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Continuous wavelet transforms and non-commutative
Fourier analysis

By

Hideyuki Isar*

Abstract

We discuss continuous wavelet transforms for the semidirect product group of a unimod-
ular (not necessarily commutative) normal subgroup N with a closed subgroup H of Aut(N),
which is a generalization of the wavelet theory for an affine transformation group on a vector
space. The operator-valued Fourier transform for N plays a substantial role in the arguments.

§1. Introduction

Let G be a locally compact group, and (7, H) an irreducible unitary representation
of GG. The representation 7 is said to be square-integrable if there exists a vector ¢ € ‘H
for which [, |(7(g9)¢|¢)n|* dg < +oo, where dg is a left Haar measure on G. Such ¢
is called an admissible vector of w. If (7w, H) is square-integrable, there exists a unique
positive self-adjoint operator (the Duflo-Moore operator) C, with the following two
properties ([7],[13]):
(C1) ¢ is admissible & ¢ € dom(Cy),
(C2) For fi, fo € H and ¢1, ¢2 € dom(C), one has

/G(f1|77(9)¢1)71 (m(g)p2|f2)r dg = (f1lf2)r (Crd1]|Cr2)n.

When G is unimodular, C is a scalar operator. Furthermore, if G is a compact group,
then C, = (dimH)_l/ 2Id. Thus, C2 is called the formal degree of 7 in general.
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Regarding the equality in (C2) as an identity for fo € H, we obtain

1
(Cr01|Crp2) 1

where the integral is taken in the weak sense. For an admissible vector ¢ € dom(C;),

(1.1) fi=

/G (il (9)61) 7(9) 2 do.

the continuous wavelet transform Wy is defined as a linear map from the Hilbert space
H into the space C(G) of continuous functions on the group G defined by

Wef(g) == (fIm(g)d)n  (f€H, g€q).

Then (1.1) tells us that the inverse formula of Wy, is given by

(1.2) f=1 / W £ (9) 7(9)6 dg,
Co Ja

where ¢y = ||Cr |13,

For instance, let us consider the affine transformation group G.g on the real line
R consisting of the maps ¢gp o : R> 2 +— ax +b € R with a € R\ {0} and b € R. The
unitary representation L of Gyg is defined on the Hilbert space L?(R) by L(gp.o)f(x) :=
la|~Y/2 f (9, 12) (z € R). This representation is square-integrable, and the Duflo-Moore

(CLo)™ (&) = \/%é(o (£ €R),

where ~ stands for the Fourier transform given by ¢(£) := Jp € ¢(x) dz (£ € R). Then
cy = ||CL¢||? equals fR\{O} |p(€)[21€] 71 de, and if ¢ < +00, the equality (1.2) yields the
Calderén formula

operator is given by

dbd
(1.3 r=o [ ] Wett.o Lo T (7 € L2(R)

where W f(b,a) = Wy f(gy.a) = |a|7V? [5 f(2)$(£2L) da.

The results about the wavelet transform for G,g have been generalized to a multi-
dimensional affine group G = H x R", where H is a closed subgroup of GL(R™) (see
[4], [8] and [10] for example). In this article, we consider a further generalization to
the case that G is a semidirect product group N x H, where N is a unimodular (not
necessarily commutative) group, and H is a closed subgroup of Aut(N) satisfying certain
conditions. Although the situation becomes complicated if N is not commutative, the
argument goes in parallel with the commutative case, where the operator-valued Fourier
transform for NV plays a substantial role instead of the ordinary Fourier transform.

The content of Sections 2—4 is essentially a summary of [16], while Section 5 is
devoted to discuss a concrete example that N is the Heisenberg group. Such Heisenberg
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case is already studied by He-Liu [14], whereas we shall present a new example of
admissible vector ¢4, € L?(N). In this article, we write T for the set of complex
numbers with absolute value 1. For a Hilbert space H, we denote by B(H), (resp.
Bus(H), Br:(H),U(H)) the space of bounded (resp. Hilbert-Schmidt, trace class,
unitary) operators on H.

The author is grateful to the referee for his valuable comments and suggestions.

§ 2. Preliminaries

Let N be a separable locally compact unimodular group of type I. We denote by N
the unitary dual of IV, that is, the set of equivalence classes of irreducible unitary repre-
sentations of N. For each A € N , we take a unitary representation (my, Hy) for which A
equals the equivalence class [7y] of 7. Let us fix a Haar measure v on N For f e LYN),
we define the bounded operator mx(f) € B(Hx) by ma(f) = [y f( n)dv(n). It is
known that the Plancherel measure p on N is uniquely determlned by the abstract
Plancherel formula [6]:

(2.1) / Fm)Pdu(n / Ima(DIEs du(y)  (f € LX) N ZA(N)),

where || - |lus stands for the Hilbert-Schmidt norm. We define the operator-valued
Fourier transform F : L?(N) — [ ]%9 Bus(H) du(N) as the unitary isomorphism which
is the extension of the map L*(N) N L*(N)) 3 f — (7x(f))yex € ff? Brs(Hx) du(N).
The inverse formula of F is given as follows:

Proposition 2.1 ([11, Theorem 4.15]).  Let (A()\)),cx be an element of the di-
rect integral ff? Br:(Hy) du(X) of the Banach space Bry(Hy). Define a function f on
N by

Fn) = /N tr ANmA(n)*du(\)  (n € N).

Then f belongs to L*(N) if and only if (A(X)),cx € fﬁ? Bus(Hx) du(N). In that case,
one has Ff(A) = A(\) (a.a. A € N).

Let H be a closed subgroup of the automorphism group Aut(/N) on N, and G the
semidirect product group N x H. We write the action of hton € N as h-n. For h € H,
we have a positive number 6(h) for which dv(h - n) = §(h)dv(n) (n € N). Clearly,
0 : H — R, is a representation of H. Define the unitary representation L of G on

L?(N) by

L(h) f(no) == 6(h) "2 f(h™" - ng),

(2.2) )
L(n)f(no) == f(n"'ne)  (f € L*(N), h € H, n,ng € N).
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It is easy to see that the representation L is equivalent to the induced representation
Indg 1, where 1 is the trivial representation of H.

We define the action of H on the unitary dual N by h-A:=[rxoh™!] (he H, A €
N ). Then we have a unitary operator C'(h, ) : H) — Hp.x with the property

C(h,\)7ma(h™t - n) =1 (n)C(R,\)  (n€N).

The operator C(h,\) is unique up to multiple by elements of T by Schur’s lemma.
Moreover, for h, i/ € H and A\ € N, we have

(2.3) C(RH',N) = spawAC(h, B - \)C(H,\)

with sp p/ x € T. Thus we have a uniquely determined operator D(h,\) : B(Hx) 2 T +—
C(h,\)TC(h,\)* € B(Hp.), which satisfies the chain rule

D(hH,\) = D(h, k' - \)D(I', \).

Using the operator-valued Fourier transform F, we describe the representation (L, L*(N))

of G as follows:
Proposition 2.2.  For f € L?(N), h€ H and n € N, one has

(2.4) F[L(h)f](A\) = 6(h)2D(h, k™" - NFf(h™" - N),
(2.5) F[L(n)f](\) = mA(n)Ef(N)

for almost all \ € N with respect to the Plancherel measure p.

§3. Decomposition of L*(N)

For A € N, let O3 C N be the H-orbit through \. Now let us assume that there
exist elements Ay, ..., \x € N satisfying the following conditions:
(H1) p(03,) >0 (k=1,...,K),
(H2) The stabilizer Hy :={h € H; h- A\, = A\ } is compact for all k =1,..., K.
(H3) The map H/Hjy > hHy — h- Ax € O, is a homeomorphism for k£ = 1,..., K,
where the topology on O is induced from the Fell topology on N.
(H4) 05, NO3, =0 (k #1) and (N \l;_, 05,) =0.
Under this assumption, we shall see in Sections 3 and 4 that the unitary representation
(L, L*(N)) of G is decomposed into the direct sum of countably many irreducible subrep-
resentations, and such subrepresentations are all square-integrable. Their Duflo-Moore
operators are described by using the operator-valued Fourier transform F'.

Thanks to (2.3), we have a projective unitary representation 7 : Hp > h +—
C(h,\i) € U(Hy, ) of the group Hy, for k =1,..., K. Since Hy, is compact, we have an
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irreducible decomposition Hy, = Zfe AL H, o, Where Ay, is an at most countable index
set. The subspaces H, o are finite dimensional. For A =h -\, € O}*\k with h € H, we
put Hxq := C(h, \g)Hx, .o (o € A), where the right-hand side is independent of the
choice of h. Moreover we have H A= 22‘36 AL H o, which gives an irreducible decompo-
sition of the projective representation 7y : Hy 3 h — C(h, \) € U(H,) of the compact
group Hy :={h € H; h- A= A}. On the other hand, the relation

(3.1) C(h, \)Hxa = Hira

holds for h € H, A € OF, and a € A in general. Using the orthogonal projection
Py.o : Hx — Hx,o, we define

(3.2) B)\,a = {T S BHs(HA) ; TPA,a = T} .

If we identify Bpg () with the tensor product H, ® Hy, the space B \,a 18 nothing but
Hy ® ﬁAQ. Thus we see that

(3.3) Bus(H\) = Z@ B«

acAy

while (3.1) yields
(3.4) D(h,\)Bx.a = Bpa.a-

Now we set

Lk,a(N) = F_l ( v B/\,a du(/\)>
O;k
(35) Ff‘(/\) = Ff(/\)P/\,a (a-a- A€ O;k) }

B { Fer): Ff(A)=0 (otherwise)

for k=1,...,K and a € A;. By (3.3) and (H4), we have

(3.6) L*(N) = Z® Z® Li.o(N),

1<k<K a€Aj

and each Ly o(N) is G-invariant thanks to Proposition 2.2 and (3.4).

§4. Main results

Fixing a left Haar measure dy on H, we define a left Haar measure dg on G by
dg(nh) := §(h)"tdv(n)dg(h) (n € N, h € H). Let us consider the square-integrability
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of the matrix coefficients (f|L(g)¢) (f,¢ € Li.o(IN), g € G) of the representation
(L, Lk o(N)) of G. By (2.1) and (2.5), we have

(fIL(n)L(h)¢)=/O* tr Ff(N)F[L(n)L(R)$](A)" dp(X)

(4.1)

= [t BSOFLMEA0 ) () ()
We note that the operator F f(A)F[L(h)¢](A\)* is of trace class because both F f(\) and
F[L(h)¢](\) are Hilbert-Schmidt operators. Furthermore, (Ff(A)F[L(h)Qb]()\)*)AeO;k

belongs to f(% B (Hy) du(X) because
k

/ IEFOVFIL(R)G A s (V)

O*
Ak

< / IF £ s [ FLL()S) (V) [ls di(N)
(4.2) O

1/2
< { /O . IF£ () s du(M} { /O

1/2
IFIL(R)e)(M) s du(A)}
= [IFI[ LAl = [ ]l o]l < +oo,

where || - ||y denotes the Trace norm. Now we assume that

/|f|L 9)|* da(g) //IfIL (h) " Ydv(n) dg (h) < +oo.

Then [y |(f|L(n)L(h)¢)|* dv(n) is finite for almost all h € H. Thus, applying Proposi-
tion 2 1, we see from (4.1) and (2.1) that

/ (L)L) dvtn) = [ IRIQRIEGSIO) s da(3) (@ e ).
Therefore the integral [, |(f|L(g)$)|? da(g) is equal to
o I IRFOURIESIO) i 800~ ) 1),
Now we observe that k

/ [F VRIS s 6(R) " din ()
-/ /H (0 B FO)RIL( )G FIL (b)) F(N)°) 8(hah) ™ dhrdin (h),
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where dh; is the normalized Haar measure on the compact group Hy. Since L(hih)¢o
belongs to Ly (IN), we have by (3.5)

Py o F[L(h1h)p](A)*F[L(h1h)p(A)Px,a = F[L(h1h)¢](X)"F[L(h1h)o]()),

which means that we can regard F[L(h1h)o|(A)*F[L(h1h)¢]()\) as a linear operator on
the finite dimensional vector space Hy o. Furthermore, applying Schur’s lemma to the
representation (7x, Hx.o) of Hx, we get

i §(h1h) ~'F[L(h1h)$)(N)*FIL(h1h)¢](N) dhy

= (dimHx,0) ' (h) T F[L(R)@](N) [[fis Pro € End(Haa),
see [16, pp. 43-44] for the detail. Note that dimHy o = dim H), o, which we denote
by n.o in what follows. By (4.5) and (3.5), the integral (4.4) equals

1

Nk,

L[ (o PO PGB0 ) IBULG)6I 0 3 () din () d()

_— / / IE £ 2 IFLL () SO0 [2is8(h) ™ dar () i),
X, U H

Nk .«

and the right-hand side is rewritten as

1

Nk,

. SO WRot0 Nl ) )

by (2.4). Thanks to [16, Proposition 3], the integral [, [[Fo(h™" - A)|fig dm(h) does
not depend on A € Of , and it is equal to fo; IFP(MN) |3 Dr(N) dp(N) with a certain
) k

H-relatively invariant function Dy on OF, . Therefore we have

1

Nk, o

oo > /G (FIL(9)6)[? de(g) = /O IE £ Zsdu()) -

*
Ak

/ IFo(h - N dir(h)
H

1

Nk,

= |If1*- /O IFS(M) s Dre(X) ().

Ak

In particular, if f # 0, then

(4.6) o(9) == — /O BN s DN dn(3) < +oo

Nk,

and

(4.7) /G (FIL(9)8) de(g) = c(6) | FI1>
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Conversely, if ¢ satisfies the condition (4.6), the integral (4.4) converges for any f €
Lj.o(N), so that the right-hand side of (4.3) converges for almost all h € H. Therefore
Proposition 2.1 implies (4.3), so that we get (4.7) again and thus, [, |(f|L(g)¢)|* da(g) <
+00.

Theorem 4.1.  The unitary representation (L, Lk o(N)) of G is irreducible.

Proof. Let £ be a nonzero invariant subspace of Ly (). The orthogonal com-
plement £+ C Ly o(N) is also invariant. We take ¢ € £\ {0} and f € L*. By (4.7) we
have

o—/|f|L )2 da(g) = (@) I

which implies f = 0. Actually, the argument is valid even if ¢(¢) is not finite. Therefore
= {0} and Theorem 4.1 is proved. O

Furthermore, we deduce from (4.6) and (4.7) the following result.

Theorem 4.2.  The representation (L, Ly (N)) is square-integrable, whose Duflo-
Moore operator Cy, o is given by

Dy(N)

Nk .o

F[Ck,a¢](A) =

Fo(A) (¢ € Lka(N), A€ O3,).

A classification of the representations (L, Ly (N)) is also given in [16]. The result
is as follows:

Theorem 4.3 ([16, Theorem 4]).  The unitary representations (L, Ly o(N)) and
(L, L/ o (N)) of G are equivalent if and only if k = k' and the projective representations
(Tkes Hi.oo) and (i, Hi,or) of Hi are equivalent, that is, there exists an isometry A :
Hi.o — Hi.ar such that T(h) o A= Ao i(h) for all h € Hy.

Keeping the decomposition (3.6) in mind, and applying (1.2) to each representation
(L, Lk o(N)), we obtain

Theorem 4.4. For each k = 1,...,K and o € Ay, take admissible vectors
Ok.o € dom(Ck.o) C Lg.o(N). Then for all f € L*(N) one has

-y [Oragial? J, Wornd 0 @) doto),

k=1a€cAy

where Wy, . f(g) = (f|L(9)9Pk,a)-
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§5. Example

As an illustrative example, we shall consider the case that the unimodular group
N is the Heisenberg group of (2¢ + 1)-dimension and H is isomorphic to Ry x U(¥).
The continuous wavelet transform for this case is first considered by He-Liu [14].

Let N be the Lie group consisting of elements n(z,c) (z € C¢, ¢ € R) with multi-
plication rule

n(z,c)n(z', ) = (z+ 2", ¢+ + 3(z]2")) (2,2 € Ct, ¢,d €R),

where (z|2) := Zf;:l 212y, Define a Haar measure dv on N by dv(n(z,c)) := dm(z)dc,
where dm is the standard Euclidean measure on C*.

For ¢ € C¢, we define the unitary character X; by X¢(n(z,¢)) := R, For A > 0,
we define

4 2
Hy = {90 : C* — C (holomorphic) ; [|¢||? = %/ o(w) e M1 dm(w) < 400 } ’
Cl

and H_) := {®; » € Ha}. These Hi) are Hilbert spaces, on which we define the
irreducible unitary representations 74 of N by

ma(n(z,¢))e(w) = e_“‘c+>‘(w|z)_>‘|z|2/290(w —2) (p € Hy),
Toa(n(z, 0))p(w) 1= ePeFAEW =N /2py) ) (¢ € Hoy).
The Stone-von Neumann theorem states that every irreducible unitary representation of

N is equivalent to one of X¢ (¢ € C’) and w5 (A € R\ {0}), so that N can be identified
with C* U (R \ {0}). For f1, fo € LY(N) N L?(N), we have

22—1

(182 =2z [ malma (s

by [9, Chapter I, section 5], which implies that the Plancherel measure y on N is given
by u(C*) = 0 and du()) = 271 =LA |%dX\ (A € R\ {0}).

For a > 0 and u € U({), define h(a,u) € Aut(N) by h(a,u)-n(z,c) = n(auz, ac).
Then we have

h(a,u) h(a',u") = h(ad' ,uu’) (a,a’ >0, u,u’ € U(L)),

so that H := { h(a,u); a > 0,u € U(¥) } is a subgroup of Aut(N). For h = h(a,u) € H,
we have §(h) = a**2, and we define the representation (L, L?(N)) of G = N x H by
(2.2). The action of H on N is described as

h(a,u)-¢=a"'u¢  (¢€Ch,
h(a,u) -\ =a 2\ (A e R\ {0}).



182 HipEYUKI ISHI

In particular, the intertwining operator C'(h, \) : Hyx — H,-2) is given by
C(h,Np(w) :==¢(a 'u™tw) (¢ eHy).

We denote by O% the H-orbit through +£1 € R\ {0} € N. Then O% = {X\; £A >0},
and the conditions (H1)—(H4) are satisfied for the two orbits. In particular, the stabilizer
Hy at any A € O} U O equals the compact group { h(1,u); uec U(¢) } ~ U(¥). For a
non-negative integer a € Z>q, let P, (C*) be the space of holomorphic polynomials of
degree a on C¥, and P, (C*) the space { ?; ¢ € Py (C*) }. Then we have for A > 0

0069 oo@_
Ha= Y, Pa(C), Ha= D  Pa(C,
a=0 a=0

which give the irreducible decomposition of the representation (7., H+y) of Hiy re-
spectively. Let Py, @ Ha — P, (C*) and P yo:H_ox— Po(C*) be the orthogonal
projections, and set

5

—~

Xt
I

F FF\Py a.a. A € O
Lio(N):= {f € L*(N); Ff()) = Of( " Eotherwiese)i) }

Then an irreducible decomposition of the unitary representation (L,L*(N)) of G is
given by

(5.1) PN = Y LaWo 37 Lol 0).

The decomposition is multiplicity-free thanks to Theorem 4.3.
We define a Haar measure diy on H by dg(h(a,u)) := a~ ! da du, where du is the
normalized Haar measure on U(¢). For Ao € O and a measurable function p : O} — R,

we observe

/Hp(h_l')‘O)dH(h)=/0+Oop(a2Ao)i—a=/O;p()\)%\‘l
-/,

N AN
o
pO)-2(557) k)
041
Thus, setting D1 (\) := 2 (ﬁ) (A € OL), the Duflo-Moore operator Cx. ,, of the rep-

*
+

resentation (L, Ly o(NV)) is given by F[Cy ¢]()\) = Di—i’\)Fqﬁ()\) (pe Lin(N), Ne
O%), where n, = dime P, (C*) = (O‘+£_1).
Finally, we give an example of admissible vector in L1 (V). We set

b+.a(n(z,c)) = /O IAle™ M tr Py oma(n(z, €)* du(N).
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Then (|)\|e_|>‘|P,\,Oé)>\eoft belongs to both of the direct integrals f(gai Br:(Hy) du(X) and
f(% Bus(H) du(N). Applying Proposition 2.1, we see that ¢+ , € L*(N) and that

Ae NPy, (aa. A€ OL),

Foia(A) =
0 (otherwise).

Thus ¢+ o € Ly o(N). Furthermore we have

_ dX _ _ d\
ICxabxal® = naI/ IF¢+.0(Mlliis M nal/ nalAPe 2N~
o1 oL

2[A|
L[t 1
== “2ANd\ = =
2/0 € 8

so that ¢4 , is admissible.

The function ¢+ , can be calculated explicitly. By definition, we have ¢_ , = ) oo
so that we shall consider only ¢, . For non-negative integers k£ and c, the Laguerre
polynomial L% (s) is defined by LE(s) := g%s " (LL)yafe=ssk+2]. By [3, Proposition 6.2],

al

we have
tr Pyoma(n(z, ¢))* = el /DALy 412,

Thus
2€—1

+o0 )
d1.a(n(z,c)) = 7 A e~ (1—ict|z] /2)>‘Lg_l(/\|z|2))\€+l d\.

TS

On the other hand, for a parameter |r| < 1, we have > oo r*L{ 1 (s) = (1—7)fe T
Therefore

I

e 9f—1 400 ‘ \ oA
> branlei) = oy [ e UL gyt R A gy
7T 0
a=0
21 . r|z|? y —(+2)
= @ —et /) + AL
20710+ 1)! . -
= S (et a2y
e (o (14 Siie /2 )T
1 —ic+|z?/2
Putting 0 := ZitietlsP/2 o have by the binomial theorem

1—ic+|z]?2/2 7

(1—7)%(1 4 or)~“+2)

_ i (‘1)(2(::‘ ;F)'i" D! (e — 1)09°2 4+ 2a(a + 009 + (a+ 0)(a + €+ 16}
2 ol
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Hence

¢+.a(n(z,¢))

1]
[2]

[3]
[4]
[5]

[6]
[7]

(8]

[9]
[10]

[11]
[12]

[13]

[14]
[15]
[16]
[17]

[18]

2(—1
m(l —ic+ |z|?/2)" (T2

1\« —1\!
o CO LDl 0 - 1672 4 20(a+ 087 + (a4 O+ €+ 167).
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