
Special Contributions, Geophysical Institute, Kyoto University, No. 8, 1968, 31-<14 

A NUMERICAL INVESTIGATION OF HYDRODYNAMIC 
INSTABILITY OF A SHEAR FLOW IN A THERMALLY 

UNSTABLE FLUID LAYER 

By 

Tomio AsAI and Isao NAKASUJI 

(Received October~3o,: 1968) 

Abstract 

The stability characteristics of a shear flow in an unstable stratified fluid layer 
is investigated based upon a finite difference approximation of the linearized Bous
sinesq equation system. The feasibility of numerical calculation is tested with the 
aid of the convection theory established by Rayleigh which yields the exact solu
tion. Since the result obtained is satisfactory, the procedure is applied to the 
thermal convection in a Couette flow. It is found from the calculation that constant 
shear has the effect which suppresses development of the thermal convection. 
This effect of shear is striking for a convection cell of short wave length and 
decreases as a wave length of the convection cell increases. The convection cell 
which is long in the direction perpendicular to the basic flow suffers severely the 
prohibitive effect of the shear, while this effect decreases as the convection cell 
becomes longer in the direction parallel to the basic flow. 

1. Introduction 

Benard (1900) demonstrated his experimental result on the onset of thermal 

instability in fluids, that is, a certain critical adverse temperature gradient 
must be exceeded before instability can set in and the motions which ensue on 
surpassing the critical temperature gradient have a stationary cellular character. 

Since then a number of investigations have been made both experimentally and 

theoretically. Among other things Rayleigh (1916) established a theoretical 
foundation for the Benard convection mentioned above. On the basis of the 

theory of perturbation Rayleigh showed that instability must set in when the 

non-dimensional parameter Ra, referred to as the Rayleigh number later on, 
exceeds a certain critical value Rc and that when Ra just exceeds Rc, a stationary 

pattern of motions must come to prevail. Rayleigh's work has been extended 
to many different cases by Jeffreys (1926) and others. As is known well, the 

critical Rayleigh number predicted theoretically is quite well coincident with 
the one obtained experimentally (e. g., Schmidt and Milverton (1935)). 

On the other hand some experiments of thermal instability in a shear 
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flow were performed by Graham (1933] and Chandra (1938]. They found that 

when a vertical shear is introduced into a fluid layer the chamber is filled 

with transverse rolls perpendicular to the direction of the flow and when the 

shear is increased the transverse rolls are replaced by longitudinal ones which 

are directed along the flow. The theoretical study of hydrodynamic stability 

of a stratified Couette flow was made by Taylor (1931], Case (1960], Dyson 

(1960] and others. They enunciated that a Couette flow with a stable stratifica

tion is hydrodynamically stable. The theory was extended to a Couette flow 

in an unstably stratified fluid layer by Kuo (1963]. He described the stability 

characteristics of the perturbations in terms of the Richardson number and 

the wave-number of the perturbation for the non-dissipative system. 

In this paper we deal with the perturbation equations in a more general 

form which contain the terms of friction and heat conduction. Since it is difficult 

to solve these perturbation equations analytically, a numerical method is presen

ted with use of a finite-difference approximation and is applied to study a 

thermal instability in the both types of flow with and without a shear. It is 

suggested that this method is applicable for investigating hydrodynamic insta

bility of a flow with a thermal stratification which may not be analytically 
tractable. 

2. Fundamental equations 

We consider a perturbation in a horizontal layer of fluid of depth h which 

Fig. 1. The vertical profile of velocity 
and temperature for the basic field and 
the coordinate system. 

t 
h 

is confined between two parrallel hori

zontal planes at z=O and z=h. As 

is shown in Fig. 1, in the undisturbed 

state the temperature T is constant 

over a horizontal plane and decreases 

linearly with z, while the velocity of 

basic flow u is horizontally unifrom 

and increases linearly with z, i. e., 

ii=Uo+Az. 

(2.1) 

(2.2) 

H r dT . h du ere = -dZ 1s t e constant lapse rate of the temperature and A =dZ is the 

constant vertical shear of the basic flow. Moreover T 0 and u0 are the tempera

ture and the velocity at z=O, respectively. The relation between the tempera
ture T and the density p is given by 

p=po{1+a(To-T)}, (2.3) 
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where Po is the density corresponding to the temperature T 0 and a is the 

thermal expansion coefficient. 

On making use of the Boussinesq approximation, the equations of motion, 

the thermal energy equation and the continuity equation may be written as 

au• au· 1 ap' - +u-+ Aw' = ----+ v/7 2u' at ax Po ax ' (2.4) 

(2.5) 

(2.6) 

(2.7) 

8u' 8v' aw' ax +a,y+az-=O, (2.8) 

where u', v' and w' are the velocity components of the perturbation in the x, 

y and z-direction. The x-axis is taken to be parallel to the basic flow u. Del 

notation 17 is the three-dimensional gradient operator, g is the acceleration due 

to gravitational force, P' is the departure of pressure from the hydrostatic 

pressure P(z), T' is the departure of temperature from the horizontal average 

T(z), v is the coefficient of kinematic viscosity and tC is the coefficient of 

thermometric conductivity. 

Differentiating (2.4) with respect to x and (2.5) with respect to y and 

adding, we obtain 

1 a _ a 
172

) aw' A aw' _ I 17 2p, \-ar+u 8X -V --az- ax--p; H (2.9) 

82 82 
by making use of (2.8) and r H 2 = ax2 + ay 2 • Applying 17 n2 to (2.6) and differ-

entiating (2.9) with respect to z and then eliminating P' from the resulting 

equations, we obtain 

(2.10) 

Rewriting (2.7), 

( gt +u a: -Kt7
2)T' =Tw'. (2.11) 

The equations (2.10) and (2.11) are the two final equations for w' and T', from 

which either one of the variables could be eliminated. 

At the top and the bottom boundaries of the layer under consideration is 

assumed neither the normal component of the velocity nor the tangential stress. 

Therefore 
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at z=O and h (2.12) 

-. 
with the aid of the continuity equat~on (2.8). In addition, the constant tempera-

ture are assumed to be maintained at both the boundaries: 

T'=O at z=O and h. 

Now we take solutions of the form 

w'=W(z)exp{i(kxx+kvy)+at}, ) 

T' =®(z)exp{i(kxx+kvY) +at}. J 

(2.13) 

(2.14) 

Substituting (2.14) into (2.10) and (2.11), we obtain the ordinary differential 

equations for W and ® with respect to z as follows : 

where k2=kx2+kv2
• 

{a+ikxu-v( ::2 -k2
) }( ::2 -k2)W + gak2®=0, 

TW -{a+ikxu-.~:( ::2 -k2)}®=0, 

(2.15) 

(2.16) 

Let us define the following non-dimensional quantities denoted by the su~ 

perscript * 

u=u*Ah, 

.1= J*vh- 2, 

z=z*h, 

8=8*Th. 

(2.17) 

Substituting (2.17) into (2.15) and (2.16) and arranging the resulting equations, 

we obtain 

{a*+ ik A*u*- (_!f__ - k*2) } (_!f__- k*2) W* + P -I R k*2Q* - 0 
X dz*2 dz*2 r a 0' - 0 (2.18) 

- W*+_(a*+ik * 1*u-*-P -l(_!f___k*2)}Q*-O ( x • r \ dz*2 0' - ' (2.19) 

where Ra is the Rayleigh number and Pr is the Prandtl number. These non
dimensional numbers are defined as 

In addition, the Richardson number defined by R;=gaT/A2 will be conveniently 
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introduced. It may be noted here that A*=(Ra!PrRYI2. The boundary condi

tions (2.12) and (2.13) are also replaced by 

d2W* 
W*=-d.?f2=0 

8*=0 

at z* =0 and 1, (2.20) 

at z* =0 and 1. (2.21) 

The set of the equations (2.18) and (2.19) is to be solved for W* and 8*, 

subject to the boundary conditions (2.20) and (2.21) for given Rayleigh number 

and Richardson number. 

3. Finite difference version 

The set of linear differential equations (2.18) and (2.19) may now be 

transformed to a system of algebraic equations by approximating the derivatives 

of W* and 8* by finite differences. The fluid layer will be divided vertically 

into n sublayers, each of which has thickness Llz with the adjacent levels 

designated from 0 at the bottom to n at the top of the fluid layer (see Fig. 2). 

~"1_::."n~"'"'"'~ 
t= n-1 
t .. n-2 

.1-K t --1..:; 2 
---i.=l 

~"~"~"~"~~ 

l 
h 

1 
Fig. 2. A schematic representation of the n-layer model. 

Use of the centered difference approximations for the derivatives in (2.18) 

and (2.19) at the l th level results in the following system of homogeneous 

algebraic equations: 

where 

-n4W1_ 2* + C1Wt-1* -DlWt* + CtWt+l*- n4Wt+2*+k*2Pr-1Ra<tih* =0, (3.1) 

Wt*+n2Pr-18*t-J-El8l*+n2Pr-18l+I*=O, (3.2) 

Ct= in2kx * A*ut* + 4n4 + 2n2k*2 + n2a*, 

D1 =ikx *, l*u,* (2n2 + k*2) + 6n4 + 4n2k*2 + k*4 +a* (2n2 + k*2), 

El =ikx* A*ut*+Pr-1(2n2+k*2) +a*. 
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The variables W,* and e,* denote those at the l th level, respectively. 

The conditions at the upper and the lower boundaries (2.20) and (2.21) are 

reduced to 

Wo*=Wn*=O, ') 
W*-t+Wt*=O, 

Wn-t*+Wn+t*=O, 

(3.3) 

and 
(3.4) 

The system of finite difference equations (3.1) and (3.2) brings about a set 

of simultaneous linear equations in 2(n-1) unknown variables, that is W,* and 

e,* at 1=1, 2,······, n-1. We can represent the set symbolically in the following 

matrix: 

(A-a*B)X =0, (3.5) 

where X is the vector of the eigenfunction solution for W* and 8*, and A and 

B are matrices with complex elements. Multiplying (3.5) by the inverse of B, 

we obtain 
(B- 1A-a*I)X =0, (3.6) 

where l is the unit matrix and B- 1 is the inverse of B. Provided that X is to 

be non-zero solution, the determinant of matrix (B-•A-a*I) must vanish, i. e., 

JB- 1A-a*IJ =0 (3.7) 

This yields the so-called frequency equation for the frequency a*, the value of 

which can be calculated for given basic state of the fluid layer and wave length 

of the perturbation superposed on it, etc. Note that real value of a* does not 

signify a frequency but an amplification rate of amplitude of perturbation. The 

eigenvector for W* and 8* can be obtained, in turn, by use of the eigenvalue. 

Since we are concerned with the stability characteristics, the amplification rate 

a* will be primarily discussed in the present study. A series of computations 

were made for a nmber of different values of Ra, Ri, wave length and so forth. 

4. Feasibility of numerical method 

In order to estimate the accuracy of the numerical solution, it is convenient 

to test its performance on known analytic solutions. The results of several 

such tests are presented here to demonstrate quantitatively the truncation 

errors of a numerical model and the effects of varying the vertical resolution. 

Let us consider one of the simplest cases in which inviscid and non-con

ducting fluid without a basic flow is assumed. Setting u=JJ=.t=O in (2.15) and 

(2.16) and eliminating e from the resulting equations, we obtain 
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(4.1) 

where 

Making use of the boundary condition W(O) =W(h) =0, the solution of (4.1) 

may be expressed as follows : 

(m=l, z, ...... ), (4,2) 

and 

Fig. 3 shows the dependence of the amplification rate of perturbation upon 

the vertical mode denoted by m. For convenience the ordinate of Fig. 3 indicates 

a' which corresponds to the amplification factor of the perturbation defined by 

a'=~1-a' 
gar 

1 
(4.3) 

In this case k2h2 = 1 is assumed. As is seen in Fig. 3, the amplification rate 

decreases rapidly with an increasing vertical mode of the perturbation denoted 

by m. In general, the number of roots obtained from the numerical model 

increases as the number of subdivi

sion of a fundamental layer increases, 

since the order of the matrix increases 

with an increasing vertical indices. 

There is frequently an infinite number 

of eigenvalues associated with the 

analytic solution of a boundary value 

problem. Thus it would appear that 

increasing the number of subdivisions 

permits more roots to appear, parti

culary as additional nodal points. It 

is evident from Fig. 3 that the lowest 

mode m = 1 is one which maximizes 

the amplification rate. This provides 

one of the causes by which numerical 

method adopoted here is made feasi

ble. 

Fig. 4 shows that the accuracy of 

100 

/ 

rr 

10 

lo 2 4 6 8 10 
m 

Fig. 3. The dependence of the amplifica
tion factor a' on the vertical mode m. 
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the amplification rate calculated 

by the numerical method varies 

with the number of sublayers for 

different values of vertical mode 

m. The relative error of the nu

merical solution is taken in the 

ordinate in units of per cent and 

the number of sublayers is in the 

abscissa. A solid line indicates 

variation of accuracy with the 

number of sublayers for the re

spective vertical mode of perturba

tion. Apparently numerical solu

tion for each mode monotonically 

approaches to its exact one as the 

number of sublayers increases, 

while an increase of the number 

of sublayers yields an increased 

number of higher modes with 

lower accuracy. As far as the 

lowest mode is concerned, we can 

expect to obtain a considerably 

accurate solution using rather a 

small number of subdivisions of 

a fluid layer. 

5. Results 

(1) No basic flow 

Yo 
8 
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80 

70 
b.u-' 
Oi/ 

60 
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40 

30 

20 

10 

oL_~~~--~~========~ 
2 3 4 5 6 7 8 9 10 

.'Tl 
Fig. 4. The dependence of relative error Ja' 

ae' of the amplification factor calculated 
by the numerical method on the number 
of sublayers for various values of vertical 
mode m. The number added to each curve 
denotes the value of the vertical mode m. 

Prior to proceeding to the discussion of the thermal convection in a shear 

flow, we will consider B€mard cell convection in a viscous fluid layer in the 

absence of a basic flow. Assuming u=O in (2.15) and (2.16), we obtain the 

same equations as derived by Rayleigh (1916]. Therefore the results based on 

the numerical method may be compared with those obtained by Rayleigh. 

The values of the critical Rayleigh number R, calculated by the numerical 

method are plotted for different numbers of sublayers in Fig. 5. As is seen 

in Fig. 5, the calculated value of R, tends to approach the exact one, that is 

R,=657.5, as the number of sublayers increases. For instance, when the 

number of sublayers is 8, the calculated value of R, is 641 which results in 

the relative error of about 2.5 per cent. Fig. 6 shows that the relative error 
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Fig. 5. Variation of critical Rayleigh 
number Rc calculated by the numerical 
method using the number of sublayers. 
The solid line represents the one obtained 
numerically and the broken line represents 
the one obtained from the exact solution. 

Fig. 6. Variation of relative error ila/ae 
of the amplification rate calculated by 
the numerical method with the number 
of sublayers in the absence of basic 
flow. 

16 

14 

12 

10 
Ra 

( X I o) 8 

stable 
6 

4L--L--~~---L--L-~ 

0 2 3 4 5 6 
k~ 

Fig. 7. Instability diagram for Rayleigh number Ra 
and dimensionless wave-number k*. Solid lines and 
broken lines are isopleths of dimensionless amplifica
tion rates obtained from the numerical method and 
the exact solution respectively. 
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of the amplification rate of perturbation decreases with an increasing number 

of sublayers. An inspection of Fig. 6 indicates that the relative error may be 

less than 1 per cent for the multi-layer model subdivided into more than seven. 

Additional accuracy, if required, could be obtained by increasing the number 

of sublayers. The eight-layer representation will be employed in the following. 

Now we shall examine the stability characteristics of perturbations which 

are obtained by making use of numerical method. Fig. 7 shows dependence 

of the amplification rate of perturbation on the non-dimensional wave-number 

and the Rayleigh number. Solid lines are the isopleths for different values of 

the amplification rate. The neutral curve labelled with 0 separates the unstable 

domain in the upper part of Fig. 7 from the stable one in the lower. The 

respective curves for the exact solution are represented by broken lines in 

Fig. 7. The calculated values of the amplification rate agree well with the exact 

ones. With regard to the critical Rayleigh number, it is indicated that the 

calculated value, 641, is a close approximation to the exact one, 657.5. The 

corresponding non-dimensional wave-numbers are 2.2 for both. 

(2) Basic flow with a constant vertical shear 

The investigation of primary concern to us deals with an influence of a 

vertical shear flow on a thermal convection. Since the Richardson number 

Ri is defined as the ratio of the static stability to the square of the vertical 

shear, the vertical shear can be measured by the Richardson number when the 

static stability is fixed to be constant. It is assumed that the Prandtl number 

Pr=7 which is nearly equal to the one for water at the standard state and 

Ra = 10• in all calculations unless specifically stated otherwise. 

Fig. 8 demonstrates variation of the amplification rate a* with the wave 

number k* for different values of Ri. Here kv!kx is fixed as unity. As is seen 

in Fig. 8, a smaller value of R, results in a smaller value of the amplification 

rate and in diminishing an unstable wave domain. The maximum of the 

amplification rate shifts toward a smaller wave-number by decreasing the 

value of Ri. As the value of R, increases, the amplification rate curve tends 

to approach the one for Ri = 105 which actually may be taken for the case 

without a shear. Moreover an inspection of Fig. 8 indicates that the amplifica

tion rate of an unstable perturbation is more seriously influenced by an increas

ing wave-number. This suggests that the vertical shear is more effective in 

suppressing a perturbation of shorter wave length. 

Another characteristic of the perturbation will be discussed based on Fig. 

9 in which the amplification rate versus the ratio between the wave-numbers 

in the x and the y directions kv!kx is illustrated for three different values of 
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5 

Fig. 8. Variation of dimensionless amplification rate with dimensionless wave
number k* for various values of the Richardson number. The number 
added to each curve denotes the value of the Richardson number. 
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ky/kx 
Fig. 9. Variation of dimensionless amplification rate with the ratio of the 

wave-number in the direction perpendicular to the basic flow to the one in 
the direction parallel to the basic flow. The number added to each curve 
denotes the value of the Richardson number. 
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R,. Here k* is fixed as unity. A decreasing value of R, results in a reduction 

of the amplification rate of a perturbation with transverse mode for which 

kv/kx<f{). For instance, a perturbation of the ratio kv!kx less than 0.6 is unable 

to grow in the case of R, =0.5. On the other hand no difference in the ampli

fication rate can be found among the cases where there are different values 

for R, for a large value of k~!kx. Since a small Richardson number corresponds 

to a large vertical shear of the basic flow, it is evident that the suppressing 

influence of vertical shear is effective in the transverse-mode perturbation 

while it is not effective in the longitudinal one. Thus it is implied that the 

longitudinal convection rolls favour occurrence in a thermally unstable fluid 

layer with a vertical shear. The implication agrees with the theoretical results 

obtained by Kuo (1963) and Asai (1964) and also with the experiments made 

by Graham (1933) and Chandra (1938) except in the case of a comparatively 

small shear where transverse rolls were observed. 

Fig. 10 shows the dependence of the amplification rate of perturbations 

on the Richardson number R, and the non-dimensional wave-number k*. Again 

k". kx is assumed to be unity. It is seen that the neutral curve labelled 0 shows 
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k. 
Fig. 10. Instability diagram for the Richardson number 

R; and dimensionless wave-number k*. The solid lines 
are isopleths of the dimensionless amplification rate. 
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two cut-off ends to instability, one at a small wave-number and the other at a 

large wave-number. Both of them are due primarily to a stabilization of 

viscosity and conductivity of the fluid. In addition it should be taken into 

consideration that the effect of a static instability diminishes at a smaller 

wave-number while a suppressing effect of a vertical shear increases at a 

larger wave-number. As is noticed in Fig. 10, the amplification rate of a small 

wave-number is almost independent of the Richardson number. In other words 

the perturbation of a small wave-number would be free from an effect of 

vertical shear. Thus the maximum amplification rate appears at 1.5~3.5 of 

the non-dimensional wave-number which shifts slightly toward its larger value 

with an increasing value of R,. All the perturbations are stable where the 

value of R, is less than about 0.25. 

6. Conclusion 

The stability characteristics of a constant shear flow in an unstably strati

fied fluid layer is studied by making use of the numerical solution for a lineari

zed system of the Boussinesq equations. The results obtained above will be 

summarized in the following. 

(1) The numerical method employed here provides the better approxima

tion to the solution as the number of sublayers used for vertical finite-differenc

ing is increased. A good accuracy is expected for perturbation of the lowest 

mode, which would play an essential role in the stability characteristics, even 

for a rather small number of subdivisions. 
(2) In general a constant vertical shear of the basic flow exerts an influence 

on reducing development of a perturbation. 

(3) A stabilization of the vertical shear is more effective in a perturbation 

of shorter wave length. Hence an appearance of the most unstable perturba

tion shifts toward a longer wave length with an increasing shear. 

( 4) The suppressing effect of the vertical shear is much more striking on 

a transverse perturbation when compared with a longitudinal one. This gives 

a preference for the longitudinal convection rolls in an atmosphere with a 

vertical shear. 

Remarks 

The Rayleigh number Ra has been fixed as 104 here. In this case we are able 

to find only one unstable wave which was examined in the preceding sections. 

In order to investigate the case with more unstable stratification we set a 

much larger value of Ra such as 105• There appeared multiple unstable waves 

which may be classified into two types. One is the unstable wave which 

travels at the mean velocity of the basic flow, while the others propagate at 
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a velocity different from the former. Therefore we must examine the details 

of structure and energy conversion of these unstable waves to clarify their 

dynamical features. Mo.reover, to study the hydrodynamic stability character

istics for an unstably stratified fluid layer in which the basic flow has an 

arbitrary velocity profile, we shall apply the numerical method employed here. 

We shall report the results of these findings in a separate paper. 
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