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Abstract

Scarf�s Lemma originally appeared as a tool to prove the non‐emptiness of the core of

certain NTU games. More recently, however, several applications have been found in the area

of graph theory and discrete mathematics. In this paper we present and extend some of these

applications. In particular, we prove results on the existence of kernels in orientations of h‐

perfect graphs. We describe a new direct link between Scarf�s Lemma and Sperner�s Lemma

giving a new proof to the former.

§1. Introduction

In one of his fundamental papers in game theory [16], Scarf proved that a balanced

n‐person game with non‐transferable utilities (NTU) always has a non‐empty core. The

proof is based on a theorem on the existence of a dominating vertex in certain polyhedra,
which became known as �Scarf�s Lemma The proof he gave is based on a finite (not
necessarily polynomial) algorithm.

The interest in the lemma has been renewed in combinatorics when Aharoni and

Holzman used it to give a short and elegant proof of the kernel‐solvability of perfect

graphs. This problem, previously known as the Berge‐Duchet conjecture, was first

solved by Boros and Gurvich [5] using fairly complicated game‐theoretical arguments.
In contrast, the proof of Aharoni and Holzman is surprisingly simple and clear.

The relation of Scarf�s Lemma and Sperner�s Lemma has already been mentioned

in Scarf�s original paper [16], and later it has been studied by other authors (see for

example [14]). In Section 2 we present a new proof of Scarf�s Lemma based on a poly‐
hedral version of Sperner�s Lemma, and show a strong link between the two theorems:
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essentially, Scarf�s lemma for a polyhedron P corresponds to Sperner�s Lemma for the

polyhedron P-\mathbb{R}_{+}^{n}.
In Section 3 we briefly review some applications of the lemma in game theory and

in graph theory, including the kernel‐solvability of perfect graphs. This application is

extended to h‐perfect graphs in Section 4.

There are several questions remaining related to Scarf�s Lemma and kernels. The

lemma states the existence of a certain dominating vertex; it would be useful to know

classes of polyhedra where only one dominating vertex exists, since this could lead to

characterizations of some classes of kernel‐less graphs. Questions and conjectures about

this topic are presented in Section 5.

§2. Scarf \ovalbox{\tt\small REJECT}_{\mathrm{S}} Lemma and Sperner \ovalbox{\tt\small REJECT}_{\mathrm{S}} Lemma

In Scarf� Lemma we consider a bounded polyhedron P=\{x\in \mathbb{R}^{n} : Ax\leq b, x\geq 0\}
where A is an m\times n non‐negative matrix (with non‐zero columns) and b\in \mathbb{R}^{m} is a

positive vector. In addition, for every row i\in\{1, 2, . . . m\} of A
,

a total order <i of

the columns (or a subset of them) is given. We denote the domain of <_{i} by \mathrm{D}\mathrm{o}\mathrm{m}(<_{i}) .

If j\in \mathrm{D}\mathrm{o}\mathrm{m}(<_{i}) and J\subseteq \mathrm{D}\mathrm{o}\mathrm{m}(<_{i}) ,
we use the notation j\leq_{i}J as an abbreviation

for j\leq_{i}j^{\ovalbox{\tt\small REJECT}} for every j^{\ovalbox{\tt\small REJECT}}\in J For a non‐negative vector x\in \mathbb{R}^{n}, supp (x) denotes

\{j\in\{1, . . . n\}:x_{j}>0\}.
The central notion in Scarf�s lemma is that of a dominating vertex.

Definition 2.1. A vertex x^{*} of P dominates column j if there is a row i where

a_{i}x^{*}=b_{i} and j\leq_{i} supp ( x^{*})\cap \mathrm{D}\mathrm{o}\mathrm{m}(<_{i}) (this implies that j\in \mathrm{D}\mathrm{o}\mathrm{m}(<_{i}) ).

Theorem 2.2 (Scarf�s Lemma). Let P be as above and let<_{i} be a total order on

\{ 1, . . .

, n\}(i=1, \ldots, m) . Then P has a nonzero vertex that dominates every column.

We state another version, which will be more convenient to prove and also to apply.
A vertex x^{*} of P is maximal if by increasing any coordinate of x^{*} we leave P (or formally,

(\{x^{*}\}+\mathbb{R}_{+}^{n})\cap P=\{x^{*}\} ,
where \mathbb{R}_{+}^{n} is the set of all non‐negative vectors, and for two

polyhedra Q and Q^{\ovalbox{\tt\small REJECT}} we use the notation Q+Q^{\ovalbox{\tt\small REJECT}}=\{x+y:x\in Q, y\in Q^{\ovalbox{\tt\small REJECT}}

Theorem 2.3 (Scarf�s Lemma, alternate version). Let P be as above and let<_{i}

be a total order on supp (a_{i})(i=1, \ldots, m) ,
where a_{i} is the i‐th row of A. Then P has

a maximal vertex that dominates every column.

Note that in Theorem 2.2 we cannot guarantee the maximality of the dominating
vertex. Consider the following two dimensional example:

A=\left(\begin{array}{l}
10\\
01
\end{array}\right), b=\left(\begin{array}{l}
1\\
1
\end{array}\right), 1<_{1}2, 1<_{2}2.
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Here the only vertex that dominates every column is (0,1) ,
which is not maximal since

(1, 1) is also a vertex.

On the other hand, Theorem 2.2 follows fairly easily from Theorem 2.3 by changing
the 0 coefficients in the matrix A to some small positive values such that the facet‐

defining inequalities remain the same and the vertex sets of the facets remain also the

same except for possible fission.

Next we show that Theorem 2.3 follows from the following polyhedral version of

Sperner�s Lemma.

Definition 2.4. For a colouring of the vertices of a polytope Q ,
a facet of Q is

multi‐coloured if it contains vertices of every colour. For a colouring of the facets of Q,
a vertex of Q is multi‐coloured if it lies on facets of every colour.

Theorem 2.5. Let Q be an n ‐dimensional polytope, with a simplex facet F_{0}.

Suppose we have a colouring of the vertices of Q with n colours such that F_{0} is multi‐

coloured. Then there is another multi‐coloured facet.

Proof. Let us divide the non‐simplex facets of Q into simplices. We need to show

that there is a multi‐coloured simplex. Let C be the set of all colours and let red be

one of them.

Define a graph whose nodes are the simplices in the division and there is an edge
between two simplices if and only if they share an (n-2 dimensional) facet whose

vertices use each colour in C\backslash \{\mathrm{r}\mathrm{e}\mathrm{d}\} exactly once. It is easy to see that the multi‐

coloured simplices are of degree one in this graph, the simplices whose vertices use all

colours in C\backslash \{\mathrm{r}\mathrm{e}\mathrm{d}\} ,
and one of them twice are of degree two and the other simplices are

of degree zero, hence the graph is the disjoint union of paths. The assumption implies
that F_{0} is a node of degree one, so there has to be another node of degree one which

gives a multi‐coloured simplex. \square 

By polarity, the following theorem is also true.

Theorem 2.6. Let Q be an n ‐dimensional polytope, with a simplicial vertex v_{0}.

Suppose we have a colouring of the facets of Q with n colours such that v_{0} is multi‐

coloured. Then there is another multi‐coloured vertex.

The above results can be generalized to unbounded pointed polyhedra, which will

be useful for our proof of Scarf�s lemma. For this, we extend the notion of vertices.

Definition 2.7. For a pointed polyhedron Q ,
its ends are the vertices of Q and

the extreme rays of Q (an extreme ray of a polyhedron is an extreme ray of its recession

cone).
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We extend also the incidences between facets and vertices to ends in the natural

way. In addition, if a polyhedron has n linearly independent extreme rays then we

consider the extreme rays as being on a facet in infinity

Definition 2.8. We call two polyhedra combinatorially equivalent if there is a

bijection between their facets and their ends which preserves the incidences. We call

two polyhedra combinatorially polar if there is a bijection between the facets of one and

the ends of the other and vice versa which reverses the inclusion relation.

We claim that if Q is a pointed full‐dimensional polyhedron then there exists a

polytope which is combinatorially equivalent to it. This is because if we move Q so

that the origin is in its interior and then take its polar, it will be a polytope which is

combinatorially polar to Q . If we do the same a second time, we get a polytope which

is combinatorially equivalent to Q . Now we can state a version of Theorems 2.5 and 2.6

to unbounded polyhedra.

Corollary 2.9. Let Q be an n ‐dimensional pointed polyhedron with n linearly

independent extreme rays (and no other).

\ovalbox{\tt\small REJECT} If we colour the vertices and the extreme rays by n colours such that the extreme

rays receive different colours, then there is a multi‐coloured facet.

\ovalbox{\tt\small REJECT} If we colour the facets of the polyhedron by n colours such that facets containing the

i‐th extreme ray do not get colour i
,

then there is a multi‐coloured vertex.

Proof. Let us take a polytope Q^{\ovalbox{\tt\small REJECT}} which is combinatorially equivalent to Q ,
and let

F be the face of Q^{\ovalbox{\tt\small REJECT}} which corresponds to the infinite face of Q . So F is a multi‐coloured

simplex facet. For the first part, we can apply Theorem 2.5.

For the second part, we add a simplex to Q^{\ovalbox{\tt\small REJECT}} on face F
,

and colour the new faces so

that the face opposite (in the simplex) to the vertex corresponding to the i‐th extreme

ray gets colour i . Applying Theorem 2.6 we get that there is another multi‐coloured

vertex of Q^{\ovalbox{\tt\small REJECT}} (besides the new vertex of the simplex) and from the assumption it follows

that this corresponds to a vertex of Q. \square 

We now show that Scarf�s Lemma (Theorem 2.3) follows from Corollary 2.9.

Proof. Let P=\{x\in \mathbb{R}^{n} : Ax\leq b, x\geq 0\} be the polyhedron as in Scarf�s Lemma,
and consider the polyhedron Q=P-\mathbb{R}_{+}^{n}=\{x-y:x\in P, y\in \mathbb{R}_{+}^{n}\} . Because P is

bounded, the recession cone of Q is -\mathbb{R}_{+}^{n} ,
so Q has n extreme rays: -e_{j}(j=1, \ldots, n) .

Since A and b are non‐negative, the vertices of Q are the maximal vertices of P
,

and

the inequalities which define Q are of the form a_{i}^{J}x\leq b_{i} ,
where a_{i}^{J} :=a_{i}$\chi$_{J} for an index

set J
,

and we can assume that J= supp ( a_{i}^{J}) .
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Let us colour a face which is defined by inequality a_{i}^{J}x\leq b_{i} with the index j\in J
which is the smallest in the ordering <_{i} . If a facet contains the the extreme ray -e_{l}

for some l
,

then the l‐th component of its defining inequality is zero, so the colour

of the facet is different from l . So we can apply the second part of Corollary 2.9,
and get that there is a vertex x^{*} of Q (thus a maximal vertex of P ) which is multi‐

coloured. We have to show that x^{*} satisfies the criteria of Scarf�s Lemma. If j is

an arbitrary index then there is a j‐coloured facet a_{i}^{J}x=b_{i} containing x^{*}
,

which

means that j\leq_{i} supp (a_{i}^{J})=J . Since x^{*} is also a vertex of P
,

it is non‐negative, so

a_{i}x^{*}\geq a_{i}^{J}x^{*}=b_{i} ,
but we know that a_{i}x^{*}\leq b_{i} ,

thus the facet a_{i}x=b_{i} of P contains x^{*}

On the other hand this implies also that supp (  x^{*})\cap supp (  a_{i})\subset J which with j\leq_{i}J
means that j\leq_{i} supp (  x^{*})\cap supp (  a_{i})= supp ( x^{*})\cap \mathrm{D}\mathrm{o}\mathrm{m}(<_{i}) . Thus x^{*} dominates column

j. \square 

§3. Applications of \mathrm{S}\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{f}^{\ovalbox{\tt\small REJECT}}\mathrm{s} Lemma

§3.1. Fractional core of NTU games

The role of the lemma in game theory can be described in several different ways.

Here we use a combinatorial approach that does not require the definition of all the

basic terms of game theory.
A possible definition of a finitely generated non‐transferable utility (NTU) game is

as follows. There are m players, and a finite multiset of basic coalitions S_{j}\subseteq\{1, . . . , m\}
(j=1, \ldots, n) . We may interpret a coalition as a possible action performed by a set of

players; thus several different coalitions may be formed by the same set of players. Each

player i has a total ordering <_{i} of the basic coalitions that he participates in; S_{j_{1}}<_{i}S_{j_{2}}
means that the player i prefers coalition S_{j_{2}} to coalition S_{j_{1}} . We assume that every

player is in at least one coalition.

A set S of basic coalitions is said to be in the core of the game if they are disjoint
and for each basic coalition S �

not in S there is a player i\in S^{\ovalbox{\tt\small REJECT}} and a basic coalition

S\in S such that S^{\ovalbox{\tt\small REJECT}}<_{i}S . In other words, an element of the core is a subpartition
formed of basic coalitions, such that every basic coalition S �

not in the subpartition has

a player who is in a member of the subpartition and prefers this member to S�.

A related concept is the fractional core of the game: a vector x:\{1, . . . , n\}\rightarrow \mathbb{R}+
is in the fractional core if for each player i,

\displaystyle \sum_{j:i\in S_{j}}x(j)\leq 1,
and for each j\in\{1, . . . , n\} there is a player i in S_{j} such that

\displaystyle \sum_{j:i\in S_{j}}x(j)=1
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and S_{j}\leq_{i}S_{j'} whenever i\in S_{j'} and x(j^{\ovalbox{\tt\small REJECT}})>0.
To motivate this definition, we can imagine that the action performed by each basic

coalition can have an intensity (between 0 and 1), and the condition is that the sum

of the intensities of the actions that a given player participates in is at most 1. Such

a vector of intensities is in the fractional core if there is no basic coalition where every

member wants to increase its intensity. It is an easy observation that integer‐valued
elements in the fractional core are exactly the elements of the core.

Let us call a vector x : \{ 1, . . .

, n\}\rightarrow \mathbb{R}_{+} admissible if

\displaystyle \sum_{j:i\in S_{j}}x(j)\leq 1
for every player i . A corollary of Scarf�s lemma is the following.

Corollary 3.1. The fractional core of a finitely generated NTU‐game is always

non‐empty. If the polyhedron of admissible vectors is integral then the core is also

non‐empty.

Proof. Consider a finitely generated NTU‐game with coalitions S_{j}\subseteq\{1, . . . , m\}
(j=1, \ldots, n) ,

and total orders <_{i}(i=1, \ldots, m) . Let A be the incidence matrix of

the basic coalitions, with m rows and n columns, and let b be the all‐l vector. If we

apply Theorem 2.3 with the total orders <_{i} on the supports of the rows, we obtain that

the polyhedron \{x : Ax \leq b, x\geq 0\} has \mathrm{a} (maximal) vertex x^{*} that dominates every

column. The property that x^{*} is in the polyhedron means that it is an admissible vector

for the game, and the property that it dominates every column is equivalent to saying
that it is in the fractional core.

If the polyhedron \{x: Ax\leq b, x\geq 0\} is integral, then we obtain an integral element

in the fractional core, which is in the core. \square 

It is known by a theorem of Lov fi \mathrm{z}[13] that the polyhedron of admissible vectors

is integral if and only if the hypergraph whose edges are the basic coalitions is normal.

This gives the following corollary, which was first proved by Boros, Gurvich and Vasin

[7].

Corollary 3.2. If the hypergraph defined by the basic coalitions is normal then

the core of the game is non‐empty.

An equivalent formulation of these results is in terms of hypergraphic preference

systems and stable fractional matchings (for details, see [2]). We describe only the

graphic case which corresponds to stable matchings and stable half‐matchings.
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§3.2. Stable half‐matchings

The traditional interpretation of stable matchings in a graph is the so‐called stable

roommates problem, where we want to assign pairs of students to college rooms so that

there are no two students who prefer each other to their assigned roommates. Formally,
let G=(V, E) be an undirected graph, possibly with parallel edges, but no loops. For

every v\in V we are given a total order <_{v} of the edges incident to v
,

where uv<_{v} wv

means that v prefers w to u . The set of these total orders is denoted by \mathcal{O}
,

and the

pair (G, \mathcal{O}) is called a graphic preference system. For two edges e and f with a common

endnode v
,

the notation e\leq_{v}f is used if e<_{v}f or e=f.

Definition 3.3. A stable matching of the preference system (G, \mathcal{O}) is a matching
M of G with the property that every edge e\in E has an endnode v that is covered by
a matching edge vw\in M for which e\leq_{v} vw.

A stable half‐matching is a vector x:E\rightarrow\{0 , 1/2, 1 \} ,
for which

\displaystyle \ovalbox{\tt\small REJECT}\sum_{v:uv\in E}x(uv)\leq 1 for every u\in V,

\ovalbox{\tt\small REJECT} every edge e\in E has an endnode v where \displaystyle \sum_{f\geq_{v}e}x(f)=1.
In their celebrated paper [11], Gale and Shapley proved that every bipartite pref‐

erence system has a stable matching, and they provided an efficient algorithm. It is

easy to see that not every graphic preference system has a stable matching. However,

Irving [12] showed a polynomial algorithm that decides if there is a stable matching,

and, relying on this, Tan [18] observed the following.

Theorem 3.4 ([18]). Every preference system has a stable half‐matching.

Proof. We prove the theorem using Scarf�s Lemma (this is not Tan�s original

proof). Let A be the node‐edge incidence matrix of the graphs, with the rows indexed

by the nodes. Let b be the all‐ones vector. We can define a total order <_{i} on supp ( a_{i})
by considering the node v corresponding to row a_{i} and using the total order <_{v}.

By Theorem 2.3 the polyhedron P=\{x\in \mathbb{R}^{n}: Ax \leq b, x\geq 0\} has a maximal

vertex x^{*} that dominates every column. By a result of Balinski [3], the polyhedron P is

half‐integral, so x^{*} is half‐integral. It is easy to see that the property that x^{*} dominates

every column means that it is a stable half‐matching. \square 

Stable half‐matchings that are maximal vertices of P have an interesting property
that seems to be peculiar to this problem (it does not hold for other applications of

Scarf�s Lemma): all of them are non‐integer on the same set of edges. More precisely,
the graph has a given set of disjoint odd cycles so that every stable half‐matching that

is a vertex of P has value \displaystyle \frac{1}{2} on exactly the edges of these cycles. This immediately gives
the following corollary.
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Corollary 3.5 ([18]). Let x^{*} be a stable half‐matching that is a vertex of P.

Then x^{*} is integral if and only if the preference system has a stable matching.

§3.3. Kernel solvability of perfect graphs

Let D=(V, A) be a directed graph. The out‐neighbourhood O_{D}(v) of a node v\in V

is the set of nodes consisting of v and the nodes w\in V for which vw\in A . A subset X

of nodes is said to dominate a node v\in V if X\cap O_{D}(v)\neq\emptyset. X is called dominating if it

dominates every node. A kernel of D is a dominating stable set of nodes. Kernels have

several applications in combinatorics and game theory, and there has been extensive

work on the characterization of digraphs that have kernels. See [6] for a survey on the

topic.
One approach is to identify undirected graphs for which every �nice� orientation

has a kernel. Let G=(V, E) be an undirected graph. A superorientation of G is a

directed graph obtained by replacing each edge uv of G by an arc uv or an arc vu or

both. A proper directed cycle in a superorientation is a directed cycle consisting of arcs

that are not present reversed in the digraph.
A superorienation is clique‐acyclic if no oriented clique contains a proper directed

cycle. A graph G is kernel solvable if every clique‐acyclic superorientation of G has a

kernel.

Boros and Gurvich [5] proved the following conjecture of Berge and Duchet.

Theorem 3.6 ([5]). Every perfect graph is kernel solvable.

Let (G, \mathcal{O}) be a graphic preference system, and let D be the line graph of G oriented

according to the preferences at the nodes. Then stable matchings of (G, \mathcal{O}) correspond
to kernels of D . This means that stable matching problems can be formulated as kernel

problems in line graphs. Since line graphs of bipartite graphs are perfect, the Gale‐

Shapley theorem follows from Theorem 3.6.

In the following we describe the proof of Aharoni and Holzman [1] for Theorem 3.6

which is a simple and elegant use of Scarf�s Lemma.

Proof. Let G=(V, E) be a perfect graph and let D be a clique‐acyclic superori‐
entation of G . Let K_{1} ,

. . . K_{m} denote the maximal cliques in G . Let A\in\{0, 1\}^{m\times n} be

the incidence matrix of the maximal cliques, i.e. the i‐th row, a_{i} is the characteristic

vector of K_{i}(1\leq i\leq m) . Finally let b\in \mathbb{R}_{+}^{m} be the all‐ones vector. Since G is perfect,
the polyhedron P=\{x\in \mathbb{R}^{n} : x\geq 0, Ax \leq b\} is the convex hull of the characteristic

vectors of the stable sets of G.

Because D is clique‐acyclic, every maximal clique K_{i} has an ordering of its nodes

with the property that there is no edge in K_{i} which is oriented only backwards. Let <_{i}

be this ordering.
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Applying Theorem 2.3 for this instance we get that there is a maximal vertex x^{*} of

P with the property that for each node v\in V there is a maximal clique K_{i(v)} containing
v such that a_{i(v)}x^{*}=1 and x_{v}^{*}, =0 for every v^{\ovalbox{\tt\small REJECT}}<_{i(v)}v . By the properties of P, x^{*} is

the characteristic vector of a maximal stable set S.

We now prove that S is a kernel. Let v be a node of V . The above implies that

w\geq_{i(v)}v holds for every w\in K_{i(v)}\cap S . Because of a_{i(v)}x^{*}=1 ,
there is a node w in

K_{i(v)}\cap S ,
so w\geq_{i(v)}v implies w\in O_{D}(v) by the definition of the ordering <_{i(v)} . Thus

v is dominated by S. \square 

Note that it follows easily from the Strong Perfect Graph Theorem [9] that non‐

perfect graphs are not kernel solvable. One needs the observations that a) odd holes

and odd antiholes are not kernel solvable, and b) induced subgraphs of kernel solvable

graphs are kernel solvable. However, no proof is known that does not rely on the SPGT.

§4. Kernels in h‐perfect graphs

§4.1. h‐perfect graphs

Sbihi and Uhri [15] introduced the class of h ‐perfect graphs as the graphs for which

the stable set polytope is described by the following set of inequalities:

(4.1) x_{v}\geq 0

(4.2) x(C)\leq 1

(4.3) x(Z)\displaystyle \leq\frac{|Z|-1}{2}

for every v\in V,

for every maximal clique C,

for every odd hole Z.

In addition to perfect graphs, it is known that the class of h‐perfect graphs includes

\ovalbox{\tt\small REJECT} all graphs containing no odd‐K ‐subdivision (see [10]),

\ovalbox{\tt\small REJECT} all near‐uipartite graphs containing no odd wheel and no prime antiweb except for

cliques and odd holes (this is implicitly in [17]),

\ovalbox{\tt\small REJECT} line graphs of graphs that contain no odd subdivision of C_{5}+e (see [8]).

It follows from the Strong Perfect Graph Theorem that the property in Theorem

3.6 does not hold for non‐perfect graphs. To extend the theorem to h‐perfect graphs,
let us call a superorientation of a graph odd‐hole‐acyclic if no oriented odd hole is a

proper directed cycle. Obviously a superorientation of a perfect graph is always odd‐

hole‐acyclic. Our result is as follows.

Theorem 4.1. If G is an h ‐perfect graph then every clique‐acyclic and odd‐hole‐

acyclic superorientation of G has a kernel.
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Our proof is a slight modification of the proof of Aharoni and Holzman for Theorem

3.6 [1].

Proof. Let G be an h‐perfect graph and D a clique‐acyclic and odd‐hole‐acyclic

superorientation of G . Let c and 0 denote the number of maximal cliques and odd holes

in D
, respectively. Let C_{1} ,

. . . C_{c} denote the maximal cliques in D and C_{c+1} ,
. . . C_{c+0}

the odd holes in D . Let A be the matrix of size (c+0)\times n whose i‐th row, a_{i} is the

characteristic vector of C_{i}(1\leq i\leq c+0) . Finally let b\in \mathbb{R}_{+}^{(c+0)} be the vector whose

i‐th component is 1 if i\leq c and \displaystyle \frac{|C_{i}|-1}{2} if i>c . Since G is h‐perfect, the polyhedron

P=\{x\in \mathbb{R}^{V} : x\geq 0, Ax\leq b\} is the convex hull of the stable sets of G.

Because D is clique‐acyclic and odd‐hole‐acyclic, if C_{i} is a maximal clique or an

odd hole, its nodes have an order with the property that there is no edge in C_{i} which

is oriented only backwards. Let <_{i} be this ordering of C_{i}.

Applying Theorem 2.3 for this instance we get that there is a vertex x^{*} of P with

the property that for each node v\in V there is a maximal clique or odd hole C_{i(v)}
containing v such that a_{i(v)}x^{*}=b_{i(v)} and x_{v}^{*}, =0 for every v^{\ovalbox{\tt\small REJECT}}<_{i(v)}v.

The vector x^{*} is the characteristic vector of a stable set S because it is a vertex of

P . We want to show that it is the characteristic vector of a kernel.

Let v be a node not in S . Scarf�s lemma implies that if w\in C_{i(v)}\cap S ,
then

w\geq_{i(v)}v holds. If C_{i(v)} is a clique, then because of a_{i(v)}x^{*}=b_{i(v)}=1 ,
there is a node

w in C_{i(v)}\cap S . Hence w\geq_{i(v)}v implies that w\in O_{D}(v) .

If C_{i(v)} is an odd hole, then a_{i(v)}x^{*}=b_{i(v)}=\displaystyle \frac{|C_{i(v)}|-1}{2} implies that S contains every

second node in C_{i(v)} , except two consecutive nodes not in S . This means that v has at

least one neighbour w on the circuit which is in S . Like above, w\geq_{i(v)}v ,
so w must be

in O_{D}(v) . This concludes the proof of the theorem. \square 

A stronger version of the theorem can also be proved with the same method. For an

undirected graph G=(V, E) ,
let STAB(G) denote the convex hull of the characteristic

vectors of stable sets. We say that a digraph is acyclic in a subset of nodes if there is

no proper directed cycle in the subset.

Theorem 4.2. If \{x\in \mathbb{R}_{+}^{V} : Ax \leq b\}= STAB (G) for an undirected graph

G=(V, E) and D is a superorientation of G which is acyclic in supp ( a_{i}) for every row

a_{i} of A
,

then there is a kernel in D.

Proof. We can assume that every inequality is facet‐defining in the system \{x\in
\mathbb{R}_{+}^{V} : Ax\leq b\} . Then A is non‐negative and b is positive.

For a row a_{i} of A
,

let <_{i} be a total order of the elements of supp ( a_{i}) given by a

topological order of the one‐way edges. Theorem 2.3 implies that there exists a vertex

x^{*} of STAB(G) such that for every v\in V there is a row a_{i(v)} of A for which
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(i) a_{i(v)}x^{*}=b_{i} ,
and

(ii) if  w\in supp (  x^{*})\cap supp (  a_{i(v)}) then w\geq_{i(v)}v.

Since the system describes STAB (G) ,
x^{*} is the characteristic vector of some stable set S.

We want to show that S dominates every node v . Let v\in V\backslash S ; then v is in supp ( a_{i(v)}) .

Moreover, (i) implies that there is a node  w\in S\cap supp (  a_{i(v)})\cap N_{G}(v) (where N_{G}(v)
denotes the neighbourhood of v in G with v) because otherwise (S\cap supp (  a_{i(v)}))\cup\{v\}
would be a stable set which violates the inequality of a_{i(v)} . From (ii) w is an out‐

neighbour of v
,

so v is dominated by S. \square 

It is a well‐known result in the theory of stable matchings that a clique‐acyclic and

odd‐hole‐acyclic orientation of a line graph always has a kernel (it follows for example
from the stable roommates algorithm of Irwing [12]). However, this is not true for

superorientations, as the superorientation of the line graph of C_{5}+e on Figure 1 shows.

Figure 1. A kernel‐less superorientation of the line graph of C_{5}+e

§5. Counterexamples and open questions

§5.1. A conjecture on the characterization of h‐perfect graphs

We have mentioned that the reverse direction of Theorem 3.6 is also true, due to

the Strong Perfect Graph Theorem. The same does not hold for Theorem 4.1, and a

counterexample is given here. The graph on Figure 2 is not h‐perfect (this follows from

the results of Barahona and Mahjoub [4]), but it can be seen by case analysis that every

clique‐ and odd‐hole‐acyclic superorientation of it has a kernel.

Nevertheless, one may hope for a stronger theorem where the reverse direction also

holds. We give here a less elegant but stronger theorem for which we conjecture that

this is the case.

Let G be an h‐perfect graph, and let D be a clique‐acyclic superorientation of

G . Some odd holes of G may become proper directed cycles; let us denote these by
Z_{1} ,

. . .

, Z_{k} . Let us select nodes v_{1} ,
. . .

, v_{k} such that v_{i}\in Z_{i} for i=1
,

. . .

,
k (the

selected nodes need not be distinct). We call this a superorientation with special nodes.

An almost‐kernel for a superorientation with special nodes is an stable set S with the

following property:
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Figure 2. A non‐h‐perfect graph whose clique‐ and odd‐hole‐acyclic superorientations
all have kernels

If a node v is not dominated by S
,

then v=v_{i} for some i and |Z_{i}\cap S|=
(|Z_{i}|-1)/2.

Theorem 5.1. If G is an h ‐perfect graph then every clique‐acyclic superorien‐
tation with special nodes has an almost‐kernel.

Proof. We use Scarf�s Lemma in a similar way as in the proof of Theorem 4.1.

The orderings <_{i} associated to the lines of the matrix can be defined the same way

as there, except for the odd holes which are proper directed cycles. For these, we can

define the ordering so that the special node is the smallest node of the ordering, and

the only edge oriented backwards is the one entering the special node.

Using Scarf�s lemma as in the proof of Theorem 4.1, we get that the only possible
case when a node v is not dominated by the stable set S corresponding to x^{*} is when

C_{i(v)} is an odd hole which is a proper directed cycle, v is its special node, and |S\cap C_{i(v)}|=
(|C_{i(v)}|-1)/2 . This implies that S is an almost‐kernel. \square 

Note that this theorem is stronger than Theorem 4.1 since every almost‐kernel in a

clique‐acyclic and odd‐hole‐acyclic orientation is a kernel. We conjecture that here the

converse also holds:

Conjecture 5.2. A graph G is h ‐perfect if and only if every clique‐acyclic su‐

perorientation with special nodes has an almost‐kernel.

§5.2. Possible converse of Scarf \ovalbox{\tt\small REJECT}_{\mathrm{S}} Lemma

It would be tempting to formulate a more general conjecture, which is a kind of

converse to Scarf�s Lemma.

Question 5.3. Let A be a non‐negative m\times n matrix and let b\in \mathbb{R}^{m} be a positive
vector so that the polyhedron P=\{x : Ax\leq b, x\geq 0\} is bounded. Let x^{*} be a maximal

vertex of P. Is it true that for each row a_{i} of A we can give a total order on supp(ai),
so that x^{*} is the only maximal vertex of P that dominates every column

i

?
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We now show that the answer to this question is �No�. Let us first formulate a

similar question about colourings of vertices of polytopes.

Question 5.4. Let P be a d‐dimensional polytope, and let x^{1} and x^{2} be two

distinct vertices of P
,

where x_{1} is simplicial. Is it true that the facets of P can be

coloured by d colours so that x^{1} and x^{2} are precisely the vertices that are incident to

facets of all colours
i

?

This is true in 3 dimensions: the skeleton of P contains 3 vertex‐disjoint paths
between x^{1} and x^{2} ; these paths partition the set of facets into 3 classes, and the colouring

given by these 3 colour classes satisfies the conditions. However, it turns out to be false

in 4 dimensions, as the following polyhedron shows:

‐X 1-x_{3}+x_{4}\leq 1

x_{1}+x_{2}+x_{4}\leq 1 (0,0,0,1), (0,0,0,‐1),

x_{2}-x_{3}+x_{4}\leq 1 (-2,2,2,1) , (2,2,2,‐3),
(1,2,0, -2) , (2/3,4/3, -2/3,-1) ,

-x_{1}-x_{2}-x_{3}+x_{4}\leq 1
Facets: Vertices: (0,2,0,‐1), (-1,1,0,0) ,

x_{1}-x_{2}-x_{3}-x_{4}\leq 1
(2,-3,2,2) , (2/3,-1/3,-2/3,2/3) ,

-x_{1}-x_{3}-x_{4}\leq 1 (-1,0,2,2) , (-1/3,-2/3,-1/3,-1/3) ,

-x_{1}-x_{4}\leq 1 (0,0,‐1,0), (-1,0,0,0) .

-x_{1}-x_{2}+x_{3}-x_{4}\leq 1

The first four facets of this polyhedron are incident to the vertex x^{1}= (0,0,0,1),
while the last four facets are incident to the vertex x^{2}=(0,0,0, -1) . It can be shown

by case analysis that no matter how we colour the first four facets by four different

colours and the last four facets by the same four colours, there will be another vertex

incident to facets of all four colours.

Now we show that this counterexample can be transformed into a counterexample
for Question 5.3 using the technique in Section 2. Let P be the polytope defined above.

First, we cut off the vertex x^{1} with a hyperplane to obtain a simplex facet F_{0} . Then we

take the polar of this polytope and affinely transform it into a polytope P �
so that the

image of F_{0} is the origin and the facets containing it are \{x\in P^{\ovalbox{\tt\small REJECT}} : x_{i}=0\}(i=1, \ldots, 4) .

If we now take the polar from the origin, we obtain a polyhedron whose extreme rays

are -e_{i}(i=1, \ldots, 4) ; we can translate this to a polyhedron P� whose vertices are all in

\mathbb{R}_{+}^{4} . Let x^{*} be the image of x^{2} ; we know that this is a maximal vertex of P^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}} :=P^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}\cap \mathbb{R}_{+}^{4}.
We claim that P�� and x^{*} give a counterexample for Question 5.3. Suppose we have

total orders <_{i} on the supports of the rows such that x^{*} dominates every column. These

can be transformed into a colouring on the facets of P^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}=P^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}-\mathbb{R}_{+}^{4} as in the proof



144 TAMÁS KIRÁLy AND JÚLIA PAP

of Theorem 2.3, such that x^{*} is multi‐coloured. Furthermore, such a colouring of the

facets of P� defines a colouring of the facets of P where x^{1} and x^{2} are multi‐coloured.

Since P is a counterexample for Question 5.4, there is a third multi‐coloured vertex x^{3}

The polyhedron P�� has a corresponding maximal vertex, and this vertex dominates

every column by the construction.

It may be interesting to know special classes of polyhedra where the answer to

Question 5.3 is affirmative. We have no counterexamples for the following conjecture.

Conjecture 5.5. Let A be an m\times n matrix with 0‐1 coefficients and let b\in \mathbb{R}^{m}

be a positive vector so that the polyhedron P=\{x : Ax\leq b, x\geq 0\} is bounded. Suppose
that P has a non‐integer maximal vertex. Then for each row a_{i} of A we can give a total

order on supp (a_{i}) so that for every 0—1 vertex x^{\ovalbox{\tt\small REJECT}} of P there is a column that it does

not dominate.

To see that Conjecture 5.2 follows from Conjecture 5.5, consider a non‐h‐perfect

graph G . The polyhedron P defined by inequalities (4.1) -(4.3) has a non‐integral

vertex, hence it has a non‐integral maximal vertex. Let <i(i=1, \ldots, m) denote

the total orders given by Conjecture 5.5. These total orders define a clique‐acyclic

superorientation with special vertices:

\ovalbox{\tt\small REJECT} For each maximal clique, we orient the edges of the clique according to the total

ordering of the clique. (An edge may appear in two cliques and its endpoints may

be in different order in the two total orders; in this case, we orient the edge in both

directions.) This defines the superorientation.

\ovalbox{\tt\small REJECT} If an odd hole is a proper directed cycle in this superorientation, we define its special
node to be the smallest node in its total order.

Let S be an arbitrary stable set of G . The characteristic vector of S is a 0—1

vertex of the polyhedron P . By the properties of the partial orders, there is a node

v\in V with the following properties:

\ovalbox{\tt\small REJECT} If there is a maximal clique K_{i} with |K_{i}\cap S|=1 and v\in K_{i} ,
then there is a node

u\in K_{i}\cap S with u<_{i}v.

\ovalbox{\tt\small REJECT} If there is an odd hole Z_{i} with |Z_{i}\cap S|=(|Z_{i}|-1)/2 and v\in Z_{i} ,
then there is a

node u\in Z_{i}\cap S with u<_{i}v.

The first property means that v\not\in S and the out‐neighUours of v in the superorien‐
tation are not in S

,
so v is not dominated by S . The second property implies that if v

is the special node of an odd hole Z (i.e. it is the smallest node in the total order) then

|Z\cap S|<(|Z|-1)/2 . Therefore the existence of v proves that S is not an almost‐kernel.
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