タイトル
Kisin conjecture on the moduli spaces of finite at models
(Algebraic Number Theory and Related Topics 2008)

著者
IMAI, Naoki

引用
数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu
(2010), B19: 25-33

発行年月
2010-06

URL
http://hdl.handle.net/2433/176884

種別
Departmental Bulletin Paper

テキストバージョン
publisher
Kyoto University
Kisin conjecture on the moduli spaces of finite flat models

By

Naoki IMAI*

Abstract

We explain a relationship between a local universal deformation ring and a moduli space of finite flat models. We also give an outline of a proof of the Kisin conjecture on the connected components of the moduli space of finite flat models.

Introduction

Let K be a p-adic field for $p > 2$. We consider a two-dimensional continuous representation V_{F} of the absolute Galois group G_K over a finite field F of characteristic p. By a finite flat model of V_{F}, we mean a finite flat group scheme G over O_K, equipped with an action of F, and an isomorphism $V_{F} \sim G(K)$ that respects the action of G_K and F. Then there exists a moduli space of finite flat models of V_{F}, which is projective scheme over F, and we denoted it by $\mathscr{G} \mathscr{R}_{V_{F},0}$. Let $\mathscr{G} \mathscr{R}_{V_{F},0}^{\vee}$ be the closed subscheme of $\mathscr{G} \mathscr{R}_{V_{F},0}$ determined by the condition that the p-adic Hodge type is (1).

It is important to study the connected components of $\mathscr{G} \mathscr{R}_{V_{F},0}^{\vee}$, since it gives us information of a deformation ring. The ordinary component of $\mathscr{G} \mathscr{R}_{V_{F},0}^{\vee}$ was determined in [Kis], and Kisin conjectured that the non-ordinary component is connected. In this survey paper, we explain the relationship between $\mathscr{G} \mathscr{R}_{V_{F},0}^{\vee}$ and a deformation ring. We also give an outline of a proof of the Kisin conjecture. The theory of the moduli space of finite flat models was established in [Kis], and the Kisin conjecture was proved by Kisin in [Kis] if K is totally ramified over \mathbb{Q}_p, by Gee in [Gee] if V_{F} is the trivial representation, and by the author in [Ima] for general K and V_{F}.
Acknowledgment

The author would like to thank a referee for a careful reading of this paper and suggestions for improvements.

Notation

Throughout this paper, we use the following notation. Let \(p > 2 \) be a prime number. For a positive number \(m \), the finite field of cardinality \(p^m \) is denoted by \(\mathbb{F}_{p^m} \). Let \(k \) be the finite extension of \(\mathbb{F}_p \) of cardinality \(q = p^m \). For a ring \(R \), the ring of Witt vectors over \(R \) with respect to \(p \) is denoted by \(W(R) \). Let \(K \) be a totally ramified extension of \(K_0 \) of degree \(e \). The ring of integers of \(K \) is denoted by \(\mathcal{O}_K \), and the absolute Galois group of \(K \) is denoted by \(G_K \). Let \(\mathbb{F} \) be a finite field of characteristic \(p \). The formal power series ring of \(u \) over \(\mathbb{F} \) is denoted by \(\mathbb{F}[[u]] \), and its quotient field is denoted by \(\mathbb{F}(u) \). Let \(v_u \) be the valuation of \(\mathbb{F}(u) \) normalized by \(v_u(u) = 1 \). For a local ring \(A \), the maximal ideal of \(A \) is denoted by \(\mathfrak{m}_A \). For a topological space \(X \), the set of connected components of \(X \) is denoted by \(\pi_0(X) \).

§ 1. Deformation ring and moduli space of finite flat models

In this section, we explain the relationship between a deformation ring and a moduli space of finite flat models.

First, we are going to introduce a deformation ring. Let \(V_{\mathbb{F}} \) be a two-dimensional continuous \(G_K \)-representation over \(\mathbb{F} \) with a fixed ordered basis. A \(G_K \)-representation over a finite ring is said to be flat if and only if it is isomorphic to the generic fiber of a finite flat group scheme over \(\mathcal{O}_K \) as a \(G_K \)-module. We assume that \(V_{\mathbb{F}} \) is flat. Let \(\mathfrak{AR}_{W(\mathbb{F})} \) be the category of Artin local finite \(W(\mathbb{F}) \)-algebra \(A \) whose residue field is isomorphic to \(\mathbb{F} \) as a \(W(\mathbb{F}) \)-algebra. To define a deformation, we use a notion of groupoids. For the notion of groupoids, please consult [Kis, Appendix on groupoids]. The framed flat deformation \(D_{V_{\mathbb{F}}}^{\mathfrak{AR}} \) of \(V_{\mathbb{F}} \) over \(\mathfrak{AR}_{W(\mathbb{F})} \) is a groupoid \(D_{V_{\mathbb{F}}}^{\mathfrak{AR}} \) over \(\mathfrak{AR}_{W(\mathbb{F})} \) determined as in the followings:

- For an object \(A \) in \(\mathfrak{AR}_{W(\mathbb{F})} \), an object of \(D_{V_{\mathbb{F}}}^{\mathfrak{AR}}(A) \) is a triple \((V_A, \psi, \beta) \), where \(V_A \) is a flat continuous \(G_K \)-representation that is a free \(A \)-module of rank 2 with an ordered basis \(\beta \) over \(A \), and \(\psi : V_A \otimes_A \mathbb{F} \longrightarrow V_{\mathbb{F}} \) is an \(\mathbb{F} \)-linear \(G_K \)-isomorphism sending \(\beta \) to the fixed ordered basis of \(V_{\mathbb{F}} \).

- A morphism \((V_A, \psi, \beta) \rightarrow (V_{A'}, \psi', \beta') \) covering a given morphism \(A \rightarrow A' \) in \(\mathfrak{AR}_{W(\mathbb{F})} \) is an equivalence class \([\alpha] \), where \(\alpha : V_A \otimes_A A' \longrightarrow V_{A'} \) is an \(A' \)-linear \(G_K \)-isomorphism that is compatible with the morphisms \(\psi, \psi' \) and sending \(\beta \) to \(\beta' \), and two morphisms are equivalent if they differ by an element of \(A'^\times \).
Then the framed flat deformation $D^\square_{V_{\xi}}$ is pro-represented by a complete local $W(F)$-algebra $R^\square_{V_{\xi}}$.

We are going to define a deformation ring with the condition that the p-adic Hodge type $\nu = (1)$, which is denoted by $R^\square_{V_{\xi}}$. Let $(R^\square_{V_{\xi}}[1/p])^\nu$ be the quotient of $R^\square_{V_{\xi}}[1/p]$ corresponding to the connected components of Spec $R^\square_{V_{\xi}}[1/p]$ whose closed points ξ satisfy the following:

If V_{ξ} is the deformation corresponding to ξ, then $\Fil^0 D_{\text{crys}}(V_{\xi}[1/p])_K$ is free of rank 1 over $k(\xi) \otimes_{\mathbb{Q}_p} K$. Here, $k(\xi)$ is the residue field of ξ.

We note that $V_{\xi}[1/p]$ is Barsotti-Tate representation, since we are considering a flat deformation. Then we define $R^\square_{V_{\xi}}$ by the image of $R^\square_{V_{\xi}}$ in $(R^\square_{V_{\xi}}[1/p])^\nu$.

The information of the connected components of Spec $R^\square_{V_{\xi}}[1/p]$ is very important for an application to a theorem comparing a deformation ring and a Hecke ring ([Kis, Theorem 3.4.11], [Ima, Theorem 3.1]). So we want to know $\pi_0(\text{Spec } R^\square_{V_{\xi}}[1/p])$.

Next, we are going to explain the Kisin module and the moduli space of finite flat models of V_{ξ}. By a finite flat model of V_{ξ}, we mean a finite flat group scheme G over \mathcal{O}_K, equipped with an action of F, and an isomorphism $V_F \sim G(K)$ that respects the action of G_K and F.

Let $\mathcal{G} = W(k)[[u]]$, and \mathcal{O}_E be the p-adic completion of $\mathcal{G}[1/u]$. We consider the action of ϕ on $\mathcal{O}_E \otimes_{\mathbb{Z}_p} F \cong k((u)) \otimes_{\mathbb{F}_p} F$ defined by p-th power on $k((u))$. Let $\Phi M_{\mathcal{O}_E \otimes_{\mathbb{Z}_p} F}$ be the category of finite $\mathcal{O}_E \otimes_{\mathbb{Z}_p} F$-modules M with ϕ-semi-linear map $\phi : M \rightarrow M$ such that the induced linear map $\phi^* M \rightarrow M$ is bijective.

We choose a system $(\pi_m)_{m \geq 1}$ of elements in K such that $\pi_m^p = \pi$ and $\pi_{m+1}^p = \pi_m$ for $m \geq 1$, and put $K_f = \bigcup_{m \geq 1} K(\pi_m)$. Let $\text{Rep}_F(G_{K_f})$ be the category of finite-dimensional continuous G_{K_f}-representations over F.

Then the functor

$$T : \Phi M_{\mathcal{O}_E \otimes_{\mathbb{Z}_p} F} \rightarrow \text{Rep}_F(G_{K_f}); M \mapsto \left(\overline{k((u))} \otimes k((u))\right) M^{\phi = 1}$$

is an equivalence of abelian categories. We take $M_F \in \Phi M_{\mathcal{O}_E \otimes_{\mathbb{Z}_p} F}$ such that $T(M_F)$ is isomorphic to $V_F(-1)_{G_{K_f}}$. Here (-1) denotes the inverse of the Tate twist. Then M_F is a free $(\mathcal{O}_E \otimes_{\mathbb{Z}_p} F)$-module of rank 2.

We put $\mathcal{G}_F = \mathcal{G} \otimes_{\mathbb{Z}_p} F$. Let $(\text{Mod }/\mathcal{G}_F)$ be the category of finite free \mathcal{G}_F-modules \mathfrak{M} with ϕ-semi-linear map $\phi : \mathfrak{M} \rightarrow \mathfrak{M}$ such that the cokernel of the induced linear map $\phi^* \mathfrak{M} \rightarrow \mathfrak{M}$ is killed by u^e. An object of $(\text{Mod }/\mathcal{G}_F)$ is called a Kisin module with coefficients in F. Let $(\text{F-Gr}/\mathcal{O}_K)$ be the category of finite flat group schemes over \mathcal{O}_K with a structure of an F-vector space.

Theorem 1.1. There exists an equivalence of categories

$$\text{Gr} : (\text{Mod }/\mathcal{G}_F) \rightarrow (\text{F-Gr}/\mathcal{O}_K).$$
\textbf{Proof.} This follows from \cite[Théorème 4.2.1.6]{Br} and \cite[Lemma 1.2.5]{Kis}. \hfill \square

\textbf{Proposition 1.2 ([Kis, Proposition 1.1.13])}. For an object \mathcal{M} of $(\text{Mod} / \mathcal{G}_F)$, there exists a canonical isomorphism

$$T(\mathcal{O}_E \otimes \mathcal{M})(1) \sim \text{Gr}(\mathcal{M})(\overline{K})|_{G_{K_\infty}}$$

as G_{K_∞}-representations. Here (1) denotes the Tate twist.

By this proposition, we see that a Kisin module which is a sublattice of M_F corresponds to a finite flat model of V_F. Here and in the sequel, a sublattices means a finite free \mathfrak{S}_F-submodule of M_F that spans M_F over $\mathcal{O}_E \otimes \mathbb{Z}_p F$. In the above, we have defined a Kisin module with coefficients in \mathbb{F}. More generally, we can define a Kisin module with coefficients in a \mathbb{Z}_p-algebra (cf. \cite[(1.2)]{Kis}). Using this general Kisin module, we can construct a moduli space of Kisin modules, which is denoted by $\mathscr{G}_F V_F$ and projective over Spec $R_{\mathfrak{F}}^{\mathfrak{F}}$ (cf. \cite[(2.1)]{Kis}). The closed fiber of $\mathscr{G}_F V_F$ over Spec $R_{\mathfrak{F}}^{\mathfrak{F}}$ is denoted by $\mathscr{G}_F V_{\mathfrak{F},0}$. The scheme $\mathscr{G}_F V_{\mathfrak{F},0}$ is a moduli space of finite flat models of $V_{\mathfrak{F}}$ in the sense of the following proposition.

\textbf{Proposition 1.3 ([Kis, Corollary 2.1.13])}. For any finite extension \mathbb{F}' of \mathbb{F}, there is a natural bijection between the set of isomorphism classes of finite flat models of $V_{\mathfrak{F}'} = V_{\mathfrak{F}} \otimes \mathbb{F}'$ and $\mathscr{G}_F V_{\mathfrak{F},0}(\mathbb{F}')$.

From now on, we assume $\mathbb{F}_q \subset \mathbb{F}$ and fix an embedding $k \hookrightarrow \mathbb{F}$. This assumption does not matter, since we may extend \mathbb{F} to prove the main theorem. We consider the isomorphism

$$\mathcal{O}_E \otimes \mathbb{Z}_p \mathbb{F} \cong k((u)) \otimes_{\mathbb{F}_p} \mathbb{F} \sim \prod_{\sigma \in \text{Gal}(k/\mathbb{F}_p)} \mathbb{F}((u)); \quad \left(\sum_i a_i u^i \right) \otimes b \mapsto \left(\sum_i \sigma(a_i) bu^i \right)$$

and let $\epsilon_\sigma \in k((u)) \otimes_{\mathbb{F}_p} \mathbb{F}$ be the primitive idempotent corresponding to σ. Take $\sigma_1, \ldots, \sigma_n \in \text{Gal}(k/\mathbb{F}_p)$ such that $\sigma_{i+1} = \sigma_i \circ \phi^{-1}$. Here we regard ϕ as the p-th power Frobenius, and use the convention that $\sigma_{n+i} = \sigma_i$. In the sequel, we often use such conventions. Then we have $\phi(\epsilon_{\sigma_i}) = \epsilon_{\sigma_{i+1}}$, and $\phi : M_F \to M_F$ determines $\phi : \epsilon_{\sigma_i} M_F \to \epsilon_{\sigma_{i+1}} M_F$. For $(A_i)_{1 \leq i \leq n} \in GL_2(\mathbb{F}((u)))^n$, we write

$$M_F \sim (A_1, A_2, \ldots, A_n) = (A_i)$$

if there is a basis $\{e_1^i, e_2^i\}$ of $\epsilon_{\sigma_i} M_F$ over $\mathbb{F}((u))$ such that $\phi \begin{pmatrix} e_1^i \\ e_2^i \end{pmatrix} = A_i \begin{pmatrix} e_1^{i+1} \\ e_2^{i+1} \end{pmatrix}$. We use the same notation for any sublattice $M_{\mathfrak{M}} \subset M_F$ similarly.

Finally, for any sublattice $M_{\mathfrak{M}} \subset M_F$ with a chosen basis $\{e_1^i, e_2^i\}_{1 \leq i \leq n}$ and $B = (B_i)_{1 \leq i \leq n} \in GL_2(\mathbb{F}((u)))^n$, the module generated by the entries of $\langle B_i \begin{pmatrix} e_1^i \\ e_2^i \end{pmatrix} \rangle$ with
the basis given by these entries is denoted by $B \cdot \mathcal{M}_F$. Note that $B \cdot \mathcal{M}_F$ depends on the choice of the basis of \mathcal{M}_F.

A closed subscheme $\mathcal{A}^{\nabla}_{V_F} \subset \mathcal{A}^{\nabla}_{V_F}$ is defined by the condition that p-adic Hodge type $\nu = (1)$ as in [Kis, (2.4.2)]. The closed fiber of $\mathcal{A}^{\nabla}_{V_F}$ over $\text{Spec } R_{V_F}^\nabla$ is denoted by $\mathcal{A}^{\nabla}_{V_F,0}$. The rational points of $\mathcal{A}^{\nabla}_{V_F,0}$ is characterized by the following Lemma.

Lemma 1.4 ([Gee, Lemma 2.2]). If F' is a finite extension of F, the elements of $\mathcal{A}^{\nabla}_{V_{F'},0}(F')$ naturally correspond to free $k[[u]] \otimes_{\mathbb{F}_p} F'$-submodules $\mathcal{M}_{F'} \subset M_F \otimes_F F'$ of rank 2 that satisfy the following:

1. $\mathcal{M}_{F'}$ is ϕ-stable.
2. For some (so any) choice of $k[[u]] \otimes_{\mathbb{F}_p} F'$-basis for $\mathcal{M}_{F'}$, and for each $\sigma \in \text{Gal}(k/F_p)$, the map
 \[
 \phi : \epsilon_\sigma \mathcal{M}_{F'} \rightarrow \epsilon_{\sigma \circ \phi^{-1}} \mathcal{M}_{F'}
 \]
 has determinant αu^e for some $\alpha \in F'[\{u\}]^\times$.

Then there is the following relation between the deformation ring $R_{V_F}^{\nabla,\nu}$ and the moduli space $\mathcal{A}^{\nabla}_{V_{F'},0}$.

Proposition 1.5. There exists a natural bijection
 \[\pi_0(\text{Spec } R_{V_F}^{\nabla,\nu}[1/p]) \sim \pi_0(\mathcal{A}^{\nabla}_{V_{F'},0}).\]

Proof. This follows from [Kis, Corollary 2.4.10], since $\mathcal{A}^{\nabla,\text{loc}}_{V_{F'},0} = \mathcal{A}^{\nabla}_{V_{F'},0}$ by [Kis, Proposition 2.4.6] if the p-adic Hodge type $\nu = (1)$. \qed

So the problem has been reduced to study $\pi_0(\mathcal{A}^{\nabla}_{V_{F'},0})$. The connected components $\mathcal{A}^{\nabla,\text{ord}}_{V_{F'},0} \subset \mathcal{A}^{\nabla}_{V_{F'},0}$ is defined by the points corresponding to the ordinary finite flat group schemes. We can easily determine the set $\pi_0(\mathcal{A}^{\nabla,\text{ord}}_{V_{F'},0})$ as in the following:

Proposition 1.6 ([Kis, Proposition 2.5.15]). If $\mathcal{A}^{\nabla,\text{ord}}_{V_{F'},0}$ is non-empty, then it consist of a single point, unless $V_F \sim \left(\begin{array}{cc} \chi_1 & 0 \\ 0 & \chi_2 \end{array} \right)$ where χ_1 and χ_2 are unramified characters of G_K. In the latter case, we have the followings:

1. If $\chi_1 \neq \chi_2$, then $\mathcal{A}^{\nabla,\text{ord}}_{V_{F'},0}$ consists of two points.
2. If $\chi_1 = \chi_2$, then $\mathcal{A}^{\nabla,\text{ord}}_{V_{F'},0} \cong \mathbb{P}^1_{\mathbb{F}_p}$.

Next, we consider the non-ordinary part. We put
 \[\mathcal{A}^{\nabla,\text{non-ord}}_{V_{F'},0} = \mathcal{A}^{\nabla}_{V_{F'},0} \setminus \mathcal{A}^{\nabla,\text{ord}}_{V_{F'},0}.\]
Then Kisin conjectured that $\mathcal{R}_{V_{F},0}^{\text{non-ord}}$ is connected.

§ 2. Proof of Kisin conjecture

We use the following Lemma on the structure of M_{F}.

Lemma 2.1 ([Ima, Lemma 1.2]). Suppose V_{F} is absolutely irreducible and $\mathbb{F}_{q^{2}} \subset F$. If \mathbb{F}' is the quadratic extension of F, then

$$M_{F} \otimes_{F} \mathbb{F}' \sim \left(\begin{array}{cccc}
\alpha_{1} & 0 & \cdots & 0 \\
0 & \alpha_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{n}
\end{array}\right)$$

for some $\alpha_{i} \in (\mathbb{F}')^{\times}$ and a positive integer s such that $(q + 1) \mid s$.

In fact, we prove that $\mathcal{R}_{V_{F},0}^{\text{non-ord}}$ is rationally connected. To join two points by \mathbb{P}_{F}^{1}, we use the following two Lemmas.

Lemma 2.2 ([Gee, Lemma 2.4]). Suppose $x_{0}, x_{1} \in \mathcal{R}_{V_{F},0}(\mathbb{F})$ correspond to objects $\mathfrak{M}_{0,F}, \mathfrak{M}_{1,F}$ of $(\text{Mod}/\mathcal{S}_{F})$ respectively. Let $N = (N_{i})_{1 \leq i \leq n}$ be a nilpotent element of $M_{2}(\mathbb{F}(u)))^{n}$ such that $\mathfrak{M}_{1,F} = (1 + N) \cdot \mathfrak{M}_{0,F}$ with a basis of $\mathfrak{M}_{0,F}$, and $A = (A_{i})_{1 \leq i \leq n}$ be an element of $GL_{2}(\mathbb{F}(u)))^{n}$ such that $\mathfrak{M}_{0,F} \sim A$ for the same basis of $\mathfrak{M}_{0,F}$. If $\phi(N_{i})A_{i}N_{i+1} \in M_{2}(\mathbb{F}[u])$ for all i, then there is a morphism $\mathbb{P}_{F}^{1} \rightarrow \mathcal{R}_{V_{F},0}$ sending 0 to x_{0} and 1 to x_{1}.

Proof. We put $\mathfrak{M}_{t,F} = (1 + tN) \cdot \mathfrak{M}_{0,F}$. Then we have

$$\mathfrak{M}_{t,F} \sim (\phi(1 + tN_{i})A_{i}(1 + tN_{i+1})^{-1})_{i} = (A_{i} + t(\phi(N_{i})A_{i} - A_{i}N_{i+1}) - t^{2}\phi(N_{i})A_{i}N_{i+1})_{i}.$$

The ϕ-stability of $\mathfrak{M}_{1,F}$ ensures that $(\phi(N_{i})A_{i} - A_{i}N_{i+1}) \in M_{2}(\mathbb{F}[u])$. So we get $(\phi(N_{i})A_{i} - A_{i}N_{i+1}) \in M_{2}(\mathbb{F}[u])$ by $\phi(N_{i})A_{i}N_{i+1} \in M_{2}(\mathbb{F}[u])$. Then $\mathfrak{M}_{t,F}$ is ϕ-stable, and a parameterization $t \mapsto \mathfrak{M}_{t,F}$ gives a morphism $\mathbb{P}_{F}^{1} \rightarrow \mathcal{R}_{V_{F},0}$ sending 0 to x_{0} and 1 to x_{1}. By the properness of $\mathcal{R}_{V_{F},0}$, this morphism extends to $\mathbb{P}_{F}^{1} \rightarrow \mathcal{R}_{V_{F},0}$. □

Lemma 2.3 ([Ima, Lemma 2.3]). Suppose $n \geq 2$ and that $x \in \mathcal{R}_{V_{F},0}(\mathbb{F})$ corresponds to an object \mathfrak{M}_{F} of $(\text{Mod}/\mathcal{S}_{F})$. Fix a basis of \mathfrak{M}_{F} over $k[[u]] \otimes_{\mathbb{F},F} \mathbb{F}$. Consider $U^{(i)} = (U_{j}^{(i)})_{1 \leq j \leq n} \in GL_{2}(\mathbb{F}(u)))^{n}$ such that $U_{i}^{(i)} = \begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix}$ and $U_{j}^{(i)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ for all $j \neq i$. If $U^{(i)} \cdot \mathfrak{M}_{F}$ is ϕ-stable, it corresponds to a point $x' \in \mathcal{R}_{V_{F},0}(\mathbb{F})$, and x' lies on the same connected component of $\mathcal{R}_{V_{F},0}$ as x.
Proof. First, $U^{(i)} \cdot \mathcal{M}_F$ corresponds to a point $x' \in \mathcal{X}_{V_F,0}^\vee(\mathbb{F})$, since it satisfies the conditions of Lemma 1.4.

Next, we consider $N^{(i)} = (N_j^{(i)})_{1 \leq j \leq n} \in M_2(\mathbb{F}(u))^n$ such that

$$N_i^{(i)} = \begin{pmatrix} 1 & -u \\ u^{-1} & -1 \end{pmatrix} \text{ and } N_j^{(i)} = 0 \text{ for all } j \neq i.$$

Then $U^{(i)} \cdot \mathcal{M}_F = (1 + N^{(i)}) \cdot \mathcal{M}_F$, since

$$\begin{pmatrix} u^{-1} & 0 \\ 0 & u \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -2u & u^{-1} \end{pmatrix} \begin{pmatrix} 2 & -u \\ 0 & 1 \end{pmatrix}.$$

We have $\phi(N_j^{(i)}) A_j N_j^{(i)} = 0$ for any $A = (A_j) \in GL_2(\mathbb{F}(u))^n$, since $n \geq 2$. So we can apply Lemma 2.2. \hfill \square

Theorem 2.4 (Kisin conjecture). \quad $\mathcal{X}_{V_F,0}^{\vee, \text{non-ord}}$ is connected.

Proof. If $n = 1$, this was proved in [Kis]. Here, we give an outline of a proof in the case $n \geq 2$ and V_F is absolutely irreducible.

Let \mathbb{F}' be a finite extension of \mathbb{F}. Suppose $x_1, x_2 \in \mathcal{X}_{V_F,0}^{\vee, \text{non-ord}}(\mathbb{F}')$ correspond to objects $\mathcal{M}_{1,\mathbb{F}'}, \mathcal{M}_{2,\mathbb{F}'}$ of $(\text{Mod}/\mathfrak{S}_{\mathbb{F}'})$ respectively. We are going to show that x_1 and x_2 are joined by \mathbb{F}''s.

If $e < p - 1$, then $\mathcal{X}_{V_F,0}^{\vee, \text{non-ord}}(\mathbb{F}')$ is one point by [Ray, Theorem 3.3.3]. So we may assume $e \geq p - 1$. Furthermore, extending \mathbb{F}' and replacing V_F by $V_F \otimes_{\mathbb{F}} \mathbb{F}'$, we may assume $\mathbb{F}' = \mathbb{F}' \supset \mathbb{F}_{q^2}$.

We construct an explicit point of $\mathcal{X}_{V_F,0}^{\vee, \text{non-ord}}$. By using Lemma 2.1, we can prove that there exists a basis of M_F such that

$$M_F \sim \begin{pmatrix} \alpha_1 & 0 & u^{s_1} \\ & u^{t_1} & 0 \end{pmatrix}, \begin{pmatrix} \alpha_2 & u^{s_2} & 0 \\ & 0 & u^{t_2} \end{pmatrix}, \ldots, \begin{pmatrix} \alpha_n & u^{s_n} & 0 \\ & 0 & u^{t_n} \end{pmatrix}$$

after replacing the field \mathbb{F} by the quadratic extension. Here $\alpha_i \in \mathbb{F}, 0 \leq s_i, t_i \leq e, s_i + t_i = e$ and $|s_i - t_i| \leq p + 1$ for all i. Let $\mathcal{M}_{0,\mathbb{F}}$ be the sublattice of M_F defined by this basis. We take a point $x_0 \in \mathcal{X}_{V_F,0}^{\vee, \text{non-ord}}(\mathbb{F})$ corresponding to \mathcal{M}_F.

We are going to prove that x_0 and x_1 lie on the same connected component. We can prove that x_0 and x_2 lie on the same connected component by the same argument.

By the Iwasawa decomposition and the determinant conditions, we can take $B = (B_i)_{1 \leq i \leq n} \in GL_2(\mathbb{F}(u))^n$ such that $\mathcal{M}_{1,\mathbb{F}} = B \cdot \mathcal{M}_{0,\mathbb{F}}$, and $B_i = \begin{pmatrix} u^{-a_i} & v_i \\ 0 & u^{a_i} \end{pmatrix}$ for $a_i \in \mathbb{Z}$ and $v_i \in \mathbb{F}(u)$.

Then we put $r_i = v_u(v_i)$. Now we have

$$\phi(B_1) \begin{pmatrix} 0 & u^{s_1} \\ u^{t_1} & 0 \end{pmatrix} B_2^{-1} = \begin{pmatrix} \phi(v_1) & u^{s_1+a_2} & u^{s_1-pa_1-a_2} - \phi(v_1)v_2u^{t_1} \\ u^{t_1+pa_1+a_2} & -v_2u^{t_1+pa_1} \end{pmatrix},$$

$$\phi(B_i) \begin{pmatrix} u^{s_i} & 0 \\ 0 & u^{t_i} \end{pmatrix} B_{i+1}^{-1} = \begin{pmatrix} u^{s_i-pa_1+a_{i+1}} \phi(v_i)u^{t_i-a_{i+1}} - v_{i+1}u^{s_i-pa_i} \\ 0 & u^{t_i+pa_i-a_{i+1}} \end{pmatrix}$$
for $2 \leq i \leq n$. On the right-hand sides, every component of the matrices is integral since $\mathfrak{M}_{1,F}$ is ϕ-stable.

First, we consider the case $t_1 + pa_1 + a_2 \leq e$. In this case, if we put $\mathfrak{M}_{3,F} =
\begin{pmatrix}
 u^{-a_i} & 0 \\
 0 & u^{a_i}
\end{pmatrix}_i \cdot \mathfrak{M}_{0,F},$
then
\[
\mathfrak{M}_{3,F} \sim \left(\alpha_1 \begin{pmatrix} 0 & u^{s_1-pa_1-a_2} \\ u^{t_1+pa_1+a_2} & 0 \end{pmatrix}, \alpha_2 \begin{pmatrix} u^{s_2-pa_2+a_3} & 0 \\ 0 & u^{t_2+pa_2-a_3} \end{pmatrix}, \ldots, \alpha_n \begin{pmatrix} u^{s_n-pa_n+a_1} & 0 \\ 0 & u^{t_n+pa_n-a_1} \end{pmatrix}\right)
\]
and $\mathfrak{M}_{1,F} = \left(\begin{pmatrix} 1 & v_i \nu^{-a_i} \\ 0 & 1 \end{pmatrix}_i \cdot \mathfrak{M}_{3,F}$. Note that $\mathfrak{M}_{3,F}$ satisfies the conditions of Lemma 1.4, and let x_3 be the point of $\mathfrak{G}_{V_0}(\mathbb{F})$ corresponding to $\mathfrak{M}_{3,F}$. If we put $N_i =
\begin{pmatrix} 0 & 0 \\ v_i \nu^{-a_i} & 0 \end{pmatrix}$, then
\[
\phi(N_1) \begin{pmatrix} 0 & u^{s_1-pa_1-a_2} \\ u^{t_1+pa_1+a_2} & 0 \end{pmatrix} N_2 = \begin{pmatrix} 0 & 0 \\ \phi(v_1) v_2 u^{t_1} & 0 \end{pmatrix},
\]
\[
\phi(N_i) \begin{pmatrix} u^{s_i-pa_i+a_{i+1}} & 0 \\ 0 & u^{t_i+pa_i-a_{i+1}} \end{pmatrix} N_{i+1} = 0
\]
for $2 \leq i \leq n$. Here we have $v_u(\phi(v_1)v_2 u^{t_1}) \geq 0$, since $s_1 - pa_1 - a_2 \geq 0$ and $v_u(u^{s_1-pa_1-a_2} - \phi(v_1)v_2 u^{t_1}) \geq 0$. Hence x_1 and x_3 lie on the same connected component by Lemma 2.2.

Further, we can prove that x_0 and x_3 are joined by \mathbb{P}^1s by using Lemma 2.3. Hence x_0 and x_1 lie on the same connected component in the case $t_1 + pa_1 + a_2 \leq e$.

Next, we treat the case $t_1 + pa_1 + a_2 > e$. We consider the following operations:
\[
a_i \sim a_i - 1, \ v_i \sim uv_i,
\]
if it preserves the ϕ-stability of $B \cdot \mathfrak{M}_{0,F}$. These operations replace x_1 by a point that lies on the same connected component as x_1 by Lemma 2.3. We prove that we can continue these operations until we get to the situation where $t_1 + pa_1 + a_2 \leq e$. In other words, we reduce the problem to the case $t_1 + pa_1 + a_2 \leq e$. If we can continue the operations endlessly, we get to the situation where $t_1 + pa_1 + a_2 \leq e$, since the conditions $s_i - pa_i + a_{i+1} \geq 0$ for $2 \leq i \leq n$ exclude that both a_1 and a_2 remain bounded below. Suppose that we cannot continue the operations and $t_1 + pa_1 + a_2 > e$. The condition that we cannot continue the operations
is equivalent to the following condition:

\[s_n - pa_n + a_1 = 0 \text{ or } r_2 + t_1 + pa_1 \leq p - 1, \]
\[pr_1 + t_1 + a_2 = 0 \text{ or } t_2 + pa_2 - a_3 \leq p - 1, \]
\[s_{i-1} - pa_{i-1} + a_i = 0 \text{ or } t_i + pa_i - a_{i+1} \leq p - 1 \text{ for each } 3 \leq i \leq n. \]

From these conditions, we can make a contradiction by elementary arguments. This completes the proof. \(\square\)

References

