mathcal{P}_{\min} be a minimal prime of \mathrm{T}_{\infty}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, \mathcal{O}) and let R_{\min} be \mathrm{T}_{\infty}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, \mathcal{O})/\mathcal{P}_{\min}.
As arithmetic primes of fixed weight containing \mathcal{P}_{\min} are Zariski‐dense in Spec R ,
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the patching argument of [20, Lemma 2.2.3] shows that there is a continuous G_{\mathbb{Q}^{-}}
pseudo‐representation \tilde{ $\rho$}_{\min} with values in R_{\min} interpolating the traces of the G_{\mathbb{Q}^{-}}
representations attached to eigencuspforms g such that \mathrm{k}\mathrm{e}\mathrm{r}$\lambda$_{g} contains \mathcal{P}_{\min} . Let \mathfrak{m} be

the maximal ideal of \mathrm{T}_{\infty}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, \mathcal{O}) and a the minimal prime contained in \mathfrak{m} such that $\lambda$_{f}
factors through the local domain:

(2.1) R=\mathrm{T}_{\infty}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, \mathcal{O})_{\mathfrak{m}}/a.

Patching again the pseudo‐representations \tilde{ $\rho$}_{\min} for all \mathcal{P}_{\min} contained in \mathfrak{m} defines a

pseudo‐representation \tilde{ $\rho$}_{\mathfrak{m}} with values in R . As \overline{ $\rho$}_{f} is absolutely irreducible, [18, Theorem

1] shows that there is a G_{\mathbb{Q}} ‐representation (\mathcal{T}(f), $\rho$_{\mathfrak{m}})_{R} free of rank 2 over R such that

\mathrm{T}\mathrm{r}($\rho$_{\mathfrak{m}}) is equal to \tilde{ $\rho$}_{\mathfrak{m}} . The G_{\mathbb{Q}} ‐representation \mathcal{T}(f) is unramified outside Np and

for \ell f Np, the characteristic polynomial of \mathrm{F}\mathrm{r}() acting on \mathcal{T}(f) is the same as the

characteristic polynomial of \mathrm{F}\mathrm{r}() acting on T(f) with $\lambda$_{f} replaced by localization at \mathfrak{m}

and reduction modulo a.

In particular, the determinant of \mathcal{T}(f) evaluated at \mathrm{F}\mathrm{r}() for \ell f Np is equal to

$\lambda$_{\mathfrak{m}}(<\ell>)$\chi$_{cyc}(\ell) . Observing that the obstruction of $\lambda$_{\mathfrak{m}}(<\cdot>) to be a square depends

only on the tame part of this character and that the tame part is the same for all

specializations of \mathcal{T}(f) ,
we see that \mathcal{T}(f) admits a self‐dual twist \mathcal{T} interpolating the T

exactly as \mathcal{T}(f) interpolates the T(f) .

Let v be a place of \mathcal{O}_{K} above p . The local G_{K_{v}} ‐representation \mathcal{T} fits in a short

exact sequence of non‐trivial \mathrm{R}[\mathrm{G}] ‐modules:

0\rightarrow \mathcal{T}_{v}^{+}\rightarrow \mathcal{T}\rightarrow \mathcal{T}_{v}^{-}\rightarrow 0.

Geometric realization of \mathcal{T}(f) and control theorem for \mathrm{T}^{\mathrm{o}\mathrm{r}\mathrm{d}} We review im‐
\infty,\mathfrak{m}

portant and well‐known commutative algebra properties of \mathcal{T}(f) and \mathrm{T}^{\mathrm{o}\mathrm{r}\mathrm{d}}
\infty,\mathfrak{m}.

Assume first that f is of weight 2, which is a very mild assumption to make as

\mathcal{T}(f) certainly has plenty of specializations of weight 2. Then, the fact that \overline{ $\rho$}_{f} is p‐

distinguished and absolutely irreducible implies by [21, Theorem 2.1] that there are

isomorphisms of Hecke and G_{\mathbb{Q}} ‐modules

\overline{T}(f)\rightarrow^{\sim}e_{\mathfrak{m}}^{ord}H_{et}^{1}(X_{1}(Np^{s})\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O})[\mathfrak{m}],
T(f)\rightarrow^{\sim}e_{\mathfrak{m}}^{ord}H_{et}^{1}(X_{1}(Np^{s})\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O}) ,

and that \mathrm{T}_{2}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, s)_{\mathfrak{m}} is a Gorenstein ring. These facts in turn imply the following
control theorem.

Proposition 2.1. Let  $\lambda$ be an arithmetic point of \mathrm{T}^{\mathrm{o}\mathrm{r}\mathrm{d}} of weight k and level
\infty,\mathfrak{m}

p^{s} and let \mathfrak{p} be the kernel of  $\lambda$ restricted to  $\Lambda$ . Then \mathrm{T}_{\infty,\mathfrak{m}}^{\mathrm{o}\mathrm{r}\mathrm{d}}\otimes_{ $\Lambda$} $\Lambda$/\mathfrak{p} is isomorphic to

\mathrm{T}_{k}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, s)_{\mathfrak{m}}.
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Proof. Assume first that k=2 . For s\geq 1 ,
the complex \mathrm{R}$\Gamma$_{et}(X_{1}(Np^{S})\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O})

is a bounded below complex of \mathrm{T}_{2}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, 1)_{\mathfrak{m}} ‐modules, for instance by [8, Proposition

4.5]. Let C(s) be the complex \mathrm{R}$\Gamma$_{et}(X_{1}(Np^{S})\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O}) and M(s) its first cohomology

group. The \mathrm{T}_{2}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, 1)_{\mathfrak{m}} ‐module M(1) is free and is the only non‐trivial cohomology

group of C(1) ,
which is thus a perfect complex. For s'\geq s ,

the isomorphism

(2.2) \mathrm{R}$\Gamma$_{et}(X_{1}(Np^{s'})\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O})\otimes_{\mathcal{O}[(\mathbb{Z}/p^{\mathrm{s}'}\mathbb{Z})]}\mathrm{L}\mathcal{O}[\mathbb{Z}/p^{s}\mathbb{Z}]\rightarrow^{\sim}\mathrm{R}$\Gamma$_{et}(X_{1}(Np^{S})\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O})
induced by the trace map shows that C(s) is a perfect complex of \mathrm{T}_{2}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, s) ‐modules

for all s\geq 1 . Because the first cohomology group M(s) is the only non‐trivial cohomol‐

ogy group of C(s) , M(s) is a free \mathrm{T}_{2}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, s) ‐module and M(s')\otimes_{\mathcal{O}[\mathbb{Z}/p^{\mathrm{s}'}\mathbb{Z}]}\mathcal{O}[\mathbb{Z}/pz] is

isomorphic to M(s) for s'\geq s by (2.2). Hence, the complex C()

\displaystyle \lim_{\mathrm{s}}e_{\mathfrak{m}}^{ord}\mathrm{R}$\Gamma$_{et}(X_{1}(Np^{S})\leftarrow\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O})
is a perfect complex of \mathrm{T}_{\infty,\mathfrak{m}}^{\mathrm{o}\mathrm{r}\mathrm{d}} ‐modules and M() is \mathrm{T}_{\infty,\mathfrak{m}}^{\mathrm{o}\mathrm{r}\mathrm{d}} ‐free of rank 2. This implies
that \mathrm{T}^{\mathrm{o}\mathrm{r}\mathrm{d}} is a Gorenstein ring by the arguments of [14, Lemma 15.1]. Moreover

\infty,\mathfrak{m}

M(\infty)\otimes_{ $\Lambda$} $\Lambda$/\mathfrak{p} is isomorphic to M(s) so \mathrm{T}_{\infty,\mathfrak{m}}^{\mathrm{o}\mathrm{r}\mathrm{d}}\otimes_{ $\Lambda$} $\Lambda$/\mathfrak{p} is isomorphic to \mathrm{T}_{k}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, s)_{\mathfrak{m}}.
Now \mathfrak{p} is of arbitrary weight. Let \mathcal{F}_{k} be the sheaf j_{*}\mathrm{S}\mathrm{y}\mathrm{m}^{k-2}(R^{1}$\pi$_{*}\mathcal{O}) where  $\pi$ is

the universal elliptic curve over the affine modular curve and  j the inclusion of the affine

modular curve in the compact modular curve. The sheaf \mathcal{F}_{k} is pure of weight k-2.

The ordinary étale cohomology complex satisfies the independence of weight property:

\displaystyle \lim_{\leftarrow}e_{\mathfrak{m}}^{ord}\mathrm{R}$\Gamma$_{et}(X_{1}(Np^{S})\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O})\rightarrow^{\sim}\lim_{\leftarrow}e_{\mathfrak{m}}^{ord}\mathrm{R}$\Gamma$_{et}(X_{1}(Np^{S})\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{F}_{k}) .

The isomorphism (2.2) with coefficient sheaf \mathcal{F}_{k} shows that M(\infty)\otimes_{ $\Lambda$} $\Lambda$/\mathfrak{p} is isomorphic
to e_{\mathfrak{m}}^{ord}H_{et}^{1}(X_{1}(Np^{S})\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{F}_{k}) . The fact that

e_{\mathfrak{m}}^{ord}H_{et}^{1}(X_{1}(Np^{s})\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{F}_{k}\otimes_{\mathcal{O}}L_{\mathfrak{p}})

is \mathrm{T}_{k}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, s)\otimes_{\mathcal{O}}L_{\mathfrak{p}} ‐free of rank 2 show that the  $\Lambda$/\mathfrak{p} ‐module \mathrm{T}_{\infty}^{\mathrm{o}\mathrm{r}\mathrm{d}}\otimes_{ $\Lambda$} $\Lambda$/\mathfrak{p} is free, that it

surjects onto \mathrm{T}_{k}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, s) and that this surjection becomes an isomorphism after inverting

p . Hence, the kernel of this surjection is p‐torsion. As \mathrm{T}_{\infty}^{\mathrm{o}\mathrm{r}\mathrm{d}}\otimes_{ $\Lambda$} $\Lambda$/\mathfrak{p} is p‐torsion free, the

 $\Lambda$/\mathfrak{p}‐modules \mathrm{T}_{\infty}^{\mathrm{o}\mathrm{r}\mathrm{d}}\otimes_{ $\Lambda$} $\Lambda$/\mathfrak{p} and \mathrm{T}_{k}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, s) are isomorphic. \square 

Remark: We seize this opportunity to alert readers of a mistake in the literature

originating in [15, Theorem 7]: contrary to what is apparently claimed in this theorem

and in subsequent quotations, the Hecke algebra localized at an ordinary, non‐Eisenstein,
maximal ideal is not necessarily a Gorenstein ring (see the many counter‐examples found

by G.Wiese and L.Kilford). In other words, our hypothesis that \overline{ $\rho$}_{f} is p‐distinguished is

necessary.
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Review of dihedral Iwasawa theory Recall that \hat{K}^{\times} denotes the finite ideles of

K . Let  $\tau$ be the complex conjugation. For  c an integer, let Z_{c} be the order \mathbb{Z}+c\mathcal{O}_{K}
and K[c]/K be the ring class field of conductor c

,
this is to say the abelian extension of

K such that \mathrm{r}\mathrm{e}\mathrm{c}_{K} induces an isomorphism between \hat{K}^{\times}/K^{\times}\hat{F}^{\times}\hat{Z}_{c}^{\times} and \mathrm{G}\mathrm{a}1(K[c]/K) .

For instance, the field K[1] is the Hilbert class field of K . If c'|c ,
the following short

sequence is exact:

1\displaystyle \rightarrow\frac{K^{\times}\cap\hat{\mathbb{Q}}^{\times}\hat{Z}_{c}^{\times}}{K^{\times}\cap\hat{\mathbb{Q}}^{\times}\hat{Z}_{c}^{\times}}\rightarrow\frac{\hat{Z}_{c'}^{\times}}{\hat{Z}_{c}^{\times}}\rightarrow \mathrm{r}\mathrm{e}\mathrm{c}_{K}\mathrm{G}\mathrm{a}1(K[c]/K[c'])\rightarrow 1.
Let c' be such that pfc' and such that c' does not divide the lowest common multiple
of all the u-1 for u\in(\mathcal{O}_{K}^{\times})_{\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}} . Let x=ab be in K^{\times}\cap\hat{\mathbb{Q}}^{\times}Z_{c'} with a\in\hat{\mathbb{Q}}^{\times} and b\in Z_{c'}.
Then x/ $\tau$ x belongs to the kernel of N_{K/\mathbb{Q}} so is a torsion unit in \mathcal{O}_{K}^{\times} . Moreover, x/ $\tau$ x
reduces to 1 in (\mathcal{O}_{K}/c'\mathcal{O}_{K})^{\times} . Our choice of c' implies that x is equal to 1 and so that x

belongs to Q. Fix such a c' . For any c such that c'|c ,
the previous exact sequence then

reduces to the isomorphism:

(2.3) \hat{Z}_{c}^{\times}/\hat{Z}_{c}^{\times}\rightarrow^{\sim}\mathrm{G}\mathrm{a}1(K[c]/K[c']) .

Let K[c'p^{\infty}] be the union of the K[Cp] for all n . Because \hat{Z}_{c}^{\times}/\hat{Z}_{c}^{\times} is of rank 1 as a \mathbb{Z}_{p^{-}}
module, it has a quotient Z isomorphic to \mathbb{Z}_{p} . Hence, there exists a sub‐extension K_{\infty} of

K[c'p^{\infty}] such that \mathrm{G}\mathrm{a}1(K_{\infty}/K) is isomorphic to \mathbb{Z}_{p} via the isomorphism (2.3) composed
with the isomorphism between Z and \mathbb{Z}_{p} . We are grateful to the referee for pointing
out that this isomorphism between \mathrm{G}\mathrm{a}1(K_{\infty}/K) and \mathbb{Z}_{p} is not canonical: as described,
it depends on a choice of identification between Z and \mathbb{Z}_{p} . The extension K_{\infty} is the

unique \mathbb{Z}_{p} ‐extension of K such that the Galois group \mathrm{G}\mathrm{a}1(K_{\infty}/\mathbb{Q}) is equal to the pro‐

dihedral group \mathbb{Z}_{p}\rangle\triangleleft\{1,  $\tau$\} with  $\tau \gamma \tau$=$\gamma$^{-1} for all  $\gamma$\in \mathrm{G}\mathrm{a}1(K_{\infty}/K) . In particular, it does

not depend on our choice of c' . Let K_{n} be the sub‐extension of K_{\infty} with Galois group

\mathbb{Z}/p^{n}\mathbb{Z} . Let $\Lambda$_{anti} be the 2‐dimensional regular local ring \mathcal{O}[[\mathrm{G}\mathrm{a}1(K_{\infty}/K)]] endowed with

the action of G_{K, $\Sigma$} coming from the surjection of G_{K, $\Sigma$} to \mathrm{G}\mathrm{a}1(K_{\infty}/K) and inclusion of

\mathrm{G}\mathrm{a}1(K_{\infty}/K) inside $\Lambda$_{anti}^{\times} . For  $\epsilon$ a finite order character of \mathrm{G}\mathrm{a}1(K_{\infty}/K) ,
we define the

arithmetic point  $\phi$ of character  $\epsilon$ of  $\Lambda$_{anti} to be the \mathcal{O}‐algebra morphism:

 $\phi$:$\Lambda$_{anti}\rightarrow\overline{\mathbb{Q}}_{p} ;

 $\gamma$ \ovalbox{\tt\small REJECT} $\epsilon$( $\gamma$) .

Arithmetic points in this sense are called ring class characters in [2, Section 1.1] and

anticyclotomic characters in [1, Introduction] and [16, Section 4]. Let R_{\mathrm{I}\mathrm{w}} be the 3‐

dimensional Gorenstein ring R[[\mathrm{G}\mathrm{a}1(K_{\infty}/K)]] ,
where R is defined by (2.1). We define

arithmetic points of R_{\mathrm{I}\mathrm{w}} to be \mathcal{O}‐algebra morphisms whose restrictions to R and to

$\Lambda$_{anti} are arithmetic. The weight of an arithmetic point  $\lambda$ of  R_{\mathrm{I}\mathrm{w}} is defined to be the
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weight of  $\lambda$ restricted to  R . Arithmetic primes of R_{\mathrm{I}\mathrm{w}} are kernels of arithmetic points.
Let \mathcal{T}_{\mathrm{I}\mathrm{w}} be the G_{K, $\Sigma$} ‐representation \mathcal{T}\otimes_{R}R_{\mathrm{I}\mathrm{w}} with G_{K, $\Sigma$} acting on both sides of the

tensor product.

Specializations of \mathcal{T} Let S be an integral quotient of R_{\mathrm{I}\mathrm{w}}\otimes_{\mathbb{Z}_{p}}\overline{\mathbb{Z}}_{p} . Of particular
interest will be the cases where S is R, $\Lambda$_{anti} or a discrete valuation ring containing
\mathcal{O} . An S‐specialization  $\lambda$ of  R_{\mathrm{I}\mathrm{w}} is an \mathcal{O}‐algebra map with values in S . An S[G_{K, $\Sigma$}]-
module T_{ $\lambda$} is an S‐specialization of \mathcal{T}_{\mathrm{I}\mathrm{w}} if T is equal to \mathcal{T}_{\mathrm{I}\mathrm{w}}\otimes_{R},{}_{ $\lambda$}S as S[G_{K, $\Sigma$}] ‐modules.

A specialization T_{ $\lambda$} is said to be arithmetic if  $\lambda$ is an arithmetic point of  R_{\mathrm{I}\mathrm{w}} . In that

case, it is said to be arithmetic of weight k if  $\lambda$ restricted to  R is an arithmetic point
of R of weight k . It is said to contain an arithmetic specialization if T_{ $\lambda$} has a quotient
which is an arithmetic specialization. In particular, \mathcal{T}_{\mathrm{I}\mathrm{w}}, \mathcal{T} and T\otimes_{\mathcal{O}}$\Lambda$_{anti} all contain

arithmetic specializations.
For vp, the local G_{K_{v}} ‐representation T_{ $\lambda$} is reducible and we define T_{ $\lambda$,v}^{+} to be

\mathcal{T}_{\mathrm{I}\mathrm{w},v}^{+}\otimes_{R_{\mathrm{I}\mathrm{w}}},{}_{ $\lambda$}S.

§2.2. Heegner points and special values of L‐function

Rankin‐Selberg L‐function Let S be a valuation ring. Let  $\lambda$ be an arithmetic

 S‐specialization of R_{\mathrm{I}\mathrm{w}} of weight 2 and V_{ $\lambda$} be the Frac (S)[G_{K, $\Sigma$}] ‐module T_{ $\lambda$}\otimes_{S}\mathrm{F}\mathrm{r}\mathrm{a}\mathrm{c}(S) .

Then there exists an eigenform f_{ $\lambda$} of weight 2 and central character  $\phi$ as well as a

finite order character  $\chi$ of \mathrm{G}\mathrm{a}1(K_{\infty}/K) such that V_{ $\lambda$} is equal to V(f_{ $\lambda$})(1)\otimes$\phi$^{-1/2} $\chi$.
The G_{K, $\Sigma$} ‐representation V_{ $\lambda$} is self‐dual and its completed complex L‐function L(V_{ $\lambda$}, s)
coincides with the Rankin‐Selberg L‐function L( $\pi$(f)\times $\chi$, s+1/2) . If  $\chi$ is trivial or

has a sufficiently large conductor, our hypotheses on the splitting of primes dividing  N

implies that L(V_{ $\lambda$}, 0) vanishes at odd, and hence non‐trivial, order. As V_{ $\lambda$} occurs in

the étale cohomology of the curve X_{1}(Np) ,
the Bloch‐Kato conjecture then predicts

that there are points on the Jacobian of X(Np) rational over a finite sub‐extension of

K_{\infty} accounting for this vanishing. This observation remains true if  $\lambda$ restricted to  R is

fixed, or equivalently if V(f) is fixed, and if  $\lambda$ restricted to  $\Lambda$_{anti} varies. Then, Mazur�s

conjecture predicts that the order of vanishing of L(V_{ $\lambda$}, 0) is exactly 1 except for a finite

number of  $\lambda$ . Symmetrically, we could fix  $\chi$ and let  f_{ $\lambda$} vary among arithmetic points
of weight 2, in which case R.Greenberg conjectures again that the order of vanishing of

L(V_{ $\lambda$}, 0) is exactly 1 except for a finite number of  $\lambda$ . We note that these conjectures are

known in most cases thanks to works of V.Vatsal, C.Cornut and B.Howard.

This suggests that there should exist a non‐zero  p‐adic L‐function, or rather a

leading term of a p‐adic L‐function, belonging to R_{\mathrm{I}\mathrm{w}} and whose image by an arith‐

metic specialization  $\lambda$ interpolates  L'(V_{ $\lambda$}, 0)/ $\Omega$( $\lambda$) for a suitable choice of period  $\Omega$( $\lambda$) .

Moreover, this p‐adic L‐function should be linked to the height of families of points
rational over sub‐extension of K_{\infty} . To the best of knowledge of this author, this p‐
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adic L‐function is not known to exist, but he surmises that the p‐adic Rankin‐Selberg
convolution of the p‐adic L‐function of [3] should satisfy these properties.

Heegner points Since the seminal work [7], it is known that the special points al‐

luded to in the previous paragraph should be linked with points on X(Np) parametriz‐

ing isogeny between CM elliptic curves, or Heegner points as they have come to be

known. In this paragraph, we recall the adelic construction of points in X(Np)(K)
verifying distribution relation reminiscing of those we expect of the p‐adic L‐function.

These points were constructed by B.Howard in [11] who has moreover shown under

very mild hypotheses that they are non‐torsion if and only if certain L‐function does

not vanish, as expected.
We consider the tower of compact modular curves \{X(N, s)\}_{s\geq 1} coming from the

tower of compact open subgroups U(N, s) of \mathrm{G}\mathrm{L}_{2}(\mathrm{A}_{\mathbb{Q}}^{(\infty)}) defined by:

U(N, s)=\{g\in \mathrm{G}\mathrm{L}_{2}(\mathrm{A}_{\mathbb{Q}}^{(\infty)})|g_{\ell}\equiv(_{0}^{*} **) mod \ell^{\mathrm{o}\mathrm{r}\mathrm{d}_{\ell}N}, g_{p}\equiv\left(\begin{array}{ll}
* & *\\
0 & 1
\end{array}\right)\mathrm{m}\mathrm{o}\mathrm{d} p^{s}\}
The complex points of X(N, s) are given by the double coset:

X(N, s)(\mathbb{C})=\mathrm{G}\mathrm{L}_{2}(\mathbb{Q})\backslash (\mathbb{C}-\mathbb{R}\times \mathrm{G}\mathrm{L}_{2}(\mathrm{A}_{\mathbb{Q}}^{(\infty)})/U(N, s))^{*}
Here,

* denotes smooth compactification. The embedding of K inside \mathcal{M}_{2}(\mathrm{Q}) defines

an action of K^{\times} on C—R which has a unique fixed point Z with positive imaginary

part. The set of CM points is the set of complex points [Z, b]\in X(N, s)(\mathbb{C}) . According
to Shimura reciprocity law, CM points are in fact rational over abelian extensions of K.

We consider the following family of CM points on the tower \{X(N, s)\}_{s\geq 1} :

\mathcal{X}(c, s)=\{x(c, s)=[Z, b(c, s)]\in X(N, s)|b(c, s)_{\ell}=\left(\begin{array}{lll}
\ell^{\mathrm{o}\mathrm{r}\mathrm{d}_{\ell}} & N & 0\\
0 &  & 1
\end{array}\right), b(c, s)_{p}=\left(\begin{array}{ll}
p^{s} & 0\\
0 & 1
\end{array}\right)\}
The field of rationality of x(c, s) is denoted by K(c, s) ,

the usual ring‐class field of

conductor c by K[c] and K[c]() by K[c, s] . Let

z(c, s)\in H^{1}(K[c], e_{\mathfrak{m}}^{ord}H_{et}^{1}(X(N, s)\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O})(1)\otimes$\psi$^{-1})

be the cohomology class constructed in the following way. First, the Kummer map

twisted on the target space and composed with projection on the ordinary part sends

x(c, s) to H^{1}(K(c, s), e_{\mathfrak{m}}^{ord}H_{et}^{1}(X(N, s)\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O})(1)\otimes$\psi$^{-1}) . The image  $\Phi$(x(c, s)) of

x(c, s) under this map is easily seen to belong to the \mathrm{G}\mathrm{a}1(K[c, s]/K_{0}[cp^{s}]) ‐invariants.

By purity of e_{\mathfrak{m}}^{ord}H_{et}^{1}(X(N, s)\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O}) ,
the Hochschild‐Serre spectral sequence for the

groups G_{K[c,s]} and G_{K_{0}(cp^{\mathrm{s}})} induces an isomorphism allowing us to consider  $\Phi$(x(c, s))
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as a class in H^{1} (K[cp], e_{\mathfrak{m}}^{ord}H_{et}^{1}(X(N, s)\times \mathbb{Q}\overline{\mathbb{Q}}, \mathcal{O})(1)\otimes$\chi$^{-1}) . Then z(c, s) is equal to

T(p)^{-s} Cor  $\Phi$(x(c, s)) where Cor denotes corestriction from K[cp] to K[c] . The classes

z(c, s) are equivariant under the action of the Hecke algebra and under the action of

the Galois groups of ring‐class fields in the sense that they satisfy the following Euler

system relations.

Proposition 2.2. [[11 , Proposition 2.3.1 and Theorem 3.1.1]] Let \mathscr{L} be the set

of square‐free products of rational primes inert in K with a power of p . Let  c\ell be in

\mathscr{L} , let c^{p} be the p‐power fr ee part of c and let s'\geq s be two integers. Let $\pi$_{s'/s} be the

projection fr om X_{1}(N, s') to X(N, s) . Then:

(2.4) $\pi$_{s'/s}z(c, s')=z(c, s) ,

(2.5) \mathrm{C}\mathrm{o}\mathrm{r}_{K[c\ell]/K[c]}z(cl, s)=T(\ell)z(c, s) ,

(2.6) \mathrm{C}\mathrm{o}\mathrm{r}_{K[c]/K[c^{p}]}z(c, s)=z(c^{p}, s) .

In particular, the inverse limit on s and t of z(cp^{t}, s) composed with corestriction to K

defines a class z_{\infty} in H^{1}(K, \mathcal{T}_{\mathrm{I}\mathrm{w}}) . Moreover, the class z_{\infty} is not R_{\mathrm{I}\mathrm{w}} ‐torsion.

§2.3. Selmer complexes and the ETNC

Review of determinants We review briefly the formalism of the determinant func‐

tor. Let S be a complete reduced local noetherian ring. A graded invertible S‐module

is the pair composed of a free S‐module of rank 1 and a locally constant function from

\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(S) to Z. For a finitely generated S‐module M free of rank \mathrm{r}
,

the determinant

\det_{S}M of M is the graded invertible S‐module (\wedge M, r)r . For a bounded complex of free

S‐modules C ,
the determinant \det_{S}C is the graded invertible S‐module:

\displaystyle \det_{S}C=\bigotimes_{i\in \mathbb{Z}}\det_{S}^{(-1)^{i}}C^{i}
The determinant functor extends to the homotopy category of perfect complexes with

morphisms restricted to quasi‐isomoprhisms. If the cohomology groups H^{i}(C) of a

bounded complex C regarded as complexes in degree zero are themselves perfect com‐

plexes of S‐modules, then C is a perfect complex and there is a canonical isomorphism:

\displaystyle \det_{S}C\rightarrow^{\sim}\bigotimes_{i\in \mathbb{Z}}\det_{S}^{(-1)^{i}}H^{i}(C) .

If S is a regular ring and M is a torsion S‐module, then M admits finite free resolution

by the Auslander‐Buchsbaum‐Serre theorem so \det_{S}M is well‐defined. As  M\otimes Frac (  S)
is trivial, \det_{\mathrm{F}\mathrm{r}\mathrm{a}\mathrm{c}(S)}M\otimes \mathrm{F}\mathrm{r}\mathrm{a}\mathrm{c}(S) is canonically isomorphic to Frac (S) . The image of

\det_{S}M inside (\det_{S}M)\otimes_{S}\mathrm{F}\mathrm{r}\mathrm{a}\mathrm{c}(S) is identified by this canonical isomorphism with an

invertible S‐module inside Frac (S) . This module is equal to (\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}_{S}M)^{-1}.
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Selmer complexes for specializations of \mathcal{T}_{\mathrm{I}\mathrm{w}} Let  $\lambda$ be an  S‐specialization of

\mathcal{T}_{\mathrm{I}\mathrm{w}} . We define cohomological complexes which are conjecturally linked to arithmetic

properties of T_{ $\lambda$} when  $\lambda$ is arithmetic.

If  vfp ,
let M_{ $\lambda$} be a free S‐submodule of T_{ $\lambda$}^{I_{v}} with the same rank as T_{ $\lambda$}^{I_{v}}.

Let C_{f}(G_{K_{v}}, T_{ $\lambda$}) be the complex C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(\mathrm{F}\mathrm{r}(v), M_{ $\lambda$}) . If v|p ,
let C_{f}(G_{K_{v}}, T) be

C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G_{K_{v}}, T_{ $\lambda$,v}^{+}) . For all v
,
there is a morphism i_{v} from C_{f}(G_{K_{v}}, T_{ $\lambda$}) to C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G_{K_{v}}, T_{ $\lambda$}) .

This morphism is given by inclusion of M_{ $\lambda$} inside T_{ $\lambda$}^{I_{v}} composed with inflation if vfp
and by the inclusion of T_{ $\lambda$,v}^{+} inside T_{ $\lambda$} if v|p.

Definition 2.3. Let \mathrm{R}$\Gamma$_{f}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) be the object in the derived category cor‐

responding to

Cone (C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$})\displaystyle \oplus\bigoplus_{v\in $\Sigma$}C_{f}(G_{K_{v}}, T_{ $\lambda$})^{\mathrm{r}\mathrm{e}\mathrm{s}_{v}-i_{v}}\rightarrow\bigoplus_{v\in $\Sigma$}C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G_{K_{v}}, T_{ $\lambda$}))[-1]
and let \tilde{H}_{f}^{i}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) be its i‐th cohomology group.

The S‐module T_{ $\lambda$} is free of rank 2 by construction. The groups G_{K, $\Sigma$} and the G_{K_{v}}
have finite cohomological p‐dimension bounded by 3 so the complex \mathrm{R}$\Gamma$_{f}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) is a

perfect complex of S‐modules acyclic outside [0 , 3 ] . The S‐module \tilde{H}_{f}^{0}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) injects
in H^{0}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) so is trivial by absolute irreducibility of \overline{ $\rho$} . Hence, the same is true of

\tilde{H}_{f}^{3}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) by self‐duality of T_{ $\lambda$} and [17, Statement (8.9.10)].
When H^{0}(G_{K_{v}}, T_{ $\lambda$,v}^{-}) is zero for all v|p ,

the long exact sequence in cohomology in‐

duced by definition 2.3 shows that \tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) is equal to the usual compact Green‐

berg Selmer group:

H_{\mathrm{G}\mathrm{r}}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$})=\displaystyle \mathrm{k}\mathrm{e}\mathrm{r}(H^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$})\rightarrow\bigoplus_{v\in $\Sigma$}H^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$})/H_{\mathrm{G}\mathrm{r}}^{1}(G_{K_{v}}, T_{ $\lambda$}))
Here H_{\mathrm{G}\mathrm{r}}^{1}(K_{v}, T_{ $\lambda$}) is equal to H^{1}(K_{v}^{ur}, T_{ $\lambda$}) if vfp and to H^{1}(K_{v}, T_{ $\lambda$,v}^{+}) if v|p . We

note that H^{0}(G_{K_{v}}, T_{ $\lambda$,v}^{-}) is zero in particular if  $\lambda$ is arithmetic and if  T_{ $\lambda$} is a potentially

crystalline G_{K_{v}} ‐representation, or if it is of weight different from 2. Hence, H^{0}(G_{K_{v}}, \mathcal{T}^{-})
and H^{0}(G_{K_{v}}, \mathcal{T}_{\mathrm{I}\mathrm{w}}^{-}) are trivial. A specialization  $\lambda$ is said to be exceptional if there exists

a finite extension  L_{w} of K_{v} such that H^{0}(G_{L_{w}}, T_{ $\lambda$}^{-}) is not trivial.

When S is a discrete valuation ring, let \mathrm{R}$\Gamma$_{c}( Spec \mathcal{O}_{K}[1/ $\Sigma$], T_{ $\lambda$}) be the object in

the derived category corresponding to

Cone (C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}( Spec \displaystyle \mathcal{O}_{K}[1/ $\Sigma$], T_{ $\lambda$})^{\mathrm{r}\mathrm{e}\mathrm{s}_{v}-i_{v}}\rightarrow\bigoplus_{v\in $\Sigma$}C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G_{K_{v}}, T_{ $\lambda$}))[-1].
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Special classes in \tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) According to proposition 2.2, the class z_{\infty} belongs
to H^{1}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}) . Let  $\lambda$ be a specialization of  R_{\mathrm{I}\mathrm{w}} . Let z_{ $\lambda$} be the image of z_{\infty} in

\tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) .

Proposition 2.4. For all c\in \mathscr{L} , the class z_{\infty}(c) belongs to \tilde{H}_{f}^{1}(G_{K[c], $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}) .

The class z_{\infty} belongs to \tilde{H}_{f}^{1}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}) . Let  $\lambda$ be an  S ‐specialization of R_{\mathrm{I}\mathrm{w}} . Then z_{ $\lambda$}

belongs to \tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) .

Proof. The first two statements are contained in [11, Proposition 2.4.5]. If  $\lambda$

is an  S‐specialization which is not exceptional, the natural map from H^{1}(K, \mathcal{T}_{\mathrm{I}\mathrm{w}}) to

H^{1}(K, T_{ $\lambda$}) induced by  $\lambda$ defines a class  z_{ $\lambda$} which belongs to H_{\mathrm{G}\mathrm{r}}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) ,
and hence

to \tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) . Even if  $\lambda$ is exceptional, the class  z_{ $\lambda$} belongs to H_{\mathrm{G}\mathrm{r}}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) so

lifts to \tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) . The short exact sequence

0\rightarrow\oplus H^{0}(G_{K_{v}}, T_{ $\lambda$,v}^{-})\rightarrow\tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$})\rightarrow H_{\mathrm{G}\mathrm{r}}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$})\rightarrow 0
v|p

shows that this lift is defined up to an element of \displaystyle \bigoplus_{v|p}H^{0}(G_{K_{v}}, T_{ $\lambda$,v}^{-}) . The fact that

the inverse limit on n of H^{0}(G_{K(n)_{v}}, T_{ $\lambda$,v}^{-}) vanishes establish an isomorphism between

\tilde{H}_{f}^{1}(G_{K_{\infty}},{}_{ $\Sigma$}T_{ $\lambda$}) and H_{\mathrm{G}\mathrm{r}}^{1}(G_{K_{\infty}},{}_{ $\Sigma$}T_{ $\lambda$}) . As z_{ $\lambda$} belongs to the image of this latter group

inside H_{\mathrm{G}\mathrm{r}}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) ,
it admits a canonical lift to \tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) . \square 

Thanks to the following results of B.Howard, we very often know that z_{ $\lambda$} is not

S‐torsion.

Proposition 2.5. [[11 ,
Theorem 3.1.1] and [12, Corollary 5]] Let  $\lambda$ be an arith‐

metic point of R. Let  T be \mathcal{T}_{\mathrm{I}\mathrm{w}} or T_{ $\lambda$}\otimes_{S}$\Lambda$_{anti} . Then the image of z_{\infty} in \tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T)
is not torsion. Assume that there exists an arithmetic point  $\mu$ of  R of weight 2 such

that L'(V_{ $\mu$}, 0) does not vanish. Then the image of z_{\infty} in \tilde{H}_{f}^{1}(G_{K, $\Sigma$}, \mathcal{T}) is not torsion

and z_{ $\lambda$} is not torsion for almost all arithmetic points  $\lambda$ of R. The set of specialization

of  R_{\mathrm{I}\mathrm{w}} such that z_{ $\lambda$} is torsion is of codimension at least 1.

An Equivariant Tamagawa Number Conjecture When S is a discrete valuation

ring and  $\lambda$ is arithmetic, the Tamagawa Number Conjecture predicts that there exists

an isomorphism of free  S‐modules

$\zeta$_{ $\lambda$,c} : S\rightarrow\det_{S}^{-1}\mathrm{R}$\Gamma$_{c}( Spec \mathcal{O}_{K}[1/ $\Sigma$], T_{ $\lambda$})

such that $\zeta$_{ $\lambda$,c}\otimes_{S}\mathrm{F}\mathrm{r}\mathrm{a}\mathrm{c}(S) expresses the p‐part of the algebraic part of the leading term

of the complex L‐function of V_{ $\lambda$} . If this isomorphism exists, then it can be modified to

give an isomorphism of free S‐modules:

$\zeta$_{ $\lambda$,f}:S\rightarrow\det_{S}^{-1}\mathrm{R}$\Gamma$_{f}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) .
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The point of this modification is to link $\zeta$_{f^{ $\lambda$}},
with the value of the p‐adic L‐function

rather than with the complex L‐function. The philosophy of the ETNC for the family
of motives \{h^{1}(X_{1}(Np^{s}))\otimes h^{0}(\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(K_{n}))\}_{s,n} predicts that there exists an isomorphism
of free R_{\mathrm{I}\mathrm{w}} ‐modules

$\zeta$_{f}:R_{\mathrm{I}\mathrm{w}}\rightarrow\det_{R_{\mathrm{I}\mathrm{w}}}^{-1}\mathrm{R}$\Gamma$_{f}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}})
verifying the change of ring property that $\zeta$_{f}\otimes_{R_{\mathrm{I}\mathrm{w}}},{}_{ $\lambda$}S is equal to $\zeta$_{ $\lambda$,f} and such that

$\zeta$_{f}\otimes Frac (  R_{\mathrm{I}\mathrm{w}}) is linked with the p‐part of the algebraic part of the leading term of the

conjectural p‐adic L‐function L_{p}.
Without assuming any conjecture, we know there is a non‐torsion element z_{\infty} inside

\tilde{H}_{f}^{1}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}) . The isomorphism

\tilde{H}_{f}^{1}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}})\otimes_{R_{\mathrm{I}\mathrm{w}}} Frac (R_{\mathrm{I}\mathrm{w}})\rightarrow^{\sim}\mathrm{H}\mathrm{o}\mathrm{m}_{R_{\mathrm{I}\mathrm{w}}}(\tilde{H}_{f}^{2}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}), R_{\mathrm{I}\mathrm{w}})\otimes_{R_{\mathrm{I}\mathrm{w}}} Frac (R_{\mathrm{I}\mathrm{w}})

of [17, Theorem 8.9.11] defines a non‐zero element z_{\infty}^{*} inside \mathrm{H}\mathrm{o}\mathrm{m}_{R_{\mathrm{I}\mathrm{w}}}(\tilde{H}_{f}^{2}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}), R_{\mathrm{I}\mathrm{w}})
\otimes \mathrm{F}\mathrm{r}\mathrm{a}\mathrm{c}(R_{\mathrm{I}\mathrm{w}}) . Choose an isomorphism:

\mathrm{H}\mathrm{o}\mathrm{m}_{R_{\mathrm{I}\mathrm{w}}}(\tilde{H}_{f}^{2}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}), R_{\mathrm{I}\mathrm{w}})\otimes_{R_{\mathrm{I}\mathrm{w}}} Frac (R_{\mathrm{I}\mathrm{w}})\rightarrow^{\sim}\tilde{H}_{f}^{2}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}})\otimes_{R_{\mathrm{I}\mathrm{w}}}\mathrm{F}\mathrm{r}\mathrm{a}\mathrm{c}(R_{\mathrm{I}\mathrm{w}}) .

Let z_{\infty}^{**} be the image of z_{\infty}^{*} under this isomorphism. Let d\in \mathrm{F}\mathrm{r}\mathrm{a}\mathrm{c}(R_{\mathrm{I}\mathrm{w}}) and  z_{\infty}'\in

\tilde{H}_{f}^{2}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}) be such that z_{\infty}^{**}=d^{-1}z_{\infty}' in \tilde{H}_{f}^{2}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}) . The maps sending  1\in

 R_{\mathrm{I}\mathrm{w}}[1] to z_{\infty} and 1\in R_{\mathrm{I}\mathrm{w}}[2] to z_{\infty}' induce a morphism of complexes:

[R_{\mathrm{I}\mathrm{w}}\rightarrow R_{\mathrm{I}\mathrm{w}}]\rightarrow \mathrm{R}$\Gamma$_{f}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}) .

We also consider the morphism

R_{\mathrm{I}\mathrm{w}}\rightarrow^{d}R_{\mathrm{I}\mathrm{w}}

viewed as a morphism of complexes concentrated in degree 0 . Let \mathscr{X}_{f}(\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) be

the product of the determinants of the cones of these morphisms of complexes. Then

\mathscr{X}_{f}(\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) does not depend on our choice of a submodule M_{ $\lambda$} of \mathcal{T}_{\mathrm{I}\mathrm{w}}^{I_{v}} for v|N ,
on our

choice of isomorphism between \tilde{H}_{f}^{2}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}) and its dual, nor on our choice of d and

z_{\infty}
�

. The isomorphism

\tilde{H}_{f}^{1}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}})\otimes_{R_{\mathrm{I}\mathrm{w}}} Frac (R_{\mathrm{I}\mathrm{w}})\rightarrow^{\sim}\tilde{H}_{f}^{2}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}})\otimes_{R_{\mathrm{I}\mathrm{w}}} Frac (R_{\mathrm{I}\mathrm{w}})

induces an isomorphism from \mathscr{X}_{f}(\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}})\otimes_{R_{\mathrm{I}\mathrm{w}}} Frac (R_{\mathrm{I}\mathrm{w}}) to Frac (R_{\mathrm{I}\mathrm{w}}) ,
which we

take to be an indentification in all that follows. Let \mathscr{J}_{f}(\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) be the image of

\mathscr{X}_{f}(\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) in Frac (R_{\mathrm{I}\mathrm{w}}) induced by this identification.

More generally, we define in the same way \mathscr{X}_{f}(T_{ $\lambda$}, S) and \mathscr{J}_{f}(T_{ $\lambda$}, S) for all S‐valued

 $\lambda$ with  z_{ $\lambda$} not S‐torsion. When in addition S is a discrete valuation ring and  $\lambda$ is a

non‐exceptional  S‐specialization, the method of Euler systems shows that \tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$})
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is free of rank 1 and hence that \tilde{H}_{f}^{2}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) is of rank 1. The isomorphism between

\mathscr{X}_{f}(T_{ $\lambda$}, S)\otimes \mathrm{F}\mathrm{r}\mathrm{a}\mathrm{c}(S) and Frac(S) then identifies \mathscr{J}_{f}(T_{ $\lambda$}, S) with:

\displaystyle \frac{|\tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$})/z_{ $\lambda$}|^{2}}{|\tilde{H}_{f}^{2}(G_{K, $\Sigma$})_{\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}}|}S.
The TNC suggests that this module is included in S ,

and is equal to S if z_{ $\lambda$} is sufficiently
well optimized. Generalizing the case of discrete valuation ring, we are led to the

following two conjectures for a specialization  $\lambda$ containing an arithmetic point and such

that  z_{ $\lambda$} is not S‐torsion.

Definition 2.6. Let Conj (T_{ $\lambda$}, S) be the statement that \mathscr{J}_{f}(T_{ $\lambda$}, S) is included

in S.

Definition 2.7. Let StrongConj (T_{ $\lambda$}, S) be the statement that \mathscr{J}_{f}(T_{ $\lambda$}, S) is

equal to S.

We consider especially the following special cases of conjectures 2.6 and 2.7, in

which we implicitly conjecture that z_{ $\lambda$} is not torsion: Conj (\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) , Conj (\mathcal{T}, R) ,

Conj (T\otimes$\Lambda$_{anti}, $\Lambda$_{anti})\mathrm{a}\mathrm{n}\mathrm{d} Conj(T�). When  $\lambda$ is an arithmetic specialization of

weight 2, StrongConj (T_{ $\lambda$}, $\Lambda$_{anti}) is reminiscent of a conjecture of B.Perrin‐Riou. When

R is regular, StrongConj (, R_{\mathrm{I}\mathrm{w}}) is a conjecture of B.Howard.

The author confesses that he is inclined to a certain dose of scepticism towards

StrongConj (T_{ $\lambda$}, S) as stated, if only because he feels the question of whether Heegner

points correspond to improved or to usual p‐adic L‐function has not been sufficiently

explored in what precedes.

§2.4. Main theorem

We now state the two main theorems of this article.

Theorem 2.8. If Conj (\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) is true, then Conj (T_{ $\lambda$}, S) is true for all spe‐

cializations  $\lambda$ containing an arithmetic specialization and such that  z_{ $\lambda$} is not torsion.

In particular, provided z_{ $\lambda$} is not torsion for these specializations, the conjectures

Conj (\mathcal{T}, R) , Conj (T\otimes$\Lambda$_{anti}, $\Lambda$_{anti}) and Conj (T, \mathrm{T}_{\mathfrak{m}}^{\mathrm{o}\mathrm{r}\mathrm{d}}(N, s)) are then true. Under

the same hypothesis, if there exists a specialization  $\lambda$ containing an arithmetic

specialization such that StrongConj (T_{ $\lambda$}, S) is true, then StrongConj (\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) and

StrongConj (T_{ $\mu$}, S) for all  $\mu$ containing an arihtmetic specialization and such that  z_{ $\mu$}

is not torsion are also true.

Theorem 2.9. Let T_{ $\lambda$} be an arithmetic specialization of \mathcal{T} with coefficients in

the discrete valuation ring S. Then:
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1. Conjecture Conj (T_{ $\lambda$}\otimes_{S}$\Lambda$_{anti}, $\Lambda$_{anti}) is true.

2. Conjecture Conj (T_{ $\lambda$}, S) is true provided z_{ $\lambda$} is not torsion.

Assume that R is a regular ring. Then:

1. Conjecture Conj (\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) is true

2. Conjecture Conj (\mathcal{T}, R) is true provided that the image z of z_{\infty} in \tilde{H}_{f}^{1}(G_{K, $\Sigma$}, \mathcal{T}) is

not torsion.

Theorem 2.8 roughly states that our conjectures are compatible with change of

base ring, while theorem 2.9 corresponds in usual cases to a divisibility of characteristic

ideals in the Iwasawa Main Conjecture. Because of their similar statement apart from

increasing generality, the reader might believe that Conj (T, S) , Conj (T\otimes$\Lambda$_{anti}, $\Lambda$_{anti}) ,

Conj (\mathcal{T}, R) and Conj (\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) are proved in that order and by roughly the same

method. In fact, this is far from true: we first establish a weaker version of Conj (T, S)
for many non‐necessarily arithmetic specializations T

,
then Conj (T\otimes$\Lambda$_{anti}, $\Lambda$_{anti}) for

the same set of T
,

then Conj (\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) and eventually ConjT, S ) and Conj (\mathcal{T}, R)
using theorem 2.8.

§3. Elements of proofs of theorems 2.8 and 2.9

This section presents the outlines of a proof of our two main theorems. As indicated

in the introduction, complete proofs of them can be found in [5].

§3.1. Control theorem for Selmer complexes

Proposition 3.1. If  $\lambda$ is an  S ‐specialization of R_{\mathrm{I}\mathrm{w}} containing an arithmetic

point, then there is a canonical isomorphism identify ing (\det_{R_{\mathrm{I}\mathrm{w}}}\mathrm{R}$\Gamma$_{f}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}))\otimes_{R_{\mathrm{I}\mathrm{w}}}S
with \det_{S}\mathrm{R}$\Gamma$_{f}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) .

Proof. It is enough to prove a comparable base‐change statement for the deter‐

minant of the complexes involved in the definition of \mathrm{R}$\Gamma$_{f}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}}) . The following

base‐change results follow from the fact that taking continuous cochains is a triangulated

way‐out functor:

C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}})\otimes_{R_{\mathrm{I}\mathrm{w}}},{}_{ $\lambda$}S\mathrm{L}\rightarrow^{\sim}C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) ,

C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G_{K_{v}}, \mathcal{T}_{\mathrm{I}\mathrm{w}})\otimes_{R_{\mathrm{I}\mathrm{w}}},{}_{ $\lambda$}S\mathrm{L}\rightarrow^{\sim}C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G_{K_{v}}, T_{ $\lambda$}) ,

C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G_{K_{v}}, \mathcal{T}_{\mathrm{I}\mathrm{w},v}^{+})\otimes_{R_{\mathrm{I}\mathrm{w}}},{}_{ $\lambda$}S\mathrm{L}\rightarrow^{\sim}C_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}(G_{K_{v}}, T_{ $\lambda$,v}^{+}) .
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To conclude, it is thus enough to prove that \det_{R_{\mathrm{I}\mathrm{w}}}\mathrm{R}$\Gamma$_{f}(G_{K_{v}}, \mathcal{T}_{\mathrm{I}\mathrm{w}}) satisfies the same

base‐change property for v|N . This in turn would follow from the fact that \mathcal{T}_{\mathrm{I}\mathrm{w}}^{I_{v}}\otimes_{R_{\mathrm{I}\mathrm{w}}},{}_{ $\lambda$}S
and T_{ $\lambda$}^{I_{v}} have the same rank over S . This is indeed true because the action of G_{K_{v}} on

$\Lambda$_{anti} is unramified and because the automorphic type of all arithmetic points of R are

the same at v . See [6] for details. \square 

Sketch of proof of theorem 2.8. Let  $\lambda$ be an  S‐specialization of R_{\mathrm{I}\mathrm{w}} containing an

arithmetic specialization and such that z_{ $\lambda$} is not torsion. According to the preceding

proposition, the determinant of the complex \mathrm{R}$\Gamma$_{f}(G_{K, $\Sigma$}, \mathcal{T}_{\mathrm{I}\mathrm{w}})\otimes_{R_{\mathrm{I}\mathrm{w}}},{}_{ $\lambda$}S\mathrm{L} is equal to the

determinant of \mathrm{R}$\Gamma$_{f}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) . By construction \mathscr{X}_{f}(\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}})\otimes_{R_{\mathrm{I}\mathrm{w}}},{}_{ $\lambda$}S is thus equal to

\mathscr{X}_{f}(T_{ $\lambda$}, S) . As an element of R_{\mathrm{I}\mathrm{w}} specializes to an element of S and to an element of

S^{\times} if and only if it is in R_{\mathrm{I}\mathrm{w}}^{\times} ,
theorem 2.8 follows. \square 

§3.2. The method of Euler systems

Assume in this sub‐section that S is a discrete valuation ring and that  $\lambda$ is a non

exceptional  S‐specialization of R_{\mathrm{I}\mathrm{w}} such that z_{ $\lambda$} is not S‐torsion. Note that we do not

assume  $\lambda$ to be arithmetic.

Proposition 3.2. The  S ‐module \tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) is fr ee of rank 1 and \tilde{H}_{f}^{2}(G_{K, $\Sigma$})
is of rank 1. Let C( $\lambda$) be:

C( $\lambda$)=(\displaystyle \prod_{v|N}|H^{1}(G_{K_{v}}, T_{ $\lambda$})/H^{1} (Fr(v) , T_{ $\lambda$}^{I_{v}} ) |)^{2}(\displaystyle \prod_{v|p}|H^{1}(G_{K_{v}}, T_{ $\lambda$}^{-})_{\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}}|)^{2}
Then:

(3.1) |\tilde{H}_{f}^{2}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$})_{\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}}|\leq C( $\lambda$)|\tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$})/z|^{2}

Equivalently, \mathscr{J}_{f}(T_{ $\lambda$}, S) is included in C( $\lambda$)^{-1}S.

Proof. This is a slightly non‐standard presentation of the standard results given by
the method of Euler systems on bound of Selmer groups, which we obtain by the methods

of [13, 9]. In these articles, it is assumed that the image of $\rho$_{ $\lambda$} contains homotheties.

We observe that in the axiomatic of [9], this is used only to establish hypothesis H.2.

Because hypothesis H.2 is an hypothesis on the residual representation \overline{ $\rho$}_{ $\lambda$} ,
it is true for

all  $\lambda$ if and only if it is true for \overline{ $\rho$} . In the appendix, we prove the group‐theoretic lemma

that hypothesis H.2 remains true under our standing assumptions that \overline{ $\rho$} is absolutely
irreducible after restriction to G_{K}. \square 

Let T_{ $\lambda$} be a specialization of T\otimes_{\mathcal{O}}$\Lambda$_{anti} with coefficients in a discrete valuation

ring S . Then T_{ $\lambda$}^{I_{v}} is equal to (T^{I_{v}}\otimes$\Lambda$_{anti})\otimes \mathrm{o}S for vfp and |H^{1}(G_{K_{v}}, T_{ $\lambda$}^{-})_{\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}}| is
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bounded by |H^{0}(G_{K_{\infty,v}}, T^{-}\otimes Frac (  S)/S)| . As long as S is fixed, C( $\lambda$) is thus bounded

independently of  $\lambda$ . We will use proposition 3.2 to show that Conj (T_{ $\lambda$}, S) is uniformly
not too false when  $\lambda$ varies among the  S‐specializations of T\otimes_{\mathcal{O}}$\Lambda$_{anti}.

§3.3. Descent for Selmer complexes

We assume henceforth that R_{\mathrm{I}\mathrm{w}} is a regular ring. Let S be a specialization of R_{\mathrm{I}\mathrm{w}}

which is a regular ring of Krull dimension at least 2 and which contains an arithmetic

point  $\lambda$ . Let  T be an S‐specialization of \mathcal{T}_{\mathrm{I}\mathrm{w}} . Let S' be a discrete valuation ring and T_{$\lambda$'}

an S'‐specialization of T . Then, the counterpart for the couple T and T_{$\lambda$'} of proposition
3.1 is not true because T^{I_{v}}\otimes_{S}S' has not in general the same rank as T_{ $\lambda$}^{I_{v}}, for v|N when

$\lambda$' is not arithmetic. Nevertheless, the R_{\mathrm{I}\mathrm{w}} ‐rank of \mathcal{T}_{\mathrm{I}\mathrm{w}}^{I_{v}} is equal to the rank of T_{ $\lambda$}^{I_{v}} ,
and

so both ranks are equal to the S‐rank of T^{I_{v}}.

Moreover, if the ranks of T^{I_{v}}\otimes_{S}S' and T_{ $\lambda$}^{I_{v}}, differ the following assertions are true:

the S'‐module T^{I_{v}}\otimes_{S}S' is of rank 1, after restriction to an open subgroup if necessary

the inertia group I_{v} acts on T through an infinite pro‐cyclic unipotent group P
,
the S'-

module T' is unramified at v . In that case, let e\in T be such that T^{I_{v}} and e generates
the Frac (S)‐vector space T\otimes_{S}\mathrm{F}\mathrm{r}\mathrm{a}\mathrm{c}(S) . Let  $\sigma$ be a generator of  P . Then,  $\sigma$ e=au+e

with a\neq 0 . The element a thus belongs to the kernel of $\lambda$'

Hence the ranks of T^{I_{v}}\otimes_{S}S' and of T_{ $\lambda$}^{I_{v}}, are equal outside a finite union of irreducible

components of codimension 1. Thus, there exists a \mathfrak{m}_{S} ‐adically dense subset of regular

specialization such that (\det_{S}\mathrm{R}$\Gamma$_{f}(G_{K},{}_{ $\Sigma$}T))\otimes_{S,$\lambda$'}S' is equal to \det_{S'}\mathrm{R}$\Gamma$_{f}(G_{K},{}_{ $\Sigma$}T_{$\lambda$'}) .

Together with the following lemma, this will imply proposition 3.4, which is very useful

to relate Conj (T, S) to Conj (T', S

Lemma 3.3. Let I be an invertible ideal which is not included in S.

1. For all X\in \mathfrak{m}_{S} except possibly those contained in a locus of dimension 1 and all

n_{0}\geq 0 there exists a specialization S' of S such that S' is regular, the dimension of
S' is less than the dimension of S and I\otimes_{S}S' is an invertible ideal which does not

belong to S'[1/X^{n_{0}}].

2. There exists a discrete valuation ring A of residual characteristic p such that for all

n_{0}\geq 0 ,
there exists a set of A ‐specializations  $\Phi$ of codimension zero such that for

all  $\phi$\in $\Phi$ ,
the  A ‐module I_{\otimes, $\phi$}A is an invertible ideal which does not belong to \displaystyle \frac{1}{\mathfrak{m}_{A}^{n_{0}}}A

Proof. Let (a, b)\in S^{2} be such that I=\displaystyle \frac{a}{b}S . Because S is Cohen‐Macaulay, the

prime divisors of b have height 1. Because a\not\in bS ,
there exists a prime pb such that

a\not\in bS_{\mathfrak{p}} . Because S_{\mathfrak{p}} is a discrete valuation ring, the \mathfrak{p} ‐valuation of a is less than the

\mathfrak{p}‐valuation of b . Because S is factorial, we can then assume that \mathfrak{p}faS . Let X\in \mathfrak{m}_{S}
be an element not contained in \mathfrak{p} and let  $\varpi$ be a generator of \mathfrak{p} . For all n>0 ,

let
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$\phi$_{X,n} be the surjection from S to S_{X,n}=S/( $\varpi$-X^{n}) . Then $\phi$_{X,n}(b) belongs to (X^{n})
for all n\geq 0 . For n large enough, $\phi$_{X,n}(b)\neq 0 . Because a\not\in \mathfrak{p} ,

for n large enough

$\phi$_{X,n}(a)\not\in (Xn). Consequently, for all  n_{0}\geq 0 ,
there exists an n_{1} such that for all

n\geq n_{1} the following properties are true: the element  $\varpi$+X^{n} is part of a system of

generators, $\phi$_{X,n}(a/b) is well‐defined and does not belong to \displaystyle \frac{1}{X^{n_{0}}}S_{X,n}.
Because the previous procedure can be carried on with an arbitrary X\in \mathfrak{m}_{S} ,

we

can ensure that S_{X,n} has residual characteristic p . Proceeding by descending induction

on dimension if necessary, we construct in this way a discrete valuation ring A and

specializations $\phi$_{n} such that I\otimes_{S,$\phi$_{n}} A is an invertible ideal and such that for all n_{0},

there exists an n_{1} such that I_{\otimes_{S,$\phi$_{n}}} A does not belong to \displaystyle \frac{1}{\mathfrak{m}_{A}^{n_{0}}}A for all n\geq n_{1} . Let $\phi$_{n} be

such a specialization and let  $\phi$ be a specialization such that for all  x\in \mathrm{k}\mathrm{e}\mathrm{r} $\phi$ ,
there exists

a  y\in \mathrm{k}\mathrm{e}\mathrm{r}$\phi$_{n} such that x-y\in \mathfrak{m}_{S}^{m} . For m large enough,  $\phi$ has values in  A by Hensel�s

lemma and  $\phi$ satisfies the same properties as  $\phi$_{n} . This set of  $\phi$ is of codimension  0. \square 

Proposition 3.4. Assume that the image of \mathscr{J}_{f}(T, S) inside Frac (S) is not con‐

tained in S. Then there exists a discrete valuation ring A with residual characteristic p

such that for all M\in \mathbb{N} , there exists a non‐exceptional A ‐specialization  $\phi$ such that  z_{ $\phi$}

is not torsion and such that \mathscr{J}_{f}(T_{ $\phi$}, A) does not belong to \displaystyle \frac{1}{\mathfrak{m}_{A}^{M}} A. Moreover, the set of
such specializations is of codimension 0.

Remark: This proposition aims to convey the idea that if \mathscr{J}_{f}(T, S) is not integral,
there exists many specializations which are arbitrarily non‐integral.

Proof. Let M be an integer. According to lemma 3.3, there exists a discrete valua‐

tion ring A of residual characteristic p and a set $\Phi$^{*} of A‐specializations of codimension

0 such that \mathscr{J}_{f}(T, S)\otimes_{S} A is not Frac (S) and does not belong to \displaystyle \frac{1}{\mathfrak{m}_{A}^{M}}A . The set of

 $\phi$\in$\Phi$^{*} such that  $\phi$ is exceptional, or  $\phi$(z) is torsion or the rank of T^{I_{v}} is not the same

as the rank of T_{ $\phi$}^{I_{v}} for some v is contained in the union of finitely many components all

of codimension at least 1. Hence, the set  $\Phi$\subset$\Phi$^{*} such that  $\phi$\in $\Phi$ is not exceptional,

 $\phi$(z) is not torsion and such that \mathscr{J}_{f}(T, S)\otimes_{S, $\phi$}A=\mathscr{J}_{f}(T_{ $\phi$}, A) is of codimension 0 . In

particular,  $\Phi$ is not empty. \square 

We now sketch the strategy to complete the proof of theorem 2.9.

Sketch of proof of theorem 2.9. For ease of notation, when S is a discrete valuation

ring containing \mathcal{O} ,
we write \otimes_{S}$\Lambda$_{anti} for \otimes_{S}S[[\mathrm{G}\mathrm{a}1(K_{\infty}/K)]] in the following proof.

Let  $\lambda$ be an arithmetic specialization of  R with values in a discrete valuation ring
S . First, we prove Conj (T_{ $\lambda$}\otimes_{S}$\Lambda$_{anti}, $\Lambda$_{anti}) . Assume Conj (T_{ $\lambda$}\otimes_{S}$\Lambda$_{anti}, $\Lambda$_{anti}) is false.

According to proposition 3.4, for all M there exists a discrete valuation ring A and a

non‐exceptional A‐specialization  $\mu$ such that \mathscr{J}_{f}(T_{ $\mu$}, A) is not equal to Frac(S) and does

not belong to \displaystyle \frac{1}{\mathfrak{m}_{A}}A . According to proposition 2.5, the set of A‐specialization of $\Lambda$_{anti}
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such that z_{ $\phi$} is torsion is finite. Hence, there exists an A‐specialization  $\mu$ as above with

 z_{ $\mu$} not torsion. Choosing M larger than C a uniform bound on the C() contradicts

proposition 3.2. Hence Conj (T_{ $\lambda$}\otimes_{S}$\Lambda$_{anti}, $\Lambda$_{anti}) is true.

Next, we remove the hypothesis that  $\lambda$ is arithmetic. In that case, it is not known in

general that  z\in\tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}\otimes_{S}$\Lambda$_{anti}) is non torsion, so we make this supplementary

hypothesis. Let  $\lambda$ be a non‐exceptional specialization of  R with values in a discrete

valuation ring S and such that z_{ $\lambda$} is not torsion. Then, z_{ $\lambda$,anti}\in\tilde{H}_{f}^{1}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}\otimes_{S}$\Lambda$_{anti})
is not torsion so the set of A‐specialization  $\mu$ of  $\Lambda$_{anti} such that z_{ $\mu$} is torsion is finite.

Assume Conj (T_{ $\lambda$}\otimes_{S}$\Lambda$_{anti}, $\Lambda$_{anti}) is false. According to proposition 3.4, for all M there

exists a discrete valuation ring A and a non‐exceptional A‐specialization  $\mu$ such that

\mathscr{J}_{f}(T_{ $\mu$}, A) is not equal to Frac (S) and does not belong to \displaystyle \frac{1}{\mathfrak{m}_{A}}A . Hence, there exists an

A‐specialization  $\mu$ as above with  z_{ $\mu$} not torsion. Choosing M larger than C a uniform

bound on the C() contradicts proposition 3.2. Hence Conj (T_{ $\lambda$}\otimes_{S}$\Lambda$_{anti}, $\Lambda$_{anti}) is true.

We wish to apply theorem 2.8 to deduce that Conj (T_{ $\lambda$}, S) is true for all non‐

exceptional  $\lambda$ with  z_{ $\lambda$} not torsion. Theorem 2.8 does not apply verbatim because  $\lambda$ is

not necessarily arithmetic, so does not necessarily contain an arithmetic specialization.

However, the hypotheses that  $\lambda$ contains an arithmetic specialization is used only to

show that descent with respect to the variable in  R induces no error term. Descent with

respect to the variables in $\Lambda$_{anti} ,
which is the only one intervening here, induces no error

because, as already mentioned in the proof of theorem 2.8, (T_{ $\lambda$}\otimes_{S}$\Lambda$_{anti})^{I_{v}} is equal to

 T_{ $\lambda$}^{I_{v}}\otimes_{S} $\Lambda$ . Hence Conj (T_{ $\lambda$}, S) is true for all non‐exceptional  $\lambda$ with  z_{ $\lambda$} not torsion.

We observe that the set of specialization  $\lambda$ which are exceptional or such that  z_{ $\lambda$}

is torsion is of codimension at least 1, and thus that the set of specialization  $\lambda$ such

that Conj (T_{ $\lambda$}, A) is false is of codimension at least 1. Assume that Conj (, R_{\mathrm{I}\mathrm{w}})
is false. Using proposition 3.4, for all integer M

,
we can choose a discrete valuation

ring A and an A‐specialization  $\mu$ such that \mathscr{J}_{f}(T_{ $\mu$}, A) is neither Frac (A) nor contained

in \displaystyle \frac{1}{\mathfrak{m}_{A}^{M}}A . In particular Conj (T_{ $\mu$}, A) is false. Because the set of A‐specialization  $\lambda$ for

which Conj (T_{ $\lambda$}, A) is false is of codimension at least 1, for all M'
,

there exists an A‐

specialization  $\lambda$ for which Conj (T_{ $\lambda$}, A) is true and such that \mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$- $\mu$) belongs to \mathfrak{m}_{R_{\mathrm{I}\mathrm{w}}}^{M'}.
Choosing M' large enough, we find a specialization  $\lambda$ for which Conj (T_{ $\lambda$}, A) is both

true and false. This is absurd, so we established Conj (\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) .

By theorem 2.8, we deduce that if z\in\tilde{H}_{f}^{1}(G_{K, $\Sigma$}, \mathcal{T}) is not torsion, then Conj (\mathcal{T}, R)
is true. Finally, if  $\lambda$ contains an arithmetic specialization, Conj (T_{ $\lambda$}, S) is true by theo‐

rem 2.8. \square 

We remark that this proves a bound on the size of Selmer groups of modular forms

in anticyclotomic tower even in the case of multiplicative reduction.
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§4. Perspectives

§4.1. Leading term of p‐adic L‐function and p‐adic height pairing

We observe that the knowledge of the non‐torsion class z_{ $\lambda$} induces a trivialization

of \det_{S}\mathrm{R}$\Gamma$_{f}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}) ,
and hence allows a formulation of a variant of the ETNC, even

though the p‐adic L‐function vanishes and even though we do not assume that the p‐adic

height pairing is not degenerate.
When the p‐adic height pairing is known to be non‐degenerate and z_{ $\lambda$} is not torsion,

then the convoluted construction of \mathscr{X}_{f}(T_{ $\lambda$}, S) can be replaced by the product of the

determinants of the following complexes:

Cone (S[-1]\rightarrow^{z_{ $\lambda$}}\mathrm{R}$\Gamma$_{f}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$})) ,

Cone (S[1] h\rightarrow \mathrm{R}\mathrm{H}\mathrm{o}\mathrm{m}_{S}(\mathrm{R}$\Gamma$_{f}(G_{K},{}_{ $\Sigma$}T_{ $\lambda$}),S(z_{ $\lambda$},\cdot),

Interpreting \mathscr{X}_{f}(T_{ $\lambda$}, S) as the determinant of the cone of the morphism

S[-1]h(z,z)\rightarrow S[-1]
associates h(z, z) with an element of S which we naturally conjecture to be the algebraic

part of  $\lambda$(L_{p}(\mathcal{T}_{\mathrm{I}\mathrm{w}})) . Here again, the author would like to express his scepticism about

the literal truth of the previous statement as he feels the issue of whether it is the

improved or standard p‐adic L‐function which appears has not been enough explored in

what precedes.

§4.2. Totally real field F and quaternion algebras

Theorems 2.8 and 2.9 can be generalized fairly well to nearly ordinary automorphic

representations of the multiplicative group of a quaternion algebra over a totally real

field such that at most one infinite place does not ramify, though several hurdles appear

in this more general setting.
In the indefinite case, we refer the reader to [5] and explain here the most serious

difficulties. First, one replaces the tower of modular curves X(Np) by a tower of

compact Shimura curves X(s) . However, as the q‐expansion principle is then lacking,
the freeness of e_{\mathfrak{m}}^{ord}H_{et}^{1}(X(1)\times{}_{F}\overline{F}, \mathcal{O}) over the Hecke algebra is in general not known

(it is typically known under some conditions on \overline{ $\rho$}_{f} ,
in which case it follows from the

Taylor‐Wiles machinery). Considering general quaternion algebra allows for more supple
choices of N and K

,
as the construction of CM points does not require that all primes

dividing N split in K
,

as in [10, 4]. But under these more general conditions, the

class z_{ $\lambda$} is not known to belong to H_{f}^{1}(G_{K_{v}}, T_{ $\lambda$}) at places v dividing N and inert in

K . Consequently, we are only able to prove that \mathscr{J}_{f}(T_{ $\lambda$}\otimes_{S}$\Lambda$_{a}, T_{ $\lambda$}\otimes_{S}$\Lambda$_{a}) is in $\Lambda$_{a}[1/p].
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Multiplying z_{ $\lambda$} by the product of the Tamagawa numbers at prime dividing N and inert

in K allows for a proof of Conj (\mathcal{T}_{\mathrm{I}\mathrm{w}}, R_{\mathrm{I}\mathrm{w}}) along the same lines as in this text. This is

in agreement with the remark of V.Vatsal that the  $\mu$‐invariant of anticyclotomic  p‐adic

L‐functions should not always be zero.

Recent and forthcoming works of M.Longo and S.Vigni treat simultaneously the

definite and indefinite case over Q.

Appendix

In the proof of proposition 3.2, we use results from [9]. However, this article makes

the assumption that the image of \overline{ $\rho$}_{|G_{K}} contains all homotheties. In this appendix, we

explain how to modify the proof of [9, Theorem 1.6.1] in order to replace the hypothesis
that the image of \overline{ $\rho$}_{|G_{K}} contains all homotheties with our standing assumption that \overline{ $\rho$}_{|G_{K}}
is absolutely irreducible. The author thanks the referee for insisting that the proof of

proposition 3.2 be firmly linked with the axiomatic method of [9]. All references are to

[9].
Let G be the image of \overline{ $\rho$}_{|G_{K}} . The hypothesis that G contains all homotheties is

used in [9] in precisely one instance: in the proof of theorem 1.6.5, it is used to show

that H^{1}(G, \overline{T}) vanishes. This vanishing implies that \overline{ $\rho$}_{|G_{K}} satisfies Hypothesis H.2.

Hypothesis H.2 is part of the axiomatic setting used to prove theorem 1.6.1, which we

wish to use. It is thus enough to prove that H^{1}(G, \overline{T}) vanishes. The proof that \overline{ $\rho$}

satisfies Hypothesis H.2 will then be identical to that given in theorem 1.6.5.

Let k be the field of coefficients of \overline{ $\rho$} . Assume first that pf|G| . Because \overline{T} is a

k‐vector space and G is a finite group, the group H^{1}(G, \overline{T}) then vanishes. Hence, we

can assume that p||G| . Because p\geq 5 ,
Dickson�s classification of finite subgroups of

GL_{2}(\overline{\mathrm{F}}_{p}) implies that the elements of order divisible by p are included inside a Borel B

or generate \mathrm{s}\mathrm{L}(\mathrm{F}) for some power q of p . Assume the first possibility holds. Then all

elements of order p stabilize a line D in k^{2} . Because conjugation does not change the

order of an element, the group G fixes D so G is included inside B . This contradicts

the fact that G acts irreducibly. Hence, we are in the second case. Then G contains

the non‐trivial homothety  $\mu$=\left(\begin{array}{ll}
-1 & 0\\
0 & -1
\end{array}\right) . Because  $\mu$ is in the center of  G and  $\mu$-1 is

invertible, Sah�s lemma imply that H^{1}(G, \overline{T}) vanishes.
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