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Abstract. We propose an application of fiber bundles to counting statistics. The

framework of the fiber bundles gives a splitting of a cumulant generating function for

current in a stochastic process, i.e., contributions from the dynamical phase and the

geometric phase. We will show that the introduced noncyclic geometric phase is related

to a kind of excess contributions, which have been investigated a lot in nonequilibrium

physics. Using a specific nonequilibrium model, the characteristics of the noncyclic

geometric phase are discussed; especially, we reveal differences between a geometric

contribution for the entropy production and the ‘excess entropy production’ which has

been used to discuss the second law of steady state thermodynamics.
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1. Introduction

Studies of nonequilibrium systems have been focused a lot mainly in the last decade. One

of the main topics is the transitions between stationary states. During the transitions,

a system causes a kind of flows or currents of physical quantities. For example, as for

a transition between two equilibrium states, the change of thermodynamic quantities

can be calculated using equilibrium thermodynamics. However, different from the

equilibrium systems, the nonequilibrium systems have stationary flows or currents,

which stem from their nonequilibrium nature even if we do not consider any transitions

between stationary states. In order to investigate such nonequilibrium systems, a

concept of ‘excess’ contributions play an important role [1–8]. That is, if we change the

system using external forces, the nonequilibrium systems can generate extra currents

caused by the change of states, in addition to the contributions from the steady currents.

For example, an excess heat and an excess entropy production have been introduced in

order to discuss the second law of steady state thermodynamics [2,4]. However, when we

consider a physical quantity related to nonequilibrium states, the definition of the excess

contribution of the physical quantity is not obvious and there may be many possibilities

for the excess contribution.

Recently, the geometric phase concept has been used to investigate flows or currents

in stochastic processes. For cyclic perturbations, the geometric phase concept has given

successful results [9–14]. However, in order to study the excess quantities for general

cases, it is needed to treat noncyclic frameworks; for example, we consider a sudden

change of the transition rates of a stochastic system, and then the system does not

return to the initial state. When the change of the transition rates is very slow (so-

called adiabatic cases), a path-integral formulation is available and a quantity called a

noncyclic geometric phase has been introduced. To our knowledge, at least two different

definitions have been proposed [15,16]. As for the nonadiabatic cases, a definition of the

geometric phase has been introduced from a mathematical viewpoint [17]. However, it

has not been clear whether the proposed geometric phase in [17] has physical meanings

or not.

In the present paper, a new definition of the geometric phase is proposed.

Although the proposed framework is similar to the previous work [17], it gives the

following consequence: the contribution from the geometric phase has the characteristics

of the excess contributions. In addition, the framework can be used to discuss

arbitrary physical quantities related to nonequilibrium current; in the present paper,

we demonstrate the framework by using the entropy productions in nonequilibrium

states.

The present paper is constructed as follows. In section 2 we explain the problem

settings of the counting statistics. Section 3 gives the main result of the present paper;

a new definition of the geometric phase is introduced, and we discuss the geometric

nature based on the fiber bundles. In section 4, we give some examples of the proposed

geometric phase, and confirm that the proposed geometric phase has the characteristics
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of the excess contribution. In addition, the entropy production is discussed, and we show

differences between the contribution from the noncyclic geometric phase and the ‘excess

entropy production’ studied previously [4]. Section 5 gives some concluding remarks.

2. Problem settings

We consider a stochastic process with finite discrete states; the number of states is S.

The dynamics of the stochastic process is described by the following master equation:

d

dt
|p(t)〉 = K(t)|p(t)〉, (1)

where |p(t)〉 = (p1(t), p2(t), . . . , pS(t))
T is a vector for the probability distribution of the

system and K(t) = {Kss′(t)} the transition matrix; the element Kss′(t) is related to the

transition rate for the state change s′ → s at time t. For generality, we consider that the

state change s′ → s is caused through several ways (see the example in section 4). For

each state change s′ → s, we consider the transition rates w1
ss′(t), w

2
ss′(t), . . . , w

V
ss′

ss′ (t);

totally Vss′ ways of transitions exist for the state change s′ → s. In addition, we set

Vss = 1 for all s and w1
ss(t) = 0. Using the transition rates {wν

ss′(t)}, the elements of

the transition matrix K(t) are written as follows:

Kss′(t) ≡

V
ss′
∑

ν=1

wν
ss′(t)− λs(t)δs,s′, (2)

where δs,s′ is the Kronecker’s delta and

λs(t) =
S
∑

s′=1

V
s′s
∑

ν=1

wν
s′s(t). (3)

We next consider ‘currents’ in the stochastic process. One example of the currents

is the number of the occurrence of specific transitions (for example, see [9]), and another

one is the entropy production (for example, see [16]). Here, we consider a quantity αν
ss′

defined for each state change s′ → s and the way of the transition; if we have one state

change s′ → s by the ν-th transition way, we count a quantity αν
ss′. Our aim is to

calculate the statistics of an accumulated quantity. In order to define the accumulated

quantity, we need information about a trajectory and the transition ways, as follows. We

fix a time interval [0, T ] and consider a trajectory of the state change, [s(t)]Tt=0, where

s(t) ∈ S. In other words, the trajectory is characterized by jump events at discrete times

(t1, t2, . . . , tn−1), and expressed as s(t) = si for ti−1 ≤ t < ti with t0 = 0 and tn = T . In

addition, the jump event at time ti is specified by the νi-th way of transitions for the

state change s′ → s. Then, the accumulated quantity is defined as

A(T ) =
n−1
∑

i=1

ανi
si+1si

, (4)

where νi ∈ {1, . . . , Vsi+1si}. The generating function for the accumulated quantity A(T )

is given by

F (χ, T ) ≡
〈

eχA(T )
〉

, (5)
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where the average 〈·〉 is taken over realizations of trajectories with an initial distribution

|p(0)〉. Derivatives of F (χ, T ) with respect to χ give various information about the

statistics of the accumulated quantity.

The problem here is: How should we calculate (5)? One may consider that it is

difficult to take the average over the trajectories. In order to evaluate (5), the framework

of the counting statistics has been developed well and used in various context (for

example, see [18]). The consequences of the counting statistics give us the following

simple way to evaluate the generating function. For details of the derivations, see [19],

for example.

We here consider the following matrix;

Hss′(χ, t) =

V
ss′
∑

ν=1

wν
ss′(t) exp (χα

ν
ss′)− λs(t)δs,s′. (6)

Note that the matrix H(χ, t) = {Hss′(χ, t)} is not a ‘probability’ transition matrix.

Using the matrix H(χ, t), the following time-evolution equation is considered:

d

dt
|ψ(χ, t)〉 = H(χ, t)|ψ(χ, t)〉. (7)

Again, note that the vector |ψ(χ, t)〉 is the probability distribution; using a vector

〈1| ≡ (1, 1, . . . , 1), we have 〈1|ψ(χ, t)〉 6= 1 in general.

The remarkable consequence of the counting statistics is as follows: Using the

solution of (7) at time T with an initial condition |ψ(χ, t = 0)〉 = |p(0)〉, the generating

function in (5) is given by

F (χ, T ) = 〈1|ψ(χ, T )〉. (8)

3. A new geometric phase and fiber bundles

All statistics of A(T ) defined by (4) are given by the generating function (8), and here

we rewrite the framework from the viewpoint of the fiber bundles [20,21]. The following

discussions give a splitting of the generating function into two parts, and we will show

that one of them has the characteristics of the excess contribution. In the following

subsections, firstly, a definition of the geometric phase is given, and we confirm that

the introduced phase has actually a geometric nature. After that, we comment on its

characteristics as the excess contribution.

3.1. A new definition of the geometric phase

In addition to the ‘ket’ vector |ψ(χ, t)〉 introduced in section 2, a ‘bra’ vector 〈ψ(χ, t)|

is introduced and its time-evolution is defined as follows:

d

dt
〈ψ(χ, t)| = 〈ψ(χ, t)|H(χ, t), (9)

where the initial condition is 〈ψ(χ, t = 0)| = 〈1|. Note that −H(χ, t) has been used

to define the time-evolution in [17], and the difference of the time-evolution operator
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is important; the new definition gives characteristics of the excess contribution, as

discussed later. Additionally, we note that 〈ψ(χ, t)| 6= (|ψ(χ, t)〉)T in general because of

the non-Hermite property of H(χ, t). (Of course, the initial condition is also different

from that of |ψ(χ, t)〉.) Using the bra vector 〈ψ(χ, t)| and the ket vector |ψ(χ, t)〉, the

generating function F (χ, T ) is expressed as

F (χ, T ) = 〈ψ(χ, 0)|ψ(χ, T )〉. (10)

The inner product of the bra vector 〈ψ(χ, t)| and the ket vector |ψ(χ, t)〉 is not

conserved in general because d
dt
(〈ψ(χ, t)|ψ(χ, t)〉) = 2〈ψ(χ, t)|H(χ, t)|ψ(χ, t)〉. Instead

of 〈ψ(χ, t)| and |ψ(χ, t)〉, we introduce the corresponding vectors whose inner product

is explicitly conserved. That is, defining a quantity δ(χ, t) as

δ(χ, t′) ≡
〈ψ(χ, t′)|H(χ, t′)|ψ(χ, t′)〉

〈ψ(χ, t′)|ψ(χ, t′)〉
, (11)

the following new bra and ket vectors are introduced:

|φ(χ, t)〉 ≡ exp

(

−

∫ t

0

δ(χ, t′)dt′
)

|ψ(χ, t)〉, (12)

〈ϕ(χ, t)| ≡ exp

(

−

∫ t

0

δ(χ, t′)dt′
)

〈ψ(χ, t)|. (13)

Hence, the time-evolutions of these vectors are given as

d

dt
|φ(χ, t)〉 = [H(χ, t)− δ(χ, t)] |φ(χ, t)〉, (14)

d

dt
〈ϕ(χ, t)| = 〈ϕ(χ, t)| [H(χ, t)− δ(χ, t)] . (15)

Note that the inner product is conserved because

d

dt
(〈ϕ(χ, t)|φ(χ, t)〉) = 0, (16)

and from the initial conditions, we have

〈ϕ(χ, t)|φ(χ, t)〉 = 1. (17)

Using the new bra and ket vectors 〈ϕ(χ, t)| and |φ(χ, t)〉, the generating function

is rewritten as

F (χ, T ) = 〈ϕ(χ, 0)| exp

[
∫ T

0

δ(χ, t)dt

]

|φ(χ, T )〉

= exp

[
∫ T

0

δ(χ, t)dt+ ln〈ϕ(χ, 0)|φ(χ, T )〉

]

. (18)

Hence, when we write the cumulant generating function as µ(χ, t) ≡ logF (χ, t), the

cumulant generating function is adequately divided into two parts:

µ(χ, T ) =

∫ T

0

δ(χ, t)dt + ln〈ϕ(χ, 0)|φ(χ, T )〉. (19)

The first term in the right hand side in (19) is called the dynamical phase, and the

second term corresponds to the geometric phase. Although someone feels the word
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‘phase’ is strange in this case because they are not imaginary numbers, we employ the

conventional word ‘phase’ here.

While solutions of (7) is enough to evaluate the generating function F (χ, T ), only

the solutions of (14) and (15) are needed in order to calculate the geometric phase; the

geometric phase is immediately given from |φ(χ, T )〉, and the dynamical phase
∫

δ(χ, t)dt

is also evaluated directly from 〈ϕ(χ, t)| and |φ(χ, t)〉 with some modifications of (11). In

order to evaluate other quantities, such as the average, deviations, and so on, evaluations

of other optional time-evolution equations are useful; see section 4.2, for example.

3.2. Fiber bundles

The definitions and constructions in section 3.1 are enough to calculate the ‘geometric’

phase, but it is still unclear why the defined quantity is called the ‘geometric’ phase,

at this stage. In this subsection, we discuss the mathematical aspects of the defined

‘geometric’ phase, which makes the meanings of ‘geometric’ clear.

We consider the principal fiber bundle P whose fiber F is given by R+ = {x ∈

R|x > 0}. The base space M is constructed as follows: P is constructed by the set of all

states {|φ(χ, t)〉}, and we introduce the equivalent relation ∼ as a kind of proportional

relation; if |φ(χ, t)〉 = c|φ′(χ, t′)〉 with c > 0, |φ(χ, t)〉 and |φ′(χ, t′)〉 are considered

as equivalent ones. We therefore have the base space M = P/ ∼. Using a natural

projection map π : P → M , the construction of the principal fiber bundle is finished.

We also consider its dual constructed by {〈ϕ(χ, t)|}.

The following connection is introduced for P . Let |φ(χ, s)〉 be a curve in P , and

write the tangent vector to this curve as |u〉 = d
ds
|φ(χ, s)〉. Then, using a dual curve

〈ϕ(χ, s)|, the connection is defined as

A(χ, s) =
〈ϕ(χ, s)|u(χ, s)〉

〈ϕ(χ, s)|φ(χ, s)〉
. (20)

For the dual bundle, we introduce a slightly different connection as follows:

Ad(χ, s) =
〈v(χ, s)|φ(χ, s)〉

〈ϕ(χ, s)|φ(χ, s)〉
, (21)

where 〈v| = d
ds
〈ϕ(χ, s)|. Note that 〈ϕ(χ, s)|φ(χ, s)〉 6= 1 in general. In the present

paper, we treat only cases with conserving inner products; 〈ϕ(χ, s)|φ(χ, s)〉 is constant.

That is, when we have a curve |φ(χ, s)〉 in P , the dual curve 〈ϕ(χ, s)| is selected as
d
ds
(〈ϕ(χ, s)|φ(χ, s)〉) = 0. Actually, the time-evolutions in (14) and (15) conserve the

inner product, and geodesic curves discussed later are assumed to have this property.

Hence, we have A(χ, s) = −Ad(χ, s). Additionally, in the time-evolution of (14), the

connection is always zero because

〈ϕ(χ, t)|
d

dt
|φ(χ, t)〉 = 0. (22)

Furthermore, the gauge transformation is given as

|φ(χ, s)〉 → eβ(s)|φ(χ, s)〉, 〈ϕ(χ, s)| → 〈ϕ(χ, s)|e−β(s),

A(χ, s)→ A(χ, s) +
dβ(s)

ds
, (23)
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where β(s) ∈ R.

In the fiber bundles, a ‘geometric’ phase is usually determined only by the shape

of the trajectory of the time-evolution. That is, for a closed curve in P , the following

geometric phase is introduced:

γ(χ, T ) =

∮

A(χ, s)ds. (24)

Although one may consider that the integral defined by the closed curve is meaningful

only when we consider a cyclic evolution for (14), the following construction makes the

integral (24) possible even for noncyclic time-evolution cases. The initial vector |φ(χ, 0)〉

and the final vector |φ(χ, T )〉 does not make a closed curve in general cases; there is

only a one-way path from |φ(χ, 0)〉 to |φ(χ, T )〉 obeying the time-evolution (14). In

order to make a closed curve from the one-way path, a geodesic curve is useful; there

are many possibilities to make a closed path, but the geodesic curve guarantees the

gauge invariant property of the defined quantity. The basic framework has been written

in [17, 22], and we explain the details of the usage of the geodesic curve in Appendix.

The important point here is that the integral on the closed curve is given as follows:
∮

A(χ, s)ds =

∫

(time-evolution)

A(χ, s)ds+

∫

(geodesic curve)

A(χ, s′)ds′ (25)

= ln〈ϕ(χ, 0)|φ(χ, T )〉. (26)

The first term corresponds to the contribution from the actual time-evolution from

|φ(χ, 0)〉 to |φ(χ, T )〉, and the second term is the contribution from the geodesic curve

connecting |φ(χ, T )〉 and |φ(χ, 0)〉. Note that the first term in (25) vanishes because

the connection defined by (20) is zero on the time-evolution in (14) and (15); only

the second term contributes and gives (26). Although A(χ, s) in the first term in (25)

becomes non-zero when one considers a gauge transformation, the geometric quantity

γ(χ, T ) is gauge invariant.

Note that (26) gives the geometric phase in (19) adequately. Hence, we confirm

that the framework of the fiber bundles gives the natural splitting of the cumulant

generating function. In addition, while the geodesic curve is needed to define the integral

of the connection A(χ, s), there is no need to calculate the geodesic curve explicitly; the

solutions of (14) and (15) is enough to calculate various quantities, as discussed before.

3.3. Characteristics as excess contributions

Excess contributions of some physical quantities are important to discuss nonequilibrium

states, as introduced in section 1. In order to explain the excess contributions, as an

example, we here consider an entropy production [4]. The entropy production depends

on trajectories of the system, and in order to evaluate the entropy production, the

quantity αν
ss′ in section 2 is defined as

αν
ss′ = ln

wν
ss′

wν
s′s

(27)
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if wν
ss′ 6= 0 and wν

s′s 6= 0. The accumulated entropy production is called the reservoir

entropy production Sr [4]. In addition, in [4], it has been shown that the reservoir

entropy production Sr can be divided into two parts as follows:

Sr = Sex + Shk, (28)

where Sex and Shk are called the excess entropy production and the house keeping

entropy production, respectively. The house keeping entropy production corresponds to

steadily generated entropy in steady states, and the excess entropy is intrinsically related

to transitions between nonequilibrium steady states. The excess entropy is defined as

the integrals of the following time evolution equation:

d

dt
Sex = −

∑

s,s′

(

∑

ν

wν
ss′(t)

)

ps′(t) ln
psts′(t)

psts (t)
, (29)

where psts (t) is the stationary probability distribution for the specific transition rates

{wν
ss′(t)} at time t. The house keeping entropy production, Shk, can be evaluated when

we know Sr and Sex. When the detailed balance condition is satisfied, we have Shk = 0;

for nonequilibrium states, Shk ≥ 0. In contrast, Sex is zero when the system remains in

a nonequilibrium states; when we consider time-dependent transition rates or relaxation

processes, Sex is non-zero. It has been shown that Sex is deeply related to the second

law of steady state thermodynamics; there is the following inequality relation between

the excess entropy production Sex and the change of the Shannon entropy ∆S:

Sex ≥ −∆S. (30)

This inequality is always satisfied even when we consider nonadiabatic changes of the

nonequilibrium states.

The excess entropy production Sex is one of examples of the excess contributions.

As discussed in the above, one of characteristics of the excess contribution is as follows:

when the transition rates are fixed, the excess contribution converges to a certain value

after some relaxation time; it does not grow with time any more. In contrast, the house

keeping contribution gives steadily a non-zero value even when the system remains in

a single nonequilibrium steady states and there are no changes of the transition rates.

Note that there could be various ways to define the excess contributions. Sex is only one

of the examples, although, of course, Sex is an interesting and important one because it

satisfies the important property (30).

Does the contribution from the geometric phase have the same characteristics with

the excess contribution? If the time-evolution operatorH is time-independent, it is clear

that the ket vector |ψ(χ, t)〉 finally converges to the right eigenstate with the largest

eigenvalue; the bra vector 〈ψ(χ, t)| also converges to the left eigenstate. In addition,
d
dt
|φ(χ, t)〉 = 0 when the system is in the eigenstate. This means that the geometric

phase γ(χ, T ) converges to a certain value after some relaxation time. Hence, we can

conclude that the geometric phase has the characteristics of the excess contribution

adequately.
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Figure 1. The geometric quantity γ(χ, T ). Results with three different initial

probabilities p1(t = 0) are shown. p1 = 0.60 corresponds to the stationary probability

of the system.

4. Example

In order to investigate the characteristics of the noncyclic geometric phase, we here

consider a simple hopping model, which has been used in order to study the geometric

contribution under cyclic perturbations [9–12]:

[

L

] w1
21→
[

container

] w2
12→
[

R

]

w1
12←

w2
21←

. (31)

The system consists of three parts. The container can contain at most one particle in

it, and then the container has only two states, i.e., filled state or empty one. When

the container is filled with one particle, the particle can escape from the container

by jumping into one of the two absorbing states: the left reservoir or the right one. In

contrast, when the container is empty, the left or right reservoirs can emit a new particle

into the container. The master equation for the system is written as follows:

∂

∂t

(

p1(t)

p2(t)

)

=

(

−w1
21(t)− w

2
21(t) w1

12(t) + w2
12(t)

w1
21(t) + w2

21(t) −w1
12(t)− w

2
12(t)

)(

p1(t)

p2(t)

)

, (32)

where p1(t) and p2(t) = 1−p1(t) correspond to the probabilities with which the container

is empty and filled, respectively.

4.1. Hopping from the container to the right reservoir

Here, we calculate the number of hopping from the container to the right reservoir.

Hence, the quantities {αν
ss′} is selected as follows: α2

12 = 1 and αν
ss′ = 0 for other cases.
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The time-evolution operator H(χ, t) is therefore written as

H(χ, t) =

(

−w1
21(t)− w

2
21(t) w1

12(t) + w2
12(t)e

χ

w1
21(t) + w2

21(t) −w1
12(t)− w

2
12(t)

)

. (33)

We consider relaxation processes of the system. That is, the transition rates {wν
ss′}

are assumed to be time-independent, and we investigate effects of the initial probability

p1 ≡ p1(t = 0). If the probability p1 is the stationary one for the master equation (32),

the system is staying in the stationary state. On the other hand, if the probability p1 is

not the stationary one, the system relaxes to the stationary state. The non-stationary

initial p1 corresponds to a stationary state with a different transition matrix, and hence

the above situation can be considered as the case in which there are sudden changes for

the transition rates at time t = 0 by external forces.

Note that the geometric phase exists even in the stationary initial states. That is,

the initial state is |p(t = 0)〉 for (14), and 〈1| for (15), and these states are not the right

and left eigenstates of H(χ, t). Hence, |φ(χ, 0)〉 6= |φ(χ, T )〉 and 〈ϕ(χ, 0)|φ(χ, T )〉 6= 1 in

general. However, for the stationary initial cases, there should not be any contribution

to the current from the geometric phase; since the geometric phase corresponds to the

cumulant generating function, the first derivative must vanish for the stationary initial

case. Here, we will check the fact that the geometric phase for the stationary initial

case does not give a current, as expected.

Setting w2
12 = 2 and wν

ss′ = 1 for other cases, we numerically evaluate the geometric

phase γ(χ, T ). Here, the final time T is selected large enough for the relaxation.

Figure 1 shows the results. When we set the initial probability p1(t = 0) as 0.60,

which corresponds to the stationary probability of the given transition rates, the first

derivative at χ = 0 is zero. This means that there is no contribution to the current from

the geometric phase. On the other hand, non-stationary initial probabilities p1(t = 0)

give a current due to the geometric phase; the first derivative at χ = 0 is non-zero.

Note that the geometric phases are calculated for large T , and we have confirmed the

convergence of these quantities. Hence, it is possible to consider the contribution from

the geometric phase as an excess contribution.

We here comment on the higher-order contribution from the geometric phase.

Figure 1 shows that there is a contribution to the current fluctuation of the system

from the geometric phase, even when the system starts from the steady state. One

may consider that it is strange, because the current and its statistics in the steady

state may be characterized only by the largest eigenvalue of the time-evolution operator

H(χ, t). However, it has been known that there is another source of the contribution

for the current and its statistics; for example, so-called ‘boundary terms’ explicitly

appear when we use the path-integrals. There are at least two different proposals for

the boundary terms [15, 16]; in one proposal, the boundary terms are included in the

dynamical phase [15]; in another proposal, they are in the geometric phase [16]. The

formulation based on the fiber bundles suggests a different consequence; the boundary

terms are divided into two parts in some way and contribute to both the dynamical and
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Figure 2. The contribution of the entropy production from the geometric phase,

Sgeom, which is evaluated from (35), and the conventional excess entropy production,

Sex, defined in (29). The changes of the Shannon entropy are also depicted. (a)

Transitions from an equilibrium state to nonequilibrium states. (b) Transitions

between nonequilibrium states. For both cases, we start from a steady state at t = 0,

and one of the transition rates is suddenly changed at t = 5. For (a), all transition

rates wν

ss
′ = 1.0 for t < 5, and only w2

12 is changed to a certain value (w2
12 (end) in the

x-axis) for t ≥ 5. For (b), w2
12 is set to a certain value (w2

12 (initial) in the x-axis) for

t < 5, and w2
12 = 2.0 for t ≥ 5. All other transition rates are 1.0 and time-independent.

geometric phases.

4.2. Entropy production

As an example of interesting physical quantities, we next demonstrate the contribution

of the geometric phase to the entropy production, which are discussed in section 3.3.

The matrix H(χ, t) for the entropy production is given as

H(χ, t) =

(

−w1
21(t)− w

2
21(t) w1

12(t)e
χα1

12 + w2
12(t)e

χα2
12

w1
21(t)e

χα1
21 + w2

21(t)e
χα2

21 −w1
12(t)− w

2
12(t)

)

, (34)

where αν
ss′ is defined as (27). In order to discuss the comparison with the excess entropy

production in (29), the ‘average’ value of the contribution from the geometric phase

should be evaluated. It is easy to calculate the average contribution from the geometric

phase as the subtraction of the contribution from the dynamical phase from the total

contribution:
d

dt
Sgeom = 〈1|

∂

∂χ

( d

dt
|ψ(χ, t)〉

)

∣

∣

∣

∣

χ=0

−
∂

∂χ
δ(χ, t)

∣

∣

∣

∣

χ=0

= −
∂

∂χ

(

〈ψ(χ, t)|
)

∣

∣

∣

∣

χ=0

H(χ = 0, t)|p(t)〉, (35)

and its integral gives the contribution Sgeom. In order to evaluate (35), it is needed

to calculate the time evolutions of the derivative of the bra vector with respect to

χ, ∂〈ψ(χ, t)|/∂χ|χ=0, and the time evolution equation is easily obtained from (9). Of

course, the solutions of the original master equation, |p(t)〉, are also needed.
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Note that the definitions of Sgeom and Sex are completely different, and actually,

the characteristics are also different. For example, in the counting statistics, the initial

value for the bra vector 〈ψ(χ, t)| is 〈1|, and then its derivative with respect to χ is zero.

Hence, the time-derivative (35) is zero for the initial value. On the other hand, the

time-derivative of the excess entropy production in (29) has a finite value for the initial

state in general.

Here, in order to avoid the boundary term problems discussed in section 4.1, the

following settings are used; we start from t = 0, and for t < 5, the transition rates

are time-independent. At t = 5, one of the transition rates, w2
12, is suddenly changed,

and we investigate the relaxation process. We confirmed that the initial time interval

(t = 0 ∼ 5) is enough to eliminate the effects of the boundary term problem.

Firstly, we study a case with transitions from an equilibrium state to nonequilibrium

states. That is, for t < 5, all transition rates wν
ss′ is fixed to 1.0, and for t ≥ 5, w2

12 is

changed to a certain value (the x-axis in Figure 2(a)). All quantities are numerically

evaluated for enough large T (T = 10). The results are shown in Figure 2(a). The

excess entropy production is always larger than the change of the Shannon entropy, as

expected from (30). While the contribution from the geometric phase seems also be

always larger than −∆S, there is no guarantee to satisfy the inequality relation, as we

will see soon.

Secondly, transitions between nonequilibrium states are investigated. In this case,

for t < 5, w2
12 is set to a certain value (the x-axis in Figure 2(b)). And for t ≥ 5, w2

12 is

changed to 2.0. All other transition rates are 1.0 and time-independent. In this case, it

is clear that the contribution from the geometric phase can be smaller than −∆S.

Different from Sex, Sgeom would not simply connected to the inequality with the

change of the Shannon entropy, In this sense, one may consider that Sgeom could not be

useful to construct steady-state thermodynamics. On the other hand, Sgeom is closer to

−∆S than Sex for a wide range of parameter changes. Although one may expect that

Sgeom gives −∆S precisely because they are quite similar in Figures 2(a) and (b), as far

as we checked, there are the differences between Sgeom and −∆S. In order to connect

the geometric phase to physical quantities, more studies for mathematical frameworks

and physical examples will be needed. At least, when we consider a small change of

transition rates, Sgeom may be more useful compared with Sex; the connections of the

geometric phase with the Shannon entropy or other informational quantities should be

investigated in future.

5. Concluding remarks

In the present paper, we proposed a natural division of the cumulant generating function

for the current. The discussion is based on the fiber bundles and we confirmed that

the geometric phase has the characteristics of excess contributions. In addition, as

a physical example, some discussions for entropy production were given. As stated

before, at this stage, there are only several applications of the geometric phase to
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nonequilibrium physics. However, there is a mathematical background of the fiber

bundles, and the framework is applicable to various physical quantities. We hope that

the present paper motivates future works of applications of geometric phases and fiber

bundles to nonequilibrium physics.

We finally comment on some unclear points. As discussed in section 4, it has been

revealed that even in the steady state the geometric phase has the contribution to the

fluctuations. The physical meaning of this fact should be investigated in future works

although the contribution from the geometric phase will be very small comparing to

that from the dynamical phase in general. In addition, mathematically more rigorous

and extended discussions may be also needed; the non-Hermite property could cause

difficulty for the settings of the fiber bundle and its dual. A cyclic time-evolution for non-

Hermitian cases has been discussed in [23], and the settings in the present paper seem to

adequately correspond to the formulation in [23]. However, there may be more adequate

discussions for the non-Hermite cases, which might not need the geodesic curves or dual

structures in order to define geometric phases; such different mathematical formulations

may enable us to give extended discussions.
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Appendix A. Comment on the geodesic curve

Consider the trajectory in P , which is made by the time-evolution from the initial ket

vector |φ(χ, t = 0)〉 to the final ket vector |φ(χ, t = T )〉. In order to make a closed curve

in P , a concept of ‘geodesic’ curves is useful [22].

Firstly, we explain how to derive the geodesic curve. Considering a curve in P ,

|φ(χ, s)〉, we introduce the tangent vector to this curve as |u〉 = d
ds
|φ(χ, s)〉, as discussed

in section 2. In addition, we also introduce the corresponding tangent vector in the

dual space as 〈v| = d
ds
〈ϕ(χ, s)|. In the following discussions, we will use Ad(χ, s) in

order to express the connection in the dual space, but we assume that the dual curve is

selected so that the inner produce is conserved; i.e., A(χ, s) = −Ad(χ, s) as discussed in

section 2. Under a gauge transformation, the tangent vectors |u〉 and 〈v| are not gauge

covariant, and therefore the following gauge covariant quantities are useful:

|u′(χ, s)〉 ≡
d

ds
|φ(χ, s)〉 − A(χ, s)|φ(χ, s)〉, (A.1)

〈v′(χ, s)| ≡
d

ds
〈ϕ(χ, s)| − 〈ϕ(χ, s)|Ad(χ, s), (A.2)

Hence, 〈v′|u′〉 is gauge invariant, and 〈v′|u′〉 is available in order to define a kind of

metric. The variation of
∫

〈v′|u′〉dl, where l is an affine parameter, gives the geodesic
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curves |φ(χ, s)〉 and 〈φ(χ, s)|, which are determined by

d

ds
|u′(χ, s)〉 −A(χ, s)|u′(χ, s)〉 = 0, (A.3)

d

ds
〈v′(χ, s)| − 〈v′(χ, s)|Ad(χ, s) = 0. (A.4)

Using the geodesic curve, it is possible to evaluate the integral (26). We consider a

geodesic curve |φg(χ, q)〉 (q ∈ [0, 1]) connecting to the trajectory obtained from the time-

evolution backward; |φg(χ, q = 0)〉 = |φ(χ, t = T )〉 and |φg(χ, q = 1)〉 = |φ(χ, t = 0)〉.

Hence, we have a closed curve in P , i.e., the actual time-evolution from |φ(χ, t = 0)〉

to |φ(χ, t = T )〉, and back along the geodesic curve |φg(χ, q)〉. We can therefore define

the integral
∮

A(χ, s)ds along the closed curve. Note that A(χ, t) = 0 on the actual

time-evolution, and A(χ, s) 6= 0 on |φg(χ, q)〉 in general.

In order to calculate the value of the integral, the characteristics of the

geodesic curve is important. Using a certain gauge transformation on |φg(χ, q)〉 =

exp(−β(q))|φ̃g(χ, q)〉, where β(q = 0) = 0, we choose a specific connection Ã(χ, q) = 0

on |φ̃g(χ, q)〉. Due to the gauge transformation, the derived whole curve, including the

actual time-evolution, is not closed. Note that (A.3) and (A.4) are gauge covariant,

and the gauge transformed curve |φ̃g(χ, q)〉 is still a geodesic curve. In order to have a

closed curve, we must use a vertical curve joining |φ̃g(χ, q = 1)〉 and |φ(χ, t = 0)〉. It

is clear that the vertical contribution corresponds to the integral
∮

A(χ, s)ds, because

A(χ, t) = 0 on the actual time-evolution and Ã(χ, s) = 0 on the gauge transformed

curve. In addition, the contribution from the vertical curve is given by β(q = 1).

In order to evaluate β(q = 1), the quantity g(q) = 〈ϕ̃g(χ, q)|φ(χ, t = T )〉,

where 〈ϕ̃g(χ, q)| is the dual of |φ̃g(χ, q)〉, is useful. Then, we have g(0) = 1 because

〈ϕ̃g(χ, q = 0)|φ(χ, t = T )〉 = 〈ϕg(χ, q = 0)|φ(χ, t = T )〉 = 1; d
dq
g(0) = 0, which is

obtained from Ã(χ, q = 0) = 0; and d2

dq2
g(q) = 0, which stems from the definitions of

the geodesic curve. These facts suggest that g(q) is constant for all q. Hence,

1 = 〈ϕg(χ, q = 0)|φ(χ, t = T )〉 = 〈ϕ̃g(χ, q = 0)|φ(χ, t = T )〉

= 〈ϕ̃g(χ, q = 1)|φ(χ, t = T )〉 = e−β(q=1)〈ϕg(χ, q = 1)|φ(χ, t = T )〉

= e−β(q=1)〈ϕ(χ, t = 0)|φ(χ, t = T )〉. (A.5)

That is, the vertical contribution is evaluated as β(q = 1) = ln〈ϕ(χ, t = 0)|φ(χ, t = T )〉,

which gives (26).
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