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Submodularity and Curvature:

The Optimal Algorithm

By

Jan VondrÁK *

Abstract

Let (X;) be a matroid and let f : 2^{X}\rightarrow \mathcal{R}+\mathrm{b}\mathrm{e} a monotone submodular function.

The curvature of f is the minimum c\in[0 ,
1 ] such that for any S\subset X and j\in X\backslash S,

f(S\cup\{j\})-f(S)\geq(1-c)f(\{j\}) . We consider the optimization problem \displaystyle \max\{f(S) : S\in \mathcal{I}\}.
It is known that the greedy algorithm yields a 1/2‐approximation for this problem [10],

and \displaystyle \frac{1}{1+c} ‐approximation when f has curvature c[3] . For the uniform matroid, it was known

that the greedy algorithm yields an improved \displaystyle \frac{1}{c}(1-e^{-c}) ‐approximation [3].
In this paper, we analyze the continuous greedy algorithm [19] and prove that it gives a

\displaystyle \frac{1}{c}(1-e^{-c}) ‐approximation for any matroid. Moreover, we show that this holds for a relaxed

notion of curvature, curvature with respect to the optimum, and we prove that any better

approximation under these conditions would require an exponential number of value queries.

§1. Introduction

In this paper, we consider the following optimization problem:

\displaystyle \max\{f(S):S\in \mathcal{I}\}

where f : 2^{X}\rightarrow \mathcal{R}+\mathrm{i}\mathrm{s} a monotone submodular function, and \mathcal{I}\subset 2^{X} is the collection

of independent sets in a matroid. A function f is monotone if f(A)\leq f(A') for any

A\subset A' ,
and f is submodular if f(A\cup B)+f(A\cap B)\leq f(A)+f(B) for all A, B . For the

definition of a matroid, see Section 2. For computational purposes, we will assume that

f and \mathcal{I} are specified by value/membership oracles, which can be queried polynomially

many times. We call this framework the value oracle model.

Received September 16, 2008. Revised November 14, 2009.

2000 Mathematics Subject Classication(s): 68\mathrm{Q}25
Key Words: submodular function, curvature, matroid, approximation algorithms

* IBM Almaden Research Center, San Jose, CA 95120, USA. \mathrm{E}‐mail: jvondrak@us.ibm.com
This work was done while the author was at Princeton University.

© 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



254 Jan VondrÁK

The problem of maximizing a submodular set function subject to independence
constraints has been studied extensively [11, 4, 13, 16, 10, 17, 21, 22, 3]. A number

of interesting and useful combinatorial optimization problems are special cases. Some

classical examples are Maximum‐Weight Independent Set in a matroid, Matroid In‐

tersection, and {\rm Max}-k-cover. A more recent application is the Submodular Welfare

Problem [14, 5, 8, 19] which arises in combinatorial auctions.

The Greedy Algorithm. The �greedy algorithm� incrementally builds a solution

(without backtracking) starting with the empty set. In each iteration it adds an element

that most improves the current solution (according to f) while maintaining the condition

S\in \mathcal{I}.

In classical work, Nemhauser, Wolsey and Fisher proved that this algorithm yields

\mathrm{a}(1-1/e) ‐approximation for the problem \displaystyle \max\{f(S) : S\in \mathcal{I}\} when f is monotone

submodular and (X, \mathcal{I}) is the uniform matroid, \mathcal{I}=\{S\subseteq X : |S|\leq k\}[16] . This

approximation factor is optimal in the value oracle model [17] and it is optimal even for

the explicit special case of {\rm Max}-k-cover, unless P=NP[7] . In the case of a general
matroid (X�), however, the greedy algorithm gives only a 1/2‐approximation [10].
The optimal (1-1/e) ‐approximation for any matroid has been achieved recently using
a continuous greedy algorithm and pipage rounding [2, 19].

Curvature. Submodular functions can be defined alternatively using the notion of

marginal values. We denote by f_{S}(j)=f(S\cup\{j\})-f(S) the marginal value of j with

respect to S . It is known that submodularity is equivalent to f_{T}(j)\leq f(j) for any

j\not\in T\supset S.
The notion of curvature reflects how much the marginal values f(j) can decrease

as a function of S . The total curvature of f is defined as

c=1-\displaystyle \min_{S,j\not\in S}\frac{f_{S}(j)}{f_{\emptyset}(j)}.
Note that c\in[0 ,

1 ] ,
and if c=0 then the marginal values are independent of S (i.e.

f is additive). In this case, it is known that the greedy algorithm returns the optimal
solution to \displaystyle \max\{f(S) : S\in \mathcal{I}\} . An analysis of the greedy algorithm depending on c was

given by Conforti and Cornuéjols [3]. The greedy algorithm gives a \displaystyle \frac{1}{1+c} ‐approximation
to \displaystyle \max\{f(S) : S\in \mathcal{I}\} when f has total curvature c . In case of the uniform matroid

\mathcal{I}=\{S:|S|\leq k\} ,
the approximation factor is \displaystyle \frac{1}{c}(1-e^{-c})[3].

Our results. In this paper, we analyze the continuous greedy algorithm introduced

in [19]. We show that given total curvature c
,

the continuous greedy algorithm yields a

\displaystyle \frac{1}{c}(1-e^{-c}) ‐approximation for the problem \displaystyle \max\{f(S) : S\in \mathcal{I}\} ,
for any matroid. This

matches the previously known result for uniform matroids.
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In fact, we show that the same approximation guarantee holds under a weaker

assumption, namely when f has curvature c with respect to the optimum. We define

this notion formally below; roughly, this means that for (some) optimum solution S^{*},
the value of any set T added on top of S^{*} is still at least (1-c)f(T) . This condition is

implied by total curvature c.

Finally, we show that given curvature c with respect to the optimum, it is impossible
to achieve an approximation better than \displaystyle \frac{1}{c}(1-e^{-c}) using a polynomial number of value

queries. Thus, the continuous greedy algorithm is optimal in the value oracle model, for

any fixed curvature c\in[0 ,
1 ] with respect to the optimum. The hardness result follows

along the lines of [9, 15] where similar oracle hardness results are given for the problems
of non‐monotone submodular maximization and maximum submodular welfare (without
considering curvature).

Submodular Welfare. Our results have a natural interpretation for the Submodular

Welfare Problem, which is a special case of this framework [14, 19]. In this problem,
we are given n players and m items. Each player i has a submodular utility function

w_{i} :  2^{[m]}\rightarrow \mathcal{R}+\cdot The goal is to allocate items to maximize the total utility \displaystyle \sum_{i=1}^{n}w_{i} (Si).
An optimal (1-1/e) ‐approximation for this problem (in the value oracle model) has

been shown recently [19].
Essentially, our results show that the approximation factor 1-1/e is tight only in

a special situation, where any optimal allocation makes the players completely satisfied.

If, however, items still retain significant value on top of some optimal allocation, the

continuous greedy algorithm achieves a better approximation factor. Assuming that

marginal values of sets with respect to the optimal allocation decrease by a factor of at

most 1c
,

we achieve an improved approximation factor \displaystyle \frac{1}{c}(1-e^{-c}) ,
and this is optimal.

§2. Preliminaries

Submodular functions. A function f : 2^{X}\rightarrow \mathcal{R} is submodular if for all A, B\subseteq X,

f(A\cup B)+f(A\cap B)\leq f(A)+f(B) .

In the following, we assume that f(\emptyset)=0 and f is monotone. Given A\subset X ,
the function

f_{A} defined by f_{A}(S)=f(S\cup A)-f(A) is also submodular. By f_{A}(i) ,
we denote the

�marginal value� f(A\cup\{i\})-f(A) . We also use f(i) to denote f_{\emptyset}(i)=f(\{i\}) . For

monotone functions, submodularity is equivalent to f(i) being non‐increasing as a

function of A for every fixed i.

Curvature. The total curvature of a monotone submodular function f is

c=1-\displaystyle \min_{S,j\not\in S}\frac{f_{S}(j)}{f_{\emptyset}(j)}.
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In this paper, we also define curvature with respect to a set S as follows. For

another set T
,

we consider the multiset S+T and define its value by

f(S+T)=f(S\displaystyle \cup T)+\sum_{j\in S\cap T}f_{S\cup T\backslash \{j\}}(j) .

I.e., for the duplicate elements in S+T ,
we add their marginal values with respect to

S\cup T.

Then, we say that f has curvature c with respect to S ,
if c\in[0 ,

1 ] is the smallest

value such that for every T,

f(S+T)-f(S)\geq(1-c)f(T) .

It is easy to see that if f has total curvature c
,
then it has curvature at most c with

respect to any S :

f(S+T)-f(S)=(f(S\displaystyle \cup T)-f(S))+\sum_{j\in S\cap T}f_{S\cup T\backslash \{j\}}(j)
\displaystyle \geq\sum_{j\in T}f_{S\cup T\backslash \{j\}}(j)\geq(1-c)\sum_{j\in T}f(j)\geq(1-c)f(T) .

We will work mostly with the weaker notion of curvature c with respect to S ; neverthe‐

less, all our positive results also hold for total curvature c.

The multilinear extension. For a monotone submodular set function f : 2^{X}\rightarrow \mathcal{R}+,
a canonical extension to a continuous function F : [0 ,

1 ]^{X}\rightarrow \mathcal{R}+ can be obtained as

follows [2].
For y\in[0 ,

1 ]^{X} ,
let \hat{y} denote a random vector in \{0, 1\}^{X} where each coordinate is

independently rounded to 1 with probability y_{j} or 0 otherwise. Let R be the associated

random subset of X
,

such that \hat{y}=1_{R} . Then, define

F(y)=\displaystyle \mathrm{E}[f(R)]=\sum_{R\subseteq X}f(R)\prod_{i\in R}y_{i}\prod_{j\not\in R}(1-y_{j})
.

This is a multilinear polynomial with the following properties (see [19]):

\bullet \displaystyle \frac{\partial F}{\partial y_{j}}=\mathrm{E}[f(R\cup\{j\})-f(R\backslash \{j\})]\geq 0 (monotonicity).

\bullet \displaystyle \frac{\partial^{2}F}{\partial y_{i}\partial y_{j}}=\mathrm{E}[f(R\cup\{i, j\})-f(R\cup\{j\}\backslash \{i\})-f(R\cup\{i\}\backslash \{j\})+f(R\backslash \{i, j \leq 0

(submodularity).

\bullet \displaystyle \frac{\partial^{2}F}{\partial y_{j^{2}}}=0 (multilinearity).

Thus the gradient \nabla F= (\displaystyle \frac{\partial F}{\partial y_{1}}, \ldots, \frac{\partial F}{\partial y_{n}}) is a nonnegative vector. The submodularity

condition
\overline{\partial y_{i}\partial y_{j}}

\partial^{2}F
\leq 0 means that the coordinates of \nabla F are non‐increasing with respect

to any y_{j}.



Submodularity and Curvature: The Optimal Algorithm 257

Matroids. A matroid is a pair \mathcal{M}=(X, \mathcal{I}) where \mathcal{I}\subseteq 2^{X} and

1. \forall B\in \mathcal{I}, A\subset B\Rightarrow A\in \mathcal{I}.

2. \forall A, B\in \mathcal{I};|A|<|B|\Rightarrow\exists x\in B\backslash A;A+x\in \mathcal{I}.

Matroid polytopes. For a matroid \mathcal{M}=(X, \mathcal{I}) ,
the matroid polytope is defined as

P(\mathcal{M})= conv \{1_{I} : I\in \mathcal{I}\}.

As shown by Edmonds [6], an equivalent description is

P(\displaystyle \mathcal{M})=\{x\geq 0:\forall S\subseteq X;\sum_{j\in S}x_{j}\leq r_{M}(S)\}.
Here, r_{M}(S)=\displaystyle \max\{|I| : I\subseteq S \& I\displaystyle \in \mathcal{I}\} is the rank function of matroid \mathcal{M}.

An important property for us is that it is easy to maximize linear functions over

P(\mathcal{M}) . This boils down to finding the maximum‐weight independent set in a matroid,
which can be done by the greedy algorithm.

§3. The continuous greedy algorithm

The continuous greedy algorithm [19] works with a multilinear relaxation of the

problem,

\displaystyle \max\{F(y):y\in P(\mathcal{M})\},

and relies on the fact that any solution y\in P(\mathcal{M}) can be rounded to a discrete solution

S\in \mathcal{I} such that f(S)\geq F(y) (pipage rounding, see [1, 2]). The continuous greedy

algorithm can be viewed as a particle starting at y(0)=0 and following a certain flow

over a unit time interval:

\displaystyle \frac{dy}{dt}=v(y) ,

where v(y) is defined as

v(y)=\displaystyle \arg\max_{v\in P(\mathcal{M})}(v\cdot\nabla F(y)) .

The following algorithm is a discrete version of the continuous greedy process [19].

Algorithm ContinuousGreedy (f, \mathcal{M}) :

1. Fix a small  $\delta$>0 ,
and start with t=0, y(0)=0.

2. Let R(t) contain each j independently with probability y_{j}(t) .

For each j\in X ,
estimate by sampling

$\omega$_{j}=\displaystyle \frac{\partial F}{\partial y_{j}}=\mathrm{E}[f(R(t)\cup\{j\})-f(R(t)\backslash \{j\})].
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3. Let v(t)=\displaystyle \arg\max_{v\in P(\mathcal{M})}(v\cdot\nabla F(y(t))) . We can find this by the greedy algorithm
for \displaystyle \max‐weight independent set with weights $\omega$_{j} . Set

y(t+ $\delta$)=y(t)+ $\delta$ v(t) .

4. Increment  t:=t+ $\delta$ ; if  t<1 , go back to Step 2. Otherwise, return y(1) .

The fractional solution found by the continuous greedy algorithm can be converted into

a discrete one using pipage rounding. Details can be found in [2]. The crucial lemma

that allows us to relate the performance of the algorithm to curvature is the following.

Lemma 3.1. Let OPT=\displaystyle \max_{S\in \mathcal{I}}f(S) ,
and let S^{*} be a respective optimal so‐

lution. Assume that f has curvature c with respect to S^{*} . Consider any y\in[0 ,
1 ]^{X}.

Then

\displaystyle \max(v\cdot\nabla F(y))\geq OPT—c  F(y) .

vP()

Proof. We prove the assertion by exhibiting a particular vector in P(\mathcal{M}) ,
v^{*}=

1_{S^{*}} . We get

v^{*}\displaystyle \cdot\nabla F(y)=\sum_{j\in S^{*}}\frac{\partial F}{\partial y_{j}}=\sum_{j\in S^{*}}\mathrm{E}[f(R\cup\{j\})-f(R\backslash \{j\})]
=\displaystyle \sum_{j\in S^{*}\backslash R}\mathrm{E}[f_{R}(j)]+\sum_{j\in S^{*}\cap R}\mathrm{E}[f_{R\backslash \{j\}}(j)]
\displaystyle \geq \mathrm{E}[f_{R}(S^{*}\backslash R)]+\sum_{j\in S^{*}\cap R}\mathrm{E}[f_{S^{*}\cup R\backslash \{j\}}(j)]
=\displaystyle \mathrm{E}[f(S^{*}\cup R)]-\mathrm{E}[f(R)]+\sum_{j\in S^{*}\cap R}\mathrm{E}[f_{S^{*}\cup R\backslash \{j\}}(j)]
=\mathrm{E}[f(S^{*}+R)]-\mathrm{E}[f(R)].

Now, using the definition of curvature with respect to S^{*},

v^{*}\cdot\nabla F(y)\geq \mathrm{E}[f(S^{*}+R)]-\mathrm{E}[f(R)]\geq \mathrm{E}[f(S^{*})+(1-c)f(R)]-\mathrm{E}[f(R)]
= OPT—c \mathrm{E}[f(R)]= OPT—c F(y) .

\square 

Given this lemma, the behavior of the continuous greedy process is easy to predict.
We obtain the following differential equation:

\displaystyle \frac{dF}{dt}=v(t)\cdot\nabla F(y(t))=\max_{v\in P(\mathcal{M})}v\cdot\nabla F(y(t))\geq OPT—c  F(y(t)) .

The solution is F(y(t))\displaystyle \geq\frac{1}{c}(1-e^{-ct})OPT . The process stops at time t=1
,

when we

obtain F(y(1))\displaystyle \geq\frac{1}{c}(1-e^{-c})OPT . More rigorously, we prove the following result.
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Theorem 3.2. Let OPT=\displaystyle \max_{S\in \mathcal{I}}f(S) ,
and S^{*} an optimal solution. Assume

that f has curvature c\in(0,1) with respect to S^{*} . Then ContinuousGreedy with

 $\delta$=1/n^{2} finds a fractional solution of value

F(y(1))\displaystyle \geq\frac{1}{c}(1-e^{-c}-o(1))OPT.
Proof. We start with F(y(0))=0 . Our goal is to estimate how much F(y(t))

increases during one step of the algorithm. Recall that F(y(t+ $\delta$))=F(y(t)+ $\delta$ v) . By
the main theorem of analysis,

F(y(t)+ $\delta$ v)-F(y(t))=\displaystyle \int_{0}^{ $\delta$}v\cdot\nabla F(y+ $\xi$ v)d $\xi$.
We want to argue that \nabla F(y+ $\xi$ v) cannot be far away from \nabla F(y) . For this purpose,

using submodularity, we estimate

|\displaystyle \frac{\partial^{2}F}{\partial y_{i}\partial y_{j}}|=|\mathrm{E}[f(R\cup\{i, j\})-f(R\cup\{i\}\backslash \{j\})-f(R\cup\{j\}\backslash \{i\})+f(R\backslash \{i, j\})]|
\displaystyle \leq\min\{f(i), f(j)\}\leq OPT.

(We assume that each singleton is a feasible solution, otherwise we can remove it from

the instance.) Therefore,

\displaystyle \frac{\partial F}{\partial y_{j}}|_{y+ $\xi$ v}\geq\frac{\partial F}{\partial y_{j}}|_{y}-n $\xi$ OPT

and

 F(y(t+ $\delta$))-F(y(t))=\displaystyle \int_{0}^{ $\delta$}v\cdot\nabla F(y+ $\xi$ v)d $\xi$\geq $\delta$ v\cdot\nabla F(y)-\frac{1}{2}n$\delta$^{2}OPT.
The way we chose the vector v was to maximize v \nabla F over v\in P(\mathcal{M}) . Recall that

our estimate of \nabla F might not have been exact, but we can make it accurate enough
so that we find the maximum within an error of \displaystyle \frac{1}{2}n $\delta$ OPT. Hence, by Lemma 3.1,

 v\displaystyle \cdot\nabla F(y)\geq OPT-cF(y)-\frac{1}{2}n $\delta$ OPT and

F(y(t+ $\delta$))-F(y(t))\geq $\delta$ OPT-c $\delta$ F(y(t))-n$\delta$^{2}OPT=c $\delta$(O\tilde{P}T-F(y(t)))

where O\displaystyle \tilde{P}T=\frac{1}{c}(1-n $\delta$)OPT . Equivalently, we can write this inequality as O\tilde{P}T-

F(y(t+ $\delta$))\leq(1-c $\delta$)(O\tilde{P}T-F(y(t))) which leads to O\tilde{P}T-F(y(k $\delta$))\leq(1-c $\delta$)^{k}O\tilde{P}T.
Setting  k=1/ $\delta$ ,

we get

 F(y(1))\geq(1-(1-c/k)^{k})O\tilde{P}T\geq(1-e^{-c})O\tilde{P}T.

For  $\delta$=1/n^{2} ,
we get O\displaystyle \tilde{P}T=\frac{1}{c}(1-o(1))OPT and the desired result. \square 
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§4. Proof of optimality

In this section, we prove that the continuous greedy algorithm is optimal for any

fixed curvature c with respect to the optimum.

Theorem 4.1. For any fixed c\in(0,1) and  $\beta$>0 , any \displaystyle \frac{1+ $\beta$}{c}(1-e^{-c}) ‐approximation

algorithm for maximizing monotone submodular functions of curvature c (with respect to

the optimum), subject to a matroid constraint, would require exponentially many value

queries.

We remark that in light of recent work on the approximability of submodular

maximization problems [20], this result is not surprising and can be interpreted as arising
from the notion of symmetry gap (see [20]). This connection gives some intuition as to

where the appproximation threshold comes from and therefore we explain it first. Let

us start from the following
�

symmetric instance� \mathcal{I}.

Symmetric instance \mathcal{I} . Assume for simplicity that  c=a/\ell is a rational number.

We consider a ground set  X=X_{1}\cup\ldots\cup X_{k} ,
where |X_{i}|=\ell for all  1\leq i\leq k.

We consider the maximization problem \displaystyle \max\{f(S) : S\subset X, |S|\leq a\} where f(S) is a

submodular function defined as follows:

f(S)=1-\displaystyle \prod_{i=1}^{k}(1-\frac{1}{\ell}|S\cap X_{i}|)
The optimum solution is to take a elements from X_{1} ,

for example, which gives

OPT=a/\ell=c . Observe also that marginal values with respect to this optimum set

decrease by a factor of 1-c (for elements outside of X_{1} ; inside X_{1} there is no change).
Hence, this instance has curvature c with respect to the optimum.

Moreover, this instance \mathcal{I} is invariant under certain symmetries, namely permuta‐

tions of the blocks X_{i} and any permutation within each block. As explained in [20],
an oracle hardness result can be derived for a family of instances related to \mathcal{I}

,
and

the hardness threshold corresponds to the symmetry gap of \mathcal{I} . The symmetry gap is

computed as the ratio between the best solution and best symmetric solution in the

multilinear relaxation of this instance, \displaystyle \max\{F(x) : x\in P\} . The multilinear extension

of f can be written as

F(x)=1-\displaystyle \prod_{i=1}^{k}(1-\frac{1}{\ell}\sum_{j\in X_{i}}x_{j})
The feasible polytope is given by P=\displaystyle \{x\geq 0:\sum_{j\in X}x_{j}\leq a\}.

The optimum solution of \displaystyle \max\{F(x) : x\in P\} is similar to the discrete case, OPT=

a/\ell=c . On the other hand, a symmetric solution should assign the same value to each
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variable x_{j} because all the elements are equivalent under the symmetries of \mathcal{I} . The

optimal symmetric solution is x_{j}=a/(k\ell)=c/k ,
which gives a symmetric optimum

value \overline{OPT}=1-(1-c/k)^{k}\rightarrow 1-e^{-c} . This gives the symmetry gap (1-e^{-c})/c for

\mathcal{I} and consequently (from [20]) also an inapproximability result for a related family of

instances, essentially�blown‐up copies� of \mathcal{I} . It remains to verify that the construction

in [20] preserves curvature c . This is true, although only in an approximate sense and we

do not want to go into details here. Since [20] does not consider the notion of curvature,

formally our result does not follow from it.

Instead, we give a direct proof of Theorem 4.1 here. The direct proof is inspired by
the proof of optimality of the 1-1/e approximation factor for the Submodular Welfare

Problem which appeared in [15]. This proof is also valid for maximizing a submodular

function subject to a uniform matroid, and the same holds for our proof. Since some of

the technicalities are the same as in [15], we give a more cursory description here. The

basic idea in these proofs originated in [9]: we produce two kinds of instances which

look identical to a typical value query, and yet their optima differ by the desired factor.

Proof. We consider a ground set of  n=k\ell elements, divided into  k blocks

X_{1}, X_{2} ,
. . .

, X_{k} of size \ell . We work with continuous functions  $\phi$ : [0 ,
1 ]^{k}\rightarrow \mathcal{R}+ ,

which

are associated with discrete functions f : 2^{X}\rightarrow \mathcal{R}+\mathrm{i}\mathrm{n} the following way:

f(S)= $\phi$(\displaystyle \frac{|S\cap X_{1}|}{|X_{1}|}, \frac{|S\cap X_{2}|}{|X_{2}|}, \ldots, \frac{|S\cap X_{k}|}{|X_{k}|}) .

If the partial derivatives of  $\phi$ satisfy \displaystyle \frac{\partial $\phi$}{\partial y_{j}}\geq 0 and \displaystyle \frac{\partial^{2} $\phi$}{\partial y_{i}\partial y_{j}}\leq 0 for all i, j ,
then the

associated f is monotone and submodular. We use this fact and work in the continuous

domain which is more convenient than the discrete one.

The basis of our proof lies in two instances which are hard to distinguish. Consider

the following two functions:

\displaystyle \bullet f(x_{1}, \ldots, x_{k})=1-\prod_{i=1}^{k}(1-x_{i}) .

\bullet  g(x_{1}, \ldots, x_{k})=1-(1-\overline{x})^{k} where \displaystyle \overline{x}=\frac{1}{k}\sum_{i=1}^{k}x_{i}.

Let D=\{x\in[0, 1]^{k} : x_{1}=x_{2}=\ldots=x_{k}\} . The important fact is that the two

functions are not only equal for any x\in D ,
but moreover \nabla f=\nabla g on D . Therefore, it

is possible to modify f slightly so that it is exactly equal to g in the close vicinity of D,
and does not differ significantly from the original f anywhere. The modified function

is denoted by \hat{f} . The details of this construction can be found in [15]; we summarize it

here as follows.
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Construction. Let h(x)=f(x)-g(x)=(1-\displaystyle \overline{x})^{k}-\prod_{i=1}^{k}(1-x_{i}) .

Fix 0< $\epsilon$<1/k, $\epsilon$_{1}=k $\epsilon$, $\epsilon$_{2}=\sqrt{$\epsilon$_{1}} and  $\alpha$=2/\ln(1/$\epsilon$_{1}) . We define

\hat{f}(x)=f(x)- $\phi$(h(x))+ag(x)

where a=2 $\alpha$ k^{6} and  $\phi$ is defined as follows:

\bullet For  t\in[0, $\epsilon$_{1}],  $\phi$(t)=t.

\bullet For  t\in [, $\epsilon$_{2}], $\phi$'(t)=1- $\alpha$\ln(t/$\epsilon$_{1}) .

\bullet For  t\in[$\epsilon$_{2}, \infty ),  $\phi$(t)= $\phi$($\epsilon$_{2}) .

The function \hat{f} has the following properties which follow from [15].

Lemma 4.2. Let f(x_{1}, \displaystyle \ldots, x_{k})=1-\prod_{i=1}^{k}(1-x_{i}) , g(x_{1}, \ldots, x_{k})=1-(1-\overline{x})^{k}.
Fix any a>0 . Then there is  $\epsilon$,  $\delta$ such that  a> $\delta$> $\epsilon$>0 and \hat{f}(x) constructed as above

satises:

1. \displaystyle \frac{\partial\hat{f}}{\partial x_{i}}\geq 0, \displaystyle \frac{\partial^{2}\hat{f}}{\partial x_{i}\partial x_{j}}\leq 0.
2. For any x\in[0 ,

1 ]^{k}, f(x)+ag(x)- $\delta$\leq\hat{f}(x)\leq f(x)+ag(x) .

3. Whenever \forall i,  j;|x_{i}-x_{j}|\leq $\epsilon$ ,
then \hat{f}(x)=(1+a)g(x) .

4. Whenever \exists i,  j;|x_{i}-x_{j}|\geq $\delta$ ,
then \hat{f}(x)=f(x)+ag(x)- $\delta$.

The instance. Fix a curvature c\in[0 ,
1 ] and a large \ell

,
and assume for convenience

that  c\ell is an integer. Let |X_{1}|=\ldots=|X_{k}|=\ell . We use the above lemma with a

very small fixed  a>0 , making sure that  $\delta$<a<c/2 . Now we define an instance of

submodular maximization derived from \hat{f} . With a slight abuse of notation, we define

\hat{f}(S)=\hat{f}(|S\cap X_{1}|/|X_{1}|, \ldots, |S\cap X_{k}|/|X_{k}|) . This is a monotone submodular function,
due to the properties of \hat{f} . We consider the probleml

\displaystyle \max\{\hat{f}(S):|S|\leq c\ell\}.

An optimal solution is for example any S^{*}\subseteq X_{1}, |S^{*}|=c\ell which gives \hat{f}(S^{*})=
c+ag(c, 0, \ldots, 0)- $\delta$.

lEquivalently, we could consider an instance of the Submodular Welfare Problem with k/c players,
where each player has utility function \hat{f}.
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Curvature. A new property that we need to prove is that \hat{f} has curvature c with

respect to S^{*} . The analysis would be quite clean if we had to deal with f instead of \hat{f},
but unfortunately \hat{f} contains (small) additional terms which makes the analysis more

messy. We claim a slightly weaker statement, that the curvature with respect to S^{*} is

at most  c'=c+ $\gamma$ for some  $\gamma$>0 which can be made arbitrarily small as  $\epsilon$\rightarrow 0 . This

is sufficient to prove Theorem 4.1.

For any T where |T\cap X_{i}|=t_{i}\ell ,
we represent  T by the vector t=(t_{1}, t_{2}, \ldots, t_{k}) ,

and we denote \displaystyle \overline{t}=\frac{1}{k}\sum_{i=1}^{k}t_{i} . Recall that S^{*}\subseteq X_{1} and |S^{*}|=c\ell . We have

\hat{f}(T)\leq f(t)+ag(t)=1-(1-t_{1})(1-t_{2})\cdots(1-t_{k})+a(1-(1-t]^{k}) .

Now we estimate \displaystyle \hat{f}(S^{*}+T)=\hat{f}(S^{*}\cup T)+\sum_{j\in s*\mathrm{n} $\tau$}\hat{f}_{S^{*}\cup T\backslash \{j\}}(j) . First, observe that

S^{*} and T can overlap only on X_{1} . Given the vector (tl, . . .

, t_{n} ), by submodularity and

the equivalence of elements of X_{1}, \hat{f}(S^{*}+T) is minimized if S^{*} and T overlap as little

as possible. I.e., they are disjoint if c+t_{1}\leq 1 ,
and otherwise S^{*}\cup(T\cap X_{1})=X_{1}.

Let x= (\displaystyle \min\{c+t_{1},1\}, t2, . . . , t_{k}) . We distinguish two cases. Recall that h(x)=
(1-\displaystyle \overline{x})^{k}-\prod_{i=1}^{k}(1-x_{i}) .

First, assume that h(x)>$\epsilon$_{2} . Then  $\phi$(h(x))= $\delta$ is a constant, and we are in the

range where \hat{f}(x)=f(x)+ag(x)- $\delta$ . If  c+t_{1}\leq 1 ,
then S^{*} and T are disjoint and

\hat{f}(S^{*}+T)=\hat{f}(S^{*}\cup T)=f(c+t_{1}, t2, . . . , t_{k})+ag(c+t_{1}, t_{2}, . . . , t_{k})- $\delta$
\geq f(c+t_{1}, t_{2}, \ldots, t_{k})+ag(c, 0, \ldots, 0)- $\delta$

=1-(1-c-t_{1})(1-t_{2})\cdots(1-t_{k})+ag(c, 0, \ldots, 0)- $\delta$.

Similarly, if c+t_{1}>1 ,
we have (c+t_{1}-1)\ell elements in  S^{*}\cap T ,

which contribute

marginal values corresponding to the partial derivatives at x= (1, t2, . . . , t_{k}) . Again,
this is in the range where \hat{f}(x)=f(x)+ag(x)- $\delta$ . Since the partial derivatives of  g are

nonnegative,

\displaystyle \frac{\partial\hat{f}}{\partial x_{1}}|_{(1,t_{2},\ldots,t_{k})}\geq\frac{\partial f}{\partial x_{1}}|_{(1,t_{2},\ldots,t_{k})}=(1-t_{2})\cdots(1-t_{k}) .

This brings us to the same estimate as above,

\displaystyle \hat{f}(S^{*}+T)\geq f(1, t_{2}, \ldots, t_{k})+(c+t_{1}-1)\frac{\partial f}{\partial x_{1}}|_{(1,t_{2},\ldots,t_{k})}+ag(c, 0, \ldots, 0)- $\delta$
\geq 1-(1-c-t_{1})(1-t_{2})\cdots(1-t_{k})+ag(c, 0, \ldots, 0)- $\delta$.

We continue:

\hat{f}(S^{*}+T)\geq 1-(1-c)(1-t_{1})\cdots(1-t_{k})+ag(c, 0, \ldots, 0)- $\delta$
=(1-c)(1-(1-t_{1})\cdots(1-t_{k}))+c+ag(c, 0, \ldots, 0)- $\delta$

=(1-c)f(t_{1}, t2, . . . , t_{k})+\hat{f}(c, 0, \ldots, 0)=(1-c)f(T)+\hat{f}(S^{*}) .
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Since we always have \hat{f}(T)\leq f(T)+ag(T)\leq(1+a)f(T) ,
we can conclude that

\displaystyle \hat{f}(S^{*}+T)\geq\frac{1-c}{1+a}\hat{f}(T)+\hat{f}(S^{*}) .

As a second case, we assume that h(x)\leq$\epsilon$_{2} . (Recall that x=(\displaystyle \min\{c+t_{1},1\}, t_{2}, \ldots, t_{k}). )
This means that \hat{f}(T) cannot be too small: for example, if \hat{f}(T)<c/2 ,

then \forall i;t_{i}\leq c/2
and \mathrm{m}\mathrm{i}\mathrm{n}\mathrm{c}+t_{1} ,

1 \} is larger than all other coordinates by at least  c/2> $\delta$ . By Lemma 4.2,
we would be in the first case. Therefore, we can assume \hat{f}(T)\geq c/2.

If c+t_{1}\leq 1 ,
we have

\hat{f}(S^{*}+T)=\hat{f}(c+t_{1}, \ldots, t_{k})\geq f(c+t_{1}, \ldots, t_{k})- $\delta$
=1-(1-c-t_{1})(1-t_{2})\cdots(1-t_{k})- $\delta$

\geq c+(1-c)f(t_{1}, \ldots, t_{2})- $\delta$

\geq(f(S^{*})-ac)+(1-c)(\hat{f}(T)-a)- $\delta$
\geq f(S^{*})+(1-c-2(a+ $\delta$)/c)\hat{f}(T)

using \hat{f}(T)\geq c/2.
If c+t_{1}>1 ,

we have x=(1, t_{2}, \ldots, t_{k}) , \displaystyle \overline{x}=\frac{1}{k}(1+t_{2}+\ldots+t_{k}) ,
and h(x)=

f(x)-g(x)=(1-\overline{x})^{k}\leq$\epsilon$_{2} . This means \overline{x}\geq 1-$\epsilon$_{2}^{1/k} and therefore there is i\geq 2 such

that t_{i}\displaystyle \geq 1-\frac{k}{k-1}$\epsilon$_{2}^{1/k}\geq 1-2$\epsilon$_{2}^{1/k} . In this case, we conclude easily that

\displaystyle \hat{f}(S^{*}+T)\geq\hat{f}(T)\geq 1-\prod_{i=1}^{k}(1-t_{i})- $\delta$\geq 1-2$\epsilon$_{2}^{1/k}- $\delta$.
Observe that k is fixed and $\epsilon$_{2} can be made arbitrarily small, so we can push this

arbitrarily close to 1. On the other hand, \hat{f}(S^{*})\leq(1+a)c ,
and so we get

\displaystyle \hat{f}(S^{*})\leq\frac{(1+a)c}{1-2$\epsilon$_{2}^{1/k}- $\delta$}\hat{f}(T)\leq\frac{c}{1-a-2$\epsilon$_{2}^{1/k}- $\delta$}\hat{f}(T) ,

\displaystyle \hat{f}(S^{*}+T)-\hat{f}(S^{*})\geq\hat{f}(T)-\hat{f}(S^{*})\geq(1-\frac{c}{1-a-2$\epsilon$_{2}^{1/k}- $\delta$})\hat{f}(T) .

As a\rightarrow 0 ,
we also have  $\epsilon$\rightarrow 0, $\epsilon$_{2}\rightarrow 0 and  $\delta$\rightarrow 0 . Hence, in all the cases, curvature

with respect to S^{*} is bounded by  c+ $\gamma$ where  $\gamma$\rightarrow 0.

Analysis. The rest of the analysis is the same as in [15]. Suppose that the labeling
of the elements (and hence the partition ( X_{1} , X2, . .

., X )) is uniformly random on

the input. Any query Q that an algorithm issues is going to be partitioned roughly

equally among X_{1} ,
. . .

, X_{k} ,
with high probability. More precisely, for any fixed  $\delta$>0,

the corresponding coordinates q_{i}=|Q\cap X_{i}|/|X_{i}| will satisfy |q_{i}-q_{j}|< $\delta$ with high
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probability. (By Chernoff bounds, the probability that |q_{i}-q_{j}|\geq $\delta$ for some  i, j is

exponentially small in n
,

the total number of elements.) Let�s call a query balanced if

|q_{i}-q_{j}|< $\delta$ for all  i, j.
Assume for now that the algorithm is deterministic. If it�s randomized, condition

on its random bits. By the definition of \hat{f}, \hat{f}(Q)=(1+a)(1-(1-\overline{q})^{k}) for any balanced

query, and this value does not depend on the input partition in any way. Let \mathcal{P} denote

the path of computation that the algorithm would follow assuming that the answer to

every query Q is \hat{f}(Q)=(1+a)(1-(1-\overline{q})^{k}) . For each value query, this happens with

probability 1e^{- $\Omega$(n)} . However, assuming that the computation path \mathcal{P} is polynomially

long in n
,

with high probability all the value queries on \mathcal{P} are balanced, the answer to

each of these queries is \hat{f}(Q)=(1+a)(1-(1-\overline{q})^{k}) and then the algorithm indeed

follows path \mathcal{P}.

As a consequence, the algorithm will return the same answer with high probability,

independent of (X, . . . , X_{k}) . By unconditioning on the random bits of the algorithm,
this holds even for randomized algorithms. The answer A is a set of size at most  c\ell

,
hence

the corresponding vector  a_{i}=|A\cap X_{i}|/|X_{i}| satisfies \displaystyle \sum a_{i}\leq c . With high probability,
all the coordinates a_{i} are the same within  $\delta$

,
and hence

\hat{f}(a)\leq\hat{f}(c/k+ $\delta$, \ldots, c/k+ $\delta$)=(1+a)(1-(1-c/k- $\delta$)^{k})

which can be made arbitrarily close to 1-e^{-c}
,

as a\rightarrow 0,  $\delta$\rightarrow 0 ,
and  k\rightarrow\infty . The

optimum, on the other hand, is \hat{f}(c, 0, \ldots, 0)\geq c- $\delta$ ,
which tends to  c . Thus the

approximation factor can be made arbitrarily close to \displaystyle \frac{1}{c}(1-e^{-c}) . We proved that any

algorithm will achieve this approximation factor at best, with high probability with

respect to the random input. Hence, the same holds with respect to the worst‐case

input as well. \square 
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