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Factorization of Shintani�s ray class invariant for

totally real fields

By

Shuji YAMAMOTO *

Abstract

In this article, we first announce the results of the paper [7], in which some formulas are

given for L‐functions of totally real number fields and Shintani�s ray class invariant X(C). For

detailed proofs, please refer to [7]. Moreover, in §3, we give a new formula for the Shintani

invariant in the case of real quadratic fields.

§1. Partial zeta function and cone decomposition

Let F be a totally real number field of degree n . For an integral ideal \mathfrak{f} of F
,

we

denote by Cl_{F}(\mathrm{f}) the narrow ray class group modulo \mathfrak{f} . We are interested in the partial
zeta function

 $\zeta$(s, \displaystyle \mathrm{C}):=\sum_{ $\alpha$\in \mathrm{C}, $\alpha$\subset O_{F}}\mathrm{N}(a)^{-s}
attached to each class \mathrm{C}\in Cl_{F}(\mathfrak{f})(O_{F} denotes the ring of integers in F and \mathrm{N} the

norm for F/\mathbb{Q} ). In this section, we recall a method to analyze these functions given by
T. Shintani [2].

First, let us choose an integral representative a\in \mathrm{C} and an element z\in F_{+} (here
and in the following, the notation A+ means the subset of totally positive elements of

A) . Then, if we put \mathrm{b}=za^{-1}\mathfrak{f} , we have

 $\zeta$(s, \displaystyle \mathrm{C})=\mathrm{N}(\mathrm{b}\mathfrak{f}^{-1})^{s}\sum_{ $\beta$\in(z+\mathrm{b})_{+}/E_{\mathfrak{f}}}\mathrm{N}( $\beta$)^{-s},
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where E_{\mathrm{f}} denotes the group of totally positive units which are congruent to 1 modulo

\mathfrak{f} . Hence we may study the function

$\zeta$_{\mathrm{f}}(s, z+\displaystyle \mathrm{b}):=\sum_{ $\beta$\in(z+\mathrm{b})_{+/E_{\mathfrak{f}}}}\mathrm{N}( $\beta$)^{-s}
instead of the original partial zeta function  $\zeta$(s, \mathrm{C}) .

Next, we further rewrite the above function by using a cone decomposition. A cone

 $\sigma$ is a subset of  F\otimes \mathbb{R}\cong \mathbb{R}^{n} which can be written as  $\sigma$=\mathbb{R}_{+}$\omega$_{1}+\cdots+\mathbb{R}_{+}$\omega$_{d} with

linearly independent vectors !;::. ; $\omega$_{d} . It is called rational if the generators $\omega$_{1} ,
. .

:; $\omega$_{d}

can be taken from F.

We take a finite set  $\Phi$ of rational cones in (F\otimes \mathbb{R})_{+} satisfying

(F\otimes \mathbb{R})_{+}=\coprod_{ $\epsilon$\in E_{\mathfrak{f}}}\coprod_{ $\sigma$\in $\Phi$} $\epsilon \sigma$,
i.e. the (disjoint) union of cones in  $\Phi$ forms a fundamental domain for (F\otimes \mathbb{R})_{+}/E_{\mathrm{f}} (the
existence of such  $\Phi$ was shown by Shintani [2, Proposition 4]). Then we have

(1.1)  $\zeta$_{\mathrm{f}}(s, z+\displaystyle \mathrm{b})=\sum_{ $\sigma$\in $\Phi$} $\zeta$(s, z+\mathrm{b},  $\sigma$) ,

where

(1.2)  $\zeta$(s, z+\displaystyle \mathrm{b},  $\sigma$) := \sum \mathrm{N}( $\beta$)^{-s}
 $\beta$\in(z+\mathrm{b})\cap $\sigma$

The identity (1.1) says that the study of the partial zeta function can be reduced to

the combinatorics on the set of cones  $\Phi$ and the analysis of each function  $\zeta$(s, z+\mathrm{b},  $\sigma$) .

Our results, explained in the next section, is obtained in this way.

Remark. In fact, for our purpose, it is sufficient to consider a finite set  $\Phi$ of

rational cones and a collection of real numbers ($\alpha$_{ $\sigma$})_{ $\sigma$\in $\Phi$} such that

1 (F\displaystyle \otimes \mathbb{R})_{+}=\sum_{ $\epsilon$\in E_{\mathfrak{f}}}\sum_{ $\sigma$\in $\Phi$}$\alpha$_{ $\sigma$}1_{\in $\sigma$},
where 1_{A} denotes the dening function of A . Obviously, this leads to the identity

$\zeta$_{\mathrm{f}}(s, z+\displaystyle \mathrm{b})=\sum_{ $\sigma$\in $\Phi$}$\alpha$_{ $\sigma$} $\zeta$(s, z+\mathrm{b},  $\sigma$) .

Such \mathrm{a}^{(}\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{e}\mathrm{d}
�
cone decomposition might be convenient from the computational point

of view (cf. [1, Section 5
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§2. Main theorem

Here we state the main results obtained in [7], about the Shintani invariant

(2.1) X(C) :=\exp(-$\zeta$'(0, \mathrm{C})+(-1)^{n}$\zeta$'(0,  $\mu$ \mathrm{C})) .

Here  $\mu$ denotes an element of  O_{F} which is totally negative and congruent to 1 modulo

\mathfrak{f} (the ray class of the principal ideal generated by such  $\mu$ is independent of the choice

of  $\mu$) . This is a direct generalization of the invariant dened by Shintani [5] for real

quadratic fields, up to inversion.

To state the precise theorem, we number n embeddings of F into \mathbb{R} and denote

them by x\mapsto x^{(i)}(i=1, \ldots, n) . Then, for each i
,

we put

(2.2) $\zeta$_{i}(s, z+\displaystyle \mathrm{b},  $\sigma$) := \sum ($\beta$^{(i)})^{-s}
 $\beta$\in(z+\mathrm{b})\cap $\sigma$

(compare with (1.2)).

Theorem 2.1.

(1) We have a fa ctorization X(C) =X_{1}(\mathrm{C})\cdots X_{n}(\mathrm{C}) ,
where

(2.3) X_{i}(\mathrm{C}) :=\displaystyle \prod_{ $\sigma$\in $\Phi$}\exp\{-$\zeta$_{i}'(0, z+\mathrm{b},  $\sigma$)+(-1)^{\dim $\sigma$}$\zeta$_{i}'(0, -z+\mathrm{b},  $\sigma$)\}.
(2) \mathrm{X}(\mathrm{C}) is independent of the choices of a, z and  $\Phi$ (and hence of b).

(3) If  $\mu$_{i} is an element of O_{F} satisfy ing

$\mu$_{i}\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} \mathfrak{f}, $\mu$_{i}^{(i)}<0 and $\mu$_{i}^{(j)}>0(j\neq i) ,

then we have

(2.4) X_{i}($\mu$_{i}\mathrm{C})=\mathrm{X}(\mathrm{C}) and X_{i}($\mu$_{j}\mathrm{C})=X_{i}(\mathrm{C})^{-1}(j\neq i) .

We call \mathrm{X}(\mathrm{C}) the i‐th fa ctor of the Shintani invariant. It may be regarded as the

contribution of the i‐th real place of F to the Shintani invariant X(C). The following

formula, which is a direct consequence of (2.4), indicates an intrinsic meaning of each

factor X_{i}(\mathrm{C}) :

Corollary 2.2. Let  $\chi$:Cl_{F}(\mathfrak{f})\rightarrow \mathbb{C}^{\times} be a Dirichlet character modulo \mathfrak{f} and

L(s,  $\chi$)=\displaystyle \sum_{\mathrm{C}} $\chi$(\mathrm{C}) $\zeta$(s, \mathrm{C}) the associated L ‐function. Assume that there is an index

i\in\{1, . . . , n\} such that

 $\chi$($\mu$_{i})=+1 and  $\chi$($\mu$_{j})=-1 (j\neq i) .
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Then we have

(2.5) L'(0,  $\chi$)=-\displaystyle \frac{1}{2} \sum  $\chi$(\mathrm{C})\log X_{i}(\mathrm{C}) .

\mathrm{C}\in Cl_{F}(\mathrm{f})

Note that, if  $\chi$ is a primitive Dirichlet character, the order of  L(s,  $\chi$) at s=0 is

equal to the number of +1 in  $\chi$($\mu$_{1}) ,
.

::,  $\chi$($\mu$_{n}) . When the order is 1, the above corollary

says that the leading Taylor coefficient L'(0,  $\chi$) can be expressed by the contribution of

the only real place at which  $\chi$($\mu$_{i})=+1 holds. Similar formulas in the case of higher
order have not been found so far.

Remark. The equation (2.5) leads to a relation between the invariants \mathrm{X}(\mathrm{C})
and certain Stark units. In fact, \mathrm{X}(\mathrm{C}) is equal to an (absolute value of) Stark unit

for the class field corresponding to the group Cl_{F}(\mathfrak{f})/\{1, $\mu$_{i}\} ,
under the assumption of

the existence of such a unit (the precise statement is given in [7, §2]). This explains an

arithmetic meaning of the factors X_{i}(\mathrm{C})

§3. Another expression of \mathrm{X}(\mathrm{C}) in the quadratic case

By theorem 2.1 (3), we may dene the invariant \mathrm{X}(\mathrm{C}) by X_{i}(\mathrm{C})=(X(\mathrm{C})X($\mu$_{i}\mathrm{C}))^{\frac{1}{2}}.
Then the equation (2.3) will be an analytic expression of X_{i}(\mathrm{C}) . Indeed, the right hand

side of (2.3) is a finite product of special values of multiple sine functions. Hence,
if the Stark conjecture is true, this formula gives a partial answer to Hilbert�s twelfth

problem (generating the class fields of a number field by special values of certain analytic

functions).
In this section, we give another expression for \mathrm{X}(\mathrm{C}) in the case that F is a real

quadratic field, by transforming the finite product (2.3). Although we explain this result

by an example, we can easily generalize it to general real quadratic fields by using the

theory of continued fractions (cf. [6]).
We use the following example from [6] (this is essentially an example given in [3]):

For K=\mathbb{Q}(\sqrt{21}) , \mathfrak{f}=(3) and \mathrm{C}=[O_{K}] ,
we have

(3.1) X_{1}(\mathrm{C})=X_{2}(\mathrm{C})=\sqrt{\frac{1}{2}(\frac{1+\sqrt{21}}{2}-\sqrt{\frac{3+\sqrt{21}}{2}})}
=S_{2}(\displaystyle \frac{ $\epsilon$}{3},  $\epsilon$)S_{2}(\frac{2 $\epsilon$+2}{3},  $\epsilon$)S_{2}(\frac{3 $\epsilon$+1}{3},  $\epsilon$) ,

where  $\epsilon$=\displaystyle \frac{5+\sqrt{21}}{2} and S_{2} is the double sine function dened by

S_{2}(z,  $\omega$)=\exp\{-$\zeta$_{2}'(0, z,  $\omega$)+$\zeta$_{2}'(0,1+ $\omega$-z,  $\omega$)\},

$\zeta$_{2}(s, z,  $\omega$)=\displaystyle \sum_{m,n=0}^{\infty}(z+m $\omega$+n)^{-s}
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Now let us recall the following formula obtained by Shintani [3]: if {\rm Im} $\tau$>0,

(3.2)

S_{2}(z,  $\tau$)=\displaystyle \sqrt{i}\exp\frac{ $\pi$ i}{12}( $\tau$+\frac{1}{ $\tau$})\frac{\prod_{m=0}^{\infty}(1-\exp 2 $\pi$ i(m $\tau$+z))}{\prod_{m=1}^{\infty}(1-\exp 2 $\pi$ i(\frac{-m+z}{ $\tau$}))}\exp\frac{ $\pi$ i}{2}\{\frac{z^{2}}{ $\tau$}-(1+\frac{1}{ $\tau$})z\}.
In particular, if we put

f(x, y,  $\tau$)=\displaystyle \prod_{m=0}^{\infty}\{1-\exp 2 $\pi$ i(m $\tau$+x $\tau$+y)\},
we have

(3.3) S_{2}(x $\omega$+y,  $\omega$)=\displaystyle \lim_{ $\tau$\rightarrow $\omega$}|S_{2}(x $\tau$+y,  $\tau$)|=\lim_{ $\tau$\rightarrow $\omega$}|\frac{f(x,y, $\tau$)}{f(1-y,x,-1/ $\tau$)}|
for  $\omega$>0 and x, y\in \mathbb{R} (note that the left hand side is a positive real number).

Proposition 3.1. The value \mathrm{X}(\mathrm{C}) given in (3.1) satises the equality

X_{1}(\displaystyle \mathrm{C})=\lim_{ $\tau$\rightarrow $\epsilon$}|\frac{f(1,\frac{1}{3}, $\tau$)}{f(1,\frac{1}{3}, $\gamma \tau$)}|,
where  $\gamma$=\left(\begin{array}{ll}
5 & -1\\
1 & 0
\end{array}\right)\in \mathrm{S}\mathrm{L}() acts on the upper half plane in the usual manner.

Proof. Applying (3.3) to the last expression in (3.1), we obtain

(3.4) X_{1}(\displaystyle \mathrm{C})=\lim_{$\tau$_{1\rightarrow\in}}|\frac{f(\frac{1}{3},0,$\tau$_{1})}{f(1,\frac{1}{3},-\frac{1}{$\tau$_{1}})}\frac{f(\frac{2}{3},\frac{2}{3},$\tau$_{2})}{f(\frac{1}{3},\frac{2}{3},-\frac{1}{$\tau$_{2}})}\frac{f(1,\frac{1}{3},$\tau$_{3})}{f(\frac{2}{3},1,-\frac{1}{$\tau$_{3}})}|.
Here we dene $\tau$_{k} inductively by $\tau$_{k}=5-\displaystyle \frac{1}{\mathcal{T}k+1} . Since  $\epsilon$=\displaystyle \frac{5+\sqrt{21}}{2} satises  $\epsilon$=5-\displaystyle \frac{1}{ $\epsilon$} ,

all

$\tau$_{k} tend to  $\epsilon$ when  $\tau$_{1} tends to  $\epsilon$.

Using the equalities f(x, y,  $\tau$+1)=f(x, x+y,  $\tau$) and f(x, y+1,  $\tau$)=f(x, y,  $\tau$) ,

the right hand side of (3.4) can be rewritten as

X_{1}(\displaystyle \mathrm{C})=\lim_{$\tau$_{1\rightarrow\in}}
(3.5)

=\displaystyle \lim_{$\tau$_{1\rightarrow\in}}

\displaystyle \frac{f(\frac{1}{3},0,$\tau$_{1})}{f(1,\frac{1}{3}-5,5-\frac{1}{$\tau$_{1}})}\frac{f(\frac{2}{3},\frac{2}{3},$\tau$_{2})}{f(\frac{1}{3},\frac{2}{3}-\frac{5}{3},5-\frac{1}{$\tau$_{2}})}\frac{f(1,\frac{1}{3},$\tau$_{3})}{f(\frac{2}{3},1-\frac{10}{3},5-\frac{1}{$\tau$_{3}})}
\displaystyle \frac{f(\frac{1}{3},0,$\tau$_{1})}{f(1,\frac{1}{3},$\tau$_{0})}\frac{f(\frac{2}{3},\frac{2}{3},$\tau$_{2})}{f(\frac{1}{3},0,$\tau$_{1})}\frac{f(1,\frac{1}{3},$\tau$_{3})}{f(\frac{2}{3},\frac{2}{3},$\tau$_{2})}|=\lim_{ $\tau$\rightarrow $\epsilon$}|\frac{f(1,\frac{1}{3}, $\tau$)}{f(1,\frac{1}{3}, $\gamma \tau$)}|,

hence the proof is complete.
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An advantage of this new expression is that there is only a single fraction, instead

of a finite product. Indeed, the reduction in the last equality of (3.5) reects the

combinatorial structure involved in the original finite product expression, hence we may

concentrate on the analytic properties of the single function f(x, y,  $\tau$) .

As was mentioned earlier, it is easy to generalize Proposition 3.1 to general real

quadratic fields. On the other hand, to the author�s knowledge, the corresponding

expression has not been found yet in the case of degree greater than 2. It could be

interesting to look for such a formula, while it seems more important to find good

applications of the above formula in the quadratic case.
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