On the existence of ground states for the Pauli-Fierz model with a variable mass

By

Takeru Hidaka *

Abstract

The purpose of this paper is to review [9]. The existence of ground states of the Pauli-Fierz model with a variable mass is considered. This paper presents the outline of the proof of it under the infrared regularity condition.

§ 1. Introduction

The Pauli-Fierz model describes a minimal interaction between a low energy electron and a quantized radiation field, where the electron is governed by a Schrödinger operator. The Pauli-Fierz Hamiltonian is the physical quantity corresponding to the energy of the system and is realized as a self-adjoint operator on a certain Hilbert space and its bottom of the spectrum is called the ground state energy. An eigenvector associated with the ground state energy is called a ground state, if it exists.

The existence of ground states of the Pauli-Fierz Hamiltonian is investigated in [1, 2, 4, 8, 10, 12]. In [2, 8], the infrared regularity condition is not assumed. In [4, 8], the existence of ground states is shown for arbitrary values of coupling constants. The uniqueness of the ground state of the Pauli-Fierz Hamiltonian is proven in [11].

The Pauli-Fierz Hamiltonian with a variable mass is considered in this paper. It is derived from the analogy of the Nelson model on a pseudo Riemannian manifold [5, 6, 7]. Under the infrared regularity condition, this Hamiltonian has ground states for all values of a coupling constant when a variable mass decays sufficiently fast.
§ 2. Definition of the Pauli-Fierz model

§ 2.1. Hilbert space of states

We consider the Hilbert space of states of total system as

$$\mathcal{H} := \mathcal{H}_P \otimes \mathcal{F},$$

where

$$\mathcal{H}_P := L^2(\mathbb{R}^3)$$

describes state space of one electron and \mathcal{F} is the boson Fock space over $L^2(\mathbb{R}^3; \mathbb{C}^2)$ defined by

$$\mathcal{F} := \bigoplus_{n=0}^{\infty} \left(\bigotimes_{s}^{n} L^2(\mathbb{R}^3; \mathbb{C}^2) \right).$$

Here $\otimes_s^n L^2(\mathbb{R}^3; \mathbb{C}^2)$ denotes the n-fold symmetric tensor product of $L^2(\mathbb{R}^3; \mathbb{C}^2)$ with $\otimes_s^0 L^2(\mathbb{R}^3; \mathbb{C}^2) = \mathbb{C}$. The inner product on \mathcal{F} is given by

$$(\Psi, \Phi)_{\mathcal{F}} = \overline{\Psi(0)} \Phi^{(0)} + \sum_{n=1}^{\infty} \int_{\mathbb{R}^{3n}} \overline{\Psi^{(n)}(k_1, \cdots, k_n)} \Phi^{(n)}(k_1, \cdots, k_n) dk_1 \cdots dk_n.$$

The Hilbert space \mathcal{H} can be identified with

$$\mathbb{H} \cong \bigsqcup_{\mathbb{R}^3} \mathcal{F} dx \cong L^2(\mathbb{R}^3) \oplus \left(\bigoplus_{n=1}^{\infty} L_{\text{sym}}^2(\mathbb{R}^{3+3n}; \mathbb{C}^2) \right).$$

Here $L_{\text{sym}}^2(\mathbb{R}^{3+3n}; \mathbb{C}^2)$ is the set of $L^2(\mathbb{R}^{3+3n}; \mathbb{C}^2)$-functions such that

$$f(x, k_1, \cdots, k_n) = f(x, k_{\sigma(1)}, \cdots, k_{\sigma(n)})$$

for an arbitrary permutation σ.

Let T be a densely defined closable operator on $L^2(\mathbb{R}^3; \mathbb{C}^2)$. Then $\Gamma(T)$ and $d\Gamma(T)$ are defined by

$$\Gamma(T) := \bigoplus_{n=0}^{\infty} \otimes^n T, \quad d\Gamma(T) := \bigoplus_{n=0}^{\infty} \otimes^n T^{(n)},$$

where $\otimes^0 T = 1$, $T^{(n)} := \sum_{k=1}^{n} 1 \otimes \cdots 1 \otimes \frac{kth}{T} \otimes 1 \cdots \otimes 1$ and $T^{(0)} = 0$. The number operator is defined by

$$N := d\Gamma(1).$$
The annihilation operator $a(f)$ and the creation operator $a^\dagger(f)$ smeared by $f \in L^2(\mathbb{R}^3; \mathbb{C}^2)$ on \mathcal{F} are defined by

\begin{align}
D(a^\dagger(f)) &= \left\{ \Psi \in \mathcal{F} \mid \sum_{n=1}^\infty n \| S_n(f \otimes \Psi^{(n-1)}) \|^2 < \infty \right\}, \\
(a^\dagger(f)\Psi)^{(n)} &= \sqrt{n}S_n(f \otimes \Psi^{(n-1)}), \quad n \geq 1, \quad (a^\dagger(f)\Psi)^{(0)} = 0, \\
a(f) &= (a^\dagger(\overline{f}))^*,
\end{align}

where S_n denotes the symmetrization operator of degree n and $D(T)$ the domain of T. $\Omega := (1,0,0,\cdots) \in \mathcal{F}$ is called the Fock vacuum. Let

\begin{equation}
(a(k)\Psi)^{(n)}(k_1, \cdots, k_n) := \sqrt{n+1}\Psi^{(n+1)}(k, k_1, \cdots, k_n)
\end{equation}

for $\Psi \in D(N^{1/2})$. Then for almost every k, $a(k)\Psi \in \mathcal{F}$.

§ 2.2. Definition of the Pauli-Fierz model

Let v be a multiplication operator on $L^2(\mathbb{R}^3)$. We introduce assumptions on v.

Assumption 1.

1. $\sigma_P(-\Delta + v) \subset (0, \infty)$;
2. $v(x) \leq \text{const.}\langle x \rangle^{-\beta}$ with $\beta > 3$, where $\langle x \rangle = \sqrt{1+|x|^2}$.

Here $\sigma_P(T)$ denotes the set of eigenvalues of T.

Then there exists a unique function $\Psi(k, x)$ such that for $k \neq 0$,

\begin{equation}
(-\Delta_x + v(x))\Psi(k, x) = |k|^2\Psi(k, x)
\end{equation}

and $\Psi(k, x)$ satisfies the Lippman-Schwinger equation:

\begin{equation}
\Psi(k, x) = e^{ikx} - \frac{1}{4\pi} \int e^{ik||x-y||}v(y) \Psi(k, y)dy.
\end{equation}

We will use the regularity properties of $\Psi(k, x)$ below to show the existence of ground states.

Lemma 2.1. Suppose Assumption 1. Then

(a)

\begin{equation}
|\Psi(k, x) - e^{ikx}| \leq \text{const.}\langle x \rangle^{-1}
\end{equation}
holds.

(b) $\Psi(k, x)$ is continuously differentiable in x for each fixed k but $k \neq 0$ and

$$
(2.11) \quad \frac{\partial}{\partial x_{\mu}} \Psi(k, x) - ik_{\mu}e^{ikx} = -\frac{1}{4\pi} \int_{\mathbb{R}^{3}} \left(\frac{e^{i|x-y|}(x_{\mu} - y_{\mu})}{|x-y|^{3}} - \frac{i|x|e^{i|x-y|}(x_{\mu} - y_{\mu})}{|x-y|^{2}} \right) v(y) \Psi(k, y) dy.
$$

In particular, for any compact set D but $0 \notin D$, $\sup_{k \in D, x} \left| \frac{\partial \Psi}{\partial x_{\mu}}(k, x) \right| < \infty$.

(c) For $k \neq 0$ and $k + h \neq 0$,

$$
(2.12) \quad \frac{1}{|h|} \left| \Psi(k + h, x) - \Psi(k, x) \right| \leq \text{const.} (1 + |x|),
$$

$$
(2.13) \quad \frac{1}{|h|} \left| \frac{\partial}{\partial x_{\nu}} \Psi(k + h, x) - \frac{\partial}{\partial x_{\nu}} \Psi(k, x) \right| \leq \text{const.} (1 + |k| + |x| + |k||x|)
$$

hold, and $\Psi(k, x)$ and $\frac{\partial}{\partial x_{\nu}} \Psi(k, x)$ are differentiable in $k \in \mathbb{R}^{3} \backslash \{0\}$ for each fixed x.

Let us introduce the dispersion relation and the quantized radiation field with a variable mass v.

Definition 2.2. The dispersion relation with a variable mass is given by

$$
(2.14) \quad \hat{\omega} := \sqrt{-\Delta + v}
$$
on $L^{2}(\mathbb{R}^{3}; \mathbb{C}^{2})$, where v is called a variable mass. The free Hamiltonian is defined by the second quantization of $\hat{\omega}$:

$$
(2.15) \quad H_{f} = d\Gamma(\hat{\omega}).
$$

Let $m \geq 0$ and $\hat{\omega}_{m} := \sqrt{-\Delta + v + m^{2}}$. We set

$$
H_{f}(m) = d\Gamma(\hat{\omega}_{m}).
$$

In order to define the quantized radiation field, we introduce a cutoff functions: $\hat{\varphi}_{j}^{\mu}, j = 1, 2, \mu = 1, 2, 3$.

Assumption 2.

(1) The support of $\hat{\varphi}_{j}^{\mu}$ is compact;

(2) $\hat{\varphi}_{j}^{\mu}$ is differentiable and the derivative function is bounded;

(3) (infrared regularity condition)

It holds that

$$
(2.16) \quad \int_{\mathbb{R}^{3}} \frac{|\hat{\varphi}_{j}^{\mu}(k)|^{2p}}{|k|^{5p}} dk < \infty \quad \text{for all} \quad 0 < p < 1.
$$
Let the test function $\rho_x^\mu = (\rho_x^{\mu,1}, \rho_x^{\mu,2}) \in L^2(\mathbb{R}^3; \mathbb{C}^2) \in L^2(\mathbb{R}^3; \mathbb{C}^2)$ be such that

$$\rho_x^{\mu,j}(y) := (2\pi)^{-3/2} \int \overline{\Psi(k, x)} \Psi(k, y) \hat{\varphi}_j^\mu(k) dk.$$

The quantized radiation field with a variable mass is given by

$$(2.17) \quad A_\mu(x) := \frac{1}{\sqrt{2}} \left(a^\dagger (\hat{\omega}^{-1/2}\rho_x^\mu) + a (\overline{\hat{\omega}^{-1/2}\rho_x^\mu}) \right), \quad \mu = 1, 2, 3,$$

for each $x \in \mathbb{R}^3$.

Definition 2.3. Let V be a multiplication operator, and V_+ and V_- the positive part and the negative part of V, respectively. Then the quadratic form q_m^V is defined by

$$(2.18) \quad q_m^V(\Psi, \Phi) = \frac{1}{2} \sum_{\mu=1}^3 \left((p_\mu + \sqrt{\alpha} A_\mu) \Psi, (p_\mu + \sqrt{\alpha} A_\mu) \Phi \right) + \left(\hat{H}_f^{1/2}(m) \Psi, \hat{H}_f^{1/2}(m) \Phi \right) + \left(V_+^{1/2} \Psi, V_+^{1/2} \Phi \right) - \left(V_-^{1/2} \Psi, V_-^{1/2} \Phi \right)$$

with the form domain

$$(2.19) \quad Q(q_m^V) = D(|p|) \cap D(\hat{H}_f^{1/2}(m)) \cap D(|V|^{1/2}).$$

Here α is a coupling constant. When $m = 0$, we denote q^V for q_0^V.

§ 2.3. Generalized Fourier transformation

By [14], under Assumption 1, the generalized Fourier transformation is defined by

$$(2.20) \quad f \mapsto \mathcal{F}f(\cdot) := (2\pi)^{-3/2} \mathrm{i}. \mathrm{m.} \int f(x) \overline{\Psi(\cdot, x)} dx,$$

which is a unitary transformation on $L^2(\mathbb{R}^3)$. By $1 \otimes \Gamma(\mathcal{F}) : \mathcal{H} \to \mathcal{H}$, the quadratic form q_m^V is transformed as

$$(2.21) \quad \hat{q}_m^V(\Psi, \Phi) = q_m^V(1 \otimes \Gamma(\mathcal{F}) \Psi, 1 \otimes \Gamma(\mathcal{F}) \Phi)$$

$$= \frac{1}{2} \sum_{\mu=1}^3 \left((p_\mu + \sqrt{\alpha} \hat{A}_\mu) \Psi, (p_\mu + \sqrt{\alpha} \hat{A}_\mu) \Phi \right) + \left(\hat{H}_f^{1/2}(m) \Psi, \hat{H}_f^{1/2}(m) \Phi \right)$$

$$+ \left(V_+^{1/2} \Psi, V_+^{1/2} \Phi \right) - \left(V_-^{1/2} \Psi, V_-^{1/2} \Phi \right)$$

with the form domain

$$(2.22) \quad Q(\hat{q}_m^V) = D(|p|) \cap D(\hat{H}_f^{1/2}(m)) \cap D(|V|^{1/2}).$$
Here

\begin{equation}
\hat{A}_{\mu}(x) := \frac{1}{\sqrt{2}} \sum_{j=1,2} \left(a^{\dagger} \left(\frac{\hat{\varphi}_{j}^{\mu}(\cdot, x)}{\sqrt{\omega}} \right) + a \left(\frac{\hat{\varphi}_{j}^{\mu}(\cdot, x)}{\sqrt{\omega}} \right) \right), \quad \omega(k) = |k|,
\end{equation}

and

\begin{equation}
\hat{H}_{\mathrm{f}}(m) := d \Gamma(\omega_{m}), \quad \omega_{m}(k) := \sqrt{k^{2}+m^{2}}.
\end{equation}

We introduce following assumptions on V:

Assumption 3.

1. V is a measurable function and for almost every $x \in \mathbb{R}^{3}$, $-\infty < V(x) < \infty$;
2. For all $\epsilon > 0$, there exists a positive constant C_{ϵ} such that for $\Psi \in D(|p|)$,

\begin{equation}
\| V^{-1/2} \Psi \|^{2} \leq \epsilon \| p \Psi \|^{2} + C_{\epsilon} \| \Psi \|^{2};
\end{equation}

3. $Q(\hat{q}_{m}^{V})$ is dense.

Proposition 2.4. Suppose Assumptions 1, 2 and 3. Then there exists the unique self-adjoint operator \hat{H}_{m}^{V} such that $Q(\hat{q}_{m}^{V}) = D(|\hat{H}_{m}^{V}|^{1/2})$ and for all Ψ and $\Phi \in Q(\hat{q}_{m}^{V})$,

\begin{equation}
\hat{q}_{m}^{V}(\Psi, \Phi) - E^{V}(m)(\Psi, \Phi) = \left((\hat{H}_{m}^{V} - E^{V}(m))^{1/2} \Psi, (\hat{H}_{m}^{V} - E^{V}(m))^{1/2} \Phi \right).
\end{equation}

Here we denote the ground state energy of \hat{q}_{m}^{V} by

\begin{equation}
E^{V}(m) := \inf_{\Psi \in Q(\hat{q}_{m}^{V}), \| \Psi \| = 1} \hat{q}_{m}^{V}(\Psi, \Psi).
\end{equation}

Formally, the Pauli-Fierz Hamiltonian H_{m}^{V} is given by

\begin{equation}
H_{m}^{V} := \frac{1}{2} \sum_{\mu, \nu} \left(p_{\mu} + \sqrt{\alpha}A_{\mu} \right) a_{\mu\nu} \left(p_{\nu} + \sqrt{\alpha}A_{\nu} \right) + H_{\mathrm{f}}(m) + V.
\end{equation}

Here $\{a_{\mu, \nu}\}_{\mu, \nu=1,2,3} = \{a_{\mu, \nu}(x)\}_{\mu, \nu=1,2,3}$ is positive definite. We consider only the case of $a_{\mu, \nu}(x) = \delta_{\mu, \nu}$ for simplicity.

§3. Binding condition

We introduce functions ϕ_{R} and $\tilde{\phi}_{R}$ below. Let $\phi \in C^{\infty}(\mathbb{R}^{3})$ be such that for all $x \in \mathbb{R}^{3}$, $0 \leq \phi(x) \leq 1$ and

\begin{equation}
\phi(x) = \begin{cases}
1 & \text{if } |x| < 1, \\
0 & \text{if } |x| > 2.
\end{cases}
\end{equation}
Let $\tilde{\phi} \in C^\infty(\mathbb{R}^3)$ be such that for all $x \in \mathbb{R}^3$, $0 \leq \tilde{\phi}(x) \leq 1$ and
\[\phi(x)^2 + \tilde{\phi}(x)^2 = 1. \]

We set for $R > 0$,
\[(3.1) \quad \phi_R(x) := \phi(x/R), \quad \tilde{\phi}_R(x) := \phi(x/R). \]

Let
\[(3.2) \quad E^V(R, m) = \inf_{\|\tilde{\phi}_R\Psi\|=1, \Psi \in D(\hat{H}_m^V)} (\tilde{\phi}_R\Psi, \hat{H}_m^V\tilde{\phi}_R\Psi). \]

\[\lim_{R \to \infty} E^V(R, m) - E^V(m) \] formally describes ionization energy by definition, it is expected that positive ionization energy yields ground state.

Assumption 4 (Binding condition).
\[(3.3) \quad E^V(m) < \lim_{R \to \infty} E^V(R, m). \]

§ 4. Massive case

The existence of ground states in the case of $m > 0$ is considered in this section.

Theorem 4.1. Let $m > 0$. Suppose Assumptions 1-4. Then ground states of \hat{H}_m^V exist for all values of a coupling constant.

Outline of Proof. Let $\{\Psi^j\}_j \subset Q(\hat{q}_m^V)$ be a sequence such that weakly converges to 0. It suffices to show that
\[(4.1) \quad \lim_{j \to \infty} \inf_{j} \hat{q}_m^V(\Psi^j, \Psi^j) > E^V(m). \]

We can suppose that $\sup_j \hat{q}_m^V(\Psi^j, \Psi^j) < \infty$. Let ϕ_R and $\tilde{\phi}_R$ be in (3.1).
\[(4.2) \quad \hat{q}_m^V(\Psi^j, \Psi^j) = \hat{q}_m^V(\tilde{\Psi}^j_R, \tilde{\Psi}^j_R) + \hat{q}_m^V(\tilde{\Psi}^j_R, \tilde{\Psi}^j_R) \]
\[-\frac{1}{2} \| (|\nabla \phi_R| \otimes 1) \Psi^j \|^2 - \frac{1}{2} \| (|\nabla \tilde{\phi}_R| \otimes 1) \Psi^j \|^2. \]

holds. Here $\tilde{\Psi}^j_R = \phi_R \Psi^j$ and $\tilde{\Psi}^j_R = \tilde{\phi}_R \Psi^j$. Let j_1 and j_2 be nonnegative, smooth functions on \mathbb{R}^3 such that
\[(4.3) \quad j_1(k) = \begin{cases} 1 \text{ if } |k| < 1, \\ 0 \text{ if } |k| > 2 \end{cases} \text{ and } j_1(k)^2 + j_2(k)^2 = 1. \]
We set \(\hat{j}_{l,P} = j_l(-i\nabla_k/P) \), \(l = 1, 2 \), and
\[
(4.4) \quad \hat{j}_P \Psi = \hat{j}_{1,P} \Psi \oplus \hat{j}_{2,P} \Psi,
\]
for \(\Psi \in L^2(\mathbb{R}^3; \mathbb{C}^2) \). Let us define the isometric operator from \(\mathcal{F} \) to \(\mathcal{F} \otimes \mathcal{F} \) by
\[
(4.5) \quad d\tilde{\Gamma}(\hat{j}_P)a^{\dagger}(h_1)\cdots a^{\dagger}(h_n)\Omega
\]
\[= a^{\dagger}(\hat{j}_{1,P}h_1)\cdots a^{\dagger}(\hat{j}_{1,P}h_n)\Omega \oplus a^{\dagger}(\hat{j}_{2,P}h_1)\cdots a^{\dagger}(\hat{j}_{2,P}h_n)\Omega.
\]
By the localization argument (see [8]), it holds that
\[
(4.6) \quad \liminf_{j \to \infty} \hat{q}_m^V(\Psi_R^j, \Psi_R^j) \geq (E^V(m) + m) \liminf_{j \to \infty} \|\Psi_R^j\|^2 + o_P(0)
\]
and
\[
(4.7) \quad \hat{q}_m^V(\tilde{\Psi}_R^j, \tilde{\Psi}_R^j) \geq E_{R,m}^V \|\tilde{\Psi}_R^j\|^2 + o(R^0).
\]
Here \(o_P(0) \) goes to zero as \(P \to \infty \) for each fixed \(R > 0 \). By (4.2), (4.6) and (4.7), we can see that
\[
(4.8) \quad \liminf_{j \to \infty} \hat{q}_m^V(\Psi^j, \Psi^j) \geq E^V(m) + \min\{m, E^V(R,m) - E^V(m)\}.
\]
By the binding condition, we obtain (4.1). \(\square\)

§ 5. The case of \(m = 0 \)

Throughout in this section, we suppose Assumptions 1, 2, 3 and Assumption 4 with \(m = 0 \). \(\Phi_m \) denotes the normalized ground state of \(\hat{H}_m^V \). Similarly to the case of \(v = 0 \), the following lemma holds.

Lemma 5.1. Let \(\{m_j\}_{j=1}^{\infty} \) be a sequence converging to 0. Then
\[
\lim_{j \to \infty} E^V(m_j) = E^V(0)
\]
and for sufficiently small \(0 < m \), the binding condition holds.

The pull through formula below leads to a photon number bound (Lemma 5.3 and Corollary 5.4) and a photon derivative bound (Lemma 5.6).

Lemma 5.2 (Pull through formula). Let \(f \in D(\omega_m) \). Then \(a(f)\Phi_m \in Q(\hat{q}_m^V) \) and for all \(\eta \in Q(\hat{q}_m^V) \),
\[
(5.1) \quad \hat{q}_m^V(\eta, a(f)\Phi_m) - E^V(m)(\eta, a(f)\Phi_m)
\]
\[= -\sqrt{\alpha}(\eta, (\overline{f}, \overline{G}) \cdot (p + \sqrt{\alpha}\overline{A})\Phi_m) + \frac{i\sqrt{\alpha}}{2}(\eta, (\overline{f}, \nabla_x \cdot \overline{G})\Phi_m) - (\eta, a(\omega_m f)\Phi_m).
\]
holds. Here
\[G_{j}^{\mu}(k, x) := \frac{\hat{\varphi}_{j}^{\mu}(k) \Psi(k, x)}{\sqrt{2 \omega(k)}}. \]

Lemma 5.3. Let \(\theta = (\theta_1, \theta_2) \in L^\infty(\mathbb{R}^3; \mathbb{R}^2) \). Then
\[
\| d\Gamma(\theta^2)^{1/2} \Phi_m \|^2 \leq C\alpha \sum_{j,\mu} \int \frac{\hat{\varphi}_{j}^{\mu}(k)^2 \theta_j(k)^2}{\omega(k) \omega_m(k)^2} dk,
\]
where \(C \) is a constant independent of \(\alpha \) and sufficiently small \(m \).

Outline of proof of Lemma 5.3. Inserting \(\eta = a(f)\Phi_m \) into (5.2), we have
\[
\begin{align*}
(a(f) \Phi_m, a(\omega_m f) \Phi_m) & \leq -\sqrt{\alpha} \left(a(f) \Phi_m, (\bar{f}, \bar{G}) \cdot (p + \sqrt{\alpha}\hat{A}) \Phi_m \right) \\
& + \frac{i\sqrt{\alpha}}{2} (a(f) \Phi_m, (\bar{f}, \nabla_x \cdot \bar{G}) \Phi_m).
\end{align*}
\]
Let \(f := \omega_m \theta g_i \). Here \(\{g_i\}_{i=1}^\infty \) is a complete orthonormal system such that each \(g_i \in D(\omega_m^{1/2}) \). Note that
\[
\sum_{i=1}^\infty (a(\omega_m^{-1/2} \theta g_i) \Phi_m, a(\omega_m^{1/2} \theta g_i) \Phi_m)
= \sum_{j=1,2} \int_{\mathbb{R}^3} \theta_j(k)^2 \| a_j(k)\Phi_m \|^2 dk = \| d\Gamma(\theta^2)^{1/2} \Phi_m \|^2.
\]
Then by (5.3) and (5.4),
\[
\| d\Gamma(\theta^2)^{1/2} \Phi_m \|^2
\leq 2\alpha \int_{\mathbb{R}^3} \omega_m(k)^{-2} \| \theta(k)G(k) \cdot (p + \sqrt{\alpha}\hat{A}) \Phi_m \|^2 dk
+ \frac{\alpha}{2} \int_{\mathbb{R}^3} \omega_m(k)^{-2} \| \theta(k)\nabla_x \cdot G(k) \Phi_m \|^2 dk.
\]
can be estimated. Since \(\Psi(k, x) \) and \(\hat{\varphi}(k) \frac{\partial}{\partial x_{\mu}} \Psi(k, x) \) are bounded in \(k \) and \(x \), we can see that the lemma follows. \(\square \)

From Lemma 5.3, we can see that following facts hold.

Corollary 5.4. It holds that
\[
(1) \sup_{m < m_0} \| N^{1/2} \Phi_m \| < \infty,
(2) \text{supp } \Phi(m)(x, \cdot) \subset \Pi_{k=1}^n [\cup_{j,\mu}\text{supp } \hat{\varphi}_{j}^{\mu}].
\]

We can show the spatial exponentially decay of \(\Phi_m \) for many external potentials. See [13].
Assumption 5.

(1) For sufficiently large $|x|$, $V(x) > \text{const.}|x|^{2n}$.

(2) $\liminf_{|x| \to \infty} V(x) > \inf \sigma(H_p)$ and for all $t > 0$, $e^{-tH_P} : L^2 \to L^\infty$ with
\[
\|e^{-tH_P}f\|_{L^\infty(\mathbb{R}^3)} \leq \text{const.}\|f\|_{L^2(\mathbb{R}^3)},
\]
where $H_P = -\frac{1}{2}\Delta + V$.

Theorem 5.5. Suppose Assumption 5. Then for some c and $m_0 > 0$,
\[
\sup_{0 < m < m_0} \|\exp(c|x|)\Phi_m\| < \infty.
\]
holds.

Outline of Proof. Since $\Phi_m = e^{tE}e^{-t\hat{H}_m^V}\Phi_m$, by the functional integral representation of $e^{-t\hat{H}_m^V}$, we can see that for all $t \geq 0$,
\[
\|\Phi_m(x)\| \leq Ce^{tE(m)}E^x\left[e^{-\int_0^t V(B_s)ds}\right]
\]
holds. Here $(B_t)_{t \geq 0}$ denotes Brownian motion starting from x. C is a constant independent of x and m.
\[
e^{t(x)E^V(m)}E^x\left[e^{-\int_0^{t(x)} V(B_s)ds}\right] \leq C_1 \exp(-C_2|x|^{n+1})
\]
and
\[
e^{t'(x)E^V(m)}E^x\left[e^{-\int_0^{t'(x)} V(B_s)ds}\right] \leq C_1' \exp(-C_2'|x|)
\]
hold. Here $t(x) = |x|^{1-n}$, $t'(x) = \beta|x|$. (5.8) and (5.9) are called Carmona’s estimate [3]. By (5.7), (5.8) and (5.9), the theorem can be proven.

Lemma 5.6. Suppose Assumption 5. Let $1 \leq p < 2$. Then
(a) $\Phi_m^{(n)} \in H^1(\mathbb{R}^{3+3n})$ for all $n \geq 0$;
(b) $\{\|\Phi_m^{(n)}\|_{W^{1,p}(\Omega)}\}_{0 < m \leq m_0}$ is bounded, where m_0 is sufficiently small number and Ω is any measurable and bounded set in \mathbb{R}^{3+3n}.
Here $W^{1,p}(\Omega)$ is the Sobolev space.

Outline of proof. Let $f = \omega_m^{-1/2}g_i$. By the pull through formula with $f(x)$ replaced by $f(x + h) - f(x)$, similarly to the proof of Lemma 5.3, we can see that for
almost every k and sufficiently small h,

\begin{equation}
(5.10) \quad \| |h|^{-1}(a(k + h) - a(k)) \Phi_m \|^2 \\
\leq \frac{\text{const.}}{\omega_m(k)^2} \left(\sum_{\mu=1}^{3} (\| |h|^{-1}(\delta_h G_{\mu})(k) \Phi_m \|^2 + \| |h|^{-1}(\nabla_x \delta_h G_{\mu})(k) | \Phi_m \|^2) \right) + \| |h|^{-1}(\nabla_x \cdot \delta_h G)(k) \Phi_m \|^2 + \sum_{j, \mu} \frac{\hat{\varphi}_{j}^{\mu}(k + h)^{2}}{\omega_m(k + h)^2 \omega(k + h)} \frac{|\omega(k + h) - \omega(k)|^2}{|h|^2} \right).
\end{equation}

Here $(\delta_h G_{\mu})(k) = G_{\mu}(k + h, x) - G_{\mu}(k, x)$. By Lemma 2.1 (c) and Assumption 5,

\begin{equation}
(5.11) \quad \| |h|^{-1}(a(k + h) - a(k)) \Phi_m \|^2 \leq C \omega_m(k)^{-2} \sum_{\nu, j} \left((1 + |k|^{-3}) \hat{\varphi}_{j}^{\nu}(k)^{2} + |k|^{-1} \sum_{\lambda} |\partial_{\lambda} \hat{\varphi}_{j}^{\nu}(k)|^{2} \right)
\end{equation}

holds for almost every k and sufficiently small $|h|$. Let $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$. Thus by Alaoglu theorem, for almost every k, there exists the sequence $\{h_l(k)\}_{l=1}^{\infty}$ depending on k so that

$$
\lim_{l \to \infty} h_l(k) = 0
$$

and $|h_l(k)|^{-1}(a(k - |h_l(k)|e_\mu) - a(k))\Phi_m$ weakly converges to some vector $v_\mu(k)$:

$$
v_\mu(k) := \text{w-} \lim_{l \to \infty} |h_l(k)|^{-1}(a(k - |h_l(k)|e_\mu) - a(k))\Phi_m.
$$

It can be proven that $v_\mu^{(n)}(k)(x, k_1, \cdots, k_n)$ is the weak derivative $\Phi_m^{(n+1)}(x, k, k_1, \cdots, k_n)$ with respect to k_μ. Thus by (5.11), (a) and (b) are proven directly.

Theorem 5.7. Let $m = 0$. Suppose Assumption 5. Then ground states of \hat{H}^V exist for all values of a coupling constant.

By Lemmas 5.3, 5.6 and Theorem 5.5, Theorem 5.7 can be proven similarly to [8, Theorem 2.1].

§6. Remarks on infrared cutoffs

We assumed the infrared regularity condition, but in the case of $v = 0$, we can show the existence of ground states of \hat{H} without the infrared regularity condition. In the case of $v \neq 0$,

\begin{equation}
(6.1) \quad \Psi(k, x) - e^{ikx} = \sum_{n=1}^{\infty} \left(\frac{1}{4\pi} \right)^n \int_{\mathbb{R}^3} \frac{e^{i|k|\sum_{j=1}^{n} |y_j - y_{j-1}|} \Pi_{j=1}^{n} v(y_j)}{\Pi_{j=1}^{n} |y_j - y_{j-1}|} dy_1 \cdots dy_n
\end{equation}
\[\nabla_x \Psi(k, x) - ike^{ikx} = \frac{1}{4\pi} \int_{\mathbb{R}^3} \left(\frac{e^{i|k||x-y|}(x-y)}{|x-y|^3} - \frac{i|k|e^{i|k||x-y|}(x-y)}{|x-y|} \right) v(y) \Psi(k, y) \, dy \]

hold. Here \(y_0 := x \). The right hand side of (6.1) is not \(O(|k|) \), \((k \to 0) \). This is the reason that we assumed the infrared regularity condition. To see this, let us consider the case of \(v = 0 \). Set \(v = 0 \) and \(\hat{\phi}_j^\mu(k) = \chi_\Lambda(k) e_j^\mu(k) \), \(j = 1, 2, \mu = 1, 2, 3 \), where \(\chi_\Lambda \) is the characteristic function of the set \(\{k | |k| < \Lambda\} \) and \(e_1(k) \) and \(e_2(k) \), \(k \in \mathbb{R}^3 \setminus \{0\} \) are polarization vectors given by

\[e_1(k) := \frac{(k_2, -k_1, 0)}{\sqrt{k_1^2 + k_2^2}} \quad \text{and} \quad e_2(k) := \frac{k \times e_1(k)}{|k|}. \]

Note that the infrared regularity condition is not assumed in this case. Define the unitary operator \(U \) as

\[U := \exp[i\sqrt{\alpha} x \cdot \hat{A}(0)]. \]

Put

\[\tilde{q}_m^V(\Psi, \Phi) := q_m^V(U \Psi, U \Phi) \]

and

\[\tilde{\hat{A}}(x) := \hat{\hat{A}}(x) - \hat{\hat{A}}(0). \]

Then

\[\tilde{q}_m^V(\Psi, a(f)\tilde{\Phi}_m) - E^V(m)(\Psi, a(f)\tilde{\Phi}_m) = -\sqrt{\alpha}(\Psi, (\hat{f}, \hat{G})(p + \sqrt{\alpha} \hat{A})\tilde{\Phi}_m) - (\Psi, a(\omega_m f)\tilde{\Phi}_m) + i(\Psi, (\hat{f}, \omega_m w)\tilde{\Phi}_m) \]

follows. Here \(\tilde{\Phi}_m = U\Phi_m \), \(w_j := \frac{\chi_\Lambda(k)e_j(k) \cdot x}{\sqrt{\omega(k)}} \) and \(\tilde{G}_j^{\mu} := \frac{\chi_\Lambda(k)e_j^\mu(k)(e^{ikx} - 1)}{\sqrt{2\omega(k)}} \). Similarly to the proof of Theorem 5.3, we have

\[\|a(k)\tilde{\Phi}_m\|^2 \leq \text{const.} \omega(k)^{-2} \left\{ \|\hat{G}\tilde{\Phi}_m\|^2 + \|\nabla_x \hat{G}\tilde{\Phi}_m\|^2 + \omega(k)^2 \|w\tilde{\Phi}_m\|^2 \right\} \chi_\Lambda(k). \]

Since \(|e^{ikx} - 1| \leq |k||x| \) and \(|\nabla_x e^{ikx}| = |k| \), by the exponential decay of \(\tilde{\Phi}_m \), it holds that

\[\|d\Gamma(\theta^2)^{1/2}\tilde{\Phi}_m\|^2 \leq C\alpha \sum_j \int \frac{\chi_\Lambda(k) \theta_j(k)^2}{\omega(k)} \, dk. \]
Here C is a constant independent of α and m for sufficiently small m. Also by (6.6), for almost every k and sufficiently small h,

\begin{equation}
\| (a(k+h) - a(k)) \tilde{\Phi}_m \|^2 \leq \frac{\text{const.}}{\omega(k)^2} \left\{ \| \delta h G \| \tilde{\Phi}_m \|^2 + \| \nabla_x \delta h \tilde{G} \| \tilde{\Phi}_m \|^2 + \omega(k)^2 \| \delta h (\omega w) \tilde{\Phi}_m \|^2 \\
+ \frac{1}{|k+h|} \| |x| \tilde{\Phi}_m \|^2 \omega(k+h) - \omega(k) |x| \chi_\Lambda (k+h) \right\}
\end{equation}

can be proven. Since $|e^{ikx} - 1| \leq |k||x|$ and $|\nabla_x e^{ikx}| = |k|$, by Assumption 5, we can see that

\begin{equation}
|h|^{-1} \| (a(k+h) - a(k)) \tilde{\Phi}_m \|^2 \leq \text{const.} \left\{ \frac{1}{|k|(k_1^2 + k_2^2)} + \frac{1}{|k-h|((k_1 - h_1)^2 + (k_2 - h_2)^2)} \right\}
\end{equation}

holds. This inequality implies that $\{ \| \tilde{\Phi}_m^{(n)} \|_{W^{1,p}(\Omega)} \}_{0 < m \leq m_0}$ with $1 \leq p < 2$ is bounded, where Ω is a bounded set and m_0 a sufficiently small number. Therefore in this case, the existence of ground states can be proven without the infrared regularity condition. Key inequalities are

\begin{equation}
|e^{ikx} - 1| \leq |k||x|
\end{equation}

and

\begin{equation}
|\nabla_x e^{ikx}| = |k|.
\end{equation}

Acknowledgment

I thank Prof. F. Hiroshima for his helpful advice.

References

