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Abstract 

The problem of the creation of the fractures system in the continua is discussed 
by the method of geometry. The concept of manifolds plays an important role for 
formulating the problems of general deformations including fractures. The stochastic 
nature of the fracturing is equivalent to the variety of the coordinate systems. 

The conditions for the field equation are searched from two viewpoints, i.e., the St. 
Venant's compatibility conditions and the dislocation density. We find that these are 
concerned with conditions for integrability according to Poincare's lemma of differential 
forms. 

1. Introduction 

The dynamical mechanisms of crack propagation have been studied in detail 
with special interests to formulate the earthquake sources, e.g., Kostrov (1966), 
Ida and Aki (1973) and others. But their efforts are concentrated on the phenomena 
probably after the catastrophic fracturing, i.e. fault-making fracturing. They as
sumed the arrangement of fractures and the modes of displacement-discontinuties 
beforehand. 

How do we formulate the state equation or the field equation if we assume 
that the state of media is in the isotropic heterogeneity. (Otsuka (1972)) For 
example there are problems of the spatial and temporal distribution of earthquakes 
and more fundamentally those of the criterion of fracturing. In order to answer 
these questions we make a start from a more general point of view. 

Many researchers have made observations offracturing phenomena (e.g. Schardin 
(1959)) The driving mechanisms for the fracture can be possibly pursued by various 
methods under assumptions but it can be said that main features of fractures are 
geometrically various at first sight. Hence we can first assume that conditions which 
determine its final state of deformed and fractured body are geometrical ones, 
especially differential geometrical ones, even if physical conditions remain unknown 
or can be introduced as parameters. Next we may assume that physical conditions 
are kept constant in varying the geometrical position of material point though it may 
not be regarded that the geometrical nature of deformed and fractured states is 
intrinsic in such phenomena. 
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The above reasoning will partly be justified by the fact that our observation 
apparatus in seismology are mostly scales, seismometers and others which measure 
the distances between points over the earth's surface, strains, the rate of displace
ments or strains, and the acceleration of the same quantities. We never insist on 
limiting the observations to the quantities of geometry, but thorough discussions 
of geometrical quantities of the observation field will be helpful to introducing the 
general observation theory in search of physical states. 

There are researches for the yield point essentially in the same geometrical 
standpoint as above; Kondo (1950), Bilby et al. (1955) and others. Their basic 
idea is that the observation field spreads in a 3-dimensional Euclidean space 
and that the state of the material in a geometrical sense is characterized by a 3-
dimensional manifold. It follows that our spatial observation domain is re
stricted to !!. narrow region, as is clear. In topological terminology it is distributed 
by the coordinate neighbourhood. 

For example, if the dimension of observation field is three and the metric of 
space is Euclidean, the existence of an unstrained field is a priori assumed or at least 
realizable by means of virtual operations in a connected state. Definitions of termi
nology and relevant discussions will be found in later paragraphs. Introduction of a 
Euclidean space means the necessity of not only the idea of topology but that of metric 
which is the main tool of our observations. Local properties of observations can be 
represented by the local properties of the manifold, i.e., a Riemannian space, an 
anholonomic space and others. 

2. The extension of the theory of elasticity 

The continuum is assumed to be an elastic body which is characterized by the 
properties of the one to one correspondence between an applied force and defor
mation, i.e., non-hysteresis and non-retardation from the time of application of a 
force. Henceforth, the state of the medium is characterized under the standpoint 
of the above stated nature - manifold. We must make some assumptions that the 
medium has an unstrained state (undeformed state) in its initial state and that the 
initial manifold is a 3-dimensional Euclidean space in the large. Hence the 
Lagrangean parameters of the material point may be the Cartesian coordinates of 
a Euclidean space, for example. As deformation or transformation is locally 
observed, the quantities of deformation will be locally defined along the same line 
as the elasticity theory (Murnaghan(l951)). 

If we suppose that the coordinates of the medium or the Lagrangean parame
ters are x', i=l,2,3, then the line element ds of the deformed body can be written 
in a quadratic differential form ds2= gu dx'dx1 where g,1 is the fundamental metric 
tensor. We mention here the possibility of the virtual operation. If the funda
mental metric tensor gu cannot be reduced to tlu (Kronecker's delta i=j tlu= l; 
i =\= j, tlu = O) by means of local affine transformations of neighbourhoods of each point 
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of a deformed body, which formally means the inversion of the strained state to the 
initial unstrained state, it might follow that the medium cut into small pieces 
which have the properties of local Euclidean metric will never be connected in a 
prescribed accuracy in the large. St. Venant's compatibility conditions of the 
infinitesimal elasticity theory is a key concept to the above proposition of non
uniqueness of correspondence between the initial state and the final state. 

We present some analogical examples in a 2-dimensional plane or shell. A 
flat plane corresponds to the Euclidean initial state in the 2-dimension. After an 
application of force, a flat plane is bent into a 3-dimensional Euclidean space, that 
is, a 2-dimensional manifold is realizable in a 3-dimensional Euclidean space in a 
topologically connected state. But how do we immerse the 3-dimensional Rieman
nian manifold in a 3-dimensional Euclidean space when our real medium spread in 
3 directions is deformed by the virtual operation? Of cource, our observation field is 
limited to a 3-dimensional Euclidean space in a static problem. From this point 
of view, we can assume that the infinite increment of deformation is impossible, as 
is in harmony with the experimetal data that the material strength is finite. 

We generally call an undeformed initial state a natural state and a deformed 
final state an Eulerian state. We may introduce an intermediate state which is 
not realizable in a 3-dimensional Euclidean space but in a higher than 3-dimensional 
Euclidean space, and which satisfies "logically" the one to one correspondence 
between an applied force and deformation. Metaphorically the geometrical con
ditions for the non-unique final state are prepared in an intermediate state. The 
possible realization of several states will be controlled by stochastic processes and pre
dicted only statistically, which might be the intrinsic nature of fracturing processes. 

Next we may extend the dimension of the intial state to larger dimension than 
three of a Euclidean space and generalize the geometrical state including the physical 
state. Dynamical problems including the time parameter which will extend the 
degree of freedom of general deformation have not yet been solved. It is due to 
the mathematical difficulties and a lack of knowledge of the true situation, that is, 
the recognition of an intermediate state. According to the above stated difficulties, 
it is supposed that for the time being the time parameter is neglected and that the 
spatial parameters are essential. Briefly to sum up, the introduction of properties 
of a non-Euclidean space and the stochastic nature of deformation and fracture is 
necessarily postulated. 

From now on, we simplify the problems of deformation and fracture to take 
some examples. 

We assume that the deformed body is a differentiable manifold with affine con
nections and that it is locally designated x', i=l,2,3. As the transformation to the 
general curvilinear coordinates is easily performed, the coordinates are supposed 
to be rectangular Cartesian coordinates. Some terminology relevant to the discus
sions is cleared by the expression of geometry as follows. A deformed body repre
sented by a manifold is a space connected in sequence by locally Euclidean spaces 
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which are called tangent spaces. Hence the connection coefficients are necessarily 
introduced. 

Following the theory of 2-dimensional surfaces, if we may represent the tangent 
space by the differential form, we develop the deformed body into the 3-dimensional 
Euclidean space. 
The tangent space L is 

f) 
L = dx' -- = e dx' L = eawa. aX1 I ' 

where ea is the moving frame. 
(Einstein's convention is assumed over whole expressions) 

Next the connection coefficients are introduced 

(1) 

(2) 

where it is assumed that, if we may consider the intermediate state, the connection 
defined here is equivalent to the postulate to neglect the normal direction of a manifold 
which is not immersed in the 3-dimensional Euclidean space. The exterior dif
ferential of L is followed 

(3) 

As there is no reason to assume that dL=O (4), we write dL= Pep (5) where we may 
call P a torsion tensor. Generally the torsion tensor will be written in the form of 
the second order differential form. If the component of Pis Par• then 

where 

TP = TPa,wrwa 

TPar = - TP,a 

(6) 

(7) 

In the following discussion, we consider the second derivative of affine bases 

ddea = (dw~ - w~w~) e, (8) 

Since there is not any probable reason to assume that d 2ea = 0 (9), 

we replace the right hand side of (9) by d 2ea = R~e, (10) 

where R~ is called a curvature tensor. Generally the curvature tensor R~ will be 
written in the form of the second order differential form. If the component of R~ is 
R'a8,, then R~ = R'a6,W' W

8 (11) 
For later convenience, the nature of the torsion and the curvature is 

fully described as follows. We take a small parallelogram ABCD in the deformed 
body represented by a manifold. This may be what we call lattice in the crystallo
graphy when it is undeformed. 

There are two paths along which we develop point C from point A, i.e. the 
paths passing point B and D. The breakage of the connection at point C means 

dL * 0 (4)' 
and the discrepancy in affine bases at point C means (9)' 
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The discrepancy at point C is represented by (Lix)a 

when AB is dx1 and AD dx1
, 

1 2 

25 

80'! 
(Ax)a = dwa - dwa = --' (dx1dx1 - dxfdx1) + Of(ddx1 - ddx1) (12) 

2 1 1 2 ax} 2 1 1 2 2 1 1 2 

Since we can suppose generally ddx1 = ddx1
, 

2 1 1 2 

From the expression (2), 

dwP- wfiwa = ( ao~ -rfi O<oa) dxldx1 
a fJxl ra t j 

From the expressions (6) and (14), 

aOfi 
--' - Ffi OrO"' = Tfi 0<0' fJxl ra ' 1 ro ' 1 

Then the expression (13) is replaced by 

(Ax)a = - (r~p~O~ + Pr,OiO~) dx1dx1 

1 2 

(13) 

(14) 

(15) 

(16) 

This is just the definition of Burgers' vector of crystal dislocation. Hence we have 
arrived at the idea of dislocation from the formulae (2) and (4)', where needless to 
say the dislocation expressed by the formula (16) means the dislocation density. 

We give exposition for the curvature with making use of the same parallelogram. 

(Lie)a = (dd- dd) ea 
2 1 1 2 

dw~ = (dr~r) wr + F!r (dwr) 
21 2 1 21 

des = r;,w'e, . 
2 2 

Hence ( ) _ _1__ ( ar~, - ar~, + Ffi r· -rfi , ) ( , r- • r) Lie a- 2 0 ar fio aor fir ()) ()) ()) ()) e, 
()) (J)T 2 1 1 2 

(17) 

Here the curvature can be represented by the exterior product form (11). 

(18) 

where 

R'aro = -R'aor (19) 

The St. Venant's compatibility condition is a good illustration of curvature 
tensor with a metric of deformed body. For simplicity we may assume that dL=O 
which is so called "without torsion". This corresponds to the assumption that the 
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deformed body should be a Riemannian manifold with a symmetric connection. 
The fundamental metric tensor glj is defined by an inner product of affine bases of a 
tangent space as follows. 

where this quadratic form is positive definite as usual. The line element ds is 
defined on the tangent space L = dx1e; 

ds2 = (L, L) = giJdx1dx1 (21) 

The above introduced metric enables us to define the quantities of deformation, 
i.e., the strains. 

I 
Cf j = 2 (g,j - Olj) (22) 

Similarly for the developed line element, 

(22)' 

where 

ga~ = g,,o~o~ 

If it is supposed that the relation between the connection coefficients n1 that 
r;j=rJ; (23) (without torsion), then according to the relation that 

dg;1 = (de;, e1) + (e, , de1) (23) 

we can replace r k - {k} 
ij - ij ' 

where (24) 

The curvature tensor for the deformed body should be expressed by 

R
1ik1 = a:' ek} - a:k gt} + {~t} {;} - {~k} {fi} 

For instance, we caluculate these quantities in the case of a 2-dimensional problem. 
As the other components are disappered, the only component is 

(25) 

Substituting t,1 for g,1 using the relation that g 11 = 2tif + o11 we easily derive the 
St. Venant's compatibility condition for a 2-dimensional problem. 

R
1212 

= 8
2
e22 _ + _ a2

eu _ 2 82
t 12 

(ax1) 2 ( iJx 2)2 ax1ax2 
(25)' 

disregarding the product higher than 2. If R1212= 0 (26), we can conclude that the 
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deformed body is equivalent to a Euclidean space locally. Therefore the St. Venant's 
condition insists that a deformed body is locally Euclidean regardless of the defor
mation. A more elementary exposition will be as follows. 
The differential form 

(27) 

is completely integrable only when the relation (26) is satisfied (Frobenius's theorem 
for the system of Pfaffian equations) According to this first integral of (27), we can 
define the rotation cp and the displacements u1

• 

du' = eudx1 + (e,2 - cp) dx2 

du2 = (e,2 + cp) dx1 + e22dx2 (28) 

We summarize the above derived relation with using more compact expressions. 

W = (wa) 

e = (ea) 

Q = (w~) 
T= (P) 

R = (R~) 

(29) 

where w, e, Q, T and R express the differential in a tangent space, the bases of a 
tangent space, the connection coefficients, the torsion and the curvature respectively. 
The tangent space (vectorial differential form) L=we (30) can be exterior-differen
tiated with only using the connection formula de=Qe (31) that is postulated. 

dL = (dw - wQ) e = Te (32) 

The exterior derivative of de is 

dde = ( d Q - SJ2) e = Re (33) 

From Frobenius's theorem the assumption of T=O (34) is equivalent to the condition 
of the complete integrability of the differential form (30) and R=O (35), the dif
ferential form (31), as has already been proved in (16) and (17). We can also get 
the relations between the torsion T and the curvature R from the higher derivatives 

ofT. 

dT= -TQ + wR (36) 

This relation shows that the curvature R should be concerned with the space density 
of point defects in view of the physical meaning of the torsion. 

3. Conclusion 

From preceding discussions the deformation is generally conditioned by both 
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the torsion and the curvature. The condition of torsion=O and curvature=O 
is equivalent to the assumptions of the classical theory of elasticity. Under these 
conditions we have proved the uniqueness of rotations and displacements particularly 
in the case of 2-dimension. From the classical theory we can extend to the following 
three cases that torsion* 0 or curvature* 0. In the first place, the case that 
torsion* 0 and curvature=O is the Burgers' original definition of dislocations which 
has been used for the analysis of seismic source functions. The case that torsion=O 
and curvature*O is the problem of proper strain, especially in thermoelasticity. The 
most general case will be that of torsion* 0 and curvature* 0, although some 
ambiguity still remains in physical images concerning the curvature, which must be 
made more clear in future. The case should be the problems of fracture rather 
than those of deformation and we conclude that the "fracture" should be determined 
by the constraint of torsion=O and curvature=O quantitatively. 
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