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Abstract 

A theoretical investigation is made on the spacing of convective cloud bands 

aligned parallel to the general wind. The primary concern to be discussed here 

deals with the ratio of the spacing of the bands to their depth as they are fre­

quently observed in the atmosphere, which is taken here to be much larger than 
the one depending on Rayleigh's theory of thermal convection. 

A preferred mode of convective cloud bands is determined so as to maximize 

the upward heat transport, based on the cellular cumulus model proposed by Asai 

[1967] for a thermal convection in a conditionally unstable atmosphere which is 

unstable for moist ascending motion and stable for dry descending motion. The 

result obtained suggests that the spacing of bands being 10 times or more larger 

than the depth may be realized in the atmosphere as well as that comparable to 
the depth. 

1. Introduction 

A streaked or banded structure of clouds has been often observed on the 

atmosphere. Recent observations from aircrafts and by radar and meteorological 

satellites make it possible to analyze the distribution of clouds quantitatively 

in a large area of the atmosphere. 

Of the various types of clouds we are here concerned only with convective 

clouds which are likely to form in a conditionally unstable atmospheric layer 

heated from below. Quite frequently photographs taken from meteorological 

satellites off the east coast of the continents under the influence of the winter 

monsoon have shown a remarkable band structure of clouds. 

The observations made so far indicate that convective clouds are aligned 

parallel to the vertical wind shear (e. g., Asai (1966], Miyazawa (1965], Tsu­

chiya and Fujita (1967]). This conclusion agrees with the laboratory experi­

ment (cf. Brunt (1951]) and the theory (Kuo (1963], Asai (1964], Asai and 

Nakasuji (1968]) which show the Benard convection cells in the fluid layer 

heated from below are replaced by longitudinal rolls parallel to the flow in 

which shear is introduced. 

With regard to the spacing of cloud bands, no definite conclusion has been 
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obtained. The convection theory established by Rayleigh (1916] results in the 

spacing of convection rolls two to three times larger than the depth 9f the 

convection layer. This is also supported by the laboratory experiment mentioned 

above. The spacing of convective cloud bands observed in the atmosphere, 

however, ranges from a spacing of the, same order to one order of magnitude 

larger than their depth. A possible explanation for this will be presented in 

this paper and will be based on the cellular cumulus convection model proposed 

by Asai (1967]. 

2. Model and governing equations 

Basing his conclusions on the perturbation theory of thermal convection 

in a conditionally unstable atmosphere, Kuo (1961, 1965] suggested that the 

horizontal scale of a convection cell might be one order larger than the vertical 

scale. A definite size ratio, however, could not be obtained by relying \In the 

perturbation theory. 

In this paper the cellular cumulus model proposed by Asai (1967] will be 

applied to convective cloud bands in the atmosphere, and will be restricted to 

the spacing of the cloud bands without regard to their direction with respect 

to a prevailing wind. 
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Fig. 1. A simplified model of convective cloud bands parallel to y-axis. 
The solid lines with arrows indicate streamlines in x-z plane. The 
stippled area represents the ascending region in which clouds are assumed 
to form. 

As is shown in Fig. 1 Cartesian coordinates (x, y, z) are designated so 

that the convective cloud bands are parallel to y-axis. Thus we deal with a 

convective motion in a x-z plane averaged along the y axis which is confined 

in a rectangular domain with the depth d and the width b. The equations of 

motion, the equation of mass continuity and the first law of the thermodyna­

mics may be expressed as follows : 
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(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Here w and u are the vertical and the horizontal (normal to the band) com­

ponents of the velocity averaged longitudinally. T and. (} are the temperature 
and the potential temperature averaged longitudinally. e is the ~onstant standard 

value of potential temperature, g is the acceleration due to gravity, and p0 

denotes a mean dep.sity of air defined by the hydrostatic equation, 

BPo -- +pog=O az ' (2.8) 

where Po denotes a horizontally averaged pressure~ Deviations of pressure and 

potential temperature from their horizontal averages are represented by p* and 
(}* respectively. Cp denotes the specific heat of dry air at constant pressure; 

L is the latent heat of condensation ; and M is the rate of condensation of water 

vapor. The definitions (2.5) and (2.6) for Fw and Fu express the vertical and 
horizontal Reynolds dissipations, while Fo denotes the rate of heating due to 

eddy motion. Tilde and prime notations indicate longitudinal average and the 
deviation from it, respectively. We assume that the velocity components normal 

to the boundaries vanish, i.e. , 

w=O at z=O and z=d,} 
· u=O at x=O and x=b. (2.9) 

Furthermore no eddy transport of momentum and heat through the boundaries 

is assumed. 

A7;;' =0 at z=O and z=d, } 
A"7il'' =0 at .x=O and x=b. 

where A' stands for one of variables w', u' and (}'. 

(2.10) 
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If we follow the method used by Asai (1967J and apply the circulation 
theorem to a unit cell of convective motion in x-z plane, we may reduce the 
equations of motion (2.1) and (2.2) with the aid of the equation of mass conti­
nuity (2.3) and the boundary conditions (2.9) and (2.10) to the following: 

gt <wa>=kt<t1(}>-kz<Wa> 2
• (2.11) 

Here <wa> and <tl(}> represent the average vertical velocity of the updraft 
region and the average excess of the potential temperature in the updraft region 
from that in the descending region. 

_ g 1 (1-a) fa ) 2 1-1 

kt=J::l (1-a) i1+ (1 ) -d I o t fl. -fl. a . , , 

k = a {1+ (1-a) a (_E__\4~{1+ _jl-a) {_!!_)z}-t 
z-a2(1-a) 2 f1. 3 (l-f1.) 3a d 1 J fl. ( l-fl. )a\d 

Here a==-a/ b which is the ratio of the width of the ascending region to that of 
the cell, while fl."'='-C/d which is the ratio of the thickness of the inflow layer to 
that of the whole layer. a 2 is a kind of entrainment constant. The detailed 
derivation of (2.11) is referred to Appendix A in this paper. 

On the other hand to find the excess potential temperature when condensa­
tion of water vapor is assumed to take place only in the ascending motion and 
no evaporation is taken into account, the thermodynamic equation (2.4) is 
transformed to the following equation. 

where 

6 
-a-t <tJ(}> =ka<Wa> -k4 <Wa> < tl(}>. a . 

a
2 

{ 1+ 2(1-a) !!d·- }, 
a (l-a) 2 a 2 

S _ Of/o b=az-· S _ Of/eo d ,_ Sa a= - -az an u=s; 

The derivation of (2.12) is also shown in Appendix B. 

3. Results 

(2 . 12~ 

The set of equations (2.11) and (2.12) has a steady state solution as follows: 

<w.> = ( !:!: r2. 1 
<tl(}> =-Z: · f 

(3.1) 

The other solution, <w.> = <tJ(}> =0, is trivial and is not considered here. 
Since upward heat flux through a horizontal unit area per unit time, H, can 
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be expressed by 

H=Cppoa<wa> <J(}>. (3.2) 

substitution of the solution (3.1) into (3.2) leads to the equation 

( 
k 1 )112( ka )3/2 

H = Cppoa k; 7i;. . (3.3) 

In the following we employ the selection hypothesis that convection realizes 

so as to maximize the rate of upward heat transport. Thus one can determine 

the preferred mode of convection which would prevail in a conditionally unstable 

layer. 

Fig. 2 shows the variation of the 1 ofV""--.--,--.-.,......-,.......,rr--rr--.--,-,"""T""T......, 

upward heat flux with the spacing of 

the convective cloud bands, represen­

ted by the ratio of the spacing 2b to 

the thickness of the convection layer 

d, for different values of o. The para­

meter o defined in Section 2 as the 

ratio of the static stability for the 

moist-adiabatic ascending motion to 

that for the dry-adiabatic descending 

motion is appropriate for dealing with 

cumulus convection in a conditionally 

unstable atmosphere. As the static 

stability decreases from the moist­

adiabatic lapse rate to the dry-adiaba­

tic one, the value of o increases from 

zero to infinity. The value of geome­

trical parameter a/ d is assumed here 

to be 1/2, since it is regarded as the 

most efficient mode of a convection 

c ., 
..c: 

O.l 1-1 --'--~-'--'-....I..-L'-'1-'-0--'----'-....I-J....L.J.-""=1 00 

2b/d 
Fig. 2. Upward heat flux, H/Cppo in unit 

of deg em sec-1 against 2b/d for o=0.2, 
0.3 and 2.0. 

cell to transport heat upward for the case of a 2 "=;:0.1 which is adopted throughout 

the present work (cf. Asai (1967]). As is seen in Fig. 2, there exists a 

preferred spacing of convective cloud bands to maximize the upward heat 

transport for each value of o. It is also shown that the spacing of the bands 

decreases with an increase in the value of o. The circumstances are summari­

zed in Fig. 3 which illustrates the dependence of the preferred spacing 2b/d 

upon the static stability ratio o. The ratio of the spacing to the depth approaches 

a value of 2~3, as the static stability ratio increases and this value is nearly 

equal to that of the Rayleigh convection cell in an absolutely unstable layer. 
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Fig .. 3. Dependence of a preferred ratio of the spacing 
of convective cloud bands to their d~pth upon tpe ~Jtatic 
stability ratio. 

On the other hand, spacing increases as the stability ratio decreases. For 

instance, the value of 2b/d is around 20 for o=O.l. This means a spacing of 

20 km for a depth of convection layer of 1 km. It has been observed that the 

static stability ratio in the atmosphere ranges mostly from 0.1 to 2. Therefore 

we can conclude that a preferred mode of cumulus convection in a conditionally 

unstable atmosphere may bring about a spacing of convective cloud bands even 

one order of magnitude larger than their depth, 
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APPENDIX A 

The derivation of the equation (2.11) will be made in the following. Elimi­

nating the pressure term from (2.1) and (2.2) by cross differentiation and using 

the continuity equation (2.3), we obtain the equation, 

~+_Q_C u) +_Q_C w) _ __ g_ _ _§_{)_*__ _ aFw aFu 
8t ax r; 8z r; - e ax ax +az-. (A.1) 

where r;= ~u - ~w, i.e. they-component of vorticity. Integrating (A.l) over a oz ox 
unit cell from x=O to x=b and from z=O to z=d, (A.l) may be reduced to 
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- a f . g ~d . x-b ~d x•b ~b z•d 
-at Vtdl=- ~;;~ CO*J dz- CFwJ dz+ CFuJ dx, 

o o x ... o o x-o o z-o 
cA..2) 

with the aid of the boundary conditions (2.9). And Vt is the velocity component 

parallel to the boundary of the cell. In order to arrange (A.2) we need to 

derive some kinematical relationship among the velocity components and the 

geometrical parameters relevant to convection roll under consideration. 

Averaging the continuity equation (2.3) over the horizontal and vertical 

cross-sections respectively with the aid of the boundary conditions (2.9), we 

obtain the equation 

O'Wa+ (1-a)wb=O, 

puc+ (1-p)Ud=O, 

(A.3) 

(A.4) 

where a=a/b and p=c/d. Wa denotes the horizontal average of vertical velocity 

for the ascending region and wb for the descending region, while Uc denotes 

the vertical average of horizontal velocity for the lower inflow layer and ud 

for the upper outflow layer. For the sake of simplicity a top hat model is 

assumed here in which both ascending and the descending velocities are inde­

pendent of the x-coordinate. Hence the following relationship may be derived : 

(A.5) 

_ a< a < Uc= -'--:-c Wa> =- pd Wa> · (A.6) 

Here fie denotes the average of Uc from x=O to x=b with respect to x-coordinate. 

Using the relations (A.3), (A.4), (A.5) and (A.6) in addition to the boundary 

conditions (2.10), each term of (A.2) will be transformed in the following. 

~ ,., .. f 
1
Vtdl= ( <wa>- <wb> )d+ (ud-uc)b 

= l~a {1+ a;~;~~) ( ~ r}<wa>, (A.7) 

~
d x-b 
CO*J dz=( <O*a>- <O*b> )d 

o x-o 

=d<JH>. (A.8) 
"""-' 

. d r•b { 1 ~a aw~' 1 \b 8w'u' dx}d 
( (Fu.J dz= - <-ax >dx- b-a)a < ax > 
)0 x-o ' a 0 

=--d-<~'>x-a, 
a(1-a) 

(A.9) 

~_b z•d -{-1 ~cau~' dz--1_(da;twr dz}b 
CFuJ dx- c az d-dc az 

.o •-o o 

a (~') = )d U W Z•C• 
O'p(l- f.l 

(A.10) 
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Here we are applying the mixing-length hypothesis to momentum exchange in 

(A.9) and (A.10), i.e., 

<~'> x-a=- (1x2
1 a~~>i a~~>)x-a 

(1:,)2 1 / -.....2 
= a (1-u)2 .._wa/ ., (A.ll) 

( 21. )
2 

( - - )Z =- d Ud-Uc 

(
21.)2 1 (a\2

/ ....,. 2 
=- d .u2(1-.u)2 {[; .._wa...- ·• (A.12) 

where lx and 1. denote the mixing lengths in the x and the z directions, 

respectively. Depending on Asai (1967], we assume 

(A.13) 

where a2 is regarded as an entrainment constant. Using (A.ll), (A.12) and 

(A.13), (A.9) and (A.10) will be rewritten as follows: 

(A.14) 

~:(FuJ:~:dx=- u.uscf~.u) 3 ( ~ r <wa>
2

• 
(A.15) 

By substituting (A.7), (A.8), (A.14) and (A.15) into (A.2), we may obtain the 

equation (2.11). 

APPENDIX B 

The equation (2.12) evolves from the following. By averaging the thermo­

dynamic equation (2.4) over the ascending region and the descending region 

respectively, and by making use of the boundary conditions (2.9) and (2.10) 

we obtain the equation 

_j_<Oa>+__l_~<Ou>+<fii:t>} = CL <TO M>a, (B.1) at a l x-a p 

_j_<Ob> __ 1_{<0u> + <ffU'>} = CL < TO .M>b· (B.2) 
8t b-a x-a p 

By subtracting (B.2) from (B.1), we obtain the equation 

{ <d{}> =- a(1~u) { <Ou> + <fiU'>} ,..a 

+_f_((_LM) - (_!LM) "'-/· 
Cp , T a T b 

(B.3) 
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As in (A.ll) the eddy exchange of heat through the lateral cloud boundary 

may be expressed as 

And 

<(}u>x-a=f.!.{}beUc, x-a+(l-f.l.)/ladUd, x~a 

2a 
=----;r- <wa> ((}ad -(}be) 

= 
2
J-<wa> { <tl(}> + g : 0 

}. (B.5) 

where 8art denotes the average potential temperature for the ascending cur­

rent in the upper outflow layer and (}be for the descending current in the lower 

inflow layer. No variation in the static stability is taken into account. The 

non-adiabatic heating is assumed to be due only to condensation of water vapor 

associated with the ascending current in the cloud band and evaporation which 

may occur in the cloudless region is not considered, that is, 

Ma=- (w aaq, ) and Mb=O, 
Z . a 

(B.6) 

where q, is the saturation specific humidity. Using the definition of the equi· 

valent potential temperature (}., 

(B.7) 

and hence 

_f_/ ( _§-M) -(_j}_M) "-=/ w ( BOa _ B8ea )"-
Cp ".., T a T b/ ".. a az az / 

= <w > ( B(}o _ B8eo ) 
a az az ' (B.8) 

Substituting (B.4), (B.5) and (B.8) into (B.3), we can obtain the equation 
(2.12). 
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