<table>
<thead>
<tr>
<th>Title</th>
<th>A GENERALIZED POTENTIAL VORTICITY IN THE OCEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KAWAI, Hideo</td>
</tr>
<tr>
<td>Citation</td>
<td>Special Contributions of the Geophysical Institute, Kyoto University (1966), 6: 79-93</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1966-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/178516</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A GENERALIZED POTENTIAL VORTICITY
IN THE OCEAN

By
Hideo Kawai
(Received September 30, 1966)

Abstract
With the aid of Ertel's vorticity theorem (1942), a generalized potential vorticity for a compressible and baroclinic ocean is derived by examination of the thermodynamical property of potential density. The new potential vorticity $-W \cdot \frac{\rho^*}{\rho}$ (where W is absolute vorticity, ρ^* potential density, ρ density) should be almost conserved under arbitrary conditions for the ocean except in the surface and bottom frictional boundary layers and mixed layers, and it is approximated by the product of the vertical gradient of ρ^* and the Coriolis parameter divided by ρ for deep water except in the vicinity of a strong current and the equator. Finally a method of its numerical calculation on a cross-current profile is shown.

1. Introduction
The so-called potential vorticity Z/H is an important quantity for the inertial theory of the ocean circulation, where H is the thickness of a homogeneous layer of fluid and Z is the vertical component of absolute vorticity. This quantity, however, is defined only for a layer of fluid, and cannot be applied to points within that layer. Furthermore, it cannot be conserved under certain conditions even if the fluid is inviscid and immiscible. The main purpose of the present paper is to derive a general expression of potential vorticity which will be a conservative quantity defined for every point throughout most portions of the sea.

Let us start with Ertel's vorticity theorem for inviscid and immiscible fluids (Ertel [1942])1,

1 The author wishes to apologize to Prof. H. Ertel for having omitted this original paper in the reference of his paper (Kawai [1958]), where the same theorem was derived on use of a generalized natural coordinates.
\[
\frac{D}{Dt} \left(\frac{W \cdot \rho}{\rho} \right) = \frac{1}{\rho} W \cdot \rho \frac{D \psi}{Dt} + \frac{1}{\rho^3} \frac{\rho}{\rho} \nabla \cdot \rho \cdot \nabla \psi.
\] (1)

The symbols are defined as:

\[
\frac{D}{Dt} \quad \text{individual differentiation with respect to time } t
\]

\(\rho\) — gradient operator

\(W\) — absolute vorticity vector

\(\rho\) — density

\(\rho\) — pressure

\(\psi\) — arbitrary scalar function.\(^1\)

If \(\psi\) satisfies simultaneously two conditions

\[
\frac{D \psi}{Dt} = 0
\]

and

\[
\rho \psi = A \rho + B \rho \rho,
\]

where \(A\) and \(B\) are arbitrary scalar functions, both terms on the right-hand side of (1) vanish, meaning that \(W \cdot \rho \psi / \rho\) is a conservative quantity.

Since the potential density and potential temperature are conservative quantities, as will be discussed in Section 2, they satisfy the condition (2). If sea water would have a constant salinity, they would exactly satisfy the condition (3) too, because its thermodynamical state could be specified by any couple of independent variables, for instance pressure and density only. We would then find out the quantity \(\psi\) which constitutes a new conservative quantity \(W \cdot \rho \psi / \rho\).

The following discussion in Section 4 is simply a study of characteristics of gradients of potential density and potential temperature, and the conclusion will be reached that the potential density or, in some cases, potential temperature is practically eligible for the condition (3).

2. Individual conservations of salinity, potential temperature and potential density

The discussion in this Section is concerned with a compressible and baroclinic ocean without diffusion and viscosity. A water parcel in such an ocean undergoes neither heat nor salt nor water exchanges, not only between the

\(^1\) As pointed out by Truesdell (1961), this theorem holds for any arbitrary vector or tensor function \(\psi\), including the Lagrange-Beltrami vorticity equation as a special case.
A generalized potential vorticity in the ocean

(parcel and its surroundings but between its internal parts. Although the parcel
consists of infinitely many phases, interfacial tension is ignored throughout since
its contribution to thermodynamical potentials may be relatively small.

According to Sverdrup et al. (1942), "by conservative concentrations are meant
concentrations that are altered locally, except at the boundaries, by processes
of diffusion and advection only". We shall, in the following, consider not only
concentrations but physical properties or quantities, and we can say that their
individual conservation is equivalent to the vanishing of their individual differ­
tentiation for an inviscid and immiscible water.

We are going to treat an "adiabatic process" of a water parcel under
"adiabatic change" (Guggenheim (1949)), and it leads to individual conserva­
tions of entropy γ and salinity S.

$$\frac{D\gamma}{Dt} = 0$$

(4)

and

$$\frac{DS}{Dt} = 0.$$

(5)

On use of the definition of the adiabatic lapse rate of temperature

$$\Gamma = \left(\frac{\delta T}{\delta p} \right)_{\gamma, S},$$

(6)

the potential temperature θ referred to a certain constant pressure p_r is ex­
pressed by

$$\theta = T - \int_{p_r}^{p} \Gamma adp_a$$

(7)

and

$$\Gamma_a = \Gamma(S, T_a, p_a),$$

where T_a is a value of temperature, corresponding to a value of pressure p_a at
a point of state in the adiabatic process; and S, T and p are salinity, tempera­
ture and pressure in situ respectively. Partial differentiation of the first eq. of
(7) with respect to p, keeping γ and S constant, yields

$$\left(\frac{\partial \theta}{\partial p} \right)_{\gamma, S} = \left(\frac{\partial T}{\partial p} \right)_{\gamma, S} - \Gamma = 0,$$

(8)

the last step being a consequence of the definition of Γ in (6). Equation (8)
expresses that the adiabatic lapse rate of potential temperature is nought.

Specifying the thermodynamical state of sea water by three variables γ, S
and p, the individual change of potential temperature is expressed by

the last step being simply a consequence of the conservations of η and S shown in (4) and (5). Substituting (8) for (9), we obtain
\[
\frac{D\theta}{Dt} = 0 ,
\]
expressing individual conservation of potential temperature.

The potential density ρ^* referred to a certain pressure p_r is defined by
\[
\rho^* = \rho(S, \theta, p_r) ,
\]
and it follows that
\[
\left(\frac{\partial \rho^*}{\partial p} \right)_n, S = \left(\frac{\partial \rho(S, \theta, p_r)}{\partial \theta} \right)_n, S \left(\frac{\partial \theta}{\partial p} \right)_n, S = 0 ,
\]
the last step being a consequence of (8). In the same way as in (9), we obtain
\[
\frac{D\rho^*}{Dt} = \left(\frac{\partial \rho^*}{\partial p} \right)_n, S \frac{Dp}{Dt} .
\]
Substitution of (11) for (12) leads to
\[
\frac{D\rho^*}{Dt} = 0 ,
\]
expressing individual conservation of potential density.

We have now three conservative quantities S, θ and ρ^*, which satisfy the condition (2).

3. Gradients of salinity, potential temperature and potential density

Indicating components of the gradient operator normal and tangential to isobaric surface by ∇_n and ∇_t, gradients of the three conservative quantities are dissolved into two parts as follows.
\[
\nabla \rho S = \nabla_n \rho S + \nabla_t \rho S \quad (14a)
\]
\[
\nabla \theta = \nabla_n \theta + \nabla_t \theta \quad (14b)
\]
\[
\nabla \rho^* = \nabla_n \rho^* + \nabla_t \rho^* \quad (14c)
\]
If the tangential gradient of a conservative quantity is negligibly smaller than the normal, the quantity will also satisfy the condition (3) because the gradient normal to isobaric surface is parallel to $\nabla \rho$, and the ratio of the tangential term to the normal is almost equal to the inclination of isoline of the quantity in the profile in the direction of horizontal gradient of the quantity. Ignoring minute
Table 1. Ratios of the horizontal gradients of salinity, potential temperature and potential density to the vertical gradients for Sts. Atlantis I 5881 (11 April 1960, 37°40'N, 68°29'W) and 5882 (11 April 1960, 37°22'N, 68°32'W) \(\Delta y = 33.34 \text{ km} \)

<table>
<thead>
<tr>
<th>St.</th>
<th>5881-82</th>
<th>5881</th>
<th>5882</th>
<th>5881-82</th>
<th>5881</th>
<th>5882</th>
<th>5881-82</th>
<th>5881</th>
<th>5882</th>
<th>5881-82</th>
<th>5881</th>
<th>5882</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth m</td>
<td>300</td>
<td>99</td>
<td>80</td>
<td>7</td>
<td>14</td>
<td>-24</td>
<td>63</td>
<td>13</td>
<td>-0</td>
<td>-2</td>
<td>-141</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>324</td>
<td>120</td>
<td>22</td>
<td>3</td>
<td>15</td>
<td>126</td>
<td>8</td>
<td>2</td>
<td>16</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>774</td>
<td>232</td>
<td>162</td>
<td>3</td>
<td>5</td>
<td>387</td>
<td>98</td>
<td>3</td>
<td>4</td>
<td>327</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>1131</td>
<td>284</td>
<td>276</td>
<td>4</td>
<td>4</td>
<td>915</td>
<td>181</td>
<td>3</td>
<td>5</td>
<td>846</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>534</td>
<td>52</td>
<td>132</td>
<td>10</td>
<td>4</td>
<td>924</td>
<td>204</td>
<td>11</td>
<td>5</td>
<td>876</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>78</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>72</td>
<td>18</td>
<td>5</td>
<td>4</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>-21</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>-21</td>
<td>42</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>57</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>45</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>33</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>21</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>∞</td>
<td>66</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>36</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3500</td>
<td>48</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>66</td>
<td>6</td>
<td>11</td>
<td>7</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>21</td>
<td>1</td>
<td>2</td>
<td>21</td>
<td>11</td>
<td>24</td>
<td>4</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>
thermohaline structures with scales less than a few tens of kilometers in a horizontal direction in deep water, the largest inclination of isotherms and isohalines in deep water among available data is found between Stations Atlantis I 5881 and 5882 from the survey "Gulf Stream '60" (Fuglister [1963]). The Stations are located in the vicinity of the Gulf Stream south of Georges Bank. As the Gulf Stream flows almost eastward in this case and properties of sea water are almost constant along the streamline, $|\mathbf{F}_t|$ may be given by $|\partial \theta / \partial y|$, where positive y is toward the north.

Table 1 shows that the ratio of the second term to the first on the right-hand side of (14b) and (14c) is less than one per cent for θ and ρ^* except in the surface and bottom mixed layers (See values for depths of 300 m and 400 m at St. 5882 and for depths 3500 m and 4000 m at St. 5881.). A somewhat large value of the ratio for a depth of 1000 m at St. 5881 may be due to the difference in location between numerical calculations of horizontal and vertical gradients, because the temperature profile of the section (Fuglister [1963]) does not show steeper inclinations of isotherms at the point than in the neighborhood.

Since ρ_θ or ρ_ϕ^* has a component parallel to ρ, the component of ρ_θ or ρ_ϕ^* tangential to both of isobaric and isosteric surfaces will become much smaller than the value of ρ_ϕ or ρ_ϕ^* in Table 1. We may suppose that θ and ρ^* practically satisfy the condition (3), so far as their vertical gradients are not minute. Salinity profiles, however, show minimum or maximum layers frequently, and its vertical gradient becomes minute around the layers. This is the reason why salinity cannot satisfy the condition (3). In general, the potential density satisfies the condition (3) with better accuracy than the potential temperature, because the minimum or maximum layers of ρ^* are less frequently found than those of θ. A more detailed consideration will be given in Section 4.

4. Characteristics of the gradient of potential density and potential temperature

Describing the state of sea water by three independent variables ρ, θ, and S, we have

$$\rho_\phi^* = \left(\frac{\partial \phi^*}{\partial \rho} \right)_S \rho_\phi + \left(\frac{\partial \phi^*}{\partial \theta} \right)_S \theta_\phi + \left(\frac{\partial \phi^*}{\partial S} \right)_\rho \phi_\rho S$$

and

$$\rho_\theta = \left(\frac{\partial \theta}{\partial \rho} \right)_S \rho_\phi + \left(\frac{\partial \theta}{\partial \theta} \right)_S \theta_\phi + \left(\frac{\partial \theta}{\partial S} \right)_\rho \phi_\rho S.$$

(15a)

(15b)
Table 2. Thermodynamical derivatives for a typical water column in the Western Basin of the North Atlantic

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>S</th>
<th>T</th>
<th>θ_b</th>
<th>$\left(\frac{\partial S}{\partial T} \right)_{T, p}$</th>
<th>$\left(\frac{\partial S}{\partial \rho} \right)_{T, p}$</th>
<th>$\left(\frac{\partial \rho_b}{\partial S} \right)_{T, p}$</th>
<th>$\left(\frac{\partial \rho_b}{\partial \rho} \right)_{T, p}$</th>
<th>$\left(\frac{\partial \rho_b}{\partial T} \right)_{S, p}$</th>
<th>$\left(\frac{\partial \rho_b}{\partial \rho} \right)_{S, p}$</th>
<th>$\left(\frac{\partial \rho_b}{\partial S} \right)_{T, p}$</th>
<th>$\left(\frac{\partial \rho_b}{\partial \rho} \right)_{T, p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>34.85</td>
<td>4.00</td>
<td>3.92</td>
<td>-13.1</td>
<td>77.9</td>
<td>0.992</td>
<td>-0.150</td>
<td>-10.5</td>
<td>79.5</td>
<td>-76</td>
<td>5.9</td>
</tr>
<tr>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>34.85</td>
<td>3.50</td>
<td>3.34</td>
<td>-14.8</td>
<td>76.4</td>
<td>0.984</td>
<td>-0.303</td>
<td>-9.7</td>
<td>79.6</td>
<td>-67</td>
<td>5.1</td>
</tr>
<tr>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>34.85</td>
<td>3.00</td>
<td>2.74</td>
<td>-16.4</td>
<td>75.1</td>
<td>0.977</td>
<td>-0.459</td>
<td>-8.9</td>
<td>79.8</td>
<td>-60</td>
<td>4.5</td>
</tr>
<tr>
<td>3500</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>34.85</td>
<td>2.50</td>
<td>2.14</td>
<td>-17.2</td>
<td>74.5</td>
<td>0.973</td>
<td>-0.538</td>
<td>-8.5</td>
<td>79.9</td>
<td>-57</td>
<td>4.2</td>
</tr>
<tr>
<td>5000</td>
<td>34.85</td>
<td>2.00</td>
<td>1.53</td>
<td>-19.7</td>
<td>72.6</td>
<td>0.963</td>
<td>-0.617</td>
<td>-8.1</td>
<td>80.0</td>
<td>-54</td>
<td>4.0</td>
</tr>
<tr>
<td>6000</td>
<td>34.85</td>
<td>1.50</td>
<td>0.91</td>
<td>-21.1</td>
<td>71.5</td>
<td>0.955</td>
<td>-0.941</td>
<td>6.6</td>
<td>80.3</td>
<td>-45</td>
<td>3.2</td>
</tr>
<tr>
<td>7000</td>
<td>34.85</td>
<td>1.50</td>
<td>0.76</td>
<td>-23.0</td>
<td>70.3</td>
<td>0.951</td>
<td>-1.098</td>
<td>6.4</td>
<td>80.4</td>
<td>-41</td>
<td>2.9</td>
</tr>
</tbody>
</table>

(a) and (d) are calculated from Helland-Hansen's table (1930).
(b), (e), (f) and (g) are calculated from Hesselberg & Sverdrup's table (1914-15).
(e) is calculated from Fofonoff's empirical formula of potential temperature (1962).
(h) = (d)/(b), (i) = (e)-(k)(c), (j) = (f)(h), (k) = (g)+(f)(i); See eqs. (18a, b, c, d) in the text.
On use of thermodynamical relationships\(^1\)
\[
\left(\frac{\partial \rho^*}{\partial \rho} \right)_{S,p} = -\frac{1}{c^2} \left(\frac{\partial \rho^*}{\partial \rho} \right)_{S,p}
\] (16a)
and
\[
\left(\frac{\partial \theta}{\partial \rho} \right)_{S,p} = -\frac{1}{c^2} \left(\frac{\partial \theta}{\partial \rho} \right)_{S,p},
\] (16b)
eqs. (15a) and (15b) become
\[
\rho^* = \left(\frac{\partial \rho^*}{\partial \rho} \right)_{S,p} \left(\rho_0 - \rho_p \right) + \left(\frac{\partial \rho^*}{\partial S} \right)_{\rho,p} SF
\] (17a)
and
\[
\theta = \left(\frac{\partial \theta}{\partial \rho} \right)_{S,p} \left(\rho_0 - \rho_p \right) + \left(\frac{\partial \theta}{\partial S} \right)_{\rho,p} SF.
\] (17b)
where \(c\) indicates the sound speed in the sea.

Values of four thermodynamical derivatives in (17a) and (17b) for a typical water column are calculated in Table 2, where the pressure of one atmosphere is adopted as the reference pressure of potential temperature and potential density, being specified by the subscript \(0\) as in \(\rho_0^*\). The calculation is based on the following relationships.

\[
\left(\frac{\partial \theta}{\partial \rho} \right)_{S,p} = \left(\frac{\partial \theta}{\partial T} \right)_{S,p}
\] (18a)
\[
\left(\frac{\partial \theta}{\partial S} \right)_{\rho,p} = \left(\frac{\partial \theta}{\partial T} \right)_{T,p} - \left(\frac{\partial \theta}{\partial \rho} \right)_{S,p} \left(\frac{\partial \rho}{\partial S} \right)_{T,p}
\] (18b)
\[
\left(\frac{\partial \rho^*}{\partial \rho} \right)_{S,p} = \left(\frac{\partial \rho^*}{\partial \theta} \right)_{S,p} \left(\frac{\partial \theta}{\partial \rho} \right)_{S,p}
\] (18c)
\[
\left(\frac{\partial \rho^*}{\partial \rho} \right)_{\rho,p} = \left(\frac{\partial \rho^*}{\partial \theta} \right)_{\theta} + \left(\frac{\partial \rho^*}{\partial S} \right)_{S} \left(\frac{\partial S}{\partial \rho} \right)_{\rho,p}
\] (18d)

The vertical components of (17a) and (17b) are expressed by
\[
\frac{\partial \rho^*}{\partial z} = \left(\frac{\partial \rho^*}{\partial \rho} \right)_{S,p} \left(\frac{\partial \rho}{\partial z} + \frac{\rho g}{c^2} \right) + \left(\frac{\partial \rho^*}{\partial S} \right)_{\rho,p} \frac{\partial S}{\partial z}
\] (19a)

\(^1\) The relationships (16a) and (16b) are consequences of
\[
\left(\frac{\partial \rho^*}{\partial \rho} \right)_{S,p} = \left(\frac{\partial \rho^*}{\partial \rho} \right)_{S,p} \frac{\partial \rho}{\partial \rho} + \left(\frac{\partial \rho^*}{\partial S} \right)_{S} \frac{\partial S}{\partial \rho},
\]
\[
\left(\frac{\partial \theta}{\partial \rho} \right)_{S,p} = \left(\frac{\partial \theta}{\partial \rho} \right)_{S,p} \frac{\partial \rho}{\partial \rho} + \left(\frac{\partial \theta}{\partial S} \right)_{S} \frac{\partial S}{\partial \rho},
\]
\[
\frac{1}{c^2} = \left(\frac{\partial \rho}{\partial \rho} \right)_{S,p}
\]
and eqs. (11) and (8).
and

$$\frac{\partial \theta}{\partial z} = \left(\frac{\partial \theta}{\partial \rho} \right)_S \rho, \left(\frac{\partial \rho}{\partial z} + \frac{\rho g}{c^2} \right)_p, \left(\frac{\partial \theta}{\partial S} \right)_S, \frac{\partial S}{\partial z}, \frac{\partial \theta}{\partial z}, \frac{\partial S}{\partial z},$$ \hspace{1cm} (19b)

where z is positive upward and $-\left(\frac{\partial \rho}{\partial z} + \frac{\rho g}{c^2} \right)$ is nothing but the vertical stability (Pollak (1954)). Accordingly, the vector $(\rho \theta - \rho \Phi/c^2)$ may be called "stability vector". Most portions of the sea have a stable stratification, namely—

$$-\left(\frac{\partial \rho}{\partial z} + \frac{\rho g}{c^2} \right) > 0,$$

and it follows that if either

$$\left(\frac{\partial \rho^*}{\partial z} \right)^2 > \left[\left(\frac{\partial \rho^*}{\partial S} \right)_S, \rho, \frac{\partial S}{\partial z} \right]^2$$

(21a) or

$$\left(\frac{\partial \theta}{\partial z} \right)^2 > \left[\left(\frac{\partial \theta}{\partial S} \right)_S, \rho, \frac{\partial S}{\partial z} \right]^2$$

(21b)
is satisfied, $\partial \rho^*/\partial z$ or $-\partial \theta/\partial z$ should be negative by a simple algebra, because $(\partial \rho^*/\partial z)_S, \rho$ is positive and $(\partial \theta/\partial z)_S, \rho$ is negative, as seen in Table 2.

Table 3. Ratios between two terms in eqs. (17a) and (17b)

<table>
<thead>
<tr>
<th>St.</th>
<th>5881</th>
<th>5882</th>
<th>5881</th>
<th>5882</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>$\frac{\partial \rho^*}{\partial S}$, $\frac{\partial S}{\partial z}$, $\frac{\partial \theta}{\partial S}$, $\frac{\partial S}{\partial z}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>1000</td>
<td>1500</td>
<td>2000</td>
<td>2500</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 3, which is calculated with the values in Tables 1 and 2, shows that the condition (21a) or (21b) is satisfied except in the mixed layers, and it follows, based on the discussion above, that ρ^* or θ scarcely has inversion layers.

The characteristics of $\rho \theta^*$ and $\rho \theta$ discussed above come from a relative smallness of salinity gradient and the stable stratification.

The result in Table 3 is, however, based on a water column in the Western Basin of the North Atlantic. Since $\partial S/\partial z$ is positive or slightly negative in deep water in the Basin, $\partial \theta/\partial z$ becomes positive by (19b) as far as the stratification is stable, but in general, $\partial \theta/\partial z$ does not always become positive for a large value of negative $\partial S/\partial z$. As estimated from Table 2, the derivative $(\partial \rho^*/\partial S)_{\rho, \Phi}$ approaches zero as pressure in situ approaches the reference pressure p_r, while $(\partial \rho^*/\partial S)_{\rho, \Phi}$ does not. At a depth with the reference pressure, eq. (17a) becomes
while eq. (17b) becomes
\[
(p\theta)_p = \left(\frac{\partial T}{\partial p} \right)_{S,p} \left(p - \frac{p}{c^2} \right)_p + \left(\frac{\partial T}{\partial S} \right)_{p,p} (FS)_p,
\]
where the last term does not vanish generally. So far as the stability vector has a downward component, \(p\theta\) has a downward component too in the vicinity of the reference pressure, while \(p\theta\) does not necessarily have an upward component. This is the reason why \(p^\ast\) has less frequently inversion layers and core layers than \(\theta\). Thus we may conclude that the potential density is the best one which satisfies the condition (3) among the three conservative quantities.

No maximum of \(p^\ast\) is found for these Stations, but another example shows a maximum located at a depth of 4500 m (Fig. 1). A layer of the maximum is clearly found throughout the bottom water of the Western Basin of the North Atlantic, when the depth of the bottom exceeds 4500 m. Since \(\partial p^\ast / \partial z\) is minute in the vicinity of the layer, \(p^\ast\) cannot satisfy the condition (3) for the layer. Using a pressure of 5000 decibars as the reference, however, there is no significant maximum value of \(p^\ast\) in the bottom water (Fig. 1), the subscript \(s\) being the indicator of 5000 decibars. In this case, the condition (3) holds for the bottom water only except the bottom mixed layer.

5. Characteristics of a new potential vorticity

As shown in the previous Sections, the potential density \(p^\ast\) is a conservative quantity and its gradient is approximated well enough by a linear combination of two vectors \(FS\) and \(p\rho\), so far as its vertical gradient is not minute. Since these

![Fig. 1. Vertical distribution of potential density at St. Chain 159 (13 April 1960, 33°02'N, 56°30' W). Subscripts o and s indicate respectively pressures of one atmosphere and 5000 decibars as the reference of potential temperature and density. \(\sigma_{\theta} = 10^9(p^\ast - 1)\) \(\sigma_{\theta_s} = 10^9(p^\ast - 1)\)](image-url)
characteristics are nothing but two conditions (2) and (3), the potential density is what we are looking for to derive a conservative quantity concerning Ertel's vorticity theorem (1). Thus we obtain

$$\frac{DP}{Dt} \approx 0,$$

where \(P \) is defined by

$$P := - \frac{W \cdot \rho^*}{\rho}. \quad (23)$$

The assumptions made in the course of deriving (22) are that sea water is not remarkably viscous and miscible and that the vertical gradient of potential density is not minute. These assumptions are not independent of each other. The portions of the sea, where the vertical gradient of potential density is minute and eddy viscosity and diffusion are large, are limited to the neighborhood of the sea surface and bottom. Accordingly, (22) holds for the sea except the surface and bottom frictional boundary layers and mixed layers.

Since the new quantity \(P \) has the same dimension of (vorticity/length) as the so-called potential vorticity \(\frac{Z}{H} \) and the latter is a kind of simplification of the former, we may conventionally call \(P \) a potential vorticity too.

Mathematically, \(\frac{Z}{H} \) is defined for a water column with some height, but \(P \) is for every point within the column. For a homogeneous layer of fluid, \(\frac{Z}{H} \) can be defined but \(P \) cannot be. This seems to be a defect of \(P \), but such a homogeneous layer is actually found only in the surface and bottom mixed layers, where any kind of potential vorticity cannot be conserved.

In deep water except in the vicinity of a strong current such as the Gulf Stream and Kuroshio and except in the vicinity of the equator, the scalar product of the horizontal components of \(\rho^* \) and \(W \) is relatively small, and the vertical component of relative vorticity is much smaller than the Coriolis parameter. In this case, \(P \) is approximated by

$$P \approx \frac{2\omega\sin \psi}{\rho} \frac{\partial \rho^*}{\partial z}, \quad (24)$$

where \(\omega \) is the angular speed of the earth’s rotation, \(\psi \) latitude positive in the Northern Hemisphere, and \(z \) a vertical coordinate positive upward.

We shall consider methods of numerical calculation of (23) in the following. To reduce errors coming from numerical differentiation, let us transform (23) into

$$P = - \frac{\nabla \cdot (\rho^* W)}{\rho}. \quad (25)$$
Based on the Gauss' theorem, its mean value for a bulk of water with a volume \(\tau \) is given by

\[
\bar{P} = \frac{-1}{\rho \tau} \int \left(\rho^* X dy dz + \rho^* Y dz dx + \rho^* Z dx dy \right),
\]

(26)

where \(\bar{\rho} \) is the mean density; and \(X, Y \) and \(Z \) are three components of absolute vorticity along coordinates axes. When \(x \) is at an angle \(\epsilon \) to the east, \(y \) is directed to the left of \(x \), and \(z \) is upward, they are given by

\[
X = \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} + 2\omega \cos \varphi \sin \epsilon
\]

\[
Y = \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} + 2\omega \cos \varphi \cos \epsilon
\]

\[
Z = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} + 2\omega \sin \varphi
\]

For shallow water above 1500 m, the error of approximation of

\[
\rho^* \approx 1 + 10^{-3} \sigma_r
\]

is less than an order of magnitude of \(10^{-5} \) gr cm\(^{-3}\). When currents are almost parallel and uniform along \(x \) axis, the downstream direction of the main current, and observation stations are occupied on a cross-current profile, eq. (26) is approximated by

\[
\bar{P} \approx -10^{-5} \left[\sigma_r \left(2\omega \cos \varphi \cos \epsilon + \frac{\partial u}{\partial z} \right) \right]_r
\]

\[
-10^{-5} \left[\sigma_r \left(2\omega \sin \varphi - \frac{\partial u}{\partial y} \right) \right]_b,
\]

(27)

where super- and subscripts beside the brackets have the same meaning as in the primitive of an integral, and \(l, r, t \) and \(b \) indicate respectively mean values on the left, right, top and bottom sides of a rectangle surrounded by two verticals at a couple of stations with a distance \(\delta y \) and two selected levels with a distance \(\delta z \); and \(u \) indicates the current speed. The vertical component of current velocity and the latitudinal change in the Coriolis parameter are ignored in (27).

In deep water, except in the vicinity of a strong current and in the vicinity of the equator, one can easily calculate the potential vorticity based on (24).

Since the vertical shear of the geostrophic current is given by

\[
\frac{\partial u}{\partial z} = \frac{g}{\rho \omega \sin \varphi} \frac{\partial \rho}{\partial y}
\]
the ratio of the scalar product of the horizontal components of \(\mathbf{W} \) and \(\mathbf{f} \) to the product of their vertical components becomes

\[
R^* = \frac{W_x f_{xP} + W_y f_{yP}}{Z \frac{\partial \rho^*}{\partial z}} \approx \frac{X X_{\\rho^*} + Y Y_{\\rho^*}}{Z \frac{\partial \rho^*}{\partial z}} \approx \frac{\rho \left(\frac{\partial u}{\partial z} \right)^2}{g \frac{\partial \rho}{\partial z}} \left(\frac{2 \omega \cos \varphi}{Z} \right)
\]

for the following assumptions

\[
X \approx 0, \; w \approx 0, \; \rho^* \approx \rho \quad \text{and} \quad \frac{\partial u}{\partial z} \gg 2 \omega \cos \varphi \cos \epsilon.
\]

If the vertical component of relative vorticity \(\zeta \) is small, \(2 \omega \sin \varphi / Z \) becomes unity and we have

\[
R^* \approx \frac{1}{R_i}, \quad \text{(29)}
\]

where

\[
R_i = \frac{g \frac{\partial \rho}{\partial z}}{\rho \left(\frac{\partial u}{\partial z} \right)^2}
\]

and is known as "Richardson's number" (Proudman (1953)).

Accordingly, Richardson's number might be a simplification of the ratio of a kind of the ordinary form of potential vorticity \(\frac{Z \frac{\partial \rho^*}{\partial z}}{\rho \frac{\partial \rho}{\partial z}} \) to the additive terms in the new potential vorticity \(\frac{1}{\rho} \left(X X_{\\rho^*} + Y Y_{\\rho^*} \right) \).

For shallow waters we have

\[
y \approx \frac{\partial u}{\partial z} = -10^{-3} g \frac{\partial \sigma_T}{\partial y}
\]

and the ratio becomes

\[
R^* \approx \frac{Y \frac{\partial \sigma_T}{\partial y}}{Z \frac{\partial \sigma_T}{\partial z}} \approx \frac{10^{-3} \left(\frac{\partial \sigma_T}{\partial y} \right)^2}{\rho Z \omega \sin \varphi \frac{\partial \sigma_T}{\partial z}}.
\]

A few examples are shown in Table 4, and one can see that the ordinary expression of potential vorticity would ignore terms of comparable magnitude to the ordinary potential vorticity itself in some limited regions with a relatively large value of anticyclonic horizontal shear. So far as we do not deal with detailed structure in the vicinity of the current axis, we may ignore the product of the horizontal components (Stommel (1955)).

Distributions of the potential vorticity in profiles across the Gulf Stream
Table 4. Ratios of \(\frac{\partial \sigma_T}{\partial y} \) to \(\frac{\partial \sigma_T}{\partial z} \)

<table>
<thead>
<tr>
<th>Region</th>
<th>Gulf Stream</th>
<th>Equatorial countercurrent</th>
<th>South equatorial current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station</td>
<td>Atlantis I</td>
<td>H.M. Smith 16</td>
<td>H.M. Smith 16</td>
</tr>
<tr>
<td></td>
<td>48.57–58</td>
<td>6–8</td>
<td>11–13</td>
</tr>
<tr>
<td>Latitude</td>
<td>38°N</td>
<td>6°N</td>
<td>3°N</td>
</tr>
<tr>
<td>Depth (m)</td>
<td>300</td>
<td>130</td>
<td>110</td>
</tr>
<tr>
<td>(\frac{J \sigma_T}{J_y}) \ (\sigma_{\text{m}}))</td>
<td>(0.4 \times 10^{-6})</td>
<td>(1.2 \times 10^{-7})</td>
<td>(-1.0 \times 10^{-7})</td>
</tr>
<tr>
<td>(\frac{J \sigma_T}{J_z}) \ (\sigma_{\text{m}}))</td>
<td>(0.2 \times 10^{-4})</td>
<td>(0.6 \times 10^{-3})</td>
<td>(0.5 \times 10^{-3})</td>
</tr>
<tr>
<td>(\frac{J \sigma_T}{J_y}) \ (\sigma_{\text{m}}))</td>
<td>(2 \times 10^{-2})</td>
<td>(2 \times 10^{-4})</td>
<td>(2 \times 10^{-4})</td>
</tr>
<tr>
<td>(2 \omega \sin \gamma (\sec^{-1}))</td>
<td>(9.0 \times 10^{-5})</td>
<td>(1.5 \times 10^{-5})</td>
<td>(0.75 \times 10^{-5})</td>
</tr>
<tr>
<td>(\zeta) \ (\sec^{-1}))</td>
<td>(-3.0 \times 10^{-5})</td>
<td>(-0.5 \times 10^{-5})</td>
<td>(-0.5 \times 10^{-5})</td>
</tr>
<tr>
<td>(Z = 2 \omega \sin \gamma + \zeta) \ (\sec^{-1}))</td>
<td>(6.0 \times 10^{-5})</td>
<td>(1.0 \times 10^{-5})</td>
<td>(0.25 \times 10^{-5})</td>
</tr>
<tr>
<td>(R^* = \frac{Y \sigma_T}{Z \partial \sigma_T / \partial z})</td>
<td>1.5</td>
<td>0.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

|------------|---------------------|---------------|-----------------------------|

and Kuroshio are not shown in the present paper. A conclusion to be reported here is that negative or slightly positive values of \(P \) are found in those same regions both in the Gulf Stream and in the Florida Current even though the vertical stability in those regions is large.

Since \(S \) and \(\theta \) are conservative properties in the sea except in the mixed layers, so far they are used as two independent elements in water-mass analysis. Although \(\rho^* = \rho(S, \theta, \rho_T) \) is also a conservative property, it is completely determined by \(S \) and \(\theta \), and it will give the analysis no further information other than that its vertical gradient is used as a crude indicator of vertical stability by plotting \(\sigma \theta \) curves on a \(\theta-S \) plane. Now that we get another independent and conservative element \(P \), it might become a useful tool for water-mass analysis, especially for that in the deep sea because of its simple expression as shown in (24).

Acknowledgments

This paper is dedicated to Dr. Shōitirō Hayami, the former professor of oceanography of the Geophysical Institute, in appreciation of his guidance in oceanography as well as in life. The author wishes to express his indebtedness to Dr. N. P. Fofonoff for helpful discussions and critical comment on his preliminary manuscript, to Mr. F. C. Fuglister and Mr. L. V. Worthington for permission to use unpublished data of their Gulf Stream and Florida Current surveys, and to Dr. G. Veronis for finding out Ertel's paper (1942). He should
like to acknowledge support from the Woods Hole Oceanographic Institution in the form of fellowship.

References

Ertel, H., 1942; Ein neuer hydorodynamischer Wirbelsatz, Met. Z., 59, 277-231.

Worthington, L. V., 1954; Three detailed cross-sections of the Gulf Stream, Tellus, 6, 116-123.