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Time reversal symmetries and properties of ground
states in nonrelativistic QED

By

MICHAEL LoOss*, TADAHIRO MivyAO**and HERBERT SPOHN***

Abstract

Time reversal symmetries of the Pauli-Fierz Hamiltonian are investigated in both Fock
and Schrodinger representations. As an application, we investigate some properties of ground
states expectations.

§1. Introduction

Let us consider one electron coupled with the quantized radiation field. This system
is described by the so-called Pauli-Fierz Hamiltonian. By now some spectral properties
of this model were succesfully investigated by several authors [1, 2, 3, 4, 5, 6, 8, 10, 15,
16]. In particular the existence of a ground state is rather well understood. If we ignore
the spin, the ground state is unique [12, 21]. A typical way to see the uniqueness is to
prove that the heat kernel of the Hamiltonian improves the positivity in the Schrédinger
representation [12]. Then the uniqueness is a direct consequence of the Perron-Frobenius
theorem. On the other hand if the spin is included, it was shown that the ground state is
always degenerate by the Kramers degeneracy theorem comming from the time reversal
symmetry [14, 17, 18].

Usually we analyze the Pauli-Fierz Hamiltonian in the standard Fock representa-
tion where fields operators are described by the annihilation- and creation operators.
However as mentioned above there is another important representation space for the
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Pauli-Fierz Hamiltonian, often called the Schrédinger representation where the fields
operators are expressed as real valued multiplication operators in some L?-space. Each
representation has its own advantage. For instance, since the quantized vector potential
is a real multiplication operator in the Schrodinger representation, we can construct a
path integral formula by modifying arguments about the standard Pauli operator. The
point is that some properties could be easily proven in the Schrodinger representation
even though these are hard to see in the Fock representation, and vice versa. Therefore
choice of a suitable representation depends on each problem.

In previous works [17, 18], the time reversal symmetry was discussed in the Fock
representation. Then it is rather natural to investigate the time reversal symmetry in
the Schrodinge representation. Comparing results obtained in both representations, we
could discover new aspects of the Pauli-Fierz Hamiltonian. This is a motivation of this
little note. Indeed we will find a time reversal symmetry which is defferent from the
one in the Fock representation. Then applying differences between two positively, we
will investigate some properties of the ground states expectations.

§2. Pauli-Fierz Hamiltonian with spin 1/2
The Pauli-Fierz Hamiltonian is given by
(2.1) H = %(—ivm+€A($))2+SU'B(x)+V($)+Hf
acting in L?(R?;C?) ® §, where § is the photon Fock space

_ ® 2 3 Rsn
(2.2) F=D ., LR x 1,21,
where h®" means the n-fold symmetric tensor product of h with the convention h®0 =
C. The quantized vector potential A(x) = (A1(x), Aa(x), As(x)) is given by
_ —3/2 ek, N ik —ik-x *
(2.3) Alz)= > (27) dk =222 {e®2q(k, A) + e a(k, A)* Y,

A=1,2 [k|<A 2|k|

where e(k,\) is a polarization vector which is real valued and measurable, A is the
ultraviolet cutoff. Here a(k,\),a(k,\)* are the annihilation and creation operators
which satisfy the standard commutation relations

(2'4) [CL(]C, )‘)7 a(Qv M)*] = 5>\u5(k - Q)a [Cb(k', )‘)7 a(Qa H)] =0= [CL(]C, )‘)*7 a(Qv M)*]
B(x) is the quantized magnetic field defined by
B(x) = rotA(z)

2.5 —i ) ~3/2 Ak EE N iy Ay kg (g )
(2.5) 3 o) /w etk ) (k N}
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Hy is the field energy given by
(2.6) He= > / dk |kla(k, A a(k, \).
A=1,27E?

In this note, we assume the following;:
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(V) V is infestimally small with respec to —A,. Moreover V(—z) = V(z) for a.e.

x € R3.

Then, by [11, 13], H is self-adjoint on dom(—A,) N dom(H;), bounded from below.

§3. Time reversal symmetry in the Fock representation
On L3(R3;C?) ® § = ®?L3(R3; F), we take the following involution:

(3.1)  Jre=jor ®jel,

o —
(32) ]900 - Zn>0 QO(n)O.(—CIZ', kla)\la s 7kn7)\n)7 HANS R?)v (k’m)"b) € R?) X {172}

@ n
for p = o1 By € B?LA(R3;F) with ¢, = Zn>0 o )(x; k1, M1y - ook, An) € L2(R3; ),
o =T, ]. In this note, we often denote the linear operator X @ X acting in b @ b simply

by X.
Since the annihilation operator a(k, \) acts by
e
(3.3) alk, Ngs = > LVt LoD (@ ke, Nk, A, K, Ap)

for ¢, = Zfzo 9057") € L?(R3; ) with o =7, |, one has
(3.4) Jra(k,\) = a(k,\)Jp, Jra(k,\)* =a(k,\)*Jp.

Namely the annihilation and creation operators are reality preserving w.r.t. Jp.
consequence, we obtain

(3.5) Jr(=iVy) = (=iVy)JF,
(3.6) JrpA(x) = A(x)JF,
(3.7) JrB(z) = —B(z)Jp,
(3.8) JrHy = HyJp,
(3.9) TV (x) = V(=) Jp.

Now let introduce a time reversal operator in the Fock representation by
(3.10) 191:* ZO'QJF.

Clearly 9% = —1.
By the above relations, one arrives at the following:
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Proposition 3.1.  [16] H has a time reversal symmetry in the Fock representa-
tion:

(3.11) IpH = HYp.

§4. Time reversal symmetry in the Schrodinger representation

There is a natural way to regard the fields operators A(z) and B(z) as real valued
multiplication operators on L?-space. Such a representation is called the Schridinger
representation. To explain this, let us introduce

(4.1) A(f) = (A1(f1), A2(f2), As(f3)),
5] (k )‘) F (B *
42 A AZM /M o RJalh )+ () lk, )

for £ = (f1, fo, f3) with |k|_1/2fj € L?(R3) and fj is real valued, where fj means the
Fourier transformation of f;. Then one sees

(43) <Q’ el Z?:1 Aj(fj)Q) —e —1q(f, f)
dk % N
(1.4 oftg) = [ GrEG (1= 1B R)Eh)

where k = k/|k| and Q = 1&0®0&- - - is the Fock vacuum. The left hand side of (4.3) is
the characteristic functional of a Gaussian measure, du(A) with mean 0 and covariance
q. Hence, by Minlos’ theorem, Fock space § can be identified with L?(Q,du), where Q
is the dual space of ®3S,ea1(IR?), the set of real valued Schwarz test functions. By the
construction, A(z) and B(x) are multiplication operators on L?(Q,du). More precise
explanation can be found in [7], see also [12, 21].

Let Jg be a natural involution on L?(R3;C?) @ § = ®?L?(R3 x Q) defined by
Jsp =0, ®p, for each p = o1 ® | € ®*L*(R® x Q). Then since A(z), B(z) and V()
are real valued multiplication operators, one sees

(4.5) JsA(z) = A(z)Jg,
(4.6) JsB(x) = B(z)Jg,
(4.7) JsV(z) =V (z)Js,
(4.8) Js(=1Ve) = =(=iVa)Js

Moreover since e #Ht preserves the positivity [20], one has

(4.9) JsH; = HeJg.
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Let £ = ™/ with Ny = > ox=1.2 Jra dka(k, \)*a(k, A), the number operator.
Remark the following important relation

(4.10) Js& = ™Vig g,

For a linear operator Z, let us denote Z = £Z¢~ L. Then, by (4.10), one obtains

(4.11) JsA(z) = —A(x)Js,
(4.12) Jsé(l') = — (CC)Js.

P

On the other hand, since V(z) = V(z), (=iV,) = =iV, and H; = H;, we have

el

(4.13) TsV (@) = V() Js, Js(—iVa) = —(—iVa)Js, JsH: = HeJs.
Now we define a time reversal operator in the Schrodinger representation by
(4.14) Vg = 09Js.

Note that 9% = —1. Summarizing the above discussion, we arrive at the following.

Proposition 4.1.  H has a time reversal symmetry in the Schrédinger represen-
tation, namely,

(4.15) VsH = Hdg.

8§5. Ground states properties

Throughout this section we assume the following.

(G) The Schrédinger operator hay = —2 A, + V(z) has a unique strictly positive ground
state ¢, with corresponding eigenvalue F,; < 0.

Then H has a ground state [3, 4, 10, 15]. Let ¥ be a ground state of H. Then, by
Proposition 3.1, ¥V is a ground state of H as well. Moreover we have

(U, 9p0) = (9p0,9pdpl)* = —(9pT, U)* = — (T, 9pT)

which means ¥ 1 9pV¥. Let Py be an orthogonal projection onto a closed subspace
spanned by the ground states of H. Then above argument tells us

(5.1) dimranP, > 2.

Namely H has degenerate ground states. Similar arguments are still valid when we
consider H instead of H in the Schrodinger representation and apply Proposition 4.1.
(In general we can show each eigenvalue is degenerate by the parallel argument. The
degeneracy comming from the time reversal symmetry is called the Kramers’ degeneracy
(17, 18]. )

In this section, we consider one of the following.
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(H7T) Pest ® par @ Q#0,
(H ) Pys| ® ¢ar @ Q #0,

1
where s = <0> and 5| = <(1)>

Remark that if e is sufficiently small, then we can actually check (H 7) and (H |)
by the pull-through arguments [4, 14].

Proposition 5.1.  (H 1) implies (H |). Conversely (H |) implies (H 7).
Proof. By Proposition 3.1, one sees 9p P, = Pyp. Assume (H 7). Then
(5.2) 0# VpPyst @ Pay @ Q= Pylpst ® ¢ay @ QL =iFP;5] ® ¢ay @ Q
which implies (H |). O

Henceforth we always assume (H 7) or (H |). Define

e PlHg @ oy @ Q
5.3 =s- lim ,
3 Y S e s © 0 20
—BH
, e 75| ® Par @
5.4 =g lim .
( ) (! B 00 He_ﬁH«Sl@?Cbat@Q“

Then both 1 and 9| are normalized ground states of H.
Proposition 5.2.  One has the following.
(i) Ippr =1, Ipyp) = —igy.
(ii) Let by = Ep and ) = &Py, Then sy = ihy,  Isthy = —idhy.
(i) (P1,91) = 0.

Proof. (i) and (ii) immediately follow from (5.3), (5.4) and Propositions 3.1, 4.1.
To see (iii) we observe, by (i), that

(5.5) (1, 91) = Wry, Irdr) = = (01, ¢))
which implies (iii). O

Remark that if we choose e sufficiently small, then dimranP, = 2 by [14]. Hence,
by Proposition 5.2 (iii), we have

Py = 1) (| + ¥ ) (]

provided e sufficiently small, where |1, ) (1| stands for the orthogonal projection onto
the one dimensional subspace spanned by 1.



TIME REVERSAL SYMMETRIES AND PROPERTIES OF GROUND STATES IN NONRELATIVISTIC QED 41

Theorem 5.3. Let F € L>®(R3). Assume F*(—z) = F(x). Then one has the
following.

(i) For alliy,... i, € {1,2,3} andn €N,

(1, F'(w) Asy (2) Ay () - -+ A, (2)31)
(5.6) =y, F(x)Ai (2) Ay () - - A, (2)0)).
(ii) For alliy,... i, € {1,2,3} andn €N,
(5.7) (1, F(@)Ai, () Ay () - - - Ay, (2)1)) = 0.

(iii) For alliq,...,i, € {1,2,3} and n € N,

<,¢T7 F(x)All ($)AZ2 (CC) T Ai2n+1 (x)¢T>
:<¢l7 F(J?)A“ (x)Azz (J}) o Ai2n+1 (x)¢l>
(5.8) 0.

Remark.  In [19], similar properties played some important roles, where the spin-
less Pauli-Fierz Hamiltonian was studied.

Proof. Tt sufficies to show the assertions for each real F' € L*(R3) with F(—z) =
(i) One has

(1, FA;, - Ag0r) = (OpYr, O F A, - Ay p)”
= (Opy, FA; - A Opip)”
= (|, FA; - A )

by Proposition 5.2.
(ii) One has

(1, FA; - A )) = (OpYr, OpF A, - Ay )"
= (py, F Ay -+ A OpY))"
=—(1,FA; - A )

by Proposition 5.2.
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(iii) To show (iii), we move to the Schrédinger representation L?(R3;C?) @ § =
®2L2(R? x Q). Recall 954;(x) = —A;(x)9s with A;(x) = EA;(2)€. Then one sees

<¢T7FA11 "'A12n+1¢T> <¢T7FA A n¢T>

= (195¢T,195Fz‘~1¢1 Ay 1)
— (9, FA;, -+ A, 9g11)*
= (¢, FA;, ---A; %) (By Proposition 5.2)
==, FAi, - Ai ¥))
= — (¢, FA;, - Aiby). (By (i)
This proves (iii). O

Theorem 5.4.  One has the following.
(i) For alliy,... i, € {1,2,3} andn €N,

(1, Ay, (p)e P A (2)e P2 o A, (2)e PrHapy)
(5.9) =(p, e A (x)e T A (x) e A (2)0)).

1) For alliq,...,i, € {1,2,3} and n € N,
(it)
<’¢JT, Ail ($)e_51HAi2 (gj)e_ﬁzH .. Ai2n+1 (x)e_ﬁ2"+1H’g[JT>
= w ,Ai X e_ﬁ1HAi x e_ﬁzH . Az T e—ﬁ2n+1Hw
! ! 2 2n41 1
(5.10) =0.

Proof. (i) Observe that

(y, Ajye P Ay e Prtly) = (19F¢T,19FAzle Pl Ay e Pl
= (Iptpr, Ao P Ay e Pty papy )
= (|, Aile_ﬁlH s Ay e PnHy )
= (e A, e P A, ).

(ii)
(ahr, Aj e PHH LA,

t2n+1

e—ﬁzn+1H¢T> — (1;%1211.16—/311? . .Ai%ﬂe—ﬁznﬂﬁiﬁ
= (Vsi)r, ﬁgflile_ﬁlg . -Ai%ﬂe_ﬁzn“ﬁzﬁ)*
—<1951/~1T, Aile_ﬁlg e Ai%ﬂe_ﬁzn“gﬁﬁzﬁ*
— (), Ay eI ..Amﬂ ~PontaHyjy y*
— (11, eI A )
—(tpy, Az e” BiH | A e—ﬁzn+1H¢T>.

12n+1

e—ﬁzn+1HAZ2 e
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In the last line, we used (i). O
Theorem 5.5. Let F be a measurable function on R? satisfying

(5.11) sup |[F(z)]e 1l < oo

for sufficiently small ¢ > 0. Then one has the following.
(1) (b1, F(x)y) = (@1, F(z)dy).

(ii) Yy, Fz)p)) = 0.

(iii) If F is odd, i.c., F(—z) = —F(x), then

(5.12) (1, F(x)hr) = 0= (¢, F(x)dy).

Proof. First we remark that, the ground states v+ and 1| have the exponential
decay property |efl*li, || < oo for sufficiently small € > 0 [4, 9, 10]. Hence by the
assumption (5.11), each 1), belongs to the domain of the multiplcation operator F. We
also remark that, it sufficies to show the assertions for real F'.

(i)
(W1, Fapr) = (g, Fidy) = (Ogby, 05 Fify)* = (9gaby, Fsiy)* = (), Fipy)*
= <¢l7F¢l>'

Similarly we can see (ii).
(iii) Note that if F is odd, then 9pF = —FJp. Hence

(W, Fipy) = (Ophr, OpEFy)" = —(0ppy, FIpy)" = — (), Fip ) = — (¢, Fy).

This proves (iii). O
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