Continuous wavelet transforms and non-commutative Fourier analysis

By

Hideyuki Ishi*

Abstract

We discuss continuous wavelet transforms for the semidirect product group of a unimodular (not necessarily commutative) normal subgroup N with a closed subgroup H of $\operatorname{Aut}(N)$, which is a generalization of the wavelet theory for an affine transformation group on a vector space. The operator-valued Fourier transform for N plays a substantial role in the arguments.

§ 1. Introduction

Let G be a locally compact group, and (π, \mathcal{H}) an irreducible unitary representation of G. The representation π is said to be *square-integrable* if there exists a vector $\phi \in \mathcal{H}$ for which $\int_G |(\pi(g)\phi|\phi)_{\mathcal{H}}|^2 dg < +\infty$, where dg is a left Haar measure on G. Such ϕ is called an *admissible vector* of π . If (π, \mathcal{H}) is square-integrable, there exists a unique positive self-adjoint operator (the *Duflo-Moore operator*) C_{π} with the following two properties ([7], [13]):

- (C1) ϕ is admissible $\Leftrightarrow \phi \in \text{dom}(C_{\pi}),$
- (C2) For $f_1, f_2 \in \mathcal{H}$ and $\phi_1, \phi_2 \in \text{dom}(C_\pi)$, one has

$$\int_{G} (f_1|\pi(g)\phi_1)_{\mathcal{H}} (\pi(g)\phi_2|f_2)_{\mathcal{H}} dg = (f_1|f_2)_{\mathcal{H}} (C_{\pi}\phi_1|C_{\pi}\phi_2)_{\mathcal{H}}.$$

When G is unimodular, C_{π} is a scalar operator. Furthermore, if G is a compact group, then $C_{\pi} = (\dim \mathcal{H})^{-1/2} \mathrm{Id}$. Thus, C_{π}^{-2} is called the formal degree of π in general.

Received December 20, 2008. Accepted March 12, 2009.

2000 Mathematics Subject Classification(s): 2000 Mathematics Subject Classification(s): 42C40, 22D10, 43A32

Key Words: continuous wavelet transform

e-mail: hideyuki@math.nagoya-u.ac.jp

^{*}Graduate school of Mathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

^{© 2010} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Regarding the equality in (C2) as an identity for $f_2 \in \mathcal{H}$, we obtain

(1.1)
$$f_1 = \frac{1}{(C_{\pi}\phi_1|C_{\pi}\phi_2)_{\mathcal{H}}} \int_G (f_1|\pi(g)\phi_1)_{\mathcal{H}} \pi(g)\phi_2 \ dg,$$

where the integral is taken in the weak sense. For an admissible vector $\phi \in \text{dom}(C_{\pi})$, the continuous wavelet transform W_{ϕ} is defined as a linear map from the Hilbert space \mathcal{H} into the space C(G) of continuous functions on the group G defined by

$$W_{\phi}f(g) := (f|\pi(g)\phi)_{\mathcal{H}} \qquad (f \in \mathcal{H}, g \in G).$$

Then (1.1) tells us that the inverse formula of W_{ϕ} is given by

(1.2)
$$f = \frac{1}{c_{\phi}} \int_{G} W_{\phi} f(g) \pi(g) \phi \, dg,$$

where $c_{\phi} = \|C_{\pi}\phi\|_{\mathcal{H}}^2$.

For instance, let us consider the affine transformation group $G_{\rm aff}$ on the real line \mathbb{R} consisting of the maps $g_{b,a}: \mathbb{R} \ni x \mapsto ax + b \in \mathbb{R}$ with $a \in \mathbb{R} \setminus \{0\}$ and $b \in \mathbb{R}$. The unitary representation L of $G_{\rm aff}$ is defined on the Hilbert space $L^2(\mathbb{R})$ by $L(g_{b,a})f(x) := |a|^{-1/2}f(g_{b,a}^{-1}x)$ $(x \in \mathbb{R})$. This representation is square-integrable, and the Duflo-Moore operator is given by

$$(C_L \phi)^{\wedge}(\xi) = \sqrt{\frac{2\pi}{|\xi|}} \hat{\phi}(\xi) \quad (\xi \in \mathbb{R}),$$

where $\hat{}$ stands for the Fourier transform given by $\hat{\phi}(\xi) := \int_{\mathbb{R}} e^{ix\xi} \phi(x) dx \ (\xi \in \mathbb{R})$. Then $c_{\phi} = \|C_L \phi\|^2$ equals $\int_{\mathbb{R} \setminus \{0\}} |\hat{\phi}(\xi)|^2 |\xi|^{-1} d\xi$, and if $c_{\phi} < +\infty$, the equality (1.2) yields the Calderón formula

(1.3)
$$f = \frac{1}{c_{\phi}} \int_{\mathbb{R}} \int_{\mathbb{R}^{\times}} W_{\phi} f(b, a) L(g_{b, a}) \phi \frac{db \, da}{|a|^2} \quad (f \in L^2(\mathbb{R})),$$

where
$$W_{\phi}f(b,a) = W_{\phi}f(g_{b,a}) = |a|^{-1/2} \int_{\mathbb{R}} f(x) \overline{\phi(\frac{x-b}{a})} dx$$
.

The results about the wavelet transform for $G_{\rm aff}$ have been generalized to a multidimensional affine group $G = H \rtimes \mathbb{R}^n$, where H is a closed subgroup of $GL(\mathbb{R}^n)$ (see [4], [8] and [10] for example). In this article, we consider a further generalization to the case that G is a semidirect product group $N \rtimes H$, where N is a unimodular (not necessarily commutative) group, and H is a closed subgroup of $\operatorname{Aut}(N)$ satisfying certain conditions. Although the situation becomes complicated if N is not commutative, the argument goes in parallel with the commutative case, where the operator-valued Fourier transform for N plays a substantial role instead of the ordinary Fourier transform.

The content of Sections 2–4 is essentially a summary of [16], while Section 5 is devoted to discuss a concrete example that N is the Heisenberg group. Such Heisenberg

case is already studied by He-Liu [14], whereas we shall present a new example of admissible vector $\phi_{\pm,\alpha} \in L^2(N)$. In this article, we write \mathbb{T} for the set of complex numbers with absolute value 1. For a Hilbert space \mathcal{H} , we denote by $\mathcal{B}(\mathcal{H})$, (resp. $\mathcal{B}_{HS}(\mathcal{H})$, $\mathcal{B}_{Tr}(\mathcal{H})$, $U(\mathcal{H})$) the space of bounded (resp. Hilbert-Schmidt, trace class, unitary) operators on \mathcal{H} .

The author is grateful to the referee for his valuable comments and suggestions.

§ 2. Preliminaries

Let N be a separable locally compact unimodular group of type I. We denote by \hat{N} the unitary dual of N, that is, the set of equivalence classes of irreducible unitary representations of N. For each $\lambda \in \hat{N}$, we take a unitary representation $(\pi_{\lambda}, \mathcal{H}_{\lambda})$ for which λ equals the equivalence class $[\pi_{\lambda}]$ of π_{λ} . Let us fix a Haar measure ν on N. For $f \in L^{1}(N)$, we define the bounded operator $\pi_{\lambda}(f) \in \mathcal{B}(\mathcal{H}_{\lambda})$ by $\pi_{\lambda}(f) := \int_{N} f(n)\pi_{\lambda}(n) d\nu(n)$. It is known that the Plancherel measure μ on \hat{N} is uniquely determined by the abstract Plancherel formula [6]:

(2.1)
$$\int_{N} |f(n)|^{2} d\nu(n) = \int_{\hat{N}} \|\pi_{\lambda}(f)\|_{\mathrm{HS}}^{2} d\mu(\lambda) \qquad (f \in L^{1}(N) \cap L^{2}(N)),$$

where $\|\cdot\|_{\mathrm{HS}}$ stands for the Hilbert-Schmidt norm. We define the operator-valued Fourier transform $\mathbf{F}: L^2(N) \to \int_{\hat{N}}^{\oplus} \mathcal{B}_{\mathrm{HS}}(\mathcal{H}_{\lambda}) \, d\mu(\lambda)$ as the unitary isomorphism which is the extension of the map $L^1(N) \cap L^2(N)) \ni f \mapsto (\pi_{\lambda}(f))_{\lambda \in \hat{N}} \in \int_{\hat{N}}^{\oplus} \mathcal{B}_{\mathrm{HS}}(\mathcal{H}_{\lambda}) \, d\mu(\lambda)$. The inverse formula of \mathbf{F} is given as follows:

Proposition 2.1 ([11, Theorem 4.15]). Let $(A(\lambda))_{\lambda \in \hat{N}}$ be an element of the direct integral $\int_{\hat{N}}^{\oplus} \mathcal{B}_{Tr}(\mathcal{H}_{\lambda}) d\mu(\lambda)$ of the Banach space $\mathcal{B}_{Tr}(\mathcal{H}_{\lambda})$. Define a function f on N by

$$f(n) := \int_{\hat{N}} \operatorname{tr} A(\lambda) \pi_{\lambda}(n)^* d\mu(\lambda) \qquad (n \in N).$$

Then f belongs to $L^2(N)$ if and only if $(A(\lambda))_{\lambda \in \hat{N}} \in \int_{\hat{N}}^{\oplus} \mathcal{B}_{HS}(\mathcal{H}_{\lambda}) d\mu(\lambda)$. In that case, one has $\mathbf{F}f(\lambda) = A(\lambda)$ (a.a. $\lambda \in \hat{N}$).

Let H be a closed subgroup of the automorphism group $\operatorname{Aut}(N)$ on N, and G the semidirect product group $N \rtimes H$. We write the action of h to $n \in N$ as $h \cdot n$. For $h \in H$, we have a positive number $\delta(h)$ for which $d\nu(h \cdot n) = \delta(h) d\nu(n)$ $(n \in N)$. Clearly, $\delta: H \to \mathbb{R}_+$ is a representation of H. Define the unitary representation L of G on $L^2(N)$ by

(2.2)
$$L(h)f(n_0) := \delta(h)^{-1/2} f(h^{-1} \cdot n_0),$$

$$L(n)f(n_0) := f(n^{-1}n_0) \qquad (f \in L^2(N), \ h \in H, \ n, n_0 \in N).$$

176 Hideyuki ISHI

It is easy to see that the representation L is equivalent to the induced representation $\operatorname{Ind}_H^G \mathbf{1}$, where $\mathbf{1}$ is the trivial representation of H.

We define the action of H on the unitary dual \hat{N} by $h \cdot \lambda := [\pi_{\lambda} \circ h^{-1}]$ $(h \in H, \lambda \in \hat{N})$. Then we have a unitary operator $C(h, \lambda) : \mathcal{H}_{\lambda} \to \mathcal{H}_{h \cdot \lambda}$ with the property

$$C(h,\lambda)\pi_{\lambda}(h^{-1}\cdot n) = \pi_{h\cdot\lambda}(n)C(h,\lambda) \qquad (n\in N).$$

The operator $C(h, \lambda)$ is unique up to multiple by elements of \mathbb{T} by Schur's lemma. Moreover, for $h, h' \in H$ and $\lambda \in \hat{N}$, we have

(2.3)
$$C(hh',\lambda) = s_{h,h',\lambda}C(h,h'\cdot\lambda)C(h',\lambda)$$

with $s_{h,h',\lambda} \in \mathbb{T}$. Thus we have a uniquely determined operator $D(h,\lambda) : \mathcal{B}(\mathcal{H}_{\lambda}) \ni T \mapsto C(h,\lambda)TC(h,\lambda)^* \in \mathcal{B}(\mathcal{H}_{h\cdot\lambda})$, which satisfies the chain rule

$$D(hh', \lambda) = D(h, h' \cdot \lambda)D(h', \lambda).$$

Using the operator-valued Fourier transform \mathbf{F} , we describe the representation $(L, L^2(N))$ of G as follows:

Proposition 2.2. For $f \in L^2(N)$, $h \in H$ and $n \in N$, one has

(2.4)
$$\mathbf{F}[L(h)f](\lambda) = \delta(h)^{1/2}D(h, h^{-1} \cdot \lambda)\mathbf{F}f(h^{-1} \cdot \lambda),$$

(2.5)
$$\mathbf{F}[L(n)f](\lambda) = \pi_{\lambda}(n)\mathbf{F}f(\lambda)$$

for almost all $\lambda \in \hat{N}$ with respect to the Plancherel measure μ .

§ 3. Decomposition of $L^2(N)$

For $\lambda \in \hat{N}$, let $\mathcal{O}_{\lambda}^* \subset \hat{N}$ be the *H*-orbit through λ . Now let us assume that there exist elements $\lambda_1, \ldots, \lambda_K \in \hat{N}$ satisfying the following conditions:

- (H1) $\mu(\mathcal{O}_{\lambda_h}^*) > 0 \ (k = 1, \dots, K),$
- (H2) The stabilizer $H_k := \{ h \in H ; h \cdot \lambda_k = \lambda_k \}$ is compact for all $k = 1, \ldots, K$.
- (H3) The map $H/H_k \ni hH_k \mapsto h \cdot \lambda_k \in \mathcal{O}_{\lambda_k}^*$ is a homeomorphism for $k = 1, \dots, K$, where the topology on $\mathcal{O}_{\lambda_k}^*$ is induced from the Fell topology on \hat{N} .

(H4)
$$\mathcal{O}_{\lambda_k}^* \cap \mathcal{O}_{\lambda_l}^* = \emptyset \ (k \neq l)$$
 and $\mu(\hat{N} \setminus \bigsqcup_{k=1}^K \mathcal{O}_{\lambda_k}^*) = 0$.

Under this assumption, we shall see in Sections 3 and 4 that the unitary representation $(L, L^2(N))$ of G is decomposed into the direct sum of countably many irreducible subrepresentations, and such subrepresentations are all square-integrable. Their Duflo-Moore operators are described by using the operator-valued Fourier transform \mathbf{F} .

Thanks to (2.3), we have a projective unitary representation $\tau_k: H_k \ni h \mapsto C(h, \lambda_k) \in U(\mathcal{H}_{\lambda_k})$ of the group H_k for k = 1, ..., K. Since H_k is compact, we have an

irreducible decomposition $\mathcal{H}_{\lambda_k} = \sum_{\alpha \in A_k}^{\oplus} \mathcal{H}_{\lambda_k,\alpha}$, where A_k is an at most countable index set. The subspaces $\mathcal{H}_{\lambda_k,\alpha}$ are finite dimensional. For $\lambda = \tilde{h} \cdot \lambda_k \in \mathcal{O}_{\lambda_k}^*$ with $\tilde{h} \in H$, we put $\mathcal{H}_{\lambda,\alpha} := C(\tilde{h},\lambda_k)\mathcal{H}_{\lambda_k,\alpha}$ ($\alpha \in A_k$), where the right-hand side is independent of the choice of \tilde{h} . Moreover we have $\mathcal{H}_{\lambda} = \sum_{\alpha \in A_k}^{\oplus} \mathcal{H}_{\lambda,\alpha}$, which gives an irreducible decomposition of the projective representation $\tau_{\lambda} : H_{\lambda} \ni h \mapsto C(h,\lambda) \in U(\mathcal{H}_{\lambda})$ of the compact group $H_{\lambda} := \{h \in H : h \cdot \lambda = \lambda\}$. On the other hand, the relation

(3.1)
$$C(h,\lambda)\mathcal{H}_{\lambda,\alpha} = \mathcal{H}_{h\cdot\lambda,\alpha}$$

holds for $h \in H$, $\lambda \in \mathcal{O}_{\lambda_k}^*$ and $\alpha \in A_k$ in general. Using the orthogonal projection $P_{\lambda,\alpha}: \mathcal{H}_{\lambda} \to \mathcal{H}_{\lambda,\alpha}$, we define

(3.2)
$$\mathcal{B}_{\lambda,\alpha} := \{ T \in \mathcal{B}_{HS}(\mathcal{H}_{\lambda}) ; TP_{\lambda,\alpha} = T \}.$$

If we identify $\mathcal{B}_{HS}(\mathcal{H}_{\lambda})$ with the tensor product $\mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda}$, the space $\mathcal{B}_{\lambda,\alpha}$ is nothing but $\mathcal{H}_{\lambda} \otimes \overline{\mathcal{H}}_{\lambda,\alpha}$. Thus we see that

(3.3)
$$\mathcal{B}_{HS}(\mathcal{H}_{\lambda}) = \sum_{\alpha \in A_k}^{\oplus} \mathcal{B}_{\lambda,\alpha},$$

while (3.1) yields

(3.4)
$$D(h,\lambda)\mathcal{B}_{\lambda,\alpha} = \mathcal{B}_{h\cdot\lambda,\alpha}.$$

Now we set

(3.5)
$$L_{k,\alpha}(N) := \mathbf{F}^{-1} \left(\int_{\mathcal{O}_{\lambda_k}^*}^{\oplus} \mathcal{B}_{\lambda,\alpha} \, d\mu(\lambda) \right)$$
$$= \left\{ f \in L^2(N) ; \begin{array}{l} \mathbf{F} f(\lambda) = \mathbf{F} f(\lambda) P_{\lambda,\alpha} & \text{(a.a. } \lambda \in \mathcal{O}_{\lambda_k}^*) \\ \mathbf{F} f(\lambda) = 0 & \text{(otherwise)} \end{array} \right\}$$

for k = 1, ..., K and $\alpha \in A_k$. By (3.3) and (H4), we have

(3.6)
$$L^{2}(N) = \sum_{1 \leq k \leq K} \sum_{\alpha \in A_{k}}^{\oplus} L_{k,\alpha}(N),$$

and each $L_{k,\alpha}(N)$ is G-invariant thanks to Proposition 2.2 and (3.4).

§ 4. Main results

Fixing a left Haar measure d_H on H, we define a left Haar measure d_G on G by $d_G(nh) := \delta(h)^{-1} d\nu(n) d_H(h) \ (n \in N, h \in H)$. Let us consider the square-integrability

of the matrix coefficients $(f|L(g)\phi)$ $(f, \phi \in L_{k,\alpha}(N), g \in G)$ of the representation $(L, L_{k,\alpha}(N))$ of G. By (2.1) and (2.5), we have

(4.1)
$$(f|L(n)L(h)\phi) = \int_{\mathcal{O}_{\lambda_k}^*} \operatorname{tr} \mathbf{F} f(\lambda) \mathbf{F} [L(n)L(h)\phi](\lambda)^* d\mu(\lambda)$$

$$= \int_{\mathcal{O}_{\lambda_k}^*} \operatorname{tr} (\mathbf{F} f(\lambda) \mathbf{F} [L(h)\phi](\lambda)^*) \pi_{\lambda}(n)^* d\mu(\lambda).$$

We note that the operator $\mathbf{F}f(\lambda)\mathbf{F}[L(h)\phi](\lambda)^*$ is of trace class because both $\mathbf{F}f(\lambda)$ and $\mathbf{F}[L(h)\phi](\lambda)$ are Hilbert-Schmidt operators. Furthermore, $(\mathbf{F}f(\lambda)\mathbf{F}[L(h)\phi](\lambda)^*)_{\lambda\in\mathcal{O}_{\lambda_k}^*}$ belongs to $\int_{\mathcal{O}_{\lambda_k}^*}^{\oplus} \mathcal{B}_{\mathrm{Tr}}(\mathcal{H}_{\lambda}) d\mu(\lambda)$ because

$$\int_{\mathcal{O}_{\lambda_{k}}^{*}} \|\mathbf{F}f(\lambda)\mathbf{F}[L(h)\phi](\lambda)^{*}\|_{\mathrm{Tr}} d\mu(\lambda)$$

$$\leq \int_{\mathcal{O}_{\lambda_{k}}^{*}} \|\mathbf{F}f(\lambda)\|_{\mathrm{HS}} \|\mathbf{F}[L(h)\phi](\lambda)\|_{\mathrm{HS}} d\mu(\lambda)$$

$$\leq \left\{ \int_{\mathcal{O}_{\lambda_{k}}^{*}} \|\mathbf{F}f(\lambda)\|_{\mathrm{HS}}^{2} d\mu(\lambda) \right\}^{1/2} \left\{ \int_{\mathcal{O}_{\lambda_{k}}^{*}} \|\mathbf{F}[L(h)\phi](\lambda)\|_{\mathrm{HS}}^{2} d\mu(\lambda) \right\}^{1/2}$$

$$= \|f\| \|L(h)\phi\| = \|f\| \|\phi\| < +\infty,$$

where $\|\cdot\|_{\text{Tr}}$ denotes the Trace norm. Now we assume that

$$\int_{G} |(f|L(g)\phi)|^{2} d_{G}(g) = \int_{H} \int_{N} |(f|L(n)L(h)\phi)|^{2} \delta(h)^{-1} d\nu(n) d_{H}(h) < +\infty.$$

Then $\int_N |(f|L(n)L(h)\phi)|^2 d\nu(n)$ is finite for almost all $h \in H$. Thus, applying Proposition 2.1, we see from (4.1) and (2.1) that

$$\int_{N} |(f|L(n)L(h)\phi)|^{2} d\nu(n) = \int_{\mathcal{O}_{\lambda_{k}}^{*}} \|\mathbf{F}f(\lambda)\mathbf{F}[L(h)\phi](\lambda)^{*}\|_{\mathrm{HS}}^{2} d\mu(\lambda) \quad \text{(a.a. } h \in H).$$

Therefore the integral $\int_G |(f|L(g)\phi)|^2 d_G(g)$ is equal to

(4.4)
$$\int_{H} \int_{\mathcal{O}_{\lambda_{k}}^{*}} \|\mathbf{F}f(\lambda)\mathbf{F}[L(h)\phi](\lambda)^{*}\|_{\mathrm{HS}}^{2} \,\delta(h)^{-1} \,d\mu(\lambda) \,d_{H}(h).$$

Now we observe that

(4.5)
$$\int_{H} \|\mathbf{F}f(\lambda)\mathbf{F}[L(h)\phi](\lambda)^{*}\|_{\mathrm{HS}}^{2} \delta(h)^{-1} d_{H}(h) \\
= \int_{H} \int_{H_{\lambda}} \left(\operatorname{tr} \mathbf{F}f(\lambda)\mathbf{F}[L(h_{1}h)\phi](\lambda)^{*}\mathbf{F}[L(h_{1}h)\phi](\lambda)\mathbf{F}f(\lambda)^{*} \right) \delta(h_{1}h)^{-1} dh_{1}d_{H}(h),$$

where dh_1 is the normalized Haar measure on the compact group H_{λ} . Since $L(h_1h)\phi$ belongs to $L_{k,\alpha}(N)$, we have by (3.5)

$$P_{\lambda,\alpha}\mathbf{F}[L(h_1h)\phi](\lambda)^*\mathbf{F}[L(h_1h)\phi](\lambda)P_{\lambda,\alpha} = \mathbf{F}[L(h_1h)\phi](\lambda)^*\mathbf{F}[L(h_1h)\phi](\lambda),$$

which means that we can regard $\mathbf{F}[L(h_1h)\phi](\lambda)^*\mathbf{F}[L(h_1h)\phi](\lambda)$ as a linear operator on the finite dimensional vector space $\mathcal{H}_{\lambda,\alpha}$. Furthermore, applying Schur's lemma to the representation $(\tau_{\lambda}, \mathcal{H}_{\lambda,\alpha})$ of H_{λ} , we get

$$\int_{H_{\lambda}} \delta(h_1 h)^{-1} \mathbf{F}[L(h_1 h)\phi](\lambda)^* \mathbf{F}[L(h_1 h)\phi](\lambda) dh_1$$

$$= (\dim \mathcal{H}_{\lambda,\alpha})^{-1} \delta(h)^{-1} ||\mathbf{F}[L(h)\phi](\lambda)||_{HS}^2 P_{\lambda,\alpha} \in \operatorname{End}(\mathcal{H}_{\lambda,\alpha}),$$

see [16, pp. 43–44] for the detail. Note that $\dim \mathcal{H}_{\lambda,\alpha} = \dim \mathcal{H}_{\lambda_k,\alpha}$, which we denote by $n_{k,\alpha}$ in what follows. By (4.5) and (3.5), the integral (4.4) equals

$$\frac{1}{n_{k,\alpha}} \int_{\mathcal{O}_{\lambda_k}^*} \int_{H} \left(\operatorname{tr} \mathbf{F} f(\lambda) P_{\lambda,\alpha} \mathbf{F} f(\lambda)^* \right) \|\mathbf{F} [L(h)\phi](\lambda)\|_{\mathrm{HS}}^2 \delta(h)^{-1} d_H(h) d\mu(\lambda)$$

$$= \frac{1}{n_{k,\alpha}} \int_{\mathcal{O}_{\lambda_k}^*} \int_{H} \|\mathbf{F} f(\lambda)\|_{\mathrm{HS}}^2 \|\mathbf{F} [L(h)\phi](\lambda)\|_{\mathrm{HS}}^2 \delta(h)^{-1} d_H(h) d\mu(\lambda),$$

and the right-hand side is rewritten as

$$\frac{1}{n_{k,\alpha}} \int_{\mathcal{O}_{\lambda_k}^*} \|\mathbf{F}f(\lambda)\|_{\mathrm{HS}}^2 \left(\int_H \|\mathbf{F}\phi(h^{-1} \cdot \lambda)\|_{\mathrm{HS}}^2 d_H(h) \right) d\mu(\lambda)$$

by (2.4). Thanks to [16, Proposition 3], the integral $\int_H \|\mathbf{F}\phi(h^{-1}\cdot\lambda)\|_{\mathrm{HS}}^2 d_H(h)$ does not depend on $\lambda \in \mathcal{O}_{\lambda_k}^*$, and it is equal to $\int_{\mathcal{O}_{\lambda_k}^*} \|\mathbf{F}\phi(\lambda)\|_{\mathrm{HS}}^2 D_k(\lambda) d\mu(\lambda)$ with a certain H-relatively invariant function D_k on $\mathcal{O}_{\lambda_k}^*$. Therefore we have

$$+\infty > \int_{G} |(f|L(g)\phi)|^{2} d_{G}(g) = \int_{\mathcal{O}_{\lambda_{k}}^{*}} \|\mathbf{F}f(\lambda)\|_{\mathrm{HS}}^{2} d\mu(\lambda) \cdot \frac{1}{n_{k,\alpha}} \int_{H} \|\mathbf{F}\phi(h^{-1} \cdot \lambda)\|_{\mathrm{HS}}^{2} d\mu(h)$$

$$= \|f\|^{2} \cdot \frac{1}{n_{k,\alpha}} \int_{\mathcal{O}_{\lambda_{k}}^{*}} \|\mathbf{F}\phi(\lambda)\|_{\mathrm{HS}}^{2} D_{k}(\lambda) d\mu(\lambda).$$

In particular, if $f \neq 0$, then

(4.6)
$$c(\phi) := \frac{1}{n_{k,\alpha}} \int_{\mathcal{O}_{\lambda_k}^*} \|\mathbf{F}\phi(\lambda)\|_{\mathrm{HS}}^2 D_k(\lambda) \, d\mu(\lambda) < +\infty$$

and

(4.7)
$$\int_{C} |(f|L(g)\phi)|^{2} d_{G}(g) = c(\phi)||f||^{2}.$$

Conversely, if ϕ satisfies the condition (4.6), the integral (4.4) converges for any $f \in L_{k,\alpha}(N)$, so that the right-hand side of (4.3) converges for almost all $h \in H$. Therefore Proposition 2.1 implies (4.3), so that we get (4.7) again and thus, $\int_G |(f|L(g)\phi)|^2 d_G(g) < +\infty$.

Theorem 4.1. The unitary representation $(L, L_{k,\alpha}(N))$ of G is irreducible.

Proof. Let \mathcal{L} be a nonzero invariant subspace of $L_{k,\alpha}(N)$. The orthogonal complement $\mathcal{L}^{\perp} \subset L_{k,\alpha}(N)$ is also invariant. We take $\phi \in \mathcal{L} \setminus \{0\}$ and $f \in \mathcal{L}^{\perp}$. By (4.7) we have

$$0 = \int_{G} |(f|L(g)\phi)|^2 d_G(g) = c(\phi)||f||^2,$$

which implies f = 0. Actually, the argument is valid even if $c(\phi)$ is not finite. Therefore $\mathcal{L}^{\perp} = \{0\}$ and Theorem 4.1 is proved.

Furthermore, we deduce from (4.6) and (4.7) the following result.

Theorem 4.2. The representation $(L, L_{k,\alpha}(N))$ is square-integrable, whose Duflo-Moore operator $C_{k,\alpha}$ is given by

$$\mathbf{F}[C_{k,\alpha}\phi](\lambda) = \sqrt{\frac{D_k(\lambda)}{n_{k,\alpha}}}\mathbf{F}\phi(\lambda) \qquad (\phi \in L_{k,\alpha}(N), \ \lambda \in \mathcal{O}_{\lambda_k}^*).$$

A classification of the representations $(L, L_{k,\alpha}(N))$ is also given in [16]. The result is as follows:

Theorem 4.3 ([16, Theorem 4]). The unitary representations $(L, L_{k,\alpha}(N))$ and $(L, L_{k',\alpha'}(N))$ of G are equivalent if and only if k = k' and the projective representations $(\tau_k, \mathcal{H}_{k,\alpha})$ and $(\tau_k, \mathcal{H}_{k,\alpha'})$ of H_k are equivalent, that is, there exists an isometry $A: \mathcal{H}_{k,\alpha} \to \mathcal{H}_{k,\alpha'}$ such that $\tau_k(h) \circ A = A \circ \tau_k(h)$ for all $h \in H_k$.

Keeping the decomposition (3.6) in mind, and applying (1.2) to each representation $(L, L_{k,\alpha}(N))$, we obtain

Theorem 4.4. For each k = 1, ..., K and $\alpha \in A_k$, take admissible vectors $\phi_{k,\alpha} \in \text{dom}(C_{k,\alpha}) \subset L_{k,\alpha}(N)$. Then for all $f \in L^2(N)$ one has

$$f = \sum_{k=1}^{K} \sum_{\alpha \in A_k} \frac{1}{\|C_{k,\alpha} \phi_{k,\alpha}\|^2} \int_{G} W_{\phi_{k,\alpha}} f(g) L(g) \phi_{k,\alpha} d_G(g),$$

where $W_{\phi_{k,\alpha}}f(g) = (f|L(g)\phi_{k,\alpha}).$

§ 5. Example

As an illustrative example, we shall consider the case that the unimodular group N is the Heisenberg group of $(2\ell + 1)$ -dimension and H is isomorphic to $\mathbb{R}_+ \times U(\ell)$. The continuous wavelet transform for this case is first considered by He-Liu [14].

Let N be the Lie group consisting of elements n(z,c) $(z \in \mathbb{C}^{\ell}, c \in \mathbb{R})$ with multiplication rule

$$n(z,c)n(z',c') := (z+z',c+c'+\Im(z|z'))$$
 $(z,z'\in\mathbb{C}^{\ell},\ c,c'\in\mathbb{R}),$

where $(z|z') := \sum_{k=1}^{\ell} z_k \bar{z}'_k$. Define a Haar measure $d\nu$ on N by $d\nu(n(z,c)) := dm(z)dc$, where dm is the standard Euclidean measure on \mathbb{C}^{ℓ} .

For $\zeta \in \mathbb{C}^{\ell}$, we define the unitary character χ_{ζ} by $\chi_{\zeta}(n(z,c)) := e^{i\Re(z|\zeta)}$. For $\lambda > 0$, we define

$$\mathcal{H}_{\lambda} := \left\{ \varphi : \mathbb{C}^{\ell} \to \mathbb{C} \text{ (holomorphic)}; \|\varphi\|^2 = \frac{\lambda^{\ell}}{\pi^{\ell}} \int_{\mathbb{C}^{\ell}} |\varphi(w)|^2 e^{-\lambda |w|^2} dm(w) < +\infty \right\},$$

and $\mathcal{H}_{-\lambda} := \{ \overline{\varphi} ; \varphi \in \mathcal{H}_{\lambda} \}$. These $\mathcal{H}_{\pm \lambda}$ are Hilbert spaces, on which we define the irreducible unitary representations $\pi_{\pm \lambda}$ of N by

$$\pi_{\lambda}(n(z,c))\varphi(w) := e^{-i\lambda c + \lambda(w|z) - \lambda|z|^{2}/2}\varphi(w-z) \qquad (\varphi \in \mathcal{H}_{\lambda}),$$

$$\pi_{-\lambda}(n(z,c))\varphi(w) := e^{i\lambda c + \lambda(z|w) - \lambda|z|^{2}/2}\varphi(w-z) \qquad (\varphi \in \mathcal{H}_{-\lambda}).$$

The Stone-von Neumann theorem states that every irreducible unitary representation of N is equivalent to one of χ_{ζ} ($\zeta \in \mathbb{C}^{\ell}$) and π_{λ} ($\lambda \in \mathbb{R} \setminus \{0\}$), so that \hat{N} can be identified with $\mathbb{C}^{\ell} \sqcup (\mathbb{R} \setminus \{0\})$. For $f_1, f_2 \in L^1(N) \cap L^2(N)$, we have

$$(f_1|f_2) = \frac{2^{\ell-1}}{\pi^{\ell+1}} \int_{\mathbb{R} \setminus \{0\}} (\pi_{\lambda}(f_1)|\pi_{\lambda}(f_2))_{\mathrm{HS}} |\lambda|^{\ell} d\lambda$$

by [9, Chapter I, section 5], which implies that the Plancherel measure μ on \hat{N} is given by $\mu(\mathbb{C}^{\ell}) = 0$ and $d\mu(\lambda) = 2^{\ell-1}\pi^{-\ell-1}|\lambda|^{\ell}d\lambda$ $(\lambda \in \mathbb{R} \setminus \{0\})$.

For a>0 and $u\in U(\ell)$, define $h(a,u)\in {\rm Aut}(N)$ by $h(a,u)\cdot n(z,c):=n(auz,a^2c).$ Then we have

$$h(a, u) h(a', u') = h(aa', uu') \quad (a, a' > 0, u, u' \in U(\ell)),$$

so that $H := \{h(a, u); a > 0, u \in U(\ell)\}$ is a subgroup of $\operatorname{Aut}(N)$. For $h = h(a, u) \in H$, we have $\delta(h) = a^{2\ell+2}$, and we define the representation $(L, L^2(N))$ of $G = N \rtimes H$ by (2.2). The action of H on \hat{N} is described as

$$h(a, u) \cdot \zeta = a^{-1} u \zeta$$
 $(\zeta \in \mathbb{C}^{\ell}),$
 $h(a, u) \cdot \lambda = a^{-2} \lambda$ $(\lambda \in \mathbb{R} \setminus \{0\}).$

In particular, the intertwining operator $C(h,\lambda):\mathcal{H}_{\lambda}\to\mathcal{H}_{a^{-2}\lambda}$ is given by

$$C(h,\lambda)\varphi(w) := \varphi(a^{-1}u^{-1}w) \quad (\varphi \in \mathcal{H}_{\lambda}).$$

We denote by \mathcal{O}_{\pm}^* the *H*-orbit through $\pm 1 \in \mathbb{R} \setminus \{0\} \subset \hat{N}$. Then $\mathcal{O}_{\pm}^* = \{\lambda : \pm \lambda > 0\}$, and the conditions (H1)–(H4) are satisfied for the two orbits. In particular, the stabilizer H_{λ} at any $\lambda \in \mathcal{O}_{+}^* \sqcup \mathcal{O}_{-}^*$ equals the compact group $\{h(1,u) : u \in U(\ell)\} \simeq U(\ell)$. For a non-negative integer $\alpha \in \mathbb{Z}_{\geq 0}$, let $\mathcal{P}_{\alpha}(\mathbb{C}^{\ell})$ be the space of holomorphic polynomials of degree α on \mathbb{C}^{ℓ} , and $\overline{\mathcal{P}}_{\alpha}(\mathbb{C}^{\ell})$ the space $\{\overline{\varphi} : \varphi \in \mathcal{P}_{\alpha}(\mathbb{C}^{\ell})\}$. Then we have for $\lambda > 0$

$$\mathcal{H}_{\lambda} = \sum_{lpha=0}^{\infty} \mathcal{P}_{lpha}(\mathbb{C}^{\ell}), \quad \mathcal{H}_{-\lambda} = \sum_{lpha=0}^{\infty} \overline{\mathcal{P}}_{lpha}(\mathbb{C}^{\ell}),$$

which give the irreducible decomposition of the representation $(\tau_{\pm\lambda}, \mathcal{H}_{\pm\lambda})$ of $H_{\pm\lambda}$ respectively. Let $P_{\lambda,\alpha}: \mathcal{H}_{\lambda} \to \mathcal{P}_{\alpha}(\mathbb{C}^{\ell})$ and $P_{-\lambda,\alpha}: \mathcal{H}_{-\lambda} \to \overline{\mathcal{P}}_{\alpha}(\mathbb{C}^{\ell})$ be the orthogonal projections, and set

$$L_{\pm,\alpha}(N) := \left\{ f \in L^2(N) ; \begin{array}{l} \mathbf{F}f(\lambda) = \mathbf{F}f(\lambda)P_{\lambda,\alpha} & \text{(a.a. } \lambda \in \mathcal{O}_{\pm}^*) \\ \mathbf{F}f(\lambda) = 0 & \text{(otherwise)} \end{array} \right\}.$$

Then an irreducible decomposition of the unitary representation $(L, L^2(N))$ of G is given by

(5.1)
$$L^{2}(N) = \sum_{\alpha=0}^{\infty} L_{+,\alpha}(N) \oplus \sum_{\alpha=0}^{\infty} L_{-,\alpha}(N).$$

The decomposition is multiplicity-free thanks to Theorem 4.3.

We define a Haar measure d_H on H by $d_H(h(a,u)) := a^{-1} da du$, where du is the normalized Haar measure on $U(\ell)$. For $\lambda_0 \in \mathcal{O}_{\pm}^*$ and a measurable function $p: \mathcal{O}_{\pm}^* \to \mathbb{R}$, we observe

$$\int_{H} p(h^{-1} \cdot \lambda_{0}) d_{H}(h) = \int_{0}^{+\infty} p(a^{2}\lambda_{0}) \frac{da}{a} = \int_{\mathcal{O}_{\pm}^{*}} p(\lambda) \frac{d\lambda}{2|\lambda|}$$
$$= \int_{\mathcal{O}_{\pm}^{*}} p(\lambda) \cdot 2\left(\frac{\pi}{2|\lambda|}\right)^{\ell+1} d\mu(\lambda).$$

Thus, setting $D_{\pm}(\lambda) := 2\left(\frac{\pi}{2|\lambda|}\right)^{\ell+1}$ $(\lambda \in \mathcal{O}_{\pm}^*)$, the Duflo-Moore operator $C_{\pm,\alpha}$ of the representation $(L, L_{\pm,\alpha}(N))$ is given by $\mathbf{F}[C_{\pm,\alpha}\phi](\lambda) = \sqrt{\frac{D_{\pm}(\lambda)}{n_{\alpha}}}\mathbf{F}\phi(\lambda)$ $(\phi \in L_{+,\alpha}(N), \lambda \in \mathcal{O}_{\pm}^*)$, where $n_{\alpha} = \dim_{\mathbb{C}} \mathcal{P}_{\alpha}(\mathbb{C}^{\ell}) = \binom{\alpha+\ell-1}{\alpha}$.

Finally, we give an example of admissible vector in $L_{\pm,\alpha}(N)$. We set

$$\phi_{\pm,\alpha}(n(z,c)) := \int_{\mathcal{O}_{\pm}^*} |\lambda| e^{-|\lambda|} \operatorname{tr} P_{\lambda,\alpha} \pi_{\lambda}(n(z,c))^* d\mu(\lambda).$$

Then $(|\lambda|e^{-|\lambda|}P_{\lambda,\alpha})_{\lambda\in\mathcal{O}_{\pm}^*}$ belongs to both of the direct integrals $\int_{\mathcal{O}_{\pm}^*}^{\oplus} \mathcal{B}_{\mathrm{Tr}}(\mathcal{H}_{\lambda}) d\mu(\lambda)$ and $\int_{\mathcal{O}_{\pm}^*}^{\oplus} \mathcal{B}_{\mathrm{HS}}(\mathcal{H}_{\lambda}) d\mu(\lambda)$. Applying Proposition 2.1, we see that $\phi_{\pm,\alpha} \in L^2(N)$ and that

$$\mathbf{F}\phi_{\pm,\alpha}(\lambda) = \begin{cases} |\lambda|e^{-|\lambda|}P_{\lambda,\alpha} & \text{(a.a. } \lambda \in \mathcal{O}_{\pm}^*), \\ 0 & \text{(otherwise)}. \end{cases}$$

Thus $\phi_{\pm,\alpha} \in L_{\pm,\alpha}(N)$. Furthermore we have

$$||C_{\pm,\alpha}\phi_{\pm,\alpha}||^{2} = n_{\alpha}^{-1} \int_{\mathcal{O}_{\pm}^{*}} ||\mathbf{F}\phi_{\pm,\alpha}(\lambda)||_{\mathrm{HS}}^{2} \frac{d\lambda}{2|\lambda|} = n_{\alpha}^{-1} \int_{\mathcal{O}_{\pm}^{*}} n_{\alpha}|\lambda|^{2} e^{-2|\lambda|} \frac{d\lambda}{2|\lambda|}$$
$$= \frac{1}{2} \int_{0}^{+\infty} e^{-2\lambda} \lambda \, d\lambda = \frac{1}{8},$$

so that $\phi_{\pm,\alpha}$ is admissible.

The function $\phi_{\pm,\alpha}$ can be calculated explicitly. By definition, we have $\phi_{-,\alpha} = \overline{\phi}_{+,\alpha}$, so that we shall consider only $\phi_{+,\alpha}$. For non-negative integers k and α , the Laguerre polynomial $L_{\alpha}^{k}(s)$ is defined by $L_{\alpha}^{k}(s) := \frac{e^{s}s^{-k}}{\alpha!}(\frac{d}{ds})^{\alpha}[e^{-s}s^{k+\alpha}]$. By [3, Proposition 6.2], we have

tr
$$P_{\lambda,\alpha}\pi_{\lambda}(n(z,c))^* = e^{(ic-|z|^2/2)\lambda}L_{\alpha}^{\ell-1}(\lambda|z|^2).$$

Thus

$$\phi_{+,\alpha}(n(z,c)) = \frac{2^{\ell-1}}{\pi^{\ell+1}} \int_0^{+\infty} e^{-(1-ic+|z|^2/2)\lambda} L_{\alpha}^{\ell-1}(\lambda|z|^2) \lambda^{\ell+1} d\lambda.$$

On the other hand, for a parameter |r| < 1, we have $\sum_{\alpha=0}^{\infty} r^{\alpha} L_{\alpha}^{\ell-1}(s) = (1-r)^{-\ell} e^{-\frac{rs}{1-r}}$. Therefore

$$\begin{split} \sum_{\alpha=0}^{\infty} r^{\alpha} \phi_{+,\alpha}(n(z,c)) &= \frac{2^{\ell-1}}{\pi^{\ell+1}} \int_{0}^{+\infty} e^{-(1-ic+|z|^{2}/2)\lambda} (1-r)^{-\ell} e^{-\frac{r|z|^{2}\lambda}{1-r}} \, \lambda^{\ell+1} \, d\lambda \\ &= \frac{2^{\ell-1}}{\pi^{\ell+1}} (1-r)^{-\ell} \cdot (\ell+1)! \Big\{ (1-ic+|z|^{2}/2) + \frac{r|z|^{2}}{1-r} \Big\}^{-(\ell+2)} \\ &= \frac{2^{\ell-1} (\ell+1)!}{\pi^{\ell+1}} (1-ic+|z|^{2}/2)^{-(\ell+2)} \\ &\times (1-r)^{2} \left(1 + \frac{-1+ic+|z|^{2}/2}{1-ic+|z|^{2}/2} \cdot r \right)^{-(\ell+2)} \, . \end{split}$$

Putting $\theta := \frac{-1+ic+|z|^2/2}{1-ic+|z|^2/2}$, we have by the binomial theorem

$$(1-r)^{2}(1+\theta r)^{-(\ell+2)} = \sum_{\alpha=0}^{\infty} \frac{(-1)^{\alpha}(\alpha+\ell-1)!}{(\ell+1)!\alpha!} \{\alpha(\alpha-1)\theta^{\alpha-2} + 2\alpha(\alpha+\ell)\theta^{\alpha-1} + (\alpha+\ell)(\alpha+\ell+1)\theta^{\alpha}\}r^{\alpha}.$$

Hence

$$\begin{split} \phi_{+,\alpha}(n(z,c)) &= \frac{2^{\ell-1}}{\pi^{\ell+1}} (1 - ic + |z|^2/2)^{-(\ell+2)} \\ &\quad \times \frac{(-1)^{\alpha} (\alpha + \ell - 1)!}{\alpha!} \{ \alpha(\alpha - 1) \theta^{\alpha - 2} + 2\alpha(\alpha + \ell) \theta^{\alpha - 1} + (\alpha + \ell)(\alpha + \ell + 1) \theta^{\alpha} \}. \end{split}$$

References

- [1] Ali, S. T., Antoine J.-P., and Gazeau, J.-P., "Coherent states, wavelets and their generalizations," Springer-Verlag, New York, 2000.
- [2] Aniello, P., Cassinelli, G., de Vito, E., and Levrero, A., Square integrability of induced representations of semidirect products with normal abelian subgroup, Rev. Math. Phys., 10 (1998), 301-313.
- [3] C. Benson, J. Jenkins and G. Ratcliff, Bounded K-spherical Functions on Heisenberg Groups, J. Funct. Anal., 105 (1992), 409–443.
- [4] Bernier, D. and Taylor, K. F., Wavelets from square-integrable representations, SIAM J. Math. Anal., 27 (1996), 594–608.
- [5] Currey, B. N., Admissibility for a class of quasiregular representations, Canad. J. Math., 59 (2007), 917–942.
- [6] Dixmier, J., "Les C^* -algèbres et leurs Représentations," Gauthier-Villars, Paris, 1974.
- [7] Duflo, M., and Moore, C. C., On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., 21 (1976), 209–243.
- [8] Fabec, R., and Ólafsson, G., The continuous wavelet transform and symmetric spaces, Acta Appl. Math., 77 (2003), 41–69.
- [9] Folland, G., "Harmonic Analysis in Phase Space," Princeton Univ. Press, Princeton, 1989.
- [10] Führ, H., Wavelet frames and admissibility in higher dimensions, J. Math. Phys., **37** (1996), 6353–6366.
- [11] Führ, H., "Abstract Harmonic Analysis of Continuous Wavelet Transforms," Lecture Notes in Mathematics, **1863**, Springer-Verlag, New York, 2005.
- [12] Führ, H., and Mayer, M., Continuous wavelet transforms from semidirect products: Cyclic representations and Plancherel measure, J. Fourier Anal. Appl., 8 (2002), 375–398.
- [13] Grossmann, A., Morlet, J., and Paul, T., Transforms associated to square integrable group representations, I and II, J. Math. Phys., 26 (1985), 2473–2479; Ann. Inst. Henri Poincaré, 45 (1986), 293–309.
- [14] He, J., and Liu, H., Admissible wavelets associated with the affine automorphism group of the Siegel upper half-plane, J. Math. Anal. Appl., 208 (1997), 58–70.
- [15] Ishi, H., Wavelet transform associated to a homogeneous Siegel domain, Proceedings of the 24th International Colioquim on Group Theoretical Methods in Physics, 937–941, 2002.
- [16] Ishi, H., Wavelet transforms for semidirect product groups with not necessarily commutative normal subgroups, J. Fourier. Anal. Appl. 12 (2006), 37–52.
- [17] Kalisa, C., and Torresani, B., n-dimensional affine Weyl-Heisenberg wavelets, Ann. Inst. H. Poincare Phys. Theor., **59** (1993), 201–236.
- [18] Kleppner, A., and Lipsman, R. L., The Plancherel formula for group extensions, I and II, Ann. Sci. Ecole Norm. Sup., 5 (1972), 459–516; ibid. 6 (1973), 103–132.

- [19] Liu, H., and Peng, L., Admissible wavelets associated with the Heisenberg group, Pacific J. Math., 180 (1997), 101–123.
- [20] Strichartz, R. S., L^p harmonic analysis and Radon transforms on the Heisenberg group, J. Funct. Anal., **96** (1991), 350–406.