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Abstract 

 Higher plants produce diverse low-molecular-weight chemicals such as 

alkaloids, terpenoids and phenylpropanoid compounds. Among these chemicals, 

alkaloids are particularly important in medicine due to their high biological activities. 

However, the low yield of metabolites, especially alkaloids, in plants limits large-scale 

development of the plant natural product industry. In this chapter, I describe the 

metabolic engineering of plants to improve the yield and quality of useful secondary 

metabolites and their potentials. Among alkaloids, I focus on the production of 

isoquinoline alkaloids (IQAs), since their biosynthesis has been most intensively studied 

at the molecular level and their application in metabolic engineering has also been 

intensively examined. Based on our understanding of IQA engineering, I discuss its 

application to the production of other alkaloids through similar approaches.  
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MeJA, methyl jasmonate;  

NCS, norcoclaurine synthase;  

OMT, O-methyltransferases;  

6OMT, norcoclaurine 6OMT;  



3 
 

4'OMT, 3'-hydroxy-N-methyl-coclaurine 4'OMT;  

RNAi, RNA interference;  

SalAT, salutaridinol-7-O-acetyltransferase;  

SalR, salutaridine reductase;  

SMT, (S)-scoulerine 9-O-methyltransferase;  

THBO, tetrahydroprotoberberine oxidase 
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1. Introduction 

 

 Higher plants produce diverse low-molecular-weight chemicals such as 

alkaloids, terpenoids and phenylpropanoid compounds (Croteau et al., 2000).  

Although these compounds are widely used for health and nutrition in humans, 

alkaloids are particularly important in medicine due to their high biological activities. 

However, the low yield of metabolites, especially alkaloids, in plants limits large-scale 

development of the plant natural product industry. Thus, many research groups have 

tried to establish production systems using the micropropagation of elite plant clones, 

cell culture and organ culture based on incomplete information regarding biosynthesis 

of these metabolites. Over the past 20 years, our understanding of the biochemistry and 

molecular biology of natural products, including alkaloids, has rapidly expanded.  

Based on knowledge regarding biosynthetic enzymes and their corresponding genes, the 

modification of productivity and metabolic profiles has become possible (Sato et al., 

2007a; Sato & Yamada, 2008). Furthermore, the microbial production of plant 

metabolites through the reconstruction of plant biosynthetic pathways has become 

feasible (Chow & Sato, 2013; Hawkins & Smolke, 2008; Minami et al., 2008; 

Nakagawa et al., 2011; see also Chapter 7). Metabolic engineering in plant cells has 

advantages and disadvantages. In this chapter, I discuss its potentials and pitfalls based 

on our experience. 

 

2. Isoquinoline alkaloid biosynthesis and pathway characterization 

 

 Due to technological difficulties in the cultivation and relatively slow growth 

of medicinal plants, plant cell and tissue cultures have been intensively examined for 

the production of secondary metabolites (Sato & Yamada, 2008; Verpoorte et al., 1991). 

Whereas the selection of high-yield lines and treatment with an elicitor such as methyl 

jasmonate has enabled the industrial production of some metabolites, e.g., 

shikonin-production in selected Lithospermum erythrorhizon cells, or paclitaxel 

production in Pacific yew cell cultures with methyl jasmonate, it is quite difficult to 

achieve both high productivity and stability for industrial application (Sato & Yamada, 

2008). While the development of hairy roots by the transformation of plant cells with 

Agrobacterium rhizogenes provides a solution with unlimited growth, morphological 

differentiation of roots for physical strength, high potential for the mass-production of 

valuable secondary metabolites, and greater genetic stability, for fermentation, we need 

a much faster growth of cells/tissues, higher productivity and improved quality of 
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metabolites (for details of cell culture techniques, please see Sato & Yamada, 2008).  

 Recent advances in molecular biology have provided tools for metabolic 

engineering. The identification of many genes of biosynthetic enzymes and 

characterization of the spatial and developmental regulation of their expression have 

clarified their roles in the biosynthesis of secondary metabolites and provided strategies 

for metabolic engineering such as the trimming of undesired pathways, the 

enhancement of rate-limiting steps and the introduction of new pathways to produce 

novel compounds (Sato et al., 2007a,b). 

 Isoquinoline alkaloid (IQA) biosynthesis provides a good model in metabolic 

engineering, since it has been intensively studied at the molecular level and 

experimentally challenged. The biosynthetic pathway for IQAs starts with L-tyrosine, as 

shown in Figure 1. Among IQAs, the biosynthesis of benzylisoquinoline alkaloid from 

norcoclaurine has been the most investigated to date. All of the enzyme genes of the 

total nine enzymatic reaction steps from norcoclaurine to berberine have been 

characterized at the DNA level (Fig. 1): a norcoclaurine synthase  (NCS; an entry 

enzyme in IQA biosynthesis, PR10 family such as TfNCS from Thalictrum flavum (Lee 

& Facchini, 2010; Samanani et al., 2004) and a novel dioxygenase-like protein, 

CjNCS1, from Coptis japonica (Minami et al., 2007)), an N-methyltransferase 

(coclaurine N-methyltransferase (CNMT, Choi et al., 2002)), three O-methyltransferases 

(OMTs; norcoclaurine 6OMT, 3'-hydroxy-N-methyl-coclaurine 4'OMT (6OMT, 4'OMT, 

Morishige et al., 2000), (S)-scoulerine 9-O-methyltransferase (SMT, Takeshita et al., 

1995), a hydroxylase (CYP80B1, Pauli & Kutchan, 1998), a berberine bridge enzyme 

(BBE, Dittrich & Kutchan, 1991), a methylenedioxy ring-forming enzyme (canadine 

synthase; CYP719A1, Ikezawa et al., 2003), and a tetrahydroprotoberberine oxidase 

(THBO, Gesell et al., 2011; Matsushima et al., 2012).  

 

>>Insert Figure 1 here  

 

 The number of available enzyme genes is growing rapidly (Figs. 1 and 2): the 

genes of corytuberine synthase in aporphine biosynthesis (CYP82G2, Ikezawa et al., 

2008); those of salutaridine synthase (CYP719B1, Gesell et al., 2009), salutaridine 

reductase (SalR, Ziegler et al., 2006), salutaridinol-7-O-acetyltransferase (SalAT, 

Grothe et al., 2001), thebaine 6-O-demethylase and codeine O-demethylase (T6ODM, 

CODM, Hagel & Facchini, 2010) and NADPH-dependent codeinone reductase (COR, 

Unterlinner et al., 1999) in morphinan alkaloid biosynthesis; those of chelanthifoline 

synthase (CYP719A5, Ikezawa et al., 2009), stylopine synthase (CYP719A2/A3, 
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Ikezawa et al., 2007), (S)-cis-N-methylstylopine 14-hydroxylase (Beaudoin & Facchini, 

2013), protopine 6-hydroxylase (CYP82N2v2, Takemura et al., 2013), sanguinarine 

reductase (Vogel et al., 2010) and dihydrobenzophenanthridine oxidase (DBOX, Hagel 

et al., 2012) in benzophenanthridine biosynthesis; those of berbamunine synthase 

(CYP80A1, Kraus & Kutchan, 1995) in the bis-benzylisoquinoline alkaloid pathway; 

those of O-methyltransferases (Dang & Facchini, 2012) and a 10-gene cluster (three 

O-methyltransferases (PSMT1-3), four cytochrome P450s (CYP82X1/2, CYP82Y1 & 

CYP719A21), an acetyltransferase (PSAT1), a carboxylesterase (PSCXE1) and a 

short-chain dehydrogenase/reductase (PSSDR1)(Winzer et al., 2012) in noscapine 

biosynthesis and those of O-methyltransferases in emetine biosynthesis (IpeOMT1/2/3, 

CiOMT, Cheong et al., 2011; Nomura & Kutchan, 2010).  

 

>>Insert Figure 2 here  

 

 While many homologues are annotated after cloning of the first enzyme gene, 

we should pay close attention to the properties of each enzyme, since pathways in 

secondary metabolism are often diversified and connected in a complicated manner, 

based on the different substrate and reaction specificity of the enzyme acquired during 

the evolution of each species. For example, while Coptis japonica columbamine 

O-methyltransferase (CjCoOMT) can use both tetrahydrocolumbamine and 

columbamine in palmatine biosynthesis, columbamine was once thought to be the 

exclusive substrate of CoOMT in Berberis plants (Morishige et al., 2002). Similarly, 

CNMT of Coptis and Berberis showed different substrate specificities; i.e., the Coptis 

enzyme could N-methylate norlaudanosoline, while the Berberis enzyme could not. In 

this sense, the knowledge needed for both metabolic engineering and synthetic biology 

is still incomplete, and such information is greatly needed. We should be careful in the 

annotation of an enzyme gene simply based on homology, since only a few changes in 

amino acids can modify reaction specificities; e.g., Ipecac OMTs in emetine 

biosynthesis (Fig. 3; Cheong et al., 2011; Nomura & Kutchan, 2010). 

 

>>>Insert Figure 3 here   

 

3. Metabolic pathway engineering 

3.1. Pathway engineering with overexpression of the rate-limiting enzyme and 

transcription factors in alkaloid biosynthesis 
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 With an increase in the molecular tools available in metabolic engineering, we 

can now modulate the metabolic flow of plant cells. Among several strategies, 

overexpression of the gene for the enzyme in the rate-limiting step is commonly 

examined to improve the yield (Fig. 4). The overexpression of C. japonica SMT in the 

original cells was the first successful application of genetic engineering to IQA 

biosynthesis to increase berberine production (Sato et al., 2001), while 4'OMT 

overexpression was later successfully applied in intact plants (Inui et al., 2012). Allen et 

al. (2008) also reported that transgenic opium poppy with overexpression of SalAT had 

more than 30% greater total alkaloids than the control in three independent trials over 3 

years.  

 However, overexpression of an endogeneous gene can (often) induce the 

co-suppression of the gene and decrease the production of the end-metabolites 

(Jorgensen, 1995; Takemura et al., 2010a). Thus, heterologous expression of a 

homologue isolated from a different plant species is recommended. For example, 

Cj6OMT was expressed in California poppy (Eschschlozia californica) cells to 

overcome the rate-limiting step (Inui et al., 2007). Note that bottleneck step(s) may 

differ among plant species and cell lines due to variations in gene expression. In fact, 

the overexpression of Cj4'OMT was less effective for increasing alkaloid production 

than that of 6OMT in E. californica cells, whereas 4'OMT was effective in C. japonica 

plants (Inui et al., 2007, 2012). Changes in the bottleneck step may also occur after 

modification of the enzyme expression level through metabolic engineering.  

 Since there are multiple bottleneck steps and these limiting steps can change 

with overexpression of the enzyme in the limiting step, overall regulation of the 

expression levels of biosynthetic genes in the pathway is the preferred strategy.  

Whereas information about the transcription factors in alkaloid biosynthesis is very 

limited, several transcription factors, such as the ERF, WRKY and bHLH families in 

alkaloid biosynthesis, including IQA biosynthesis, have been isolated and characterized 

(Kato et al., 2007; Yamada et al., 2011a,b; Yamada & Sato, 2013). While experimental 

results suggest that the activities of native transcription factors can be fine-tuned 

spatially and temporally (see Yamada & Sato, 2013), the successful application of the 

overexpression of heterologous AtWRKY transcription factor in opium poppy to 

increase the morphinan alkaloid content (Apuya et al., 2008) suggests that transcription 

factors may be used to improve the yields of IQAs and other alkaloids.  

 

>>Insert Figure 4 here 
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3.2. Pathway engineering with trimming of pathways and the introduction of new 

branch pathways 

 

 While an increase in the metabolite yield is important for industrial application, 

modification of the metabolite profile by the introduction of a new metabolic branching 

point and/or the trimming of undesired pathways is another important approach in drugs 

development.  

To increase metabolite diversity, we ectopically expressed CjSMT, which is 

involved in berberine biosynthesis but not in benzophenanthridine alkaloid biosynthesis, 

in California poppy (E. californica) cells (Fig. 5). CjSMT expression not only produced 

columbamine (oxidized product of tetrahydrocolumbamine) in transgenic E. californica 

cells (Sato et al., 2001) but also induced the accumulation of novel products, i.e., 

allocryptopine and 10-hydroxychelerythrine, derived from CjSMT reaction products by 

the endogenous enzyme reactions in E. californica cells, indicating that the alkaloid 

profile in transgenic cells was further diversified by the introduction of a branched 

pathway (Takemura et al., 2010b).
 
  

 

>> Insert  Figure 5 here  

 

 While an increase in metabolite diversity is preferable for the screening of 

novel products, the reduction of undesired metabolic diversity is also required to 

prepare a single purified chemical and increase the metabolic flow to the desired 

compound. Among the methods for gene silencing (e.g., antisense, RNA silencing, 

knockout with T-DNA insertion, mutation,.. etc.), RNA silencing with double-stranded 

RNA molecules (RNA interference; RNAi with short interfering (si) RNA or micro (mi) 

RNA, co-suppression of gene expression with overexpression of a target gene, or 

virus-induced gene silencing (VIGS)) is the most powerful and reliable, although 

Transcription Activator-Like Effector Nucleases (TALEN) could be useful for preparing 

knockout mutant and novel mutants through homologous recombinants (Borgio, 2009; 

Desgagné-Penix & Facchini, 2012; Sato, 2005; Winzer et al., 2012; Zhang et al., 2013).  

 Successful RNAi of BBE in California poppy cells induced the accumulation of 

reticuline, a substrate of BBE (Fujii et al., 2007), whereas antisense RNA of BBE 

produced little accumulation of reticuline in transgenic cells (Park et al., 2002) (Fig. 6). 

However, there is another pitfall in effective gene silencing; e.g., an enhanced branch 

pathway from the accumulated reticuline to produce a byproduct, i.e., 

7-O-methylreticuline, which could scarcely be detected in control cells.  In addition, 
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suppression of a certain enzyme in a metabolic pathway may induce the unexpected 

disturbance of the pathway; e.g., RNAi of COR genes in opium poppy induced the 

accumulation of a far-upstream precursor, (S)-reticuline (Allen et al., 2004). The 

disturbance of metabolism by the down-regulation of enzyme expression can be partly 

explained by the accumulation of an intermediate and feedback regulation of the 

pathway, or the disruption of an enzyme complex (metabolome) to catalyze sequential 

reactions, or off-target effects of RNAi on other unexpected gene targets (Allen et al., 

2004, 2008).  

 

>>> Insert Figure 6 here 

 

 While simple overexpression of the rate-limiting step enzyme/transcription 

factors, introduction of a branch pathway and trimming of a pathway through the use of 

gene silencing are currently applied in metabolic engineering in alkaloid biosynthesis, 

the combination of these strategies provides a more effective approach for improving 

both the quantity and quality of metabolites. For example, trimming of the endogenous 

pathway with the introduction of new branch was critical for drastic modification of the 

metabolite in blue rose production; i.e., the accumulation of sufficient blue pigment, 

delphinidin, was only achieved by the combined expression of the gene for a novel blue 

pigment biosynthetic enzyme, i.e., flavonoid 3′,5′-hydroxylase, and the down-regulation 

of endogenous dihydroflavonol 4-reductase by RNAi to shut down the undesired red 

pigment pathway (Katsumoto et al., 2007). Such a combined approach can be 

performed with a transcription factor and an enzyme for a rate-limiting step that is not 

under the control of the introduced transcription factor. This can provide greater 

flexibility in metabolic engineering.  

 

4. Perspectives  

 While the biosynthetic pathways for many metabolites still require 

considerable characterization including of the involved enzymes and their genes, 

continued advances in molecular and genomic techniques will surely expand the 

production of useful natural products, especially alkaloids. Particularly, whole genome 

sequence data bring considerable information on biosynthesis along with rapidly 

accumulating RNA sequence data. The combined analysis of transcriptomes, proteomes, 

metabolomes and genomes provides a new approach for identifying the candidate genes 

in uncharacterized pathways (Dang & Facchini, 2012; Desgagné-Penix et al., 2010, 

2012; Farrow et al., 2012; Takemura et al., 2010b; Winzer et al., 2012). The 
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establishment of transcriptome and proteome databases for the investigation of natural 

product metabolism in non-model plant systems has provided useful information for 

metabolic engineering. Desgagné-Penix et al. (2010) showed that profiling of the 

more-abundant proteins in elicitor-treated opium poppy cell cultures revealed several 

uncharacterized enzymes that potentially catalyze steps in sanguinarine biosynthesis. 

 Structural biology also provides important cues for isolating key biosynthetic 

enzymes in pathways and their molecular functions, although structural information 

regarding the biosynthetic enzymes in secondary metabolism is very limited (Ilari et al., 

2009; Wallner et al., 2012; Winkler et al., 2009). 

 Whereas we can use both plant and microbial cells as a platform for metabolite 

production (Chow & Sato, 2013; see also Chapter 7), we should be aware of their pros 

and cons. For instance, while plant cell or tissue cultures can produce more divergent 

chemicals than microbial systems, their complexity and instability are problematic for 

industrial production. Microbial systems enable alkaloid production on a relatively large 

scale within a short period, but require more molecular informations on the biosynthetic 

pathways and enzymes, whereas the emergence of synthetic biology offers the 

possibility of improving the production of useful products through the design and 

engineering of complex biological systems. While computer-assisted molecular design 

software is being developed to facilitate the synthesis of novel compounds with 

drug-like properties and desired activities, the use of information science for the 

reconstruction of metabolic pathways, i.e., “retrobiosynthetic” systems, will require 

more experimental data on the identification and analysis of biosynthetic enzymes and 

pathways. However, technological progress has been quite rapid and provides us with 

many options. The potentials of metabolic engineering in secondary metabolism are 

unlimited.  

 

5.  Conclusion  

 Metabolic engineering as well as synthetic biological approaches are at the 

forefront in natural product research. Our experiences in IQA biosynthesis provide new 

clues for the molecular characterization of biosynthetic pathways and novel production 

systems for natural products. Technological advances, including next-generation 

sequencing, offer a bright future for the production of not only IQAs but also other 

alkaloids. This high potential in natural product research will require more sophisticated 

techniques as we move from metabolites to drug discovery. 
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Figure 1. Main pathway in isoquinoline alkaloid biosynthesis. Major isoquinoline 

alkaloids, such as aporphine-, benzophenanthridine- and protoberberine-type 

isoquinoline alkaloids, are synthesized through a common pathway derived from 

norcoclaurine to reticuline. Aporphine alkaloids are synthesized from (S)-reticuline by 

the reaction of corytuberine synthase (CYP80G2). Protoberberine and 

benzophenanthridine alkaloids are synthesized from (S)-scoulerine produced from 

(S)-reticuline by the reaction of berberine bridge enzyme (BBE). Ipecac and some other 

IQAs are synthesized from dopamine without norcoclaurine biosynthesis. The names of 

the biosynthetic enzymes for which cDNA has been isolated and characterized are 

shown. Abbreviations for biosynthetic enzymes are defined in the text, except for 

TYDC (tyrosine/DOPA decarboxylase; Facchini et al., 2000) and TyrAT (tyrosine 

aminotransferase; Lee & Facchini, 2011). 

 

Figure 2.  

Extended pathways in isoquinoline alkaloid biosynthesis; from reticuline to 

protoberberine, benzophenanthridine, morphinan and noscarpine alkaloids (a) 

Protoberberine and benzophenanthridine alkaloid biosynthesis has mainly been 

characterized in Coptis japonica (Cj) and Eschscholzia californica (Es) cells, while 

some genes have been isolated from Papaver somniferum (Ps). (b) Morphinan and 

noscarpine biosynthesis were characterized in Papaver somniferum. 

 The names of the biosynthetic enzymes for which cDNA has been isolated and 

characterized are shown. Abbreviations for biosynthetic enzymes are defined in the text, 

except for CoOMT (columbamine O-methyltransferase), and 7OMT (reticuline 

7-O-methyltransferase).  

 

Figure 3.   

Ipecac OMT alignment and reaction specificity 

 

Figure 4.  

Yield improvement by the ectopic expression of C. japonica (Cj) 6OMT in California 

poppy cells.   

 

Figure 5.  

Metabolic diversification by the introduction of a branch pathway 

The introduction of a novel branch pathway in California poppy induced the production 

of uncommon protoberberine-type alkaloids, whereas major products were further 
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metabolized to di-methoxy-type benzophenanthridine alkaloids by endogenous 

enzymes.  

 

Figure 6.  

Quality modification by the trimming of a pathway  

Knockdown of BBE expression with double-stranded RNA strongly reduced 

endogenous alkaloid accumulation and increased the accumulation of a precursor, 

reticuline, and some metabolites such as 7-O-methylreticuline.  
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