<table>
<thead>
<tr>
<th>Title</th>
<th>DIURNAL VARIATIONS OF THE SIZE OF THE MAGNETOSPHERE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ARAKI, Tohru</td>
</tr>
<tr>
<td>Citation</td>
<td>Special Contributions of the Geophysical Institute, Kyoto University (1967), 7: 11-14</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1967-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/178551</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
DIURNAL VARIATIONS OF THE SIZE OF THE MAGNETOSPHERE

By

Tohru ARAKI

(Received November 20, 1967)

Abstract

Diurnal variations of the size of the magnetosphere are estimated from simple consideration on the pressure balance at the subsolar point of the magnetosphere. Associated geomagnetic variations on the surface of the earth are calculated.

1. Introduction

Ness et al. (1964) pointed out that the position of the magnetospheric boundary must be sensitive to the geomagnetic latitude of its subsolar point, θ_s. Since the magnetic pressure at the subsolar point of the magnetopause is determined by θ_s and R_s, the distance from the earth’s center to the subsolar point of the magnetopause, R_s is required to vary by the change of θ_s in order to provide a constant pressure which should be balanced by the solar wind pressure. Using a factor $(1+3\sin^2\theta_s)^{1/6}$ they normalized magnetopause distances from the earth’s center which were observed at various positions of the magnetospheric boundary during the flight of IMP-1 satellite. The same normalizing factor was used by Patel and Dessler (1966) to investigate relations between geomagnetic activity and the size of the magnetosphere. Their results show that at most 12% change of R_s is caused by the variation of θ_s.

If it is assumed that R_s can be accepted as a measure of the size of the magnetosphere, diurnal and seasonal variations of the geomagnetic field intensity might be caused at the surface of the earth by the change of θ_s. This is the main subject of this paper.

2. Results

The boundary condition which should be satisfied at the subsolar point of magnetopause is

$$\frac{B_i^2}{6\pi} = 2\rho v_i^2$$ \hspace{1cm} (1)

1 Now at the Ionosphere Research Laboratory.
where ρ and v_s are mass density and velocity of the solar wind and B_t is the magnetic field intensity tangential to the magnetospheric boundary. The field B_t can be approximately replaced by twice of the dipole magnetic field intensity

$$B_t = 2B_0 \left(\frac{R_s}{R_0} \right)^3 (1 + 3 \sin^2 \theta) \frac{1}{\sqrt{3}},$$

(2)

where B_0 is magnetic field intensity at the earth's equator and R_0 is earth's radius. From (1) and (2), the relation

$$R_t = R_0 \frac{B_0(1 + 3 \sin^2 \theta) \frac{1}{\sqrt{3}}}{4\pi \rho v_s^2},$$

(3)

is obtained, which shows that R_t increases with increase of θ. Since the rotational axis of the earth makes an angle of about 66.5° to the ecliptic plane and the geomagnetic dipole axis is tilted about 11.5° from the rotational axis, the angle θ makes diurnal and seasonal variations. It varies diurnally from $(23.5 + 11.5)^\circ$N to $(23.5 - 11.5)^\circ$N in the June solstice, from 11.5°N to 11.5°S in the equinox and from $(23.5 - 11.5)^\circ$S to $(23.5 + 11.5)^\circ$S in December solstice and shown by the dotted line in Fig. 1.

Diurnal variations of R_t due to diurnal variation of θ are calculated from Eq. (3) and presented in Fig. 1 by solid line. In the June solstice, θ takes its

![Figure 1](image-url)

Fig. 1. Solid line; diurnal variation of θ_s (geomagnetic latitude of the subsolar point of the magnetopause). Dotted line; diurnal variation of R_s (geocentric distance to the subsolar point of the magnetopause). (a); June solstice, (c); spring or autumnal equinox, (e); December solstice, (b); intermediate state between (a) and (c), (d); intermediate state between (c) and (e).
maximum value (35°N) at 16.6 hours UT, because the geomagnetic north pole lies on the longitude line of about 69°W (4.6 hours west from the zero longitude). At the same time R_c takes its maximum value which is larger by 12% than that for $\theta = 0$ (Fig. 1a). The minimum of R_c occurs at about 4.6 hours UT which is about 4% larger than that for $\theta = 0$. Therefore diurnal variation of about 8% is expected for R_c. After the June solstice the curve of diurnal variation of R_c comes down to the base line (which shows the value of R_c for $\theta = 0$) without any change of its shape, but as soon as its minimum touches the base line two peaks appear as shown in Fig. 1b. In the equinox two peaks take the same value and the diurnal variation of R_c is about 4% at this time (Fig. 1c). After the autumnal equinox the peak at 4.6 hours UT becomes larger (Fig. 1d) and becomes largest in the December solstice (Fig. 1e).

If the distance R_c may be accepted as a measure of the magnetospheric size in the solar side of the earth, UT variations same as for R_c is expected for the size of the magnetosphere.

Mead (1964) showed that total magnetic field variation ΔH at earth’s surface due to the change of R_c is given as follows,

$$\Delta H(\text{gamma}) = \frac{75000}{R_c^2} \Delta r$$

where Δr is change of R_c. If R_c is taken to be $10R_e$ (earth radii) as usual, Δr becomes $0.8R_e$ in the solstice and $0.4R_e$ in the equinox. From the relation (4) these values correspond to values of $6r$ and $3r$ of ΔH. After all we can expect the diurnal UT variations of geomagnetic field which have properties presented in Table 1.

<table>
<thead>
<tr>
<th>Time of maximum (UT)</th>
<th>Time of maximum (UT)</th>
<th>Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>June solstice</td>
<td>16.6h</td>
<td>4.6h</td>
</tr>
<tr>
<td>Spring and autumnal equinox</td>
<td>4.6h</td>
<td>10.6h</td>
</tr>
<tr>
<td>December solstice</td>
<td>4.6h</td>
<td>16.6h</td>
</tr>
</tbody>
</table>

3. Discussion

In Eq. (2), B_t, the magnetic field intensity tangential to the magnetospheric boundary, is approximately taken to be twice of the dipole magnetic field intensity. Rigorously, B_t should be the sum of the dipole magnetic field, B_d, and the magnetic field due to currents flowing on the magnetopause, B_s, so that

$$B_t = B_d + B_s.$$
The field B_e varies with θ, but it is not assured that B_e varies in the same way as B_d. In order to know behaviour of B_e, it is necessary to carry out much more complex calculation such as done by Spreiter and Briggs (1963). Our purpose is to estimate geomagnetic response to variations of θ, in rather simple way and the basis of the argument is a belief that our results would not be greatly altered by more detailed calculations.

Even if R could be accepted as a measure of the size of the magnetosphere, it is so only for the solar side of the magnetosphere. For the tail side it is required to take into consideration effects of such as tail currents and its peculiar shape. Therefore the geomagnetic field variations derived here would be realized when a observing station is in the dayside of the earth.

Ionospheric dynamo currents would have also components varying with universal time because of tilting of the magnetic dipole axis. Geomagnetic field observed at the surface of the earth involves UT variations due to these ionospheric currents as well as those due to mechanisms mentioned above. Separation of these variations from ordinary S_q is very difficult and remains as a future problem.

4. Conclusion

From simple consideration on the pressure balance at the subsolar point of the magnetopause, it is deduced that the geomagnetic field at the dayside of the earth's surface makes UT variations with amplitude of 3–6 γ depending on seasons. More detailed calculation is needed to derive the field pattern through all of the day, but the results obtained here may be thought to be approximately correct for the dayside of the earth.

Acknowledgement

The author would like to express his thanks to Prof. Y. Tamura for his encouragement to this work. He also wishes to thank Dr. H. Maeda and Prof. S. Kato for many helpful discussions during the course of this work.

References