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1. Introduction

We describe in this article two recent results [11], [12], obtained by the author jointly with W. Schlag
and D. Tataru, about singular solutions for the critical wave maps equation, as well as the critical focussing
semilinear wave equation. Specifically, the first result [11] establishes for the first time the conjectured
formation of singularities for co‐rotational wave maps into the sphere S^{2} in n=2 spatial dimensions, while

the 2nd result [12] establishes the existence of one‐point blow‐up solutions for the energy critical semilinear

equation \square  u=-u^{5} in n=3 spatial dimensions. Singularity formation for wave maps was previously only
known in dimensions n\geq 3 ,

while for the semilinear equation above, all previously known blow up solutions

become singular along a hyper surface. Furthermore, both results show that there exists a continuum of blow‐

up rates for both problems. This is a new observation in the context of either equation, having previously
been observed for a wave maps type equation in n=1 spatial dimension in [19].

1.1. The semilinear problem. Consider the H^{1} ‐critical focussing semilinear wave equation in 3+1 spatial
dimensions:

(1.1) \square  u=-u^{5}, \square =-\partial_{t}^{2}+\triangle
This is a special case of the family of focussing semilinear wave equations (again on \mathbb{R}^{3+1} )

\square  u=-|u|^{p-1}u, p>1
The focussing sign of the nonlinearity suggests the possibility of singularity formation. Indeed, it is straight‐
forward to construct solutions for these which become singular in finite time, even with smooth compactly
supported data: let  $\alpha$=\displaystyle \frac{2}{p-1}, C=[ $\alpha$( $\alpha$+1)]^{\frac{1}{p-1}} ,

and

u(0, x)=CT^{- $\alpha$} $\phi$(x) , u_{t}(0, x)= $\alpha$ CT^{- $\alpha$-1} $\phi$(x) ,

where  $\phi$\in C_{0}^{\infty}(\mathbb{R}^{3}) satisfies 0\leq $\phi$\leq 1,  $\phi$(x)=1 provided |x|<2T . Then we have

u(t, x)=C(T-t)^{- $\alpha$}
for t<T and x in the backward light cone centered at (T, 0) ,

whence the solution blows up at least on the

disc |x|<T at time t=T.

More sophisticated results, obtained by John [6] and refined by Lindblad [14] and Zhou, showed the existence

of singular solutions for suitable initial data of arbitrarily small size, provided 1<p<1+\sqrt{2} ,
while John (see

\mathrm{e}. \mathrm{g} . [25] ) established that for p>1+\sqrt{2} ,
small (and smooth) data lead to global solutions. Of particular

interest is the energy critical problem corresponding to the case p=5 . This is the borderline case in which the

problem is still locally well‐posed in the energy space H^{1} . A general criterion ensuring singularity formation

for certain (large) initial data was found by Levine [13]: this says that if the energy of the initial data

\displaystyle \mathcal{E} :=\int_{\mathbb{R}^{3}}[u_{t}^{2}+|\nabla u|^{2}-\frac{1}{6}u^{6}]dx<0
then a finite time singularity necessarily occurs: more precisely, assuming (u(0, x), u_{t}(0, x))\in H^{s}\times H^{s-1} ,

for

some s\geq 1 ,
we have

||u(t, x)||_{H^{1}}+||u_{t}(t, x)||_{L^{2}}\rightarrow\infty
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as t\rightarrow T
,

for some  T<\infty . However the argument does not indicate the precise dependence of  T on the data

except for an upper bound, nor does it provide any idea of the precise blow up dynamics.
Further recent activity related to (1.1) stems from the observation that it admits static solutions, of the form

W_{ $\lambda$}(x):=$\lambda$^{\frac{1}{2}}(1+\overline{3})^{-\frac{1}{2}}, W_{1}=W
( $\lambda$|x|)^{2}

where  $\lambda$>0 is an arbitrary scaling parameter. We note that these solutions have strictly positive energy,

whence Levine�s argument cannot be directly applied to initial data close to the static ones, (W_{ $\lambda$}(x), 0) .

Nevertheless, recent work by Kenig‐Merle [9] establishes that there exists a blow‐up/global existence dichotomy
for initial data (u_{0}, u_{1}) which satisfy the condition \mathcal{E}(u_{0}, u_{1})<\mathcal{E}(W, 0) : one gets global existence provided
we further have ||\nabla u_{0}||_{L^{2}}<||\nabla W|||_{L^{2}} ,

while one gets finite‐time singularity formation provided ||\nabla u_{0}||>
||\nabla W||_{L^{2}} . However, due to the nature of the arguments, the precise blow up dynamic of these solutions is

unknown. Indeed, their argument for blow‐up relies on a variant of Levine�s argument, \mathrm{i}. \mathrm{e} . a virial type
inequality. The following theorem, based on a purely constructive technique, provides a precise description of

certain blow up solutions whose blow up rate varies along a continuum:

Theorem 1.1. (K.‐Schlag‐Tataru 2007)[12] Let v>\displaystyle \frac{1}{2} and  $\delta$>0 . There exists an energy class solution

u(t, x) to (1.1) which blows up precisely at x=t=0 ,
and which satisfies the following: provided 0<t<c( $\delta$)

for suitable c( $\delta$)>0 and 0\leq|x|\leq t ,
there is a decomposition

u(t, x)=W_{ $\lambda$(t)}(x)+ $\eta$(t, x) ,  $\lambda$(t)=t^{-1- $\nu$}
with

\displaystyle \mathcal{E}_{loc}( $\eta$(t, :=\int_{|x|<t}($\eta$_{t}^{2}(t, .)+|\nabla $\eta$|^{2}(t, .)+| $\eta$(t, .)|^{6})dx< $\delta$
Furthermore, (  $\eta$(t, $\eta$_{t}(t, \in H^{\frac{ $\nu$}{2}+1-}\times H^{\frac{ $\nu$}{2}-} . Also, we have

\displaystyle \sup_{0<t\leq c( $\delta$)}|| $\eta$(t, |_{H^{1+ $\mu$}}<\infty
where  $\mu$=\displaystyle \frac{ $\nu$}{2(1+ $\nu$)}.

The interpretation of this result is as follows: the solution u(t, x) decomposes into a non‐oscillatory elliptic
part W_{ $\lambda$(t)}(x) and an oscillatory radiation part  $\eta$(t, x) . More precisely, as explained below,  $\eta$ itself will consist

of a non‐oscillatory term and a pure radiation term, the latter being much smaller than the former. The

above inequality shows that the radiation term carries very little energy. Indeed, the form of the solution

above shows that for given  $\delta$>0 and t sufficiently small, we have

\displaystyle \int_{|x|>t}[u_{t}^{2}(t, .)+|\nabla u|^{2}(t, .)+|u(t, .)|^{6}]dx< $\delta$
The small‐data well‐posedness of (1.1) then shows that the solution cannot possibly develop a singularity
outside of the backward light cone centered at (0,0) .

The result appears somewhat surprising, as one might surmise that the only possible blow up rate is the one

dictated by the ode type blow up, explained above. Indeed, a result by Merle‐Zaag shows that this is indeed

the case in the conformal range p\leq 3.

1.2. The wave maps equation. Wave maps u(t, x) : \mathbb{R}^{n+1}\rightarrow M, (M, g) a Riemannian manifold, are

critical points of the functional

u\displaystyle \rightarrow\int_{\mathbb{R}^{n+1}}\{\partial_{ $\alpha$}u, \partial^{ $\alpha$}u\}_{g}d $\sigma$, d $\sigma$=dtdx
In local coordinates \{x_{i}\}_{i=1,\ldots,k} on M

,
this leads to the following system of equations:

\square  u^{i}+$\Gamma$_{jk}^{i}\partial_{ $\alpha$}u^{j}\partial^{ $\alpha$}u^{k}=0, \square =-\partial_{t}^{2}+\triangle_{\mathbb{R}^{n}}
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Here the $\Gamma$_{jk}^{i} are the Riemann‐Christoffel symbols of the metric in the corresponding chart. The problem is

energy super‐critical provided n\geq 3 ,
and energy critical provided n=2 . Singular solutions in the super‐

critical regime and for suitable targets were constructedl by Shatah and Shatah et. al. in [21], [22]. These

are of self‐similar type, \mathrm{i}. \mathrm{e}. u(t, x)=v(\displaystyle \frac{x}{t}) ,
and obtained by finding such a v as solution of a suitable

harmonic map problem. This ansatz fails for the critical case, see \mathrm{e}. \mathrm{g} . [24]. In order to simplify the problem
by specialization, introduce the notion of equivariance, which is possible provided the target admits an S^{1}-
action. Fix the target M=S^{2} , equipped with its standard metric. Also, let  $\rho$ :  S^{1}\rightarrow \mathrm{I}\mathrm{s}\mathrm{o}\mathrm{m}(\mathrm{S}) be an action

of S^{1} on S^{2} by isometries. Then a wave map u(t, x) : \mathbb{R}^{2+1}\rightarrow S^{2} is called equivariant, provided we have

u(t,  $\omega$ x)= $\rho$( $\omega$)u(t, x) , \forall $\omega$\in S^{1}
One typically chooses  $\rho$( $\omega$) to be rotation around the z axis by an angle k $\omega$, k\in \mathbb{Z} . The case k=1 is called

co‐rotational. In the latter case, one can use the polar angle to completely characterize the wave map. This

scalar function only depends on t, r
,

and calling it (abusing notation) u(t, r) ,
one obtains the scalar wave

equation

(1.2) \displaystyle \square  u=\frac{\sin(2u)}{2r^{2}},
with \displaystyle \square =-\partial_{t}^{2}+\partial_{r}^{2}+\frac{1}{r}\partial_{r} . The analogy of this problem with (1.1) becomes apparent upon noting that there

exist static solutions of the form

Q( $\lambda$ r)=2\arctan( $\lambda$ r) ,  $\lambda$\in \mathbb{R}
These correspond to harmonic maps from \mathbb{R}^{2} to S^{2} , given by stereographic projection.
Problem (1.2) was studied in particular by Struwe [29], who showed that if singularity formation occurs at

(t, r)=(0,0) ,
and the initial data are smooth, there exists sequence of times t_{i}\rightarrow 0 and numbers $\lambda$_{i} with

$\lambda$_{i}t_{i}\rightarrow\infty ,
such that the wave map at time  t_{i} decouples into

u(t_{i}, r)=Q($\lambda$_{i}r)+ $\epsilon$(t_{i}, r)
and we have

\displaystyle \lim_{i\rightarrow\infty}\int_{r<t}[$\epsilon$_{t}(t_{i}, r)^{2}+$\epsilon$_{r}(t_{i}, r)^{2}+\frac{\sin^{2}( $\epsilon$(t_{i},r))}{r^{2}}]rdr=0
The question remained whether blow up actually occurs, and what the precise rate is at which the $\lambda$_{i} diverge.
We have the following

Theorem 1.2. (K.‐Schlag‐Tataru 2006)[11] Let v>1 ,
and denote  $\lambda$(t)=t^{-1- $\nu$} . Then the same conclusions

apply as in theorem 1.1, but with

u(t, r)=Q( $\lambda$(t)r)+ $\eta$(t, r)
and ( $\eta,\ \eta$_{t})\in H^{1+ $\nu$-}\times H^{ $\nu$-} ,

and the local energy replaced by

\displaystyle \int_{r<t}[$\eta$_{t}^{2}+$\eta$_{r}^{2}+\frac{\sin^{2}( $\eta$)}{r^{2}}]rdr
The method of proof of this result is similar to the one used to establish theorem 1.1, although there are

a number of important structural differences between the equations. We should mention here that in the

case of higher equivariance classes, more specifically k\geq 4 ,
a blow up result was recently established by

Rodnianski‐Sterbenz [20]. In this case, the equation becomes

\displaystyle \square  u=k^{2}\frac{\sin(2u)}{2r^{2}}
with static solutions Q_{k}(r)=2\arctan(r^{k}) . Rodnianski‐Sterbenz show that for suitable initial data satisfying
the equivariance condition u( $\omega$ x)=$\omega$^{k}u(x) ,  $\omega$\in S^{1} ,

which can even be chosen C^{\infty} ,
the corresponding solution

blows up with scaling parameter  $\lambda$(t)\displaystyle \sim\frac{\sqrt{|\log t|}}{t} . Moreover, they show that this type of blow up is stable

under perturbations (but within this equivariance class). This suggests that also for the co‐rotational case,

lHowever, it is a noteworthy open problem to decide whether singular solutions can be constructed for generic targets, or if

there are geometric obstructions, even in the case n\geq 3
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stable blow up solutions blow up much faster2, \mathrm{i}. \mathrm{e} . closer to the self‐similar rate (the latter, however, is

precluded by Struwe� \mathrm{s} result). A stable blow up regime for (1.2) remains to be found, and we strongly expect

(although cannot prove at this point) that the blow up solutions constructed in theorem 1.2 are unstable.

2. Outline 0F the proof 0F theorem 1.1

The proof is divided roughly into two parts: first, one constructs an approximate solution but with very

high degree of accuracy near the singularity, by treating the equation as an elliptic problem on fixed time

slices, \mathrm{i}. \mathrm{e} . in some sense treating the time derivatives as negligible. More precisely, one needs to distinguish
between regions close to the origin and regions near the light cone. We have the following

Proposition 2.1. [12] For each k\in \mathbb{N} , there exists an approximate solution u_{k} for (1.1) of the form

u_{k}(t, r)=$\lambda$^{\frac{1}{2}}(t)[W(R)+\displaystyle \frac{c_{k}}{(t $\lambda$)^{2}}R^{2}(1+R^{2})^{-\frac{1}{2}}+O(\frac{R^{2}(1+R^{2})^{-\frac{3}{2}}}{(t $\lambda$)^{2}})], R= $\lambda$(t)r
with corresponding error satisfy ing

\displaystyle \square  u_{k}+u_{k}^{5}=O(\frac{$\lambda$^{\frac{1}{2}}R}{t^{2}(t $\lambda$)^{2k}})
Note that the correction to the bulk part $\lambda$^{\frac{1}{2}}W(R) has local energy of size O([t $\lambda$]^{-1}) . This correction flows

into the term  $\eta$(t, r) in theorem 1.1, and accounts for the non‐oscillatory part of it. The number k will be

chosen large later in the 2nd part of the proof in order to ensure the convergence of a certain iteration process.

The proof of the Proposition invokes a finite iteration procedure, alternating between improvements near

the spatial origin as well as near the light cone: assuming an approximate solution u_{k-1} with error e_{k-1} has

been found, we modify it to u_{k}=v_{k}+u_{k-1} , thereby replacing e_{k-1} by a smaller error e_{k} . Of course we let

u_{0}=$\lambda$^{\frac{1}{2}}W(R) . The intuition now is that near the spatial origin r=0 ,
time derivatives matter less, whence

we can replace the linear operator in the equation for v_{k} by

\displaystyle \partial_{r}^{2}+\frac{2}{r}\partial_{r}+5u_{0}^{4}
while near the light cone, the potential term 5u_{0}^{4} is very small, and we get the linear operator

-\displaystyle \partial_{t}^{2}+\partial_{r}^{2}+\frac{2}{r}\partial_{r}
Hence essentially we alternately solve the problems3

(2.1) (\displaystyle \partial_{r}^{2}+\frac{2}{r}\partial_{r}+5u_{0}^{4})v_{2k+1}\sim e_{2k}
(2.2) (-\displaystyle \partial_{t}^{2}+\partial_{r}^{2}+\frac{2}{r}\partial_{r})v_{2k}\sim e_{2k-1}
The first equation easily reduces to

(t $\lambda$)^{2}\tilde{L}[Rv_{2k+1}]=Rt^{2}e_{2k},
where we have introduced the Sturm‐Liouville operator \tilde{L}=\partial_{R}^{2}+5W^{4}(R) . This is a standard problem
solvable via variation of parameters, using the fundamental system

 $\phi$(R)=R(1-\displaystyle \frac{R^{2}}{3})(1+\frac{R^{2}}{3})^{-\frac{3}{2}},  $\theta$(R)=(1+\frac{R^{2}}{3})^{-\frac{3}{2}}(1-2R^{2}+\frac{R^{4}}{9})
for \tilde{L}.

2_{\mathrm{W}\mathrm{e}} follow here the convention, see \mathrm{e}. \mathrm{g} . [2], of calling rates faster if they are closer to the self‐similar rate

3_{\mathrm{T}\mathrm{h}\mathrm{e}} reason for the \sim is that we only remove certain portions of  e_{k} at each step for technical reasons
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Remark 2.2. We observe here that the success of our method appears to crucially hinge on the moderate

growth of these at  R=\infty ,
as well as their regularity at  R=0 . For example, the analogous procedure for the

energy critical Yang‐Mills equation under a suitable spherically symmetric ansatz
4

(2.3) \displaystyle \square  u=\frac{2}{r^{2}}u(1-u^{2}) , u=u(t, r) , Q(R)=\frac{1-R^{2}}{1+R^{2}}
leads to the fundamental system

 $\phi$(R)=\displaystyle \frac{R^{\frac{5}{2}}}{(1+R^{2})^{2}},  $\theta$(R)=\frac{-1-8R^{2}+24R^{4}\log R+8R^{6}+R^{8}}{4R^{\frac{3}{2}}(1+R^{2})^{2}}
and our procedure (with  $\lambda$(t)=t^{-1- $\nu$} ) fails to produce smaller errors already at the first step. The important
difference between (2.3) and (1.1) appears to be that the linearization around the static solution for the

latter has a resonance at the edge of the continuous spectrum, while for the former, there is an eigenvalue
at zero. The connection between the spectral properties of the linearization and the convergence of our first

approximation step remains to be explained.

The 2nd equation (2.2) above appears to be hyperbolic. Nevertheless, we claim that upon using self‐similar

coordinates, we can reduce it essentially to a singular ode. Indeed, using a=\displaystyle \frac{r}{t} instead of r
,

we can write for

any function f(a)

t^{2}[-\partial_{t}^{2}+\partial_{r}^{2}+-\partial_{r}]f(a)2=[(1-a^{2})\partial_{a}^{2}+2(a^{-1}-a)\partial_{a}]f(a)
r

Of course the right hand side of (2.2) will depend on both t and a
,

and so we can only approximately treat

this problem as an ode in a . Indeed, taking the dependence on t into account, one is led to the following
singular operator

 L_{ $\beta$}=(1-a^{2})\partial_{a}^{2}+2(a^{-1}+a $\beta$-a)\partial_{a}-$\beta$^{2}+ $\beta$
where  $\beta$=(2k-\displaystyle \frac{3}{2})v-\frac{1}{2} . Observe that its fundamental system near a=1 is essentially 1, (1-a)^{1+ $\beta$} . The

latter function is essentially responsible for the regularity of the solution in theorem 1.1.

The main technical challenge in the proof of theorem 1.1 now is to find suitable function spaces in which one

can place v_{k}, e_{k} . We refer the reader for the details to the paper [12]. This ends our sketch of the proof of the

Proposition.

Having found an approximate solution u_{2k-1} for sufficiently large k
,

we now try to modify it to an exact

solution  u=u_{2k-1}+ $\epsilon$ . Note that the preceding approximation method will not lead to an exact solution,
as the successive time differentiations lead to large constants (at least  k! at step k), and hence only formally
convergent series. On the other hand, ending the process after finitely many steps and choosing t small enough
allows us to control the large constant k! by one copy of t . The idea then is to find  $\epsilon$ via construction of a

parametrix and Banach iteration in suitable spaces. First, observe that the equation for  $\epsilon$ becomes

\square  $\epsilon$+5$\lambda$^{2}(t)W^{4}( $\lambda$(t)x) $\epsilon$=N_{2k-1}( $\epsilon$)+e_{2k-1}
Here N_{2k-1} refers to the nonlinear terms in  $\epsilon$ as well as those terms due to the fact that on the left we

linearize around  u_{0} instead of u_{2k-1} . Also, the e_{2k-1} is the error generated by u_{2k-1} . A serious problem here

is the time dependence of the operator \triangle+5$\lambda$^{2}(t)W^{4}( $\lambda$(t)x) implicit on the left hand side. By switching to

different coordinates, one may remove this time dependence, but at the cost of replacing the time derivative

by a dilation type operator: specifically, introduce

 $\tau$(t):=\displaystyle \int_{t}^{t_{0}} $\lambda$(s)ds+v^{-1}t_{0}^{- $\nu$}
and the new coordinate y= $\lambda$(t)x . Then writing  $\epsilon$(t, x)=v( $\tau$(t),  $\lambda$(t)x) ,

we obtain for v the equation

[(\partial_{ $\tau$}+\dot{ $\lambda$}$\lambda$^{-1}y\partial_{y})^{2}v+\dot{ $\lambda$}$\lambda$^{-1}(\partial_{ $\tau$}+\dot{ $\lambda$}$\lambda$^{-1}y\partial_{y})v-\triangle v-5W^{4}v]=$\lambda$^{-2}( $\tau$)[N_{2k-1}( $\epsilon$)+e_{2k-1}]
This problem needs to be solved on the  $\tau$‐interval [0, \infty] . We first try to construct a parametrix for the linear

operator on the left hand side. Imitating the procedure for the free wave equation, we obtain it by using a

4_{\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}} equation is to be interpreted on \mathbb{R}^{2+1}
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distorted Fourier transformation associated with the operator \mathcal{L}:=-\partial_{R}^{2}-5W^{4}(R) ; this operator appears

upon replacing v by \tilde{ $\epsilon$}:=Rv( $\tau$, R) :

(2.4) (\partial_{ $\tau$}+\dot{ $\lambda$}$\lambda$^{-1}R\partial_{R})^{2}\tilde{ $\epsilon$}-\dot{ $\lambda$}$\lambda$^{-1}(\partial_{ $\tau$}+\dot{ $\lambda$}$\lambda$^{-1}R\partial_{R})\tilde{ $\epsilon$}+\mathcal{L}\tilde{ $\epsilon$}=$\lambda$^{-2}( $\tau$)R[N_{2k-1}+e_{2k-1}]
We have

Lemma 2.3. [12]he spectrum of \mathcal{L} consists of [0, \infty ) \cup$\xi$_{d},where$\xi$_{d} is a simple negative eigenvalue. Also,
the endpoint of the continuous spectrum is a resonance: we have

\displaystyle \mathcal{L}$\phi$_{0}=0, $\phi$_{0}(R)=R(1-\frac{R^{2}}{3})(1+\frac{R^{2}}{3})^{-\frac{3}{2}}
Note that the negative eigenvalue will generally lead to exponential growth at  $\tau$=\infty for the linear evolution.

This doesn�t cause difficulties, since we can solve the problem from infinity, imposing zero data at  $\tau$=\infty.

We also have the following pivotal

Proposition 2.4. [12]There exists a generalized Fourier basis  $\phi$(R,  $\xi$) ,  $\xi$\geq 0 ,
an eigenstate $\phi$_{d}(R) corre‐

sponding to $\xi$_{d} , and spectral measure  $\rho$( $\xi$)d $\xi$ with  $\rho$( $\xi$)\sim$\xi$^{-\frac{1}{2}} as  $\xi$\rightarrow 0,  $\rho$( $\xi$)\sim$\xi$^{\frac{1}{2}} as  $\xi$\rightarrow\infty ,
such that the

distorted Fourier transfO rm

\displaystyle \mathcal{F}:f\rightarrow\hat{f}, \hat{f}( $\xi$)=\int_{0}^{\infty} $\phi$(R,  $\xi$)f(R)dR,  $\xi$\geq 0, \hat{f}($\xi$_{d})=\int_{0}^{\infty}$\phi$_{d}(R)f(R)dR
is an isometry from L^{2}(\mathbb{R}_{+}) to L^{2}(\{$\xi$_{d}\}\cup \mathbb{R}_{+},  $\rho$( $\xi$)d $\xi$) . Furthermore, we have the Fourier inversion formula

 f(R)=\displaystyle \hat{f}($\xi$_{d})$\phi$_{d}(R)+\int_{0}^{\infty} $\phi$(R,  $\xi$)\hat{f}( $\xi$) $\rho$( $\xi$)d $\xi$
With this tool in hand, we can now essentially translate the problem to the distorted Fourier coefficients

of the function \tilde{ $\epsilon$} : the difficulty we encounter here has to do with the dilation operator \partial_{ $\tau$}+\dot{ $\lambda$}$\lambda$^{-1}R\partial_{R} ,
since

unlike in the case of the free Laplacian, we do not have the identity \partial_{R}[Rf]=-2 $\xi$\partial_{ $\xi$}\hat{f}. Nevertheless, the

generalized eigenfunctions approach free eigenfunctions in the regime  $\xi$ R^{2}>>1 ,
whence one expects the

operator

\mathcal{K}f \overline{R\partial_{R}f}+2 $\xi$\partial_{ $\xi$}\hat{f}
to be bounded in a suitable sense. Fortunately, this turns out to be true, as we have the following

Proposition 2.5. [12] Introduce the weighted Sobolev type norms

||f||_{L_{ $\rho$}^{2, $\alpha$}}^{2}:=|f($\xi$_{d})|^{2}+\displaystyle \int_{0}^{\infty}|f( $\xi$)|^{2}\{ $\xi$\}^{2 $\alpha$} $\rho$( $\xi$)d $\xi$
Then the operator \mathcal{K} satisfies

||\mathcal{K}f||_{L_{ $\rho$}^{2, $\alpha$}\sim}<||f||_{L_{ $\rho$}^{2, $\alpha$}}
With this in hand, it is now rather clear how to solve (2.4): use the Fourier representation

\displaystyle \tilde{ $\epsilon$}( $\tau$, R)=\hat{\tilde{ $\epsilon$}}( $\tau,\ \xi$_{d})$\phi$_{d}(R)+\int_{0}^{\infty}\hat{\tilde{ $\epsilon$}}( $\tau$,  $\xi$) $\phi$(R,  $\xi$) $\rho$( $\xi$)d $\xi$
At the level of the distorted Fourier transform, the problem (2.4) can be formulated as (with  x_{d}( $\tau$)=\hat{\tilde{ $\epsilon$}}( $\tau,\ \xi$_{d}) ,

x( $\tau$,  $\xi$)=\hat{\tilde{ $\epsilon$}}( $\tau$,  $\xi$))
[\partial_{ $\tau$}^{2}+$\xi$_{d}]x_{d}( $\tau$)=b_{d}( $\tau$)

[(\partial_{ $\tau$}-2\dot{ $\lambda$}$\lambda$^{-1} $\xi$\partial_{ $\xi$})^{2}+ $\xi$]x( $\tau$,  $\xi$)=b( $\tau$,  $\xi$)
Here the functions b_{d}( $\tau$) , b( $\tau$,  $\xi$) are essentially the Fourier coefficients of the right hand side of (2.2), but also

take into account the error \mathcal{K}\tilde{ $\epsilon$} incurred upon replacing \overline{R\partial_{R}\tilde{ $\epsilon$}} by -2 $\xi$\partial_{ $\xi$}\hat{\tilde{ $\epsilon$}} . The first equation is straightforward
to solve upon imposing the condition x_{d}( $\tau$)\rightarrow 0 as  $\tau$\rightarrow\infty . The 2nd equation, however, requires a somewhat

non‐standard lemma
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Lemma 2.6. [11], [12] Denote the kernel of the fundamental backward (^{i}in time) solution associated with the

operator (\partial_{ $\tau$}-2 $\lambda \lambda$^{-1} $\xi$\partial_{ $\xi$})^{2}+ $\xi$ by  H( $\tau$,  $\xi$) . Then we have

||H( $\tau$,  $\xi$)||_{L_{$\rho$^{\rightarrow L_{ $\rho$}^{2, $\alpha$+^{1}\sim}}}^{2, $\alpha$ 2}}< $\tau$(\displaystyle \frac{ $\sigma$}{ $\tau$})^{C}
||(\displaystyle \partial_{ $\tau$}-2\dot{ $\lambda$}$\lambda$^{-1} $\xi$\partial_{ $\xi$})H( $\tau$,  $\xi$)||_{L_{ $\rho$}^{2, $\alpha$}\rightarrow L_{ $\rho$}^{2, $\alpha$}\sim}<(\frac{ $\sigma$}{ $\tau$})^{C}

for a suitable C.

The problem now reduces to an iteration in the weighted norms

\displaystyle \sup_{ $\tau$\geq 0}$\tau$^{N}||x( $\tau$,  $\xi$)||_{L_{ $\rho$}^{2, $\alpha$}}+\sup_{ $\tau$\geq 0}$\tau$^{N}||x_{d}( $\tau$,  $\xi$)||_{L_{ $\rho$}^{2, $\alpha$}}
where \displaystyle \frac{1}{8}\leq $\alpha$<\frac{ $\nu$}{4} ; the lower bound is necessitated by the multilinear estimates required to bound the

nonlinearity, while the upper bound comes from the smoothness of the approximate solution u_{2k-1} . We

finally note that the rapid decay of the coefficients (implied by $\tau$^{N} ) is necessary in order to handle the

errors generated by \mathcal{K}\tilde{ $\epsilon$} : here one does not gain any powers in  $\tau$
,

and so the contraction property comes from
integrating with respect to  $\tau$ . For details, we again refer to the paper [12].

Remark 2.7. The proof of theorem 1.2 is similar to the one described here. At a technical level, the proof
in [11] is simpler than the one above, as the spectrum of the linearization around  Q(R)=2\arctan(R)
does not contain any negative eigenvalues, and energy conservation together with the equivariance condition

immediately preclude the emergence of blow up points away from the origin. The fact that the finite iteration

required in the approximation step yields accurate solutions for  $\lambda$(t)=t^{-1- $\nu$} and arbitrary v>\displaystyle \frac{1}{2} for both

equations appears quite remarkable.

3. Further problems

We collect here a number of problems which are naturally suggested by our results:

Conjecture 3.1. The blow up solutions in theorem 1.1 and theorem 1.2 are unstable, but conditionally stable:

the latter means that there exists a high‐codimensional manifold of initial data which result in the same type
of blow up.

Remark 3.2. We note that Bizon et. al. have observed numerically [2] that there appears to exist a co‐

dimension one manifold of initial data which separates a global existence regime from a stable blow up regime.
Data on the manifold result in blow up of a slower type than in the stable regime. It appears reasonable to

suspect that our blow up solutions have data on this manifold.

As the solutions we construct are not C^{\infty} smooth, we also have

Problem Are there C^{\infty} ‐smooth data which result in the slow blow up?

Problem Find the stable (within the co‐rotational class) blow up rate for co‐rotational wave maps.

This already appears quite difficult, and will most likely have to use techniques similar to those employed by
Merle‐Raphael in the their breakthrough results on the nonlinear Schrodinger equation. Even more difficult

is the following

Problem Are there data resulting in stable blow up for critical wave maps even under non‐equivariant
perturbations? Same question for the semilinear equation without the radiality assumption.

This problem may be well beyond the reach of present technology. Solving it would enable one to construct

more exotic blow up solutions: note that the full wave maps system (without symmetry assumptions) and

the semilinear equation are invariant under Lorentz transformations. Applying these to one of the solutions

guaranteed by theorem 1.2, theorem 1.1, leads to blow up solutions concentrating along a different time like

ray. One may make the following
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Conjecture 3.3. There exist blow up solutions for wave maps and the semilinear problem resulting in the

bubbling off of several harmonic maps, resp. Aubin Talenti solutions, but along different timelike directions

within a backward light cone.

Another natural question is whether we can generalize these theorems to structurally similar equations. As

mentioned earlier, the energy critical Yang‐MIlls equation under a spherically symmetric ansatz leads to the

problem

(3.1) \displaystyle \square  u=\frac{2}{r^{2}}u(1-u^{2})
with the static solution Q(r)=\displaystyle \frac{1-r^{2}}{1+r^{2}} . As observed before, the approximation procedure fails provided one

attempts the blow up rate  $\lambda$(t)=t^{-1- $\nu$} . However, it is conceivable that a faster blow up rate closer to the

self‐similar one allows one to still follow the same process:

Conjecture 3.4. Problem 3.1 admits blow up solution with scaling parameter  $\lambda$(t)\sim t^{-1}|\log t|^{ $\beta$} for  $\beta$>0
sufficiently large.

Finally, as already mentioned before, the relation between the spectrum of the linearization around the

static solution and the blow up type should be clarified:

Problem Clarify how the spectral properties of the lineatization around the static solution influence the

blow up type.
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