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Angular distribution of energy spectrum in
two-dimensional β-plane turbulence in the long-wave limit

Izumi Saitoa) and Keiichi Ishiokab)

Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University,
Kyoto, Japan

(Received 6 December 2012; accepted 12 June 2013; published online 18 July 2013)

The time-evolution of two-dimensional decaying turbulence governed by the long-
wave limit, in which LD/L → 0, of the quasi-geostrophic equation is investigated
numerically. Here, LD is the Rossby radius of deformation, and L is the characteristic
length scale of the flow. In this system, the ratio of the linear term that originates
from the β-term to the nonlinear terms is estimated by a dimensionless number,
γ = βL2

D/U , where β is the latitudinal gradient of the Coriolis parameter, and U
is the characteristic velocity scale. As the value of γ increases, the inverse energy
cascade becomes more anisotropic. When γ ≥ 1, the anisotropy becomes significant
and energy accumulates in a wedge-shaped region where |l| >

√
3|k| in the two-

dimensional wavenumber space. Here, k and l are the longitudinal and latitudinal
wavenumbers, respectively. When γ is increased further, the energy concentration
on the lines of l = ±√

3k is clearly observed. These results are interpreted based
on the conservation of zonostrophy, which is an extra invariant other than energy
and enstrophy and was determined in a previous study. Considerations concerning
the appropriate form of zonostrophy for the long-wave limit and a discussion of the
possible relevance to Rossby waves in the ocean are also presented. C© 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4813808]

I. INTRODUCTION

As one of the simplest equations, the two-dimensional quasi-geostrophic vorticity equation on
a β-plane,

∂

∂t

(
∇2ψ − 1

L2
D

ψ

)
+ β

∂ψ

∂x
+ ∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
= 0, (1)

has been widely used to investigate large-scale flows in the atmosphere and in the ocean. Here, t
is the time, (x, y) are the (eastward, northward) coordinates, ψ(x, y, t) is the stream-function, β is
the y-derivative of the Coriolis parameter, and LD is the Rossby radius of deformation. Turbulence
governed by (1) with a dissipation term in the right-hand side exhibits a significant feature. As
Rhines1 demonstrated, the energy cascade toward larger scales becomes anisotropic due to the
second term (the β-term) in the left-hand side of (1), and the flow pattern tends to have a zonally
elongated structure. This anisotropic energy cascade due to the β-term is now known as the Rhines
effect.

In describing the Rhines effect, the characteristic length scale defined by β and the veloc-
ity scale, U, as Lβ = √

U/β, plays an important role. This length scale is referred to as the
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Rhines scale. Letting L be the length scale of the flow field, a nondimensional number Rh =
(Lβ /L)2 = U/(βL2) can be defined. The nondimensional number is referred to as the Rhines
number and represents the ratio of the nonlinear terms in (1) to the linear β-term. When Rh
� 1, i.e., L � Lβ , the β-term is negligible and the dynamics is isotropic. If Rh ∼ 1, however,
disturbances have the nature of Rossby waves, which leads to a dumbbell-shaped anisotropic
energy spectrum in the two-dimensional wavenumber space, as demonstrated by Vallis and
Maltrud.2

The two papers cited above and many other studies have investigated (1) in the limit of LD/L →
∞. The case of a finite LD was investigated extensively by Okuno and Masuda,3 who showed that
the energy cascade becomes isotropic and the Rhines effect is suppressed in the case of L < LD �
Lβ , whereas the Rhines effect still acts in the case of L < Lβ < LD.

The other limit, LD/L → 0, is also of interest. Based on Eq. (1) without the β-term, Larichev
and McWilliams4 compared the time-evolutions of decaying turbulence in this limit (which they
referred to as an asymptotic model) with those in the cases of finite but very small values of LD/L.
They showed that the former exhibits essential features of the latter and that, in both cases, the one-
dimensional energy spectrum at large wavenumbers is approximately proportional to the negative
sixth power of the wavenumber.

Retaining the β-term in the limit of LD/L → 0 yields an equation, which is referred to
as “the long-wave limit.” For this long-wave limit, an invariant other than the basic invariants
such as energy was discovered by Balk et al.,5 and generalized later to the case of finite val-
ues of LD/L by Balk.6 The extra invariant, which was referred to as zonostrophy by Nazarenko
and Quinn,7 is approximately conserved when the nonlinearity of the system is weak. Based
on the conservation of zonostrophy, Balk,8 Balk and Zakharov,9 and Balk et al.10 predicted
that energy would accumulate in a wedge-shaped region W in the two-dimensional wavenumber
space,

W = {(k, l) |
√

3|k| < |l|}, (2)

in the course of time-evolution of turbulence if LD/L � 1. Here, k and l are the wavenumbers in
the x and y directions, respectively. Very few numerical experiments, however, have been performed
in order to verify this prediction. Connaughton et al.11 integrated (1) numerically with a forcing
term and a dissipation term for the case of LD/L � 1. They demonstrated that energy diffuses
along a contour line of the coefficient of zonostrophy (the coefficient will be shown in Sec. II) in
the two-dimensional wavenumber space. This diffusion leads to energy accumulation around the
lines of

√
3|k| = |l|. The results of a similar experiment were also reported by Nazarenko.12 Both

of the above studies, however, examined time-evolution with a forcing that is localized in the two-
dimensional wavenumber space or from a localized initial wavenumber spectrum. Moreover, each of
the two studies conducted numerical experiments only in a parameter range in which the nonlinearity
of the system was very weak. Hence, it is still unclear that how weak the nonlinearity should be for
the conservation of zonostrophy and for the appearance of anisotropy in the two-dimensional energy
spectrum.

The primary purpose of the present study is to investigate the time-evolutions of decaying
turbulence governed by the long-wave limit of (1) with a dissipation term from an isotropic initial
energy spectrum in the two-dimensional wavenumber space with different degree of nonlinearity.
In addition, we reconsider the asymptotic form of zonostrophy for this long-wave limit in order to
interpret the experimental results and derive an appropriate form that has not appeared explicitly in
the literature.

The remainder of the present paper is organized as follows. In Sec. II, we introduce the long-
wave limit of (1) and derive an appropriate asymptotic form of zonostrophy for this limit. In Sec. III,
we conduct numerical experiments on decaying turbulence governed by the long-wave limit of (1)
with a hyper-viscosity term and examine time-evolutions of the two-dimensional energy spectrum.
Finally, Sec. IV presents a discussion and summary.
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II. LONG-WAVE LIMIT OF THE QUASI-GEOSTROPHIC EQUATION
AND ZONOSTROPHY FOR THIS LIMIT

A. Long-wave limit

In this subsection, we first derive the long-wave limit of (1). Supposing that the length scale of
the flow field, L, is much larger than the Rossby radius of deformation, LD, we formally expand the
operator (∇2 − L−2

D ) as follows:

(∇2 − L−2
D ) = −L−2

D (1 − L2
D∇2)

= −L−2
D (1 + (L2

D∇2) + (L2
D∇2)2 + · · ·)−1. (3)

Here, we assumed that ∇2 scales as L−2 and that L2
D∇2 ∼ (LD/L)2 � 1. Considering this expansion,

multiplying (1 + (L2
D∇2) + (L2

D∇2)2 + · · ·) on both sides of (1) yields

− 1

L2
D

∂ψ

∂t

+β(1 + (L2
D∇2) + (L2

D∇2)2 + · · ·)∂ψ

∂x

+(1 + (L2
D∇2) + (L2

D∇2)2 + · · ·)
(

∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x

)
= 0. (4)

If we omit (L2
D∇2)n (n = 1, 2, . . .) terms naively in (4), we obtain

− 1

L2
D

∂ψ

∂t
+ β

∂ψ

∂x
+ ∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
= 0. (5)

The second term in the left-hand side of (5), however, only represents advection with constant
velocity and has no effect on energy cascade if the domain is infinite or periodic. Thus, we should
keep the (L2

D∇2) term in the second line in (4), which yields

− 1

L2
D

∂ψ

∂t
+ β

∂ψ

∂x
+ βL2

D
∂∇2ψ

∂x
+ ∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
= 0. (6)

Considering that the second term in the left-hand side of (6) only represents constant advection, as
stated above, we remove this term by a suitable Galilean transform, which was also used in Okuno
and Masuda,3 and finally obtain

− 1

L2
D

∂ψ

∂t
+ βL2

D
∂∇2ψ

∂x
+ ∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
= 0. (7)

Here, the x coordinate has been replaced with the moving frame. We hereinafter refer to (7) as the
long-wave limit.

B. Nondimensionalization

We nondimensionalize (7) in the following manner:

x = Lx∗, y = Ly∗, ψ = U Lψ∗,

t = L3

L2
DU

t∗, ∇2 = L−2∇2
∗ . (8)
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Here, L and U are the characteristic length and velocity scales, respectively, and variables with ∗
indicate nondimensional variables. Then, we have

−∂ψ∗
∂t∗

+ γ
∂

∂x∗
∇2

∗ψ∗ + ∂ψ∗
∂x∗

∂∇2
∗ψ∗

∂y∗
− ∂ψ∗

∂y∗

∂∇2
∗ψ∗

∂x∗
= 0, (9)

where

γ = βL2
D

U
(10)

is a dimensionless number. This dimensionless number, which was first introduced by Okuno and
Masuda,3 who referred to the reciprocal of γ as α, gives a rough estimate of the ratio of the linear
term originating from the β-term to the nonlinear terms. We hereinafter refer to the second term in
the left-hand side of (9) as the γ -term. Note that, in contrast to the Rhines number, the number γ

does not depend on the length scale L.

C. Representation in the wavenumber space

Let us assume that the domain is infinite and the nondimensionalized streamfunction can be
represented by the inverse Fourier transform as follows:

ψ∗(x∗, y∗, t∗) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
ψ̂k(t∗)ei(kx∗+ly∗)dkdl. (11)

Here, k = (k, l) is the wavenumber vector. Then, the Fourier transform of the nondimensionalized
long-wave limit equation (9) yields

i
∂ψ̂k

∂t∗
= ωk ψ̂k + i

∫∫∫∫
Wk1,k2δ(−k + k1 + k2)ψ̂k1 ψ̂k2 dk1 dk2. (12)

Here, δ is the Dirac delta function,

ωk = γ |k|2k (13)

is the frequency of the Rossby wave of wavenumber k, and

Wk1,k2 = 1

4π
(k1l2 − k2l1)(|k2|2 − |k1|2) (14)

is the interaction coefficient that arises from the nonlinear terms.
In the system governed by (12), there are two fundamental invariants, which are defined as

E =
∫∫

εkdk and � =
∫∫

|k|2εkdk, (15)

where

εk = 1

2
|ψ̂k|2. (16)

The former (E) is the potential energy and the latter (�) is the kinetic energy. In the present paper,
however, we hereinafter refer to E and � simply as energy and enstrophy, respectively, because E
corresponds to the total energy, and � to the potential enstrophy when LD/L is finite.

D. Asymptotic form of zonostrophy

The two invariants defined above have the form of

M =
∫∫

φkεkdk. (17)

Here, φk is the coefficient that defines the quantity M. Energy (E) and enstropy (�) correspond to
M, with φk chosen as

φk = 1 and φk = |k|2,
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respectively. Zonostrophy is another quantity that has the form of (17) and is approximately con-
served when the nonlinearity of (1) (or (7) in the long-wave limit) is sufficiently weak. In order to
(at least approximately) conserve M, φk must be written as follows:

φk = ηk

k
, (18)

where ηk is a function of k that satisfies

ηk + ηk1 + ηk2 = 0, (19)

whenever

k + k1 + k2 = 0 and ωk + ωk1 + ωk2 = 0. (20)

It is easy to check that φk corresponding to E or � satisfies this condition. When a finite LD/L is
considered and the length scale is nondimensionalized by LD, the definition of ωk should be replaced
by ωk = −k/(1 + |k|2) rather than (13) and (18) should be replaced by φk = ηk/ωk. In this case, the
explicit form of ηk for zonostrophy is given as

ηk = arctan

(
l − k

√
3

|k|2
)

− arctan

(
l + k

√
3

|k|2
)

. (21)

For the derivation of (21) and the reason why zonostrophy is approximately conserved, refer to
Balk6 and Balk and van Heerden.13

For zonostrophy in the long-wave limit, an explicit form of ηk was given by Balk et al.5 as

ηk = k3

l2 − 3k2
. (22)

This form of ηk, however, gives φk, which changes sign, and the use of the zonostrophy defined by
this ηk in interpreting the experimental results presented later herein is not straightforward. In order
to see how crucial the sign-definiteness is, let us suppose that φk of enstrophy had a negative value
at a certain k = k′ for example. Then, the conservation of enstrophy would fail to explain the inverse
energy cascade because in this improbable case, arbitrary amount of energy can move to larger
wavenumber regions by depositing proper amount of energy at k′ so that enstrophy is conserved.
Similar difficulty is encountered if we use the zonostrophy defined by the sign-indefinite coefficient
as (22).

Reexamining the long-wave limit of (21), we found that the following form of ηk,

ηk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 (|l| <
√

3k)

−1 (|l| < −√
3k)

0 (|l| >
√

3|k| or |k| = 0)

1/2 (|l| = √
3k and |k| �= 0)

−1/2 (|l| = −√
3k and |k| �= 0)

, (23)

is a more straightforward form for the limit. The derivation of this form as the long-wave limit of
(21) and proof that this ηk satisfies (19) whenever (20) holds is presented in Appendix. This form of
ηk gives φk through (18) as follows:

φk =

⎧⎪⎨
⎪⎩

1/|k| (|l| <
√

3|k|)
0 (|l| >

√
3|k| or |k| = 0)

1/(2|k|) (|l| = √
3|k| and |k| �= 0)

. (24)

Figure 1 shows the distribution of this φk in the wavenumber space. The coefficient, φk, is equal
to zero in the region W , which is defined as (2), but increases in proportional to |k|−1 toward small
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FIG. 1. Distribution of φk defined by (24) in the two-dimensional wavenumber space. The region in which φk = 0 is not
colored. The two lines that bound the zero-valued region are l = ±√

3k.

wavenumbers outside of the region W . This φk is non-negative, and the zonostrophy defined by φk,

Z =
∫∫

φkεkdk, (25)

is useful for interpreting the experimental results presented later herein. We hereinafter refer to this
Z simply as the zonostrophy.

III. NUMERICAL EXPERIMENTS

A. Experimental setup

In this section, we conduct numerical experiments to investigate the time-evolutions of decaying
turbulence in the long-wave limit. As the basic equation, we use the following equation:

−∂ψ

∂t
+ γ

∂

∂x
∇2ψ + ∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
= (−1)pνp∇2pψ, (26)

rather than (9). Here, we have omitted ∗ for dimensionless variables, and the right-hand side of (26)
is a hyper-viscosity term introduced in order to avoid spurious accumulation of enstrophy near the
truncation wavenumber for the computation.

We impose a 2π -periodic boundary condition in both the x and y directions and adopt the
Fourier spectral method with a truncation wavenumber of KT = 85 for the spatial discretization.
The nonlinear terms are computed using the transform method with alias-free grids of 256 × 256.
The time integration scheme is the classical fourth-order Runge–Kutta scheme with time step
�t = 2 × 10−7. We set the order of hyper-viscosity p = 10 and the hyper-viscosity coefficient
νp = 5 × 10−35 in the following computations. In time-integrations, we use the following transform
of the dependent variable

ψ̂k(t) = �̂k(t) exp (−iγ |k|2kt − νp|k|2pt) (27)

in the wavenumber space in order to extend the time-step size.
The initial condition is a random stream function field, the one-dimensional energy spectrum

EK of which is given as follows:

EK ∝
(

2√
K/K0 + √

K0/K

)m

, (28)
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where K = |k| = √
k2 + l2 is the total wavenumber. We set K0 = 20 and m = 1000. The phase of

each Fourier component is set randomly. The total energy of the initial state is set to 1/800, which
means that the root-mean-square velocity (u0) for the initial state is approximately

u0 = √
2�(t=0) ≈ K0

√
2E(t=0) = 1. (29)

In other words, we have chosen the initial root-mean-square velocity as the characteristic velocity
(U) for the nondimensionalization. On the other hand, since we have set K0 = 20, the length scale for
the nondimensionalization differs from the length scale of the initial flow field. The nondimensional
parameter γ is, however, independent of the length scale, as stated in Subsection II B. Thus, if the
results for the case in which the length scale of the initial flow is chosen as the length scale for the
nondimensionalization are desired, the time scale of the following results need only be translated
appropriately.

In Subsection III B, we present the results for γ = 0, 0.25, 1, 5, 20. For each experiment, the
numerical time integration of (26) is conducted until t = 0.4. This integration period is 80 times the
initial characteristic advection time, which is estimated to be 1/(u0K0) = 0.05.

B. Results

In order to compare the obtained results with the results of Larichev and McWilliams,4 let
us first examine the one-dimensional energy spectra. Figure 2 shows the one-dimensional energy
spectra for the initial state and for the final states of time-evolutions for five values of γ . For each
experiment, the energy spectrum broadens with time and gradually shifts its peak toward smaller
wavenumbers. (The details for the time-evolutions of the energy spectra are not shown.) In the case
of γ = 0, the governing equation is almost the same as that used in Larichev and McWilliams4

except for the hyper-viscosity term, and the shape of the spectrum finally becomes approximately
EK ∝ K−5 in the large-K region of 7 ≤ K ≤ 40 (solid red curve). This energy spectrum is slightly
more shallow than that obtained by Larichev and McWilliams4 (EK ∝ K−6) for their asymptotic
model. This difference may have arisen from the difference in the hyper-viscosity term. For larger
values of γ , the γ -term in the left-hand side of (26) comes into play. As shown below, the γ -term
not only makes the two-dimensional energy spectrum anisotropic but also slows down the inverse
energy cascade. The larger the values of γ , the more energy remains in the large-K region. In
particular, in the case of γ = 20, a large amount of energy remains around the initial energy peak at
K = K0 = 20.

The difference in the time-evolutions of energy spectra depending on the parameter γ can
be seen more clearly in two-dimensional energy spectra. Figure 3 shows two-dimensional energy
spectra for the initial state and those for the final states for the five values of γ . For each value of
γ , we conducted 41 experiments, changing the initial random choice of the stream-function field,
and created the figure of the two-dimensional energy spectrum by taking the ensemble average. The

FIG. 2. One-dimensional energy spectra at t = 0 (dashed-three-dotted black curve) and at t = 0.4 for γ = 0 (solid red), γ =
0.25 (long dashed green), γ = 1 (short dashed blue), γ = 5 (dashed-dotted cyan), and γ = 20 (dashed-two-dotted purple).
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FIG. 3. (a) Two-dimensional energy spectrum at t = 0 within a rectangular domain of |k|, |l| ≤ 25 averaged over 41 ensemble
members. (b)–(f) Same as (a) except that at t = 0.4 for γ = 0, 0.25, 1, 5, and 20, respectively. E−x indicates 10−x. In each
figure, the lines of l = ±√

3k are drawn for reference.

initial spectrum is isotropic (Fig. 3(a)) as given, and the spectrum for the final state for the γ = 0
case remains isotropic after the inverse energy cascade (Fig. 3(b)). For the cases of non-zero values
of γ , however, the γ -term makes the energy cascade anisotropic. Even in the case of γ = 0.25,
the anisotropy in the two-dimensional energy spectrum can be seen (Fig. 3(c)). The ring-shaped
peak near the origin is severed by the region of relatively low energy density around the l-axis, and
the energy distribution in larger wavenumbers is slightly elongated along the l-axis. In the case of
γ = 1, which means that the γ -term in the left-hand side of (26) has an amplitude of the same
order as the nonlinear terms have in the initial state, the anisotropy is more prominent (Fig. 3(d)). As
another feature, two peaks near (k, l) = (0, ±20) can be also seen. These peaks are merely remnants
of the initial energy distribution. For larger values of γ , in addition to the anisotropy described
above, the slit-like region near the l-axis and the elongated structure of the energy spectrum, the
significance of the wedge-shaped region W defined by (2) also becomes apparent (Fig. 3(e) for
γ = 5 and Fig. 3(f) for γ = 20). In both the figures, the energy accumulation in the wedge-shaped
region is clear in the smaller-wavenumber region, although the slit-like region of low energy density
near the l-axis is still prominent. In contrast, a hollow region in which the energy density is very low
appears outside the wedge-shaped region. The contrast across the boundary (the lines of l = ±√

3k)
of the wedge-shaped region is more significant in the case of γ = 20 (Fig. 3(f)). The energy
accumulation in the wedge-shaped region (and the corresponding energy escape from outside of the
wedge-shaped region) is consistent with the theoretical prediction given by the previous studies.8–10

Assuming the conservation of zonostrophy defined by (25), the accumulation can be interpreted as
follows. As defined by (24), the coefficient φk increases as |k| decreases outside of the wedge-shaped
region. In order to conserve zonostrophy during the inverse energy cascade, some amount of energy
must escape from outside of the wedge-shaped region into the wedge-shaped region, in which the
coefficient φk = 0 and zonostrophy conservation does not impose a barrier on the inverse energy
cascade.
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FIG. 4. Angular distributions of energy spectra corresponding to the final (t = 0.4) states shown as Figs. 3(b)–3(f). The
solid red curve corresponds to Fig. 3(b) (γ = 0), the long dashed green curve corresponds to Fig. 3(c) (γ = 0.25), the short
dashed blue curve corresponds to Fig. 3(d) (γ = 1), the dashed-dotted cyan curve corresponds to Fig. 3(e) (γ = 5), and the
dashed-two-dotted purple curve corresponds to Fig. 3(f) (γ = 20).

The importance of the wedge-shaped region can be emphasized by examining the angular
distribution of the energy density. Figure 4 shows the angular distribution of the energy density for
the final states for five values of γ . Here, as in Fig. 3, the ensemble average has been taken, and
the azimuthal angle θ is defined as θ = tan −1(|l/k|). While the spectrum is isotropic in the case of
γ = 0 (solid red curve), the case of γ = 0.25 (long dashed green curve) yields a low-density region
around θ = 90◦. As the value of γ increases (γ = 1, 5, and 20; short dashed blue, dashed-dotted
cyan, and dashed-two-dotted purple curves, respectively), more energy accumulates in the region
of θ > 60◦, which corresponds to the wedge-shaped region in the two-dimensional wavenumber
space. Furthermore, in the case of the largest value of γ (γ = 20; dashed-two-dotted purple curve),
the energy concentration around θ = 60◦ is significant. A hint of this concentration can even be
seen for the cases in which γ = 1 (short dashed blue curve) and γ = 5 (dashed-dotted cyan
curve).

Since the energy cascade is highly anisotropic in the case of γ = 20, as shown above, let
us examine the time-evolution of the two-dimensional energy spectrum (Fig. 5). From the initial
isotropic distribution (Fig. 5(a)), an inverse energy cascade is first observed primarily in the wedge-
shaped region (Fig. 5(b)). After that, however, the energy density increases around the lines of
l = ±√

3k, keeping energy from leaving the wedge-shaped region (Figs. 5(c)–5(e)). Finally, the
peak energy density shifts toward a smaller wavenumber outside the wedge-shaped region, allowing
some amount of energy to escape into the wedge-shaped region (Fig. 5(f)).

The energy concentration around the lines of l = ±√
3k in the two-dimensional energy spec-

trum, which corresponds to the peak near θ = 60◦ in the angular energy distribution shown in
Fig. 4, is discernible even in the physical space. Figure 6 shows the stream-function fields for the
initial state (Fig. 6(a)) and for the final states for five values of γ (Figs. 6(b)–6(f)). The initial fine
structures (Fig. 6(a)) evolve into a larger-scale structure (Fig. 6(b)), corresponding to the inverse
energy cascade. Figure 6(b), however, does not exhibit anisotropy. Even in the case of a non-zero
but small value of γ (γ = 0.25; Fig. 6(c)), no significant anisotropy can be seen. As the value of γ

increases, the final state tends to have a smaller structure and a more significant anisotropy (γ = 1,
5, and 20; Figs. 6(d)–6(f), respectively). In particular, in the case of the largest γ (γ = 20; Fig. 6(f)),
a structure parallel to the lines of x = ±√

3y is clearly observed, which corresponds to the energy
concentration around the lines of l = ±√

3k in the two-dimensional energy spectrum.
As described above, we assumed the conservation of zonostrophy in order to interpret the

importance of the wedge-shaped region. Let us examine how well zonostrophy, energy, and enstro-
phy are conserved in the numerical time-evolutions. Figure 7 shows the time-evolutions of energy
(Fig. 7(a)), enstrophy (Fig. 7(b)), and zonostrophy (Fig. 7(c)) for five values of γ . Due to the hyper-
viscosity term introduced in the right-hand side of (26), both energy and enstrophy decrease with
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FIG. 5. Snapshots of two-dimensional energy spectra within a rectangular domain of |k|, |l| ≤ 25 in the time-evolution for
the case in which γ = 20. (a) At t = 0, (b) at t = 1.2 × 10−4, (c) at t = 4 × 10−4, (d) at t = 8 × 10−3, (e) at t = 0.04, and
(f) at t = 0.2. E−x indicates 10−x. In each figure, the lines of l = ±√

3k are drawn for reference. Note that, unlike Fig. 3,
these figures show the time-evolution of one member of the ensemble experiments.

FIG. 6. Stream function fields. (a) for the initial state. (b)–(f) At t = 0.4 for γ = 0, 0.25, 1, 5, and 20, respectively. The
contour interval is 0.05, and positive regions are shaded.
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FIG. 7. Time-evolutions of (a) energy(E), (b) enstrophy(�), and (c) zonostrophy(Z). The results for γ = 0, 0.25, 1, 5, 20
are drawn by solid red, long dashed green, short dashed blue, dashed-dotted cyan, and dashed-two-dotted purple curves,
respectively.

time for all values of γ (Figs. 7(a) and 7(b)). This decrease, however, depends on the value of γ . As
shown in Figs. 7(a) and 7(b), this decrease becomes smaller as γ increases. This is interpreted as
follows. In the case of larger values of γ (γ = 5 (dashed-dotted cyan curve) and γ = 20 (dashed-
two-dotted purple curve)), the inverse energy cascade is slowed by the conservation of zonostrophy,
which in turn slows the enstrophy cascade to larger wavenumbers, which reduces the dissipation
of enstrophy by the hyper-viscosity term. Zonostrophy conservation for larger γ cases can be con-
firmed by referring to Fig. 7(c). While the value of zonostrophy changes significantly for small γ

cases (γ = 0, 0.25, and 1; solid red, long dashed green, and short dashed blue curves, respectively),
zonostrophy is well conserved for the larger values of γ (γ = 5 (dashed-dotted cyan curve) and
γ = 20 (dashed-two-dotted purple curve)). This appears to be a natural result because the conserva-
tion of zonostrophy holds when the nonlinearity of the basic equation is sufficiently weak.

Before closing this section, let us mention two issues concerning the validity of numeri-
cal experiments conducted in the present study. First issue is about equilibration. Since energy
and enstrophy are still decreasing even in the late stage of the time-evolution (near t = 0.4 in
Figs. 7(a) and 7(b)), some readers may wonder whether or not lack of equilibration affects the
anisotropy described above especially for large values of γ (γ = 5 and 20). For each value of γ ,
we conducted additional experiments in which the governing equation was integrated further until t
= 2.4, which is 6 times longer than the integration period of the experiments described above, and
confirmed that the nature of the anisotropy of the two-dimensional energy spectrum did not change
qualitatively with time from t = 0.4 to t = 2.4 (not shown) though the peak of one-dimensional
energy spectrum moved slightly to smaller wavenumber regions. It is expected that the nature of the
anisotropy will not change qualitatively even after t = 2.4 because, unlike the well-known Rhines
number, the parameter γ does not depend on the length scale. Second issue is about the spatial
resolution. Although the choice of resolution KT = 85 (256 × 256 grids) may seem rather low for
the integration of the simple equation (26), it should be noted that maximum frequency of Rossby
waves in this system is 2γ K 3

T and such a high frequency requires a very small time step, which makes
it difficult to conduct many numerical experiments of a high resolution and a long time-integration
period. In the present paper, we chose a relatively low resolution of KT = 85 in order to conduct
ensemble numerical experiments, changing the initial random field of the stream function and the
parameter γ , which made it possible to obtain a clear image of the anisotropy of the energy cascade
in the average view of the two-dimensional energy spectrum (Figs. 3 and 4). Some readers also
wonder whether or not the choice of resolution can affect how well zonostrophy is conserved. The
spatial resolution used in the present paper is, however, not too low to investigate the conservation
of zonostrophy. This is because the coefficient for zonostrophy, φk, is large in small wavenumber
region compared to that for energy since φk ∼ O(|k|−1) as defined by (17). As seen in Fig. 7(a),
energy is conserved well and keeps more than 95% of its initial value even with the hyper-viscosity.
Hence, the truncation and the hyper-viscosity is thought to have little influence on whether or not
zonostrophy is well conserved. In fact, we conducted several experiments, increasing the spatial
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resolution to KT = 170 (512 × 512 grids) and confirmed that there were no qualitative differences
in how well zonostrophy was conserved and in the nature of the anisotropy in the two-dimensional
energy spectrum (not shown). As for the slope of the one-dimensional energy spectrum, however,
the experiments of the higher spatial resolution shows a slight dependence of the slope on the spatial
resolution. This indicates that experiments with a higher resolution and a more careful choice of
hyper-viscosity are required to determine the slope of the one-dimensional energy spectrum in this
system. However, we do not pursue this issue further since the primary subjects of the present study
are the conservation of zonostrophy and the appearance of the anisotropy of the two-dimensional
energy spectrum.

IV. SUMMARY AND DISCUSSION

In the present paper, we numerically investigated the time-evolution of decaying turbulence that
is governed by the long-wave limit of the two-dimensional quasi-geostrophic equation. As shown
in Sec. III, the features of the time-evolution differ significantly depending on the parameter γ ,
which determines the relative importance of the γ -term in the left-hand side of (26) compared
with the nonlinear terms. If γ is non-zero, the inverse energy cascade exhibits anisotropy. When
γ ≥ 1, the anisotropy becomes significant and energy accumulation in the wedge-shaped region,
which is defined by (2), is clearly observed in the two-dimensional wavenumber space. This energy
accumulation has been predicted theoretically in the previous studies,8–10 based on the conservation
of zonostrophy. To our knowledge, the present paper describes the first study to show that energy
accumulation occurs in the time-evolution of decaying turbulence from an isotropic initial condition
in the long-wave limit, although the accumulation has been reported for small but finite values of
LD/L with localized initial energy spectra.11, 12 The other prominent feature of the time-evolution
conducted in the present study is the energy concentration around the lines of l = ±√

3k in the cases
of γ � 1. This energy concentration has also been reported by Connaughton et al.11 and Nazarenko,12

who explained this energy concentration as the energy diffusion in the two-dimensional wavenumber
space along a contour of the coefficient that appears in the definition of zonostrophy. However, they
dealt with cases involving localized initial energy distributions and finite values of LD/L, as stated
above, and it is unclear whether their explanation holds for the cases considered in the present
study, in which the two-dimensional energy spectra have broader distributions due to the initial
isotropic spectrum, and the coefficient φk, which is defined by (24) in the long-wave limit, has a
flat distribution in the wedge-shaped region. We believe that it may be possible to provide another
explanation for the energy concentration based on the concept of near-resonant triad interactions,14

and this concept may also provide an explanation for the region of low energy density near the l-axis,
as shown in Figs. 3(c)–3(f). We would like to explore this possibility in the future.

Since the quasi-geostrophic equation arises from the modeling of geophysical fluids, it is natural
to seek a counterpart of the energy accumulation shown above in the real atmosphere and ocean.
In the atmosphere, however, the Rossby radius of deformation is on the order of thousands of
kilometers, even for baroclinic modes, and it is difficult to find a regime in which the long-wave
limit considered in the present paper is relevant. On the other hand, the Rossby radius of deformation
for the first baroclinic Rossby waves in the middle-latitude ocean are several tens of kilometers, and
it is possible for the long-wave limit to be relevant if the wavelength of the waves is sufficiently
long. The characteristics of long baroclinic Rossby waves in the ocean have been clarified using data
from satellite-borne altimeters.15 A recent spectral analysis by Glazman and Weichman16 revealed
that the typical wavelength of the baroclinic Rossby waves is from several hundreds to one thousand
kilometers, which is more than ten times as large as the Rossby radius of deformation. They also
showed that “typical directions of characteristic wavenumber vector deviate from the zonal by 50◦–
80◦.” Here, “zonal” refers to the direction of k-axis in the two-dimensional wavenumber space. This
deviation resembles the angular distribution of energy for the γ ≥ 1 cases shown in Fig. 4 in the
present paper, and the anisotropy of the energy cascade in the long-wave limit may be the cause of
the observed deviation. This possibility was suggested by Balk and Zakharov9 and Balk.10 As stated
above, however, in order for the anisotropy to be significant, the parameter γ = βL2

D/U should be
larger than unity, and whether this condition is satisfied in the real ocean should be investigated. In
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Table I of Glazman and Weichman,16 the value of βL2
D was estimated to be 5.8 cm/s for 25◦N latitude.

If we estimate the typical velocity scale associated with the Rossby waves to be U ∼ 1 cm/s based on
the fact that the corresponding anomaly of the sea level is several cm,15 the value of γ is estimated
to be roughly γ ∼ 5. Then, the condition is satisfied, and the conservation of zonostrophy may
contribute to the observed deviation. Confirming the condition for γ is not sufficient to validate the
connection between the observed deviation and the conservation of zonostrophy because the system
considered herein is highly idealized (two-dimensional flow, doubly-periodic boundary condition,
no forcing term, etc.). We believe that further numerical/observational research should be performed
in order to examine this connection.
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APPENDIX A: DERIVATION OF THE LONG-WAVE LIMIT OF ZONOSTROPHY

In this appendix, we derive an appropriate asymptotic form of zonostrophy for the long-wave
limit. Here, in order to simplify the limiting process, we adopt a different nondimensionalization
from that of the main text as

x = LDx∗, y = LD y∗, (A1)

rather than (8). Letting (k, l) be the wavenumbers corresponding to this nondimensionalized coordi-
nate, the original function for zonostrophy discovered by Balk6 is written as follows:

�k = log

(
l + √

3k + i|k|2
l − √

3k + i|k|2

)
. (A2)

Taking the imaginary part of the principal value (the argument is in the range of (−π , π ])) of (A2)
yields (21). We examine the long-wave limit (|k| → 0) of (A2) separately for each region in the
two-dimensional wavenumber space as follows:

• In the region in which k > 0 and |l| <
√

3k.
We consider the limit of |k| → 0 along a line, l = hk, where −√

3 < h <
√

3 and k > 0.
Considering that l + √

3k > 0 and l − √
3k < 0 in this region, �k is expanded as follows:

�k = log

(
l + √

3k

l − √
3k

)
+ log

(
1 + i|k|2

l + √
3k

)
− log

(
1 + i|k|2

l − √
3k

)

= log

(
l + √

3k

−(l − √
3k)

)
+ log(−1) +

(
i|k|2

l + √
3k

− i|k|2
l − √

3k

)
+ O(|k|2)

= Log

∣∣∣∣∣ l + √
3k

l − √
3k

∣∣∣∣∣ + i(π + 2nπ ) + i

(
−2

√
3 · k|k|2

l2 − 3k2

)
+ O(|k|2). (A3)

Here, Log indicates the principal value of the logarithm, and n is an arbitrary integer, which comes
from the multivaluedness of the logarithm. Since the value in the second set of parentheses in the
last line of (A3) is positive (but infinitesimally small), we should choose n = −1 in order to obtain
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the principal value of �k. Then, in this region, we obtain

Im(pv(�k)) = −π − 2
√

3 · k|k|2
l2 − 3k2

+ O(|k|2)

= −π − 2
√

3k − 8
√

3 · k3

l2 − 3k2
+ O(|k|2). (A4)

Here, Im( · ) is the imaginary part of ( · ), and pv( · ) is the principal value of ( · ).

• In the region in which l > 0 and l >
√

3|k|:
We consider the limit of |k| → 0 along a line, k = hl, where −1/

√
3 < h < 1/

√
3

and l > 0. Considering that l − √
3k > 0 and l + √

3k > 0 in this region, �k is expanded as
follows:

�k = log

(
l + √

3k

l − √
3k

)
+ log

(
1 + i|k|2

l + √
3k

)
− log

(
1 + i|k|2

l − √
3k

)

= log

(
l + √

3k

l − √
3k

)
+

(
i|k|2

l + √
3k

− i|k|2
l − √

3k

)
+ O(|k|2)

= Log

∣∣∣∣∣ l + √
3k

l − √
3k

∣∣∣∣∣ + i(2nπ ) + i

(
−2

√
3 · k|k|2

l2 − 3k2

)
+ O(|k|2). (A5)

Since the value in the second set of parentheses in the last line of (A5) is infinitesimally small,
we should choose n = 0 in order to obtain the principal value of �k. Then, in this region, we
obtain

Im(pv(�k)) = −2
√

3k − 8
√

3 · k3

l2 − 3k2
+ O(|k|2). (A6)

• On the line l = √
3k (k > 0):

Considering that l − √
3k = 0 and l + √

3k > 0 on this line, �k is expanded as follows:

�k = log

(
l + √

3k + i|k|2
i|k|2

)

= log

(
l + √

3k

|k|2
)

− log(i) + log

(
1 + i|k|2

l + √
3k

)

= Log

∣∣∣∣∣ l + √
3k

|k|2
∣∣∣∣∣ − i

π

2
+ i(2nπ ) + i

( |k|2
l + √

3k

)
+ O(|k|2). (A7)

Since the value in the second set of parentheses in the last line of (A7) is infinitesimally small, we
should choose n = 0 in order to obtain the principal value of �k. Then, on the line l = √

3k (k > 0),
we obtain

Im(pv(�k)) = −π

2
− 2

√
3k + 8

√
3 · k

3
+ O(|k|2). (A8)
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Applying similar procedures to those described above to the other regions and lines and omitting
O(|k|2) terms, we finally obtain

Im(pv(�k)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 −2
√

3k −8
√

3
(

k3

l2−3k2

)
(|l| >

√
3|k|)

−π −2
√

3k −8
√

3
(

k3

l2−3k2

)
(|l| <

√
3|k| and k > 0)

π −2
√

3k −8
√

3
(

k3

l2−3k2

)
(|l| <

√
3|k| and k < 0)

−π
2 −2

√
3k −8

√
3

(− k
3

)
(l = ±√

3k and k > 0)

π
2 −2

√
3k −8

√
3

(− k
3

)
(l = ±√

3k and k < 0)

. (A9)

If we define ηk = −Im(pv(�k))/π and omit O(|k|1) terms, we obtain (23). In (23), we choose η(0, 0)

= 0 in order to satisfy (19). Note that the form of (22) appears as an O(|k|1) term in (A9).

APPENDIX B: PROOF THAT THE ηk SATISFIES THE CONSTRAINT

In this appendix, we present a proof that the ηk defined by (23) satisfies the constraint (19)
whenever the condition (20) holds. The condition (20) can be rewritten as follows:

k0 + k1 + k2 = 0,

l0 + l1 + l2 = 0, (B1)

k0(k2
0 + l2

0) + k1(k2
1 + l2

1) + k2(k2
2 + l2

2) = 0.

First, let us consider the case of |k0| = 0, namely, k0 = (0, 0). In this case, the condition (B1)
is satisfied when k2 = −k1. For this choice of k0, k1, and k2, the constraint (19) is satisfied since
η(0, 0) = 0 and ηk = −η−k by the definition of (23).

Next, let us consider the case in which |k0| �= 0. Since whether condition (B1) holds and whether
constraint (19) is satisfied depend on neither the scale transform: (k0, k1, k2) �→ (rk0, rk1, rk2) (r
�= 0) nor the reflection transforms: ((k0, l0), (k1, l1), (k2, l2)) �→ ((−k0, l0), (−k1, l1), (−k2, l2)) and
((k0, l0), (k1, l1), (k2, l2)) �→ ((k0, −l0), (k1, −l1), (k2, −l2)), we can restrict our attention to the case
in which (k0, l0) = (cos θ0, sin θ0) (0 ≤ θ0 ≤ π /2), without loss of generality. Eliminating k1 and l1
and using k2

0 + l2
0 = 1 in (B1) yields

(3k0)k2
2 + (2l0)k2l2 + (k0)l2

2 + (2k2
0 + 1)k2 + (2k0l0)l2 = 0. (B2)

This is the equation of a conic section in the two-dimensional wavenumber space for (k2, l2). Since
the discriminant is written as

(l0)2 − (3k0)(k0) = sin2 θ0 − 3 cos2 θ0

= 4 sin(θ0 + π

3
) sin(θ0 − π

3
),

the locus of k2 = (k2, l2) is either an ellipse (when 0 ≤ θ0 < π /3), or two hyperbolas (when π /3
< θ0 ≤ π /2), or two lines (when θ0 = π /3). This geometric property of condition (B1) was noted
by Longuet-Higgins and Gill.17 Since Eq. (B2) holds, by replacing (k2, l2) with (k1, l1), the locus of
k1 is either an ellipse, two hyperbolas, or two lines. The two points k1 and k2 are symmetric with
respect to the point −k0/2 in order to satisfy k0 + k1 + k2 = 0. In the following, we present a
geometric proof of the proposition. For convenience, we define five sets corresponding to the value
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of ηk as follows:

W0 = {(k, l) | |l| >
√

3|k| or k = l = 0} : ηk∈W0 = 0,

U+ = {(k, l) | |l| <
√

3k} : ηk∈U+ = 1,

U− = {(k, l) | − |l| >
√

3k} : ηk∈U− = −1,

H+ = {(k, l) | |l| = √
3k and k > 0} : ηk∈H+ = 1/2,

H− = {(k, l) | |l| = −√
3k and k < 0} : ηk∈H− = −1/2,

(B3)

and two points depending on the coordinates of k0 as follows:

kA = (−
√

3k0 + l0

2
√

3
,−

√
3k0 + l0

2
),

kB = (−
√

3k0 − l0

2
√

3
,−

√
3k0 − l0

2
). (B4)

Each set corresponds to a region in the wavenumber space, as shown in Fig. 8(a). Next, we present
the proof for each of three ranges of θ0.

• 0 ≤ θ0 < π /3
For this range of θ0, the point k0 ∈ U+ and the locus of k1 and k2 is an ellipse. Figure 8(b)

shows the ellipse for the case in which θ0 = π /6 (for any value of θ0 in [0, π /3), the following

FIG. 8. (a) Regions in two-dimensional wavenumber space corresponding to the sets W0, U+, U−, H+, and H−, which are
defined by (B3). (b)–(d) The loci of k1 and k2 that satisfy (B1) when θ0 = π /6 (b), θ0 = 11π /24 (c), and θ0 = π /3 (d). See
the text for details.
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explanation applies). The ellipse crosses the line l = √
3k at the origin and the point kA and crosses

the line l = −√
3k at the origin and the point kB. When the point k1 coincides with kA, the point

k2 coincides with kB. Then, k1, k2 ∈ H− and (19) holds because ηk1 = ηk2 = −1/2 and ηk0 = 1 in
this case. When the point k1 is on the arc of the ellipse that lies in the set U−, the point k2 is on
the arc of the ellipse that lies in the set W0. Then, k1 ∈ U− and k2 ∈ W0 and (19) holds because
ηk1 = −1, ηk2 = 0, and ηk0 = 1 in this case. The above explanation holds even if k1 is exchanged
with k2. Therefore, the proof is complete for this range of θ0.

• π /3 < θ0 ≤ π /2
For this range of θ0, the point k0 ∈ W0 and the locus of k1 and k2 is given by two hyperbolas.

Figure 8(c) shows the hyperbolas for the case of θ0 = 11π /24 (for any value of θ0 in (π /3, π /2],
the following explanation applies). The hyperbola at the lower left crosses the line l = √

3k at the
point kA, whereas the hyperbola at the upper right crosses the line l = −√

3k at the origin and the
point kB. When the point k1 coincides with kA, the point k2 coincides with kB. Then, k1 ∈ H−
and k2 ∈ H+ so that (19) holds because ηk1 = −1/2, ηk2 = 1/2 and ηk0 = 0 in this case. When the
point k1 is on the arc of the lower left hyperbola that lies in the set U−, the point k2 is on the arc
of the upper right hyperbola that lies in the set U+. Then, k1 ∈ U− and k2 ∈ U+ so that (19) holds
because ηk1 = −1, ηk2 = 1, and ηk0 = 0 in this case. When the point k1 is on the arc of the lower
left hyperbola that lies in the set W0, the point k2 is on the arc of the upper right hyperbola that lies
in the set W0. Then, k1, k2 ∈ W0, and (19) holds because ηk1 = ηk2 = 0, and ηk0 = 0 in this case.
The above explanation holds even if k1 is exchanged with k2. Therefore, the proof is completed for
this range of θ0.

• θ0 = π /3
For this value of θ0, the point k0 ∈ H+ and the locus of k1 and k2 is given by the two lines,

l = −√
3k and l = −√

3(k + 1). Figure 8(d) shows the two lines. Line l = −√
3(k + 1) crosses line

l = √
3k at point kA, whereas line l = −√

3k crosses line l = √
3k at point kB, which coincides

with the origin. When the point k1 coincides with kA, the point k2 coincides with kB. Then, k1 ∈ H−
and k2 ∈ W0 so that (19) holds because ηk1 = −1/2, ηk2 = 0, and ηk0 = 1/2 in this case. When the
point k1 is on the ray of line l = −√

3(k + 1) that lies in the set U−, the point k2 is on the ray of line
l = −√

3k that lies in the set H+. Then, k1 ∈ U− and k2 ∈ H+ so that (19) holds because ηk1 = −1,
ηk2 = 1/2, and ηk0 = 1/2 in this case. When the point k1 is on the ray of the line l = −√

3(k + 1)
that lies in the set W0, the point k2 is on the ray of line l = −√

3k that lies in the set H−. Then,
k1 ∈ W0 and k2 ∈ H− so that (19) holds because ηk1 = 0, ηk2 = −1/2, and ηk0 = 1/2 in this case.
The above explanation holds even if k1 is exchanged with k2. Thus, the proof is completed for this
value of θ0.
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