<table>
<thead>
<tr>
<th>Title</th>
<th>OBSERVATIONS OF THE EFFECT ON THE TIDAL STRAIN OF TORSIONAL TYPE DEFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>OZAWA, Izuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Special Contributions of the Geophysical Institute, Kyoto University (1969), 9: 91-96</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1969-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/178568</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
OBSERVATIONS OF THE EFFECT ON THE TIDAL STRAIN OF TORSIONAL TYPE DEFORMATION

By
Izuo Ozawa
(Received Nov. 11, 1969)

Abstract
The formulas for the observable quantities of the tidal strains of the torsional type are set out in this paper.
It is also shown that through observations of the phase lags of the tidal strain, the torsional type deformation can be detected.

1. Introduction
The observable quantity of tidal deformation usually has been discussed as being deformation of the spheroidal type only, on the assumptions that the earth’s shape is a complete sphere and that the physical properties of the earth’s material are distributed symmetrically in respect to the earth’s center. Also included these assumptions is that there is no moment in the tide generating force.
The real earth, however, has a non-symmetrical shape and the distribution of elasticity in the earth is not a function of central-distance only but also of latitude and longitude. Consequently, its tide generating force has some moment components.
The author (Ozawa (1966)) has obtained observable strain components of deformation of the spheroidal type in the earth tide. In this paper he discusses those of the torsional component.
According to his investigations, by superposing torsional type deformation onto the spheroidal type the deviation of amplitude is not large, but phase shift is most effective. Therefore, the observation of phase lag can be utilized to detect the existence of torsional type deformation in the earth tide.

2. Theoretical calculations
Let us consider one kind of observation of the earth tide, for example, tilting, gravity-acceleration change, extensioning and so on. Using one kind of observation, we are able to classify the tidal components only periodically as
fortnightly, diurnal, semi-diurnal and so on. There components of the potential of the tide generating force, \(W \), may be approximately summarized as follow:

\[
W = k'M(A_0(P_i(\cos \delta) \cdot P_i(\cos \theta)) + A_1 \sin 2\delta \sin 2\theta \cos(t + \phi) + \sum_{i=2} A_i \cos^i \delta \sin^i \theta \cos i(t + \phi)) \]

(1)

where \(A_0 \propto (r^2/c^3) F_0 \), \(A_1 \propto (r^2/c^3) F_1 \), \(A_i \propto (r^i/c^{i+1}) F_i \), \(P_i(\cos \delta) \) and \(P_i(\cos \theta) \) are the Legendre functions of \(i \) degrees in respect to \(\cos \delta \) and \(\cos \theta \), respectively. \(F \), \(F_1 \) and \(F_i \) are constants in respect to the component-tides, and \(M \), \(k' \), \(\delta \), \(\theta \), \(t \), \(\phi \), \(r \) and \(c \) are the mass of the heavenly body, for example the moon or the sun, the gravitational constant, the declination, the colatitude, the hour angle of the pending heavenly body at the observatory, the eastern longitude of the observatory, the distance from the earth's center to the observatory, and the distance from the center of the heavenly body to the earth's center, respectively.

The general expressions of the displacement components \(u_r \), \(u_\theta \) and \(u_\phi \) of the earth's deformation are shown as (Alterman et al., [1959]),

\[
\begin{align*}
 u_r &= \sum_i \frac{H_i(r)}{g} W_i, \\
 u_\theta &= \frac{\sum_i [L_i(r) \frac{\partial W_i}{\partial \theta} + N_i(r) \frac{\partial W_i}{\partial \phi}]}{g \sin \theta \frac{\partial}{\partial \phi}}, \\
 u_\phi &= \frac{\sum_i [L_i(r) \frac{\partial W_i}{\partial \phi} - N_i(r) \frac{\partial W_i}{\partial \theta}]}{g \sin \theta \frac{\partial}{\partial \theta}},
\end{align*}
\]

(2)

where \(H_i(r), L_i(r) \) and \(N_i(r) \) are functions of \(r \) only, and \(g \) is the mean value of the acceleration of gravity at the earth's surface.

Using (1), (2) and the relations between the strain elements, \(e_{rr}, e_{\theta \theta}, e_{\phi \phi}, e_{\theta \phi}, \) and the rotational elements \(\omega_r, \omega_\theta, \omega_\phi \), of the components of torsional type deformation as follows,

i) Boundary condition at the earth's surface

\[(i-1)N_i(r) + r \frac{\partial N_i(r)}{\partial r} = 0.
\]

(3)

ii) Strain components at the earth's surface,

a) long period's tide (case of \(i=2 \))

\[
\begin{align*}
 e_{rr} &= e_{\theta \theta} = e_{\phi \phi} = 0, \\
 e_{\theta \phi} &= -\frac{3}{ag} k'MA_0 P_2(\cos \delta) N_2(\theta) \sin^2 \theta, \\
 2\omega_r &= \frac{1}{ag} k'MA_0 P_2(\cos \delta) N_2(\theta) (3 \cos^2 \theta - 1), \\
 2\omega_\theta &= -\frac{3}{2ag} k'MA_0 P_2(\cos \delta) N_2(\theta) \sin 2\theta, \\
 2\omega_\phi &= 0,
\end{align*}
\]

(3)
b) diurnal tide

\[e_{rr} = 0, \]
\[e_{\theta\theta} = - \frac{2}{a^g} k'M A_1 N_2(a) \sin 2\delta \sin \theta \sin (t+\phi), \]
\[e_{\phi\phi} = - \frac{2}{a^g} k'M A_1 N_2(a) \sin 2\delta \sin \theta \sin (t+\phi), \]
\[e_{\theta\phi} = - \frac{2}{a^g} k'M A_1 N_2(a) \sin 2\delta \sin 2\theta \cos (t+\phi), \]
\[2\omega_r = \frac{4k'M}{a^g} A_1 N_2(a) \cos 2\delta \cos 2\theta - \cos \theta \cos (t+\phi), \]
\[2\omega_\theta = 0, \]
\[2\omega_\phi = 0, \]

\[\cdots \cdots (4-2) \]

c) semi-diurnal tide

\[e_{rr} = 0, \]
\[e_{\theta\theta} = - \frac{2k'M}{a^g} A_2 N_5(a) \cos^3 \delta \cos \theta \sin 2(t+\phi) \]
\[e_{\phi\phi} = \frac{2k'M}{a^g} A_2 N_5(a) \cos^3 \delta \cos \theta \sin 2(t+\phi) \]
\[e_{\theta\phi} = \frac{2k'M}{a^g} A_2 N_5(a) \cos^3 \delta \sin^2 \theta \cos 2(t+\phi), \]
\[2\omega_r = - \frac{2k'M}{a^g} A_2 N_5(a) \cos^3 \delta \cos 2(t+\phi), \]
\[2\omega_\theta = - \frac{4k'M}{a^g} A_2 N_5(a) \cos^3 \delta \cos \theta \cos 2(t+\phi), \]
\[2\omega_\phi = - \frac{k'M}{a^g} A_2 N_5(a) \cos^3 \delta \sin \theta \sin 2(t+\phi), \]

\[\cdots \cdots (4-3) \]

d) i-th diurnal tide

\[e_{rr} = 0, \]
\[e_{\theta\theta} = - i(i-1) \frac{k'M}{a^g} A_i \cos^i \delta \sin^{i-2} \theta \cos \theta \sin (t+\phi), \]
\[e_{\phi\phi} = i(i-1) \frac{k'M}{a^g} A_i \cos^i \delta \sin^{i-2} \theta \cos \theta \sin (t+\phi), \]
\[e_{\theta\phi} = \{i^2 \sin^{i-2} \cos^3 \theta - i \sin^i \theta - i^2 \sin^{i-2} \theta \} \]
\[\times \frac{k'M}{a^g} \cos^i \delta A_i N_i(a) \cos i(t+\phi), \]
\[2\omega_r = \{-i^2 \sin^{i-2} \cos^3 \theta - i \sin^i \theta - i^2 \sin^{i-2} \theta \} \]
\[\times \frac{k'M}{a^g} A_i N_i(a) \cos^i \delta \cos i(t+\phi), \]
\[2\omega_\theta = 2i \frac{k'M}{a^g} A_i N_i(a) \cos^i \delta \sin^{i-1} \theta \cos \theta \cos i(t+\phi), \]
\[2\omega_\phi = -2i \frac{k'M}{a^g} A_i N_i(a) \cos^i \delta \sin^{i-1} \theta \sin i(t+\phi), \]

\[\cdots \cdots (4-4) \]
iii) Tidal change of latitude. The tidal change of latitude consists of the component, \(d\theta_1 \), due to the change of the vertical, and that of \(d\theta_2 \) due to horizontal displacement in the spheroidal type of deformation. However, it consists only of the component \(d\theta_2 \), in the torsional type of deformation as follows:

\[
d\theta_2 = \frac{\mu a}{\alpha} = \sum_I \frac{N_i(a)}{ag \sin \theta} \frac{\partial W_i}{\partial \phi}.
\]

\[
\text{(5)}
\]

a) long period's change (case of \(i = 2 \))

\[
d\theta_2 = 0,
\]

\[
\text{(5-1)}
\]

b) diurnal tide

\[
d\theta_2 = -\frac{k' N_2(a)}{ag} M A_1 \sin 2\delta \sin 2\theta \sin(t + \phi),
\]

\[
\text{(5-2)}
\]

c) semi-diurnal tide

\[
d\theta_2 = -\frac{2k' N_2(a)}{ag} M A_2 \cos \delta \sin^2 \theta \sin 2(t + \phi),
\]

\[
\text{(5-3)}
\]

d) \(i \)-th-diurnal tide

\[
d\theta_2 = -\frac{i k' N_2(a)}{ag} M A_1 \cos^i \delta \sin^i \theta \sin i(t + \phi).
\]

\[
\text{(5-4)}
\]

According to these formulas and those of the spheroidal type deformation (Ozawa [1957], [1966]), we find that the phase differences between the phase angles of the torsional deformation and those of the spheroidal one are \(\pm 90^\circ \). Now, the amplitude of torsional deformation is far smaller than that of spheroidal one, and so the phase shift by superposing the torsional deformation onto the spheroidal one is approximately largest.

3. Considerations

We should estimate not only the direct effects caused by astronomical tides, but also the indirect effects caused by oceanic tides and atmospheric tides on observed tidal strains. We can easily eliminate the effects (Ozawa [1967]) caused by atmospheric tides, but we still have many difficulties in eliminating the effects caused by oceanic tides. The reasons why elimination of the effects caused by oceanic tides is difficult, are that we still have no precise data for oceanic tides which are extremely complex, and that the load tide of the real earth is not homogeneous within its concentric shells as has been calculated by some researchers (Takeuchi et al. [1965]). It is the most regrettable thing that we cannot obtain observations at places much farther away from the ocean. If tidal observations were performed on the moon's surface we could easily solve this problem of the moon tide because there is neither air nor water on
the moon. Putting aside such day dreams, however, observations made at some places where the ocean is more than a few hundred miles away give interesting data which can be used to evaluate the components of torsional type deformation, constants \(N_i \) and so forth. We also know very well that observed tidal components of gravity acceleration, of tilting and of cubical dilatation have some phase lags (cf. Note). The tidal components of gravity acceleration, tilting and cubical dilatation are not connected with the torsional type of deformation of the sphere which has symmetrical distribution of the elastic constants in respect to its center. But it is not hard to estimate that the systematic phase lags of these tidal changes are caused by the torsional deformation on the real earth. Fortunately, according to formulas (4) and (5), the phase differences between the phase angles of the deformation of torsional type and those of spheroidal type are ±90°. Therefore, the observations of the phase lags can be utilized to detect the existence of the torsional deformation.

Note

Example of observational results of the earth tide.

Cubical dilatation at Osakayama (Ozawa (1966)),

\[
M_2 \text{-tide} = 1.109 \times 10^{-8} \cos (2t-1.6°), \quad O_1 \text{-tide} = 0.675 \times 10^{-8} \cos (t-353.3°).
\]

Gravity variation at Kyoto University (Nakagawa et al. (1966)),

\[
M_2 \text{-tide} = 58.189 \cos (2t-189.1°), \quad O_1 \text{-tide} = 33.494 \cos (t-178.85°) \mu \text{gal}.
\]

Tilting at Scaigneaux (Melchior (1966)),

Diminishing factor \(1+k-h \) for \(M_2 \text{-tide} = 0.977 \) in NS-component,

\[=0.927 \] in EW-component,

Phase lag for \(M_2 \text{-tide} \)

\[=2.09° \] in NS-component,

\[=5.04° \] in EW-component.

Deviation of latitude at Mizusawa (VZT) (Sugawa (1961)),

Correcting factor \(1+k-l=1.34 \), phase lag=15°.

References

Melchior, P., 1966; *The Earth Tides*, Pergamon Press.

Nakagawa, I., T. Mikumo and T. Tanaka, 1966; *Spectral Structure of the Earth Tides and Related Phenomena—Gravimetric Record—*. Special Contributions, Geophys. Inst., Kyoto Univ. 6, 225-232.

Ozawa, I., 1966; *On the Observations of the Tidal Strains at Osakayama Observatory*, Special Contributions, Geophys., Inst., Kyoto Univ., 6, 233-246.

Sugawa, C., 1961; Determination of 1+k−l from latitude observations made at Mizusawa, Communications de l’Observatoire Royal de Belgique N°188, Série Geophysique N°58, Quatrième Symposium International sur les Marées Terrestres, 76-77.