
RIMS Kôkyûroku Bessatsu
B23 (2010), 6379

Neighbor Systems and the Greedy Algorithm

(Extended Abstract)

By

David Hartvigsen *

Abstract

A neighbor system, introduced in this paper, is a collection of integral vectors in \Re^{n} with

some special structure. Such collections (slightly) generalize jump systems, which, in turn,

generalize integral bisubmodular polyhedra, integral polymatroids, delta‐matroids, matroids,
and other structures. We show that neighbor systems provide a systematic and simple way

to characterize these structures. A main result of the paper is a simple greedy algorithm for

optimizing over (finite) neighbor systems starting from any feasible vector. The algorithm is

(essentially) identical to the usual greedy algorithm on matroids and integral polymatroids
when the starting vector is zero. But in all other cases, from matroids through jump systems,
it appears to be a new greedy algorithm.

§1. Introduction

This paper introduces a new structure, called a neighbor system, over which a

straightforward greedy algorithm always finds an optimal solution. This system gener‐

alizes a variety of structures (matroids and generalizations of matroids) that have been

developed since the 1930\mathrm{s} and gives a new, standardized way of defining them. This

paper is an extended abstract/excerpt of the full version of the paper; in particular, all

non‐trivial proofs have been removed. The full version will appear elsewhere. Before

discussing our results in more detail, let us briefly review some key structures and re‐

sults from the literature. (Except where noted, the greedy algorithms discussed below

optimize these structures over linear objective functions.)
Matroids. Hassler Whitney in 1935 [27] introduced both the structure of matroids

and the basic greedy algorithm for optimizing over them.

Generalized matroids. This structure was introduced by Tardos [26], along with

a greedy algorithm, as a generalization of matroids.

Received September 15, 2008. Revised June 12, 2009.

2000 Mathematics Subject Classication(s): 90\mathrm{C}27, 05\mathrm{B}35
* Mendoza College of Business, University of Notre Dame, Notre Dame, IN, USA.

© 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

64 David Hartvigsen

Integral polymatroids. Edmonds [11] introduced this structure as a generaliza‐
tion of matroids together with a greedy algorithm.

Delta‐matroids. This structure was introduced, with slight variations, by Bouchet

[4], Dress and Havel [9], and by Chandrasekaran and Kabadi [7]. Greedy algorithms
were also presented in these papers. Delta‐matroids generalize generalized matroids.

An interesting example of a delta‐matroid is the collection of node sets of the subgraphs
of a graph that are perfectly matchable. This collection and the associated optimiza‐
tion problem were first studied by Balas and Pulleyblank [3] on bipartite graphs. This

example was further studied on general graphs by Bouchet [5].
Bisubmodular polyhedra. This structure was introduced by Dunstan and Welsh

[10] along with a greedy algorithm. Bisubmodular polyhedra are a common generaliza‐
tion of integral polymatroids and delta‐matroids. Closely related structures were also

studied by Chandrasekaran and Kabadi [7], Nakamura [22], and Qi [23]. A different

greedy algorithm for bisubmodular polyhedra was also presented in Ando, Fujishige,
and Naitoh [1]; this algorithm also works for the more general class of separable convex

objective functions.

Jump systems. Bouchet and Cunningham [6] introduced this structure along
with a greedy algorithm. (See also [20] and [16].) A jump system is a collection of inte‐

gral vectors in \Re^{n} with some special structure and is a generalization of bisubmodular

polyhedra. An important example is the set of degree sequences of the subgraphs of a

graph. An interesting fact about jump systems, which sets them apart from the above

matroid generalizations, is that a jump system need not be equal to all the integral
vectors in its convex hull; hence jump systems may have small �holes� in them. An‐

other greedy algorithm forjump systems was discovered by Ando, Fujishige, and Naitoh

[2]; this algorithm also works for the more general class of separable convex objective
functions. A variation on this greedy algorithm, which also works for separable con‐

vex objective functions, was discovered by Shioura and Tanaka [25]; it has better (that
is, polynomial) worst case complexity than the algorithm in [2]. (A further discussion

appears below.)
In this paper we introduce a structure called neighbor systems. Neighbor systems

are sets of integral vectors in \Re^{n} ; they are slightly more general than jump systems,

hence, they properly include all the examples above. A key feature in the definition

of neighbor systems is the neighbor function. This notion allows us to systematically

categorize, in a new way, the variety of matroid generalizations discussed above. It

also allows us to state a greedy algorithm as a straightforward type of neighborhood
search. An interesting property of neighbor systems is that they allow �holes� that are

arbitrarily large. A main result of this paper is a greedy algorithm for optimizing linear

objective functions over neighbor systems starting from any feasible vector. The algo‐

Neighbor Systems AND the Greedy Algorithm (EXTENDED AbStract) 65

rithm is (essentially) identical to the usual greedy algorithm on matroids and integral

polymatroids when the starting vector is zero. But in all other cases, from matroids

through jump systems, it appears to be a new greedy algorithm. Furthermore, the

validity of the algorithm is proved in a completely different way from related greedy

algorithms. It is not known if our algorithm works for more general objective functions,
such as the separable convex functions.

Another contribution of this paper is a simple characterization of neighbor systems
in terms of linear algebra (i.e., cones). This theorem is used to prove the validity of

the algorithm and provides an avenue for defining more general structures over which

essentially the same greedy algorithm works (see Section 8). The theorem also provides
a new way of defining the less general structures discussed above.

Let us discuss greedy algorithms in a bit more detail. Greedy algorithms for ma‐

troids and their generalizations have two basic forms in the literature. One type of

algorithm builds up an optimal solution, one component at a time, using an oracle that

(essentially) checks if a given partial vector is contained in (or can be completed to) \mathrm{a}

feasible solution. The algorithms for delta‐matroids in [4], [9], and [7], and for integral
bisubmodular polyhedra in [10], as well as the algorithms in [6] and [16] for jump sys‐

tems, work in this way. The second type of algorithm moves in an incremental fashion

from feasible solution to feasible solution making calls to a weaker oracle that checks

only if a given vector is feasible. The standard greedy algorithm for matroids and the

algorithm for integral polymatroids are of this type (where they begin from the origin).
The algorithm in [26] for generalized matroids and the algorithms in [1], [2], and [25]
for integral bisubmodular polyhedra and jump systems are also of this type (where they

begin from an arbitrary feasible vector). The algorithm presented in this paper is of the

incremental type and can begin from an arbitrary feasible vector.

Finally, let us mention some closely related work in the literature. Federgruen and

Groenevelt [12] presented an incremental‐style algorithm, that starts from the origin,
for optimizing weakly concave functions over integral polymatroids and Groenevelt [17]
presented a similar‐style algorithm for optimizing separable concave functions over inte‐

gral polymatroids. Murota [21] presented an incremental‐style algorithm for optimizing
\mathrm{M}‐convex functions over constant‐parity jump systems. Frank [13] introduced gener‐

alized polymatroids together with a greedy algorithm (see also [14]). Shenmaier [24]
has studied greedy algorithms over a generalization of matroids called accessible vector

systems. Another generalization of matroids called greedoids is surveyed in Korte et al

[18]. An excellent survey of matoid generalizations can be found in the book of Fujishige

[15].
The paper is organized as follows. Section 2 contains the definition of neighbor

systems. Section 3 contains a variety of examples of neighbor systems and presents a

66 David Hartvigsen

systematic characterization of the matroid generalizations discussed above in terms of

neighbor systems. Section 4 contains the statement of the new greedy algorithm. Section

5 contains a characterization of neighbor systems in terms of linear algebra. Section

6 contains a discussion of the complexity of the algorithm and Section 7 contains a

more efficient way to implement the algorithm. Section 8 discusses a way that neighbor

systems can be further generalized.

§2. Definitions

In this section we present the definition of neighbor systems. In the next section

we present a number of examples and compare neighbor systems to some of the related

matroid generalizations that were referenced in the introduction.

Throughout the paper we let E denote a nonempty finite set; we let \mathrm{Z}^{E} denote the

integral vectors indexed by E ; and we let \mathcal{F} denote an arbitrary nonempty finite set of

vectors in \mathrm{Z}^{E} . For x, y, z\in \mathrm{Z}^{E} ,
we say that z is between x and y if, for each i\in E,

x(i)\leq z(i)\leq y(i) or x(i)\geq z(i)\geq y(i). A direction is a \{0, \pm 1\}‐vector in \mathrm{Z}^{E} with

exactly one or two nonzero components.

For x, y\in \mathcal{F} ,
we say that y is a neighbor of x if there exists a direction d and a

positive integer b such that y=x+bd and there exists no positive integer b'<b such

that x+b'd\in \mathcal{F} . Roughly speaking, y is a neighbor of x if y is the �closest� vector of

\mathcal{F}\backslash x to x in some direction d.

A neighbor function, denoted by N
,

is a function that takes as input any set \mathcal{F}

with any x\in \mathcal{F} and outputs a subset of the neighbors of x in \mathcal{F} ; the output is denoted

N(\mathcal{F}, x) .

Definition 2.1. For N a neighbor function, a set \mathcal{F} is called an N‐neighbor

system if it satisfies the following condition:

\bullet For every pair x, y\in \mathcal{F} ,
and for every i\in E ,

where x(i)\neq y(i) ,
there exists

z\in N(; x) such that z is between x and y ,
and z(i)\neq x(i) .

An N‐neighbor system \mathcal{F} is called finite if \mathcal{F} is finite.

The idea is the following: If \mathcal{F} is an N‐neighbor system, then, for every pair of

vectors x and y in \mathcal{F} , and every component on which x and y differ, there is a vector in

N(\mathcal{F}, x) that is between x and y and is not equal to x on this component. Notice that

any choice of N partitions the collection of all sets of vectors in \mathrm{Z}^{E} into two collections:

the N‐neighbor systems and the rest.

In the next section we consider a number of examples of neighbor systems, but let

us mention here one important example. For every \mathcal{F} and x\in \mathcal{F} , let N^{a}(\mathcal{F}, x) be all

the neighbors of x in \mathcal{F} . We refer to an N^{a} ‐neighbor system as an all‐neighbor system.

Neighbor Systems AND the Greedy Algorithm (EXTENDED AbStract) 67

Then, for any neighbor function N
,
the collection of N‐neighbor systems is contained in

the collection of all‐neighbor systems. We will show that the collection of jump systems
is properly contained in the collection of all‐neighbor systems. Hence the notion of

neighbor systems properly generalizes essentially all of the examples discussed in the

introduction.

A main concern of the paper is the following optimization problem: Given a finite

N‐neighbor system \mathcal{F} and a linear objective function w\in\Re^{E} ,
find a vector x\in \mathcal{F} such

that wx is a maximum. One of our main results is a greedy algorithm for solving this

problem starting from any vector in \mathcal{F}.

Roughly speaking, our greedy algorithm starts by putting the directions into de‐

creasing order by their �slope,� which depends on w . The algorithm then considers the

directions in this order and moves from vector to vector in the current direction, within

the neighborhoods, as far as possible.
The concept of neighbors is useful in two ways. First, it yields a standardized

means of defining and comparing various matroid generalizations (see Section 3); and

second, it helps in analyzing the complexity of the greedy algorithm (see Sections 6 and

7).

§3. Examples of neighbor Systems

In this section we present some examples of neighbor systems. In so doing, a series

of propositions is presented that systematically characterizes a number of well‐known

matroid generalizations in terms of neighbor systems. Finally, we show that neighbor

systems are slightly more general than jump systems.
Before listing our examples, let us make the following definition of a distance func‐

tion d : For x, y\in \mathcal{F} , let d(x, y)\displaystyle \equiv\sum_{i\in E}|x(i)-y(i)| . This yields the following simple

neighbor function, for any positive integer k :

N_{k}(_{;} x)= {neighbors y of x in \mathcal{F} : d(x, y)\leq k}.

Distance‐1 neighbor systems: \mathcal{F} is an N_{1} ‐neighbor system if and only if it is

the integral vectors x that satisfy a system of inequalities of the form: for each i\in E,

a(i)\leq x(i)\leq b(i) ,
where a(i) and b(i) are integers.

Distance‐2 neighbor systems: \mathcal{F} is an N_{2} ‐neighbor system if and only if \mathcal{F} is

ajump system. (This example is discussed in more detail below.)
One dimension: Let |E|=1 and let \mathcal{F} be a set of integers \{x_{1}, . ::, x_{n}\} ,

where

we assume x_{1}<x_{2}< . . . <x_{n} . Then \mathcal{F} is an N‐neighbor system if and only if

N(\mathcal{F}, x_{1})= {x2}, N(\mathcal{F}, x_{n})=\{x_{n-1}\} ,
and N(\mathcal{F}, x_{i})=\{x_{i-1}, x_{i+1}\} ,

otherwise. Thus,
\mathcal{F} is an N_{k} ‐neighbor system if and only if, for all x_{i}, x_{i+1}\in \mathcal{F}, x_{i+1}-x_{i}\leq k.

68 David Hartvigsen

\bullet \circ \bullet \circ \circ \circ \circ \bullet

\circ \circ \circ \circ \circ \circ \circ \circ

\bullet \circ \bullet \circ \circ \circ \circ \bullet

\bullet \bullet \circ \circ

\circ \bullet \bullet \circ

\circ \circ \bullet \bullet

Figure 1. Two examples of 2‐dimensional neighbor systems

Two dimensions: Figure 1 contains two examples of all‐neighbor systems where

|E|=2 . The black dots represent grid points in the corresponding set \mathcal{F} ; white dots

represent grid points not in \mathcal{F} . Note that if any single white dot in the top example is

added to the system, the resulting set of points is no longer an all‐neighbor system. For

example, suppose we add to \mathcal{F} the dot in the center of the four black dots on the left.

If we call this dot y and the lower, far‐right dot x
,

then the pair x, y fails the condition

in the definition. Observe that the top example is also an N_{k} ‐neighbor system if and

only if k\geq 5.

The remainder of this section focuses primarily on the examples of neighbor systems
mentioned in the introduction. The relationships between the examples are illustrated

in Figure 2. An arrow from one box to another means the example at the tail properly

generalizes the example at the head. These relationships should be evident from the

characterizations in the following propositions.
Matroids: The following proposition shows how matroids are related to neighbor

systems.

Proposition 3.1. For all \mathcal{F} and x\in \mathcal{F} , let N(\mathcal{F}, x) be the vectors in \mathcal{F} of
the form x+d ,

where d is a direction with one nonzero component or two nonzero

components with opposite signs. Then \mathcal{F}\subseteq\{0, 1\}^{E} ,
with 0\in \mathcal{F} , is the set of incidence

vectors of a matroid if and only if \mathcal{F} is an N ‐neighbor system.

Proof. This follows easily from the standard definition of matroids (e.g., see page

268 in Lawler [19]). \square

Generalized matroids: These structures were introduced by Tardos [26] (see
also Chandrasekaran and Kabadi [7]). From the definition (as given in [7]), it is imme‐

diate that generalized matroids are characterized by the above proposition, where the

condition 0\in \mathcal{F} is removed and �matroid� is replaced with �generalized matroid.�

Neighbor Systems AND the Greedy Algorithm (EXTENDED AbStract) 69

All‐neighbor
systems

\downarrow
\mathrm{N}_{\mathrm{k}} ‐neighbor

systems

\downarrow
Jump systems

\downarrow
Integral bisubmodulx

polyhedra

\downarrow \mathrm{D}\mathrm{e}\mathrm{l}\mathrm{t}\mathrm{a}\downarrow‐matroids

Integral polymatroids \downarrow

Figure 2. Hierarchy of matroid generalizations

Bases of a matroid: We next consider how the bases of a matroid are related to

neighbor systems. A well‐known example of the bases of a matroid is the collection of

edge sets of spanning forests in a graph.

Proposition 3.2. For all \mathcal{F} and x\in \mathcal{F} , let N(\mathcal{F}, x) be the vectors in \mathcal{F} of the

form x+d ,
where d is a direction with two nonzero components with opposite signs.

Then \mathcal{F}\subseteq\{0, 1\}^{E} is the set of incidence vectors of the bases of a matroid if and only if
\mathcal{F} is an N ‐neighbor system.

Proof. This follows immediately from the well‐known theorem in matroid theory
that says the bases of a matroid are characterized by an exchange property (e.g., see

Theorem 5.3 on page 274 in [19]). \square

Delta‐matroids: Delta‐matroids were introduced by Bouchet [4]. An example of

a delta‐matroid is the collection of node sets of those subgraphs of a graph that are

perfectly matchable (see [5]). The following definition appears in [6]:
Definition: Let F be a family of subsets of a finite set E . Then (E, F) is a delta‐

matroid if the following symmetric exchange axiom is satisfied:

(SEA) If F_{1}, F_{2}\in F and j\in F_{1}\triangle F_{2} ,
then there is k\in F_{1}\triangle F_{2} such that

F_{1}\triangle\{j, k\}\in F.
Note that \triangle denotes symmetric difference.

70 David Hartvigsen

Proposition 3.3. For all \mathcal{F} and x\in \mathcal{F} , let N(\mathcal{F}, x) be the vectors in \mathcal{F} of the

form x+d ,
where d is a direction. Then \mathcal{F}\subseteq\{0, 1\}^{E} is the set of incidence vectors of

a delta‐matroid if and only if \mathcal{F} is an N ‐neighbor system.

Proof. This follows immediately from the definition of delta‐matroids. \square

Integral polymatroids: Integral polymatroids were introduced by Edmonds [11].
The standard definition requires the definition of submodular functions and is not needed

here. We note that an integral polymatroid can be viewed as a special polyhedron or

the integral vectors contained in such a polyhedron. We take the latter view here.

Proposition 3.4. For all \mathcal{F} and x\in \mathcal{F} , let N(\mathcal{F}, x) be the vectors in \mathcal{F} of
the form x+d ,

where d is a direction with one nonzero component or two nonzero

components with opposite signs. Then \mathcal{F},with0\in \mathcal{F} , is an integral polymatroid if and

only if \mathcal{F} is an N ‐neighbor system.

Integral bisubmodular polyhedra: Bisubmodular polyhedra were first studied

by Dunstan and Welsh [10], Chandrasekaran and Kabadi [7], Nakamura [22], and Qi

[23]. The standard definition requires the definition of bisubmodular functions and is

not needed here. As with the last example, an integral bisubmodular polyhedron can be

viewed as a special polyhedron or as the integral vectors contained in such a polyhedron.
We again take the latter view here.

Proposition 3.5. For all \mathcal{F} and x\in \mathcal{F} , let N(\mathcal{F}, x) be the vectors in \mathcal{F} of the

form x+d ,
where d is a direction. Then \mathcal{F} is an integral bisubmodular polyhedron if

and only if \mathcal{F} is an N ‐neighbor system.

Jump systems: Jump systems were introduced by Bouchet and Cunningham [6].
The following definition appears in Ando et al [2].

Definition: Let E denote a nonempty finite set. A step is a \{0, \pm 1\}‐vector in \mathrm{Z}^{E}

with exactly one nonzero component. For any x, y\in \mathrm{Z}^{E} a step u from x to y is a step

such that

(3.1) \displaystyle \sum_{e\in E}|x(e)+u(e)-y(e)|=\sum_{e\in E}|x(e)-y(e)|-1
Let St(x, y) denote the set of all steps from x to y . Let \mathcal{F} denote a nonempty set of

vectors in \mathrm{Z}^{E}. (E, \mathcal{F}) is called a jump system if the following 2‐step axiom is satisfied:

(2‐SA) For any x, y\in \mathcal{F} and u\in St(x, y) with x+u\not\in \mathcal{F} ,
there exists v\in St(x+u, y)

such that x+u+v\in \mathcal{F}.

An important example of a jump system (which is not an integral bisubmodular

polyhedron) is the set of degree sequences of the subgraphs of a graph (see [6]), where

Neighbor Systems AND the Greedy Algorithm (EXTENDED AbStract) 71

loops are allowed and contribute 2 to the degree of a node. A more general class of

jump systems using bidirected graphs also appears in [6].

Proposition 3.6. For all \mathcal{F} and x\in \mathcal{F} , let N(\mathcal{F}, x) be the neighbors of x in \mathcal{F}

of the form x+bd ,
where d is a direction and if d has exactly one nonzero component,

then b=1 or b=2 ; otherwise, b=1 . Then \mathcal{F} is a jump system if and only if \mathcal{F} is an

N ‐neighbor system.

We can restate the above proposition in the following more compact way.

Proposition 3.7. \mathcal{F} is ajump system if and only if\mathcal{F} is an N_{2} ‐neighbor system.

Constant parity jump systems: A jump system \mathcal{F} is said to have constant

parity if, for all x\in \mathcal{F} , the summations \displaystyle \sum_{i\in E}x(i) have the same parity (see, e.g., [16]).
Here is a simple example: Choose x\in \mathrm{Z}^{E} and let \mathcal{F} be all the vectors y\in \mathrm{Z}^{E} such

that y is between 0 and x
,

and \displaystyle \sum_{i\in E}y(i) has the same parity as \displaystyle \sum_{i\in E}x(i) . Observe

that the degree sequence jump systems defined above provide another example. The

following proposition follows easily from Proposition 3.7 for jump systems.

Proposition 3.8. For all \mathcal{F} and x\in \mathcal{F} , let

N(; x)= {neighbors y of x in \mathcal{F}:d(x, y)=2}.

Then \mathcal{F} is a constant parity jump system if and only if \mathcal{F} is an N ‐neighbor system.

Differences between neighbor systems and jump systems. We show here

that neighbor systems are more general than jump systems. However, the difference

does not seem to be large and is not the point of this paper.

In Figure 1, both examples are all‐neighbor systems and the bottom example is a

jump system. However, the top example is not a jump system, since the two points on

the far right are too far away from the other points (see Proposition 3.7). Hence we

have the following.

Remark: All‐neighbor systems are strictly more general than jump systems.

For a general class of examples, let N be a neighbor function; let \mathcal{F} be an N‐

neighbor system; and let m be an integer. Define m\mathcal{F}= \{mx:x\in \mathcal{F}\} and define the

neighbor function mN as follows: mN(; x)=\{my : y\in N(; x Then it is easy

to see that m\mathcal{F} is an mN‐neighbor system. Furthermore, if \mathcal{F} is \mathrm{a} (non‐trivial) jump

system and if |m|\geq 3 ,
then m\mathcal{F} is not a jump system (see Proposition 3.7). It is also

easy to see that the top example in Figure 1 is a neighbor system, say \mathcal{F} , and that there

is no jump system, say \mathcal{F}' ,
and integer m

,
such that \mathcal{F}=m\mathcal{F}'.

72 David Hartvigsen

§4. The Greedy Algorithm

In this section we present a greedy algorithm for optimizing a linear function w\in

\Re^{E} over a finite neighbor system \mathcal{F} starting from any feasible vector. We assume we

have a membership oracle that, in constant time, tells us if any given vector is in \mathcal{F}.

The main idea is the use of a function w^{p} (which is analogous to a �slope�) for choosing
the move to make at any stage.

For each direction d
,

we define w^{p}:\Re^{E}\rightarrow\Re as follows:

 w^{p}(d)=\displaystyle \frac{wd}{||d\Vert}
where \displaystyle \Vert d\Vert=\sum_{i\in E}|d_{i}| . In other words, \Vert d\Vert is the number of nonzero components of d.

We assume, for the remainder of the paper, that w satisfies the following.

A1 For all pairs of distinct directions d' and d we have w^{p}(d')\neq w^{p}(d'') . (Note that

it follows, by the definition of directions, that |w(i)|\neq|w(j)| ,
for all i, j\in E ,

where

i\neq j.)

It is easy to show that there is no loss of generality in making this assumption in

the sense that any objective function w can easily be ((perturbed� so that A1 is satisfied,
without affecting the validity or complexity of the greedy algorithm.

Our greedy algorithm begins by putting the direction vectors into decreasing order

by their �slope.� The algorithm then considers the direction vectors in this order and

tries to improve the current solution by moving in the current direction within the

current solution�s neighborhood.

Greedy Algorithm :

Input : A finite N‐neighbor system \mathcal{F} ; a vector x_{0}\in \mathcal{F} ; and w\in\Re^{E}.

Output : A vector x^{*}\in \mathcal{F} that maximizes wx.

Step 0 : Set x\leftarrow x_{0} . Label the input directions so that w^{p}(d_{1})>w^{p}(d_{2})>\cdots and

let s be the largest index i for which w^{p}(d_{i})>0.

Step 1 : For i=1
,

.

::,
s

,
do the following:

Search N(; x) (using the membership oracle) for a vector of the form x+bd_{i},
where b is a positive integer. If such a vector is found, set x\leftarrow x+bd_{i} and repeat

the search.

Step 2 : Set x^{*}\leftarrow x and output x^{*}

End .

Neighbor Systems AND the Greedy Algorithm (EXTENDED AbStract) 73

Remark: There must exist an s as described in Step 0 by assumption A1; that is,
there must exist a direction d such that w^{p}(d)>0.

Other, simpler, greedy‐type algorithms can be stated for this problem. For example,
we could drop the labeling operation in Step 0 and replace Step 1 with one of the

following variants:

1. Search in N(; x) for any vector with a bigger objective value; make it the current

x.

2. Search in N(\mathcal{F}, x) for a vector that improves the objective value the most; make it

the current x.

3. Search in N(\mathcal{F}, x) for a vector x+bd that improves the objective value and maxi‐

mizes w^{p}(d) ; make it the current x (this is a steepest ascent algorithm).

It follows easily from Corollary 5.2 that variant 1 produces an optimal solution in

finite time, which implies the same for variants 2 and 3. Variant 3 is considered in detail

in the proof of the validity of the Greedy Algorithm; we show that the behavior of this

variant is essentially the same as that of the Greedy Algorithm. The advantage of our

Greedy Algorithm over the above variants is that it makes better use of the structure

of neighbor systems. In particular, for the (typically) low cost of a sort, the searches in

N(; x) may be confined to a smaller set of vectors. That is, for each search we make

in N(; x) ,
we only look in one direction for improving vectors and, under w^{p}

,
these

directions are decreasing during the algorithm, so once we finish looking in a direction,
we never need to look again in that direction. This results in an algorithm with better

complexity than the variants for neighbor systems (see the discussion in Section 6).
Recall that an initial sort of this type is also carried out in the standard version of the

greedy algorithm for matroids and this also results in an algorithm that is more efficient

than each of the comparable variants above. In fact, an initial sort is made in all of the

greedy algorithms discussed in the introduction (except for the algorithms of Ando et

al in [1] and [2], although it turns out that the efficiency of these two algorithms also

benefits from a sort).
Let us end this section with a quick example that illustrates how the Greedy Al‐

gorithm works and why it would not work if we had chosen w^{p}(d)=wd . Consider the

all‐neighbor system in Figure 3 (which is also a two‐dimensional jump system). Let

x_{0}=(0,0) be the starting point and let w=(2,1) be the objective function; hence

X3=(3,1) is the optimal solution. (Although these choices of w and w^{p} do not satisfy

A1, it does not matter for this example.) Using w^{p}(d)=wd ,
the first move of the algo‐

rithm would be from x_{0} to x_{1} , using direction d'=(1,0) ,
where w^{p}(d')=2 . The second

move would be from x_{1} to x_{2} using direction d''=(0,1) ,
where w^{p}(d'')=1 . The second

74 David Hartvigsen

\mathrm{x}_{2} \mathrm{x}_{3}

\bullet \circ \bullet \bullet

\bullet \circ \bullet \circ
\mathrm{x}_{0} \mathrm{x}_{1}

Figure 3. Greedy algorithm example

\mathrm{x}

\bullet

\circ

\circ

Figure 4. An illustration of Theorem 5.1

move cannot be from x_{1} to X3 using d =(1,1) ,
since w^{p}(d')<w^{p}(d''')=3 . Finally,

observe that moving from x_{2} to X3 would require again using direction d' ; but this is not

allowed since w^{p}(d'')<w^{p}(d') . Hence the algorithm stops at x_{2} . Using w^{p}(d)=\displaystyle \frac{wd}{||d\Vert},
the first move would again be from x_{0} to x_{1} , using direction d'

,
where w^{p}(d')=2 . In

this case the second move would be from x_{1} to X3 using d where w^{p}(d''')=1.5 ,
which

takes us to the optimum solution.

§5. Characterizing neighbor Systems

In this section we present the key result (Theorem 5.1) used to prove the validity of

the greedy algorithm for neighbor systems. This result is interesting in its own right in

that it serves as an algebraic characterization of neighbor systems. Roughly speaking,
the theorem says that \mathcal{F} is an N‐neighbor system if and only if for every x, y\in \mathcal{F}, y

is in the cone generated by the vectors from x to its neighbors that are between x and

y . A2‐dimensional example of an all‐neighbor system appears in Figure 4: a and b are

the neighbors of x between x and y and the cone generated by them contains y.

Theorem 5.1. \mathcal{F} is an N ‐neighbor system if and only if for all x, y\in \mathcal{F} , where

x\neq y ,
there exists s_{1} ,

. .

:; s_{n}\in N(\mathcal{F}, x) and positive reals a_{1} ,
. . .

; a_{n} ,
such that: s_{i} is

Neighbor Systems AND the Greedy Algorithm (EXTENDED AbStract) 75

between x and y, fori=1 ,
. .

:;
n ; and

x+\displaystyle \sum_{i=1}^{n}a_{i}(s_{i}-x)=y.
Corollary 5.2. Let \mathcal{F} be an N ‐neighbor system; let w\in\Re^{E} ; and let x, y\in \mathcal{F}

such that wx<wy . Then there exists s\in N(; x) ,
such that s is between x and y ,

and

wx<ws.

Remark: The values a in Theorem 5.1 cannot, in general, be chosen to be integral.
To see this, consider the following all‐neighbor system: \mathcal{F}=\{x=(0,0,0) , x_{1}=(1,1,0) ,

x_{2}=(1,0,1) , X3=(0,1,1) , y=(1,1,1 where N(\mathcal{F}, x)=\{x_{1}, x_{2}, x_{3}\} . Observe that

y=x+\displaystyle \frac{1}{2}x_{1}+\frac{1}{2}x_{2}+\frac{1}{2} X3 and that the coefficients of \displaystyle \frac{1}{2} are unique.

§6. Complexity of the Algorithm

In this section we analyze the complexity of the Greedy Algorithm. We begin with

a few definitions.

Let \mathcal{F} be a finite N‐neighbor system and define

u(e)=\displaystyle \max_{x\in \mathcal{F}}x(e) ,

l(e)=\displaystyle \min_{x\in \mathcal{F}}x(e) ,

size (\displaystyle \mathcal{F})=\max_{e\in E}(u(e)-l(e)) .

We assume we have a membership oracle that, in constant time, tells us if a given
vector is in a set \mathcal{F}.

We have the following complexity result.

Proposition 6.1. Let \mathcal{F} be an N ‐neighbor system. Then the Greedy Algorithm
applied to \mathcal{F} can be implemented with a worst case time complexity of O(|E|^{2}\log|E|+
|E|^{2}size(\mathcal{F})) . If \mathcal{F} is an N_{k} ‐neighbor system, then the Greedy Algorithm applied to \mathcal{F}

can be implemented with a worst case time complexity ofO(|E|^{2}\log|E|+k|E|^{2}\log(size

Remark: When the parameter k is fixed, then the complexity of the algorithm is

improved for N_{k} ‐neighbor systems. This is the case, for example, for jump systems.

In the case of matroids, bases of matroids, generalized matroids, and delta‐matroids,
size () =1

,
hence the complexity further simplifies to O(|E|^{2}\log|E|) . The complexity

of the standard �build‐up� greedy algorithms for delta‐matroids, and integral bisubmod‐

ular polyhedra is O(|E|\log|E|) ,
which is the cost of sorting the weights in w . However,

the algorithms for these structures depend upon calls to a stronger oracle than the

76 David Hartvigsen

membership oracle. In particular, the oracle checks if there exists a feasible solution

for which a subset of the coordinates are set to specified values (whereas our algorithm
needs only to be able to perform this check when all the coordinates are set to specified

values). The complexity of the standard greedy algorithms for matroids and integral

polymatroids is, again, O(|E|\log|E|) ,
since only a sort of the weights in w is required;

in these cases the membership oracle is sufficient, however, the initial vector is 0.

We discuss a faster variation of the Greedy Algorithm, as well as the complexity of

greedy algorithms for jump systems, in the following section.

§7. Strengthening of the Greedy Algorithm

In this section we show how the Greedy Algorithm can be altered slightly to obtain

a better complexity. The resulting variation is closely related to the greedy algorithms
of Ando et al [2] and Shioura et al [25] for jump systems. The variation hinges on the

following proposition.
We say two vectors f_{1}, f_{2}\in\Re^{E} are similarly signed if, for all i\in E, f_{1}(i)\neq 0 and

f_{2}(i)\neq 0 imply f(i) and f(i) have the same sign.

Proposition 7.1. Let f and g be two objective functions for a finite N ‐neighbor

system \mathcal{F} . Suppose f and g satisfy the following conditions:

1. f and g are similarly signed;

2. |f(i)|>|f(j)| implies |g(i)|>|g(j)| , for all i, j\in E ; and

3. |f(i)|>0 implies |g(i)|>0 , for all i\in E.

Then x is an optimal solution over \mathcal{F} with g , implies x is an optimal solution over

\mathcal{F} with f.

This proposition leads to a variation of the Greedy Algorithm, called the Altered

Greedy Algorithm, where Step 0 in the Greedy Algorithm is replaced with the following
version. The notation a\gg b means the real number a is �very much� larger than the

real number b . We continue to assume Assumption A1 holds.

Step 0' : Set x\leftarrow x_{0} . Label the members of E with 1;:. :, |E| so that |w(1)|>|w(2)|>
. . . >|w(|E|)| . Choose w^{*} such that |w^{*}(1)|\gg|w^{*}(2)|\gg\cdots\gg|w^{*}(|E|)| and so

that w and w^{*} (playing the roles of f and g , respectively) satisfy conditions 1 and

3 of Proposition 7.1. Label the input directions so that w^{p}(d_{1})>w^{p}(d_{2})>\cdots
(where w^{p} is based on w^{*}) and let s be the maximum index i for which w^{p}(d_{i})>0.

Neighbor Systems AND the Greedy Algorithm (EXTENDED AbStract) 77

Observe that, in general, the labeling/ordering of the directions in the Altered

Greedy Algorithm will be different from the labeling in the Greedy Algorithm.
It is easy to show that the sequence of solutions produced by an application of the

Altered Greedy Algorithm for \mathcal{F} with w^{*} is a sequence of solutions that can result from

an application of the algorithms in [2] and [25] forjump systems \mathcal{F} with w . Furthermore,
the algorithm behaves here very much like the greedy algorithm in [6] for jump systems,

except that we are actually tracking the feasible vectors produced by the algorithm. It

follows that our analysis provides a new proof of the validity of these algorithms.
The fact that the Altered Greedy Algorithm finds an optimal solution, and does

so with a better complexity than the original Greedy Algorithm, is expressed in the

following proposition.

Proposition 7.2. Let \mathcal{F} be an N ‐neighbor system. Then, the Altered Greedy

Algorithm applied to \mathcal{F} yields an optimal solution and can be implemented with a worst

case time complexity of O(|E|\log|E|+|E|^{2}size(\mathcal{F})) . If \mathcal{F} is an N_{k} ‐neighbor system,
then the Altered Greedy Algorithm applied to \mathcal{F} can be implemented with a worst case

time complexity of O(|E|\log|E|+k|E|^{2}\log(size

The complexity of the Altered Greedy Algorithm, for the case of jump systems, is

the same as the complexity of the greedy algorithm in Shioura et al [25], which is the

best‐known complexity of an incremental‐style greedy algorithm for jump systems.

§8. Further Generalizations

In this section we briefly mention a generalization of the notion of neighbor systems
that allows us to optimize, with a simple greedy algorithm, over more sets of vectors \mathcal{F}.

Let us begin by generalizing the notion of directions to be an arbitrary set of vectors in

\mathrm{Z}^{E}
,

which we call \mathcal{D}=\{d_{1}, . ::, d_{p}\} . For x, y\in \mathcal{F} , let us say that y is a \mathcal{D}‐neighbor of

x if there exists a vector d\in \mathcal{D} and a positive integer b such that y=x+bd and there

exists no positive integer b'<b such that x+b'd\in \mathcal{F}.

\mathrm{A}\mathcal{D}‐neighbor function is a function that takes as input any set \mathcal{F} with any x\in \mathcal{F}

and outputs a subset of the neighbors of x in \mathcal{F} ; it is denoted N_{D}(_{;} x). We use Theorem

5.1 to make the following definition.

Definition 8.1. \mathcal{F} is an N_{D} ‐neighbor system if for all x, y\in \mathcal{F} ,
where x\neq y,

there exists s_{1} ,
.

::, s_{n}\in N_{D}(_{;} x) and positive reals a_{1} ,
.

::, a_{n} ,
such that: s_{i} is between

x and y ,
for i=1

,
. .

:,
n ; and

x+\displaystyle \sum_{i=1}^{n}a_{i}(s_{i}-x)=y.

78 David Hartvigsen

With essentially no changes, the definition of w^{p} and the Greedy Algorithm can

be generalized and the proof of the Greedy Algorithm�s validity can immediately be

adapted to prove that this generalized greedy algorithm works.

References

[1] K. Ando, S. Fujishige, and T. Naitoh. A greedy algorithm for minimizing a separable
convex function over an integral bisubmodular polyhedron. J. Oper. Res. Soc. of Japan
Vol. 37, No. 3 (Sept. 1994), 188‐196.

[2] K. Ando, S. Fujishige, and T. Naitoh. A greedy algorithm for minimizing a separable
convex function over a finite jump system. J. Oper. Res. Soc. of Japan Vol. 38, No. 3

(Sept. 1995), 362‐375.

[3] E. Balas and W. R. Pulleyblank. The perfectly matchable subgraph polytope of a bipartite
graph. Networks 13 (1983), 495‐516.

[4] A. Bouchet. Greedy algorithm and symmetric matroids. Math. Prog. 38 (1987), 147‐159.

[5] A. Bouchet. Matchings and \triangle‐matroids. Discr. Appl. Math. 24 (1989), 55‐62.

[6] A. Bouchet and W. H. Cunningham. Delta‐matroids, jump systems, and bisubmodular

polyhedra. SIAM J. Disc. Math. Vol. 8, No. 1 (1995), 17‐32.

[7] R. Chandrasekaran and S. N. Kabadi. Pseudomatroids. Discr. Math. 71 (1988), 55‐62.

[8] W. H. Cunningham. Matching, matroids, and extensions. Math. Prog., Series B91 (2002),
515‐542.

[9] A. Dress and T. Havel. Some combinatorial properties of discriminants in metric vector

spaces. Adv. Math. 62 (1986), 285‐312.

[10] F. D. J. Dunstan and D. J. A. Welsh. A greedy algorithm solving a certain class of linear

programmes. Math. Prog. 5 (1973), 338‐353.

[11] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial

Structures and their Applications. R. K. Guy, H. Hanani, N. Sauer, and J. Schönheim,
eds. Gordon and Breach, New York (1970), 69‐87.

[12] A. Federgruen and H. Groenevelt. The greedy procedure for resource allocation problems:
necessary and sufficient conditions for optimality. Oper. Res. Vol. 34, No. 6 (1986), 909‐

918.

[13] A. Frank. Generalized polymatroids. In A. Hajnal et. al., eds., Finite and Innite Sets.

North‐Holland, Amsterdam‐New York (1984), 285‐294.

[14] A. Frank and É. Tardos. Generalized polymatroids and submodular flows. Math. Prog.
Ser. B. 42 (1988), 489‐563.

[15] S. Fujishige. Submodular Functions and Optimization, Second Edition. (Annals of Discrete

Mathematics, Vol. 58) Elsevier, Amsterdam (2005).
[16] J. F. Geelen. Lectures on Jump Systems. Center of Parallel Computing, University of

Cologne, Germany (1997).
[17] H. Groenevelt. Two algorithms for maximizing a separable concave function over a poly‐

matroid feasible region. Eur. J. Oper. Res. Vol54, Issue 2 (Sept. 1991), 227‐236.

[18] B. Korte, L. Lovász, and R. Schrader. Greedoids. Springer‐Verlag, New York, Berlin (1991).
[19] E. Lawler. Combinatorial Optimization, Networks and Matroids. Holt, Rinehart, and Win‐

ston, New York (1976).
[20] L. Lovasz. The membership problem in jump systems. Journal of Comb. Theory, B70

(1997), 45‐66.

Neighbor Systems AND the Greedy Algorithm (EXTENDED AbStract) 79

[21] K. Murota. \mathrm{M}‐convex functions on jump systems: A general framework for minsquare

graph factor problem. SIAM J. Disc. Math. Vol. 20, No. 1 (2006), 213‐226.

[22] M. Nakamura. A characterization of those polytopes in which the greedy algorithm works.

Abstract: 13th International Symposium on Mathematical Programming, Tokyo. 1988.

[23] L. Qi. Directed submodularity, ditroids and directed submodular flows. Math. Prog. 42

(1988), 579‐599.

[24] V.V. Shenmaier. A greedy algorithm for maximizing a linear objective function. Disc.

Appl. Math. Vol. 135 (2004), 267‐279.

[25] A. Shioura and K. Tanaka, Polynomial‐time algorithms for linear and convex optimization
on jump systems. SIAM J. Disc. Math. Vol. 21, No. 2 (2007), 504‐522.

[26] É. Tardos. Generalized matroids and supermodular colourings. Colloquia Mathematica

Societatis Janos Bolyai 40. Matroid Theory, Szeged (Hungary), 1982.

[27] H. Whitney. On the abstract properties of linear dependence. Amer. J. Math. 57 (1935),
507‐533.

