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1. INTRODUCTION

In this note we consider the large time behavior of solutions to the third order
Korteweg-de Vries type equation (Hirota equation) of the form:

1
B+ BB + pdf = — ol - gimuﬁa,u, LzeR,  (L1)

where i = /-1, 6, = %, al = -(%J; (5 € N), u = u(t, z) is an unknown function,
and p is a non-zero constant.

(1.1) arises in various situations in Mathematics and Physics. For example,
the equation (1.1) describes the three-dimensional motion of an isolated vortex
filament embedded in an inviscid incompressible fluid filling an infinite region.
Fukumoto-Miyazaki [4] proposed this equation as some detailed model taking
account of the effect from the higher order corrections of the Da Rios model
(nonlinear Schrédinger equation):

i + 8% = —%lulzu, tzeR. (1.2)

which is the classical model for the motion of the vortex filament. We note that
(1.2) is obtained by letting x = 0 in (1.1). On the other hand, neglecting the
second term in the left hand side and the first term in the right hand side of
(1.1) we obtain the complex-valued modified Korteweg-de Vries (modified KdV)
equation:

B + pdu = -gmuPa,u, t,z R, (1.3)

Therefore we expect that the equation (1.1) will be similar to the nonlinear
Schrédinger equation and the modified KdV equation.

In this note we show the unique existence of the solution to (1.1) which tends
to the given asymptotic profiles. Concerning the local and global existence of
solutions to (1.1) see e,g., Laurey (11] and Tani-Nishiyama [13].

The large time behavior of solutions to the nonlinear dispersive equations are
determined by the balance between those dispersions and nonlinearities. We call
the nonlinear dispersive equation is the short range type if those solutions behave
like a free solution, and otherwise we call the long range type. To seek the
criterion for the short range type we consider the following nonlinear dispersive
equation:

i0u + P(—id;)u = N(u,8;u), t,z € R. (1.9)
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Let {€*?};cr be a unitary group generated by iP(—i0,). We assume that
lePolle < Ct™,
N(w,v) = O(uf +vlP), near (u,v) = (0,0).

Since (1.4) is rewritten as the integral equation

s

t
u(t) = ePy(s) — i / =TI N, B,u)(r)dr,
we have from the assumption '
'3
le™u(®) - e Puls)lg < [ IN(w, ) (r) g
8

t
~ / ,r-m(p-l)d,r ~ (t _ s)-m(p-l)-(—l’
8
for t > s. Therefore we expect that

—itP, s\ _ —isP 210 (ifp>1+3)

e - e Puala ~{ 0, G275

ast,s — oo. Hence we expect that when p > 1+1/m, (1.4) is the short range type

and when p < 1+ 1/m, (1.4) is the long range one. Concerning this observation,
we consider the Schrédinger equation with power type interaction:

0 + 02u = NulP'u, t,zeR, (1.5)

where ) is a real constant. From the above observation and the decay property
of the free Schrodinger group:

: -1
"% gl| 0 < Ct2(\)l1a,

we expect that the power of the borderline between the short range case and the
long range one will be 3. In this regard, Y. Tsutsumi-Yajima [14] proved that
(1.5) is the short range type if p > 3 and Barab [1] proved that (1.5) with p < 3
is the long range type. Therefore the above observation is true for the nonlinear
Schrédinger equation of the form (1.5). Concerning the critical case ((1.5) with
p = 3), Ozawa [12] proved that for given “final data” ¢, there exists a solution
u to (1.5) such that

u(t,z) ~ %é«r (%) exp (% + % IJ)... (%) |2 log t) , (1.6)

as t — +oo in L?(R), where . is the Fourier transform of ¢.+. Furthermore
Hayashi-Naumkin [6] showed that for given “initial” data up there exists a func-
tion ¢, such that a solution to (1.5) with the initial condition u = yp at t = 0
behaves like (1.6) as t — oo.

Next we consider the modified KdV equation (1.3). Since the solution to the
corresponding linear equation (Airy equation) decays like

lle%¢lle < crj 1182126 .1,



(see Hayashi-Naumkin [9]), the modified KdV equation (1.3) belongs to the bor-
derline between the short and long range cases. Hayashi-Naumkin [7] (see also
[8]) proved that the solution to (1. 3) behaves like

ut,z) ~ R‘[\/;( 3nt) ( 3
X exp (giz\/-:;_-% - = |os (m 2 logt) ] |
(L.7)

as t — +oo in L?(z < 0). For the detail see [7],(8] for the initial value problem
and (9] for the final value problem.

In the two asymptotic formulae (1.6) and (1.7), the logarithmic terms are the
contributions from those nonlinear terms because those free solution behave like

itd2 ﬁ

e 2zt¢+( )"p(zt)’

‘-183¢ ~ Re $ _-m_ ex gix _i
V 3zt 3pt + 3ut P\3 3ut/ |’

as t — oo respectively. Therefore we expect that (1.1) will be the long range
type. In Section 2 we answer this question.

2. MAIN RESuULT

In this section we state the main Theorem on the large time behavior of solution
to (1.1). In this note we only treat the final state problem of (1.1). Before we
state our main result precisely, we introduce several notations. Let {W(t)}:cr be
the unitary group generated by the linear operator i92 — ud3:

1 L .
W(Be(e) = 7= [ eoeri-ene)ae
For o > 0 we define the function space A® by
= {¢€S'(R); ||4llas < 00},
_ (3”6 - 1)a+3 "

where(€)® = (1 + |¢[*)*/2.
Let be ¢ = (¢, z) the characteristic function on the domain {(t,z);1—3u% >
0}:

(3ug — 1)>+2

3 = 1FT°

’

"
L&

_J v if 1-3u3 20,
‘P(t’z)‘{o if 1-3uf <0,

We note that the oscillatory integral associated to W (t)¢ has no stationary points
on {(t,z); 1-3p% < 0} and has two stationary points on {(¢, z); 1—-3u% > 0}. By
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a direct calculation, we easily see that the stationary points in the later domain
. 1 T
are given by x; = 5 1+ ‘11—3;4? ’
Our main Theorem in this note is the following.

Theorem 2.1. Let <a<l Ifp, € A* and ||@+]|lae < € sufficiently small,
then there exists a umque solution u € L*([0, 00); H2(R)) N C([0, c0); HX(R)) to
(1.1) such that

2
> lBdu(t) - v (B)llz < C°,

j=0
fort>2and } < B < $+%, where

v (t,z) = Et' \/ 2(3’”( B~ @ XY 64 (x2)

. . ] 2
X exp (—2mtxi +itx: F 1 |¢.,. (x*)l log t) ,

and z means that ZA* =A,+A_.
+ *

Remark. Since (x4, x-) approachs to (+oo, ) as u — 0, u% (¢, z) convergences

2t
, 85 £ — 0 which is the leading term

to y/dbs (5)exo (44 £ [b ()
of (1.2). In this sense our result coincides the result due to Ozawa [12].
Roughly speaking, in Theorem 2.1 we assumed that ¢, (€) vanishes at £ = 3i

We explain this reason by the following heuristic argument. By the method of
stationary phase, the leading term of W(t)¢.,. is given by

W (t)ps(z) ~ ¢4 ‘/ mﬂz)@(m) exp (—2iptx3 +itx})
-1 i s . .
+t73 ' / mw(x)m (x-)exp (—2iutx +itx?).

Therefore if |3u€ — 1|~ |6+ (€)| is bounded for some a > 0, then W(t)¢. decays
like ¢=1/2, Therefore cubic nonlinearity belongs to the borderline between the
short and long range cases. That is why we assumed that ¢, (£) vanishes at

= 51; in Theorem 2.1.

3. CHOICE OF ASYMPTOTIC PROFILE

In Theorem 2.1 we stated that there exists a solution to (1.1) which behaves
like u as ¢t — oco. In this section we explain why asymptotic profile of a solution

to (1.1) is given by u% by employing the analogue method of Ozawa [12]. For the
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simplicity we put £ = 8, + 82 + iud2 and N (u, 0,u) = —-;—lulzu - giplulzazu.
We consider the final state problem

Lu = N(u, b;u),

u(t) - ul(t), ast— +oo,
where uf is determined later. This problem is rewritten as the integral equation

+00

u(t) —ul(t) =i W(t — 7){N(u, 8;u) — Lul }(7)dr.

We guarantee Theorem 2.1 by applying the contraction mapping principle to the
integral equation (3.1). More precisely, we prove that if ||@. |4« is sufficiently
small, then the map

+00

(Pu)(t) = v (t) +i W(t — ){N(u,8:u) — Lul }(7)dr (3.1)

is a contraction on the function space

Xr = {ueS'R%;|ullx, <2€)},

e = supt(fu(t) = wd Oz + Nur) = 83 ggeamaiom)

To prove this we split the right hand side of (3.1) into two pieces:

+00

(Ru)(t) —ul(t) = i W(t — 7){N(u,8:u) — N (ul, 0:ul ) }(7)dr

+00
- W(t - 7){Lul — N(u3,8,ud)}()dr. (3.2)
t
The X norm of the first term on the right hand side of (3.2) is evaluated by the
combination of the Strichartz inequality

+00

W(r — ')F(v")dr’

< CliF |l ersy,,

oo;L1)
L§(t,00;LE) *

T

(see e.g., [11], [10]) and the standard energy method. To estimate the second
term in the right hand side of (3.1), we need the following inequality

+00

W(t — 7){Cul - N (1S, 8,ud)}(7)dr

<Ct™? (3.3)
2

t H2

We note that (3.3) fails for u% = W(t)¢. We put

w(tz) = Y 7 1 / mﬂz)ﬁ()&)
x

x exp (—2iptx + ity +iD*),
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and choose D? so that the inequality (3.3) holds. For the notational convenience

we put
By = ti _z_ z),
* V 2(3ux+ — 1)‘P( )

Cy —2utxai + txi.

Then u} is rewritten as
8 = 3 B xa)ee s,
+

We calculate Lu$ — N(u3,8,u3). By a direct computation, the leading terms of
Lul and N(ul,0,ul) are given by

LuS ~ =Y 8. D*Bugy (xa)ei++04, (3.4)
+

N(u},8:45)
1 . X -
~ :1? E iB:t|¢+(Xﬂ:)l2¢+(xt)etcg+m*
+

1 —_ _— ,
+5 2 Buxx — 1)BLB7ds (x2) b (x3)e!CC2C7IED2=Ds), - (3.5)
+

respectively. The oscillation factors '+ of (3.4) are equal to those of the first
summand of (3.5), but not equal to those of the second summand of (3.5). In
this sense we call that (3.4) and the first terms of (3.5) are the resonance terms,
while the second terms of (3.5) are the non-resonance terms.

Concerning the non-resonance terms, thanks to the difference between the os-
cillations of the resonance and non-resonance terms, those terms decay faster
than ¢-! by integrating by parts with respect to ¢ variable. Therefore we regard
the non-resonance parts as the remainder terms. However the resonance terms
do not have such a fine property. Therefore we cannot expect that the resonance
parts decay faster than t~!. To overcome this, we eliminate the resonance terms
by the factors D;. To eliminate those terms it suffices to choose

1 .
0Dy = =F:ﬁ|¢+(Xt)|2'

By choosing

1 -
D, = :FZ|¢+(X=I:)|2 logt

we are able to drive the estimate (3.3).
To show that the non-resonance terms (the second summand on (3.5) decay

faster than ¢~!, we need to control the oscillation factors e'(2¢+—C%). To do so we
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use the following two asymptotic formulae: For k = 0, 1, we define

W(ie) = = [ e miahoni)jiq (36)
Xkt = i{li@k-l-l) 1-3#;}, 3.7
7
Fk,:k = \/2 (1 _ %k) (3P'Xk.:l: _ 1)¢(3)9 (3'8) -
s = exp[i{-2(1- 86) utxds + (1 - §K) txds + siakt}].
(3.9)

Then we have
Theorem 3.1. Let Wy(t) and W) (t) be defined by (3.6). Then We have

Wi(t)d(z) = t 1F;4(t,2)Ep(t, ) (xk.+)
+t"1Fy _(t, %) By, - (t, )6(xx,-) + Re(t,z),  (3.10)

o, }
Le

(3.11)

for2<p<oo,0<a<?2 (1 - %) and Xk,+, Fr+ and E"'* are given by (3.7),
(3.8) and (8.9), respectively.

where
| R (8)1] 2

—2-1(1-2) ) || Bp€ - 1)* .
< ¢330 ){" e

" (3ué — 1)“‘
|3 —

Remark. After I finished my talk in “Workshop on Harmonic Analysis and
Nonlinear Partial Differential Equations” I have been kindly informed by Kenji
Nakanishi that if u(¢, z) is the solution to the Hirota equation (1.1), then the
function

u(t,z) = e'%'z—%’u (t,:c + 3—:-)

satisfies the modified KdV equation (1.3). By using this transformation the proof
of our main Theorem may be simpler. Hayashi-Naumkin [7] mentioned the large
time behavior of the solution to the “real-valued” modified KdV equation. How-
ever the combination of above transform and their result does not imply our
Theorem because the solution to (1.3) is a “complex-valued”.
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