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We reformulate quantum tunneling in a multidimensional system where the tunneling sector is

nonlinearly coupled to oscillators. The WKB wave function is explicitly constructed under the assumption

that the system was in the ground state before tunneling. We find that the quantum state after tunneling can

be expressed in the language of the conventional in-in formalism. Some implications of the result to

cosmology are discussed.
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I. INTRODUCTION

Quantum tunneling has been studied for a long time as
one of the most exciting topics in various fields of science,
from the study of the dynamics of atomic and molecular
systems to condensed matter physics and field theory
(see [1,2], and references therein). Regarding applications
to cosmology, there is even a possibility that the universe
was born via quantum tunneling [3]. Furthermore, the
string theory landscape has been proposed as a possible
setting of the early universe inflation [4]. In this frame-
work, scalar fields are thought to tunnel among many false
vacua (i.e. local minima of the potential) in the vast string
theory potential landscape. The formulation of the false
vacuum decay (i.e. the quantum tunneling from a false
vacuum) in field theory was first considered in flat space-
times [5,6], and was extended to include gravity in [7]
(see [8] for the extension to multiple-field cases).

Multidimensional quantum tunneling has also been well
studied [1], and is formulated by constructing the wave
functions for quantum tunneling using the WKB method
[9–12]. Field theoretic extension was developed in [13],
and such formulation has been applied to the quantum
fluctuations on a tunneling background. It was further
extended to include gravity in [14]. As a result of
these developments, it has been possible to calculate the
quantum fluctuations in the universe after false vacuum
decay [15–17].

All previous works on quantum tunneling neglect effects
of nonlinear interactions. In other words, only free quan-
tum field theory on a tunneling background has been
considered so far. In light of the recent progress in obser-
vational cosmology, however, it is now important to study
the observational consequences of nonlinear interactions.
For example, the non-Gaussianity of the cosmological
fluctuations is now a hot topic in cosmology [18–20]. It
is clearly necessary to reformulate quantum field theory
on a tunneling background with nonlinear interactions
included, in order to calculate the non-Gaussianity in a
universe undergoing quantum tunneling, as is motivated

by the string landscape. Estimates for the non-Gaussianity
in such a scenario have been calculated in the literature
[21,22], but up to now there is no rigorous proof that the
formulation used there is valid.
In this paper, we reformulate multidimensional quantum

tunneling with nonlinear interactions, following the for-
mulation by Yamamoto [12]. Although the formulation of
the multidimensional system is interesting in itself, it can
also be regarded as a first step towards the formulation of
quantum field theory. We expect that extensions from
multidimensional cases to field theory with gravitation
are possible as before [12–14], but leave such issues to
future studies.
As the simplest extension of the 1-dimensional case, we

will study a 2-dimensional system in which the tunneling
sector y is nonlinearly coupled to the oscillator�, as shown
in Fig. 1. The restriction to a 2-dimensional system keeps
calculations as simple as possible whilst still maintaining
the essential features of multidimensional effects. The
particle, originally positioned in the false vacuum at
ðyF; 0Þ, moves to the nucleation point at ðyN; 0Þ by quantum
tunneling, and then rolls down classically, as shown in
Fig. 1. For simplicity, in this paper we assume the classical
path to be straight, and leave the consideration of curved
paths to future work. Assuming that the potential is static,
the wave function �ðy; �Þ for such a particle is a solution
of the time-independent Schrödinger equation. The bound-
ary conditions for �ðy; �Þ corresponding to the scenario
outlined above are given as follows: �ðy; �Þ should be an
outgoing wave function outside the barrier, and �ðy; �Þ
should match the wave function for the quantum state
before the quantum tunneling around the false vacuum.
Let us put a screen at y outside the barrier, and then

prepare the above system many times and let the particles
hit the screen. The particles hit the screen with different �
each time, since�ðy; �Þ is extended in the� direction. The
statistical properties of � at y are given by the quantum
expectation values with respect to �ðy; �Þ, defined as
h�niy �

R
d��nj�ðy; �Þj2 where n ¼ 1; 2; 3; . . . . In this

paper, we obtain formulas for such quantities by construct-
ing �ðy; �Þ explicitly using the WKB method. If we
define t as the time the particle takes to reach y from the*sugimura@yukawa.kyoto-u.ac.jp
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nucleation point, we can interpret �ðy; �Þ as the
t-dependent wave function with respect to �. Then, we
find that our resulting formulas can be expressed in the
language of the conventional in-in formalism [23,24]. Note
that h�niy at given y, or given t, can be regarded as the

analogue of the n-point correlation functions at a given
time in field theory, where the time is defined in terms of
the value of the tunneling field.

This paper is organized as follows. In Sec. II, we obtain
the expression for the quantum expectation value in the
Schrödinger picture. In Sec. III, we move to the interaction
picture, where the quantum expectation value is given in
the in-in formalism form. In Sec. IV, we apply the formal-
ism obtained in Sec. II and in Sec. III to a simple toy model
for illustration purposes. Finally, we conclude in Sec. V.

II. FORMULATION: SCHRÖDINGER PICTURE

A. WKB analysis for 2-dimensional system

As mentioned in the Introduction, let us consider a
2-dimensional system. The Hamiltonian of the system is
given by

H ¼ p2
y

2
þ p2

�

2
þ Vðy; �Þ; (1)

where Vðy; �Þ has a false vacuum and nucleation point at
ðy; �Þ ¼ ðyF; 0Þ and ðyN; 0Þ, respectively, as shown in
Fig. 1. The nucleation point is defined as the opposite
end to the false vacuum on the tunneling path, which is
the classical trajectory connecting the false vacuum and the
region outside the potential barrier with minimum action.
Separating Vðy; �Þ into the y part VtunðyÞ and the � part
V�ðy; �Þ as Vðy; �Þ ¼ VtunðyÞ þ V�ðy; �Þ, we assume for

simplicity that V�ðy; �Þ can be written as V�ðy; �Þ ¼
ð!2ðyÞ=2Þ�2 þ Vintðy; �Þ, where the nonlinear interaction
term Vintðy; �Þ consists of the cubic and higher order terms
with respect to �. The vanishing of the linear term with

respect to � in the potential guarantees that the tunneling
path lies on the y axis. The inclusion of the nonlinear
interaction term Vintðy; �Þ is the essential new point
in this paper, compared to the literature [15–17]. For
later convenience, here we denote the y and � parts of
the Hamiltonian as H y¼p2

y=2þVtunðyÞ and H �¼p2
�=

2þV�ðy;�Þ, respectively.
In the systemdefined byEq. (1), we consider the tunneling

wave function �ðy; �Þ, which is a solution of the time-
independent Schrödinger equation with eigenenergy E

Ĥ�ðy; �Þ ¼ E�ðy; �Þ: (2)

Here, quantities with hatð^Þ are operators, and p̂y and p̂� in

Ĥ are given by ðℏ=iÞð@=@yÞ and ðℏ=iÞð@=@�Þ, respec-
tively. In this paper, we concentrate on quantum tunneling
from the quasi-ground-state, which is defined as the ground
state for the potential expanded around the false vacuum.
We can consider quantum tunneling from excited states,
as in [12], but we leave such issues to future studies.
As mentioned in the Introduction, �ðy; �Þ should be an
outgoing wave function outside the barrier.
We construct the tunneling wave function under the

following assumptions:
(1) the WKB approximation is valid well inside and

well outside the barrier,
(2) the coupling between the y and� directions is small,
(3) the region around the nucleation point where the

WKB approximation breaks is narrow,
(4) the coupling between the y and � directions

vanishes around the false vacuum.
We hope to return to more general cases, say, cases where
assumptions (3) and/or (4) are relaxed, in future. If there was
no coupling between the two directions [i.e. if V�ðy; �Þ
could be denoted as V�ð�Þ], the tunneling wave function

�ðy; �Þ would be given by the product of �yðyÞ and �ð�Þ,
where �yðyÞ is the 1-dimensional tunneling wave function

for VtunðyÞ and �ð�Þ is the ground state for V�ð�Þ. In our

case, however, we consider small but nonvanishing cou-
pling, and thus we expand �ðy; �Þ and E in Eq. (2) as

�ðy; �Þ ¼ �yðyÞ�ðy; �Þ; E ¼ Ey þ E�: (3)

Here, �yðyÞ and Ey are, respectively, the wave function

and energy of the 1-dimensional Schrödinger equation
H y�yðyÞ ¼ Ey�yðyÞ, which we will briefly discuss

below. As a result of assumption (4), the quasi-ground-state
is given by �yðyÞ�Fð�Þ, where �Fð�Þ is the ground state

for the � part of the potential around the false vacuum
VFð�Þð� V�ðyF; �ÞÞ. Here, by focusing on Eq. (2) around

the false vacuum and denoting the ground state energy with
respect to VFð�Þ as EF, it can be seen that E� is given

by EF.
As shown in Fig. 2, the tunneling path yð�Þ, or instanton,

is a solution of the Euclidean equation of motion (EOM)
y00ð�Þ � dVtun=dy ¼ 0, where 0 denotes the derivative

FIG. 1 (color online). The potential for the 2-dimensional
system, where the tunneling sector y is nonlinearly coupled to
the oscillator �. The particle moves from the false vacuum
ðyF; 0Þ to the nucleation point ðyN; 0Þ by quantum tunneling,
and rolls down classically from the nucleation point.
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with respect to the imaginary, or Euclidean, time �. The
boundary conditions for yð�Þ are given by yð�1Þ ¼ yF
and yð0Þ ¼ yN , where the freedom in choosing the origin of
� is fixed. Well inside the potential barrier, we rewrite the

wave function as �yðyÞ ¼ e�SyðyÞ=ℏ with the Euclidean

action Syð�Þð¼ Syðyð�ÞÞÞ, and make the WKB expansion

Sy ¼ S0 þ ℏS1 þ ℏ2S2 þ � � � . Then, by solving the

Schrödinger equation order by order and using the instan-
ton yð�Þ, we can obtain dS0ðyÞ=dy ¼ y0ð�Þ, S1ðyÞ ¼
ð1=2Þ ln ðdS0=dyÞ, and so on, where we take � to be in
the region � 2 ð�1; 0Þ. It is known that we can move from
inside the barrier to outside the barrier by analytical con-
tinuation � ! t ¼ �i�, where t is the real, or Lorentzian,
time. After the analytical continuation, the instanton gives
the classical motion of the particle yðtÞ � yð� ¼ itÞ, which
starts rolling down from the nucleation point at t ¼ 0, as
shown in Figs. 1 and 2. Furthermore, the analytical con-
tinuation of the Euclidean action SyðtÞ � Syð� ¼ itÞ gives
the tunneling wave function �yðyðtÞÞ ¼ e�SyðtÞ=ℏ well out-

side the barrier. In the following, we can use �, t and y
interchangeably.

Now, we will transform Eq. (2) inside the potential
barrier. By substituting Eq. (3) with E� ¼ EF into

Eq. (2) and using the 1-dimensional Schrödinger equation
H y�yðyÞ ¼ Ey�yðyÞ, we obtain

ℏ
dSy
dy

@

@y
�ðy;�Þ�ℏ2

2

@2

@y2
�ðy;�ÞþĤðyÞ�ðy;�Þ¼0; (4)

where

ĤðyÞ ¼ p̂2
�

2
þ V�ðy; �Þ � EF: (5)

Here, we can neglect the second term in Eq. (4), since the y
dependence of c ðy; �Þ is expected to be small as a result of
assumption (2). By neglecting the second term in Eq. (4)
and using the leading order relation in the WKB approxi-
mation ℏðdSy=dyÞð@=@yÞ � ℏð@=@�Þ, we can transform

Eq. (4) into

� ℏ
@

@�
�ð�; �Þ ¼ Ĥð�Þ�ð�; �Þ: (6)

This equation is of exactly the same form as the
‘‘time-dependent Schrödinger equation’’ with imaginary
time �, defined for � 2 ð�1; 0Þ.

Let us now check the consistency of the approximation
used to derive Eq. (6), by estimating the size of the second
term in Eq. (4). To next-to-leading order in the WKB
approximation, the coefficient of the second term in
Eq. (4) can be approximated as

ℏ2

2

@2

@y2
� �ℏy00

y03
ℏ
@

@�
þ 1

2y02

�
ℏ
@

@�

�
2
: (7)

Here, ℏy00=y03 � 2ðdS1ðyÞ=dyÞ=ðdS0ðyÞ=dyÞ and ðℏ@=@�Þ
can be estimated as Oðℏ!Þ using Eq. (6). Thus, when the
first and second operators on the rhs act on �ð�; �Þ, they
give terms that are suppressed, under WKB approximation,
by factors of OððdS1ðyÞ=dyÞ=ðdS0ðyÞ=dyÞÞ and Oðℏ!=y02Þ
relative to other terms in Eq. (4), respectively.
It may be useful to make a comment on the WKB

expansion used above. Strictly speaking, this expansion
is not merely a expansion in ℏ where � is considered to

be Oðℏ1=2Þ, as was done in [12]. In such an expansion, the
nonlinear interaction terms would not appear in Eq. (6),
since the nonlinear interaction terms would become higher

order in ℏ [e.g. �3 term would become Oðℏ3=2Þ]. Rather,
here we have expanded equations based on the fact that the
classical part of the wave function S0ðyÞ dominates over
quantum effects, which makes it possible to consistently
take into account the effect of nonlinear interaction terms
in Eq. (6).
We can also transform Eq. (2) outside the barrier, fol-

lowing similar arguments to those outlined above but with
the real time t instead of the imaginary time �. As a result
of the analytical continuation � ! t ¼ �i�, we obtain

iℏ
@

@t
�ðt; �Þ ¼ ĤðtÞ�ðt; �Þ; (8)

which is the ‘‘time-dependent Schrödinger equation’’ with
real time t, defined for t 2 ð0;1Þ. For later convenience,
let us recall that the original 2-dimensional wave function
�ðy; �Þ is denoted as

�ðy; �Þ ¼ exp ½�SðtÞ=ℏ��ðt; �Þ; (9)

where yð¼ yð� ¼ itÞÞ is inside and outside the potential
barrier for t 2 ðþi1; 0Þ and t 2 ð0;1Þ, respectively.
Around the false vacuum or the nucleation point, where

the WKB approximation is not valid, we determine �
using matching conditions. Thanks to assumptions (3)
and (4), the matching conditions are given in a simple
way. Firstly, the matching condition at y ¼ yN is given by

lim
�!�0

�ð�; �Þ ¼ lim
t!þ0

�ðt; �Þ; (10)

since �ðy; �Þ ¼ �yðyÞ�ðy; �Þ on both sides of yN should

have the same value at yN . Here, we can use Eq. (6) and (8)
until very close to yN thanks to assumption (3). Secondly,
the matching condition at y ¼ yF is given by

lim
�!�1�ð�; �Þ ¼ �Fð�Þ; (11)

y
y

y

y

y

y

FIG. 2 (color online). The schematic picture of instanton yð�Þ
with the imaginary time � (doted line) and its analytical
continuation yðtÞ � yð� ¼ itÞ with the real time t (solid line).
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since the wave function is assumed to match the quasi-
ground-state around the false vacuum, which is given
by �yðyÞ�Fð�Þ due to assumption (4), as mentioned

below Eq. (3).

B. Expectation values of operators

We will obtain the tunneling wave function by solving
Eq. (6) and (8) with the matching condition Eq. (10) and
(11). For notational simplicity, we introduce bra-ket
notation, where Eq. (8) is written as

iℏ
@

@t
j�ðtÞi ¼ ĤðtÞj�ðtÞi; (12)

with

h�j�ðtÞi ¼ �ðt; �Þ: (13)

The formal solution to Eq. (12) is given by

j�ðtÞi ¼ P

�
exp

�
� i

ℏ

Z t

t0

Hðt0Þdt0
��

j�ðt0Þi; (14)

where 0< t0 < t and the path ordering operator P orders
operators according to their order along the integration
path. From now on, we omit ^ over operators for brevity.
Similarly, the formal solution to Eq. (6) is given by

j�ð�Þi ¼ P

�
exp

�
� 1

ℏ

Z �i�

�i�0

Hð�0Þd�0
��

j�ð�0Þi; (15)

for �0 < �< 0. The expressions in Eqs. (14) and (15) are
not valid at the nucleation point, where the WKB approxi-
mation breaks down. However, thanks to the matching
condition given by Eq. (10), which can be written in
bra-ket notation as j�ð� ¼ �0Þi ¼ j�ðt ¼ þ0Þi, we can
connect the two expressions at the nucleation point as

j�ðtÞi ¼ P

�
exp

�
� i

ℏ

Z t

0
Hðt0Þdt0

��
j�ð0Þi

¼ P

�
exp

�
� i

ℏ

Z
�i�0!0!t

Hðt0Þdt0
��

j�ð�i�0Þi;
(16)

where
R
�i�0!0!t dt

0 ¼ R
t
0 dt

0 þ R
0
�i�0

dt0.
The matching around the false vacuum is given as

follows. We consider a wave function which matches the
quasi-ground-state around the false vacuum. The ket j�Fi
corresponding to the quasi-ground-state �Fð�Þ can be
given by

j�Fi ¼ lim
T!1e

�1
ℏHFTj�i; (17)

where HF � Hðþi1Þ and j�i is arbitrary as long as it is
not orthogonal to j�Fi. We don’t need to care about the
overall normalization of j�Fi, since it will be canceled in
the calculations of quantum expectation values, as will be
seen below. In deriving Eq. (17), we use the fact that the
ground state hasHF ¼ 0while excited states haveHF > 0,

which comes from the definition of HðyÞ in Eq. (5). From
assumption (4), there exists a �0 such that for � < �0 we
can approximate Hð�Þ and j�ð�i�Þi as HF and j�Fi,
respectively. Thus, using Eqs. (16) and (17), the state
evolving from j�Fi at t ¼ �i�0 is given by

j�ðtÞi¼P

�
exp

�
� i

ℏ

Z
�i�0!0!t

Hðt0Þdt0
��

lim
T!1e

�1
ℏHFTj�i

¼P

�
exp

�
� i

ℏ

Z
þi1!0!t

Hðt0Þdt0
��

j�i: (18)

Now we are able to evaluate the quantum expectation
values. For an operator O with respect to � (i.e. some
function of � and p�), the quantum expectation value at

given yð¼ yðtÞÞ outside the barrier is given by

hOiy ¼
R1
�1 d���ðy; �ÞO�ðy; �ÞR1

�1 d�j�ðy; �Þj2 ¼ h�ðtÞjOj�ðtÞi
h�ðtÞj�ðtÞi :

(19)

To derive the second line, we use Eq. (9) and cancel the

factors e�1
ℏSðtÞ appearing both in numerator and denominator.

Taking the Hermitian conjugate of Eq. (18), we obtain

h�ðtÞj ¼ ðj�ðtÞiÞy

¼ h�jP
�
exp

�
� i

ℏ

Z
t!0!�i1

Hðt0Þdt0
��

; (20)

where Hðt�Þ ¼ HðtÞ since HðyÞ given in Eq. (5) depends
only on y and yð��Þ ¼ yð�Þ due to the Euclidean time
inversion symmetry of the instanton. By substituting
Eqs. (18) and (20) into Eq. (19), we obtain the resulting
formula for the quantum expectation values in the
Schrödinger picture

hOiy ¼
h�jPðO exp ½� i

ℏ

R
C Hðt0Þdt0�Þj�i

h�jPðexp ½� i
ℏ

R
C Hðt0Þdt0�Þj�i ; (21)

where

C: þ i1 ! 0 ! t ! 0 ! �i1 (22)

is the time integration path, as shown in Fig. 3, and O is
ordered by P as if it is defined at t. In the denominator of

FIG. 3 (color online). The time integration path C given by
Eq. (22). The time integration along the imaginary axis (doted
line) corresponds to the evolution of the quantum state during
tunneling, and along the real axis (solid line) corresponds to the
evolution after tunneling.
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Eq. (21), we can deform the integration path from C to
i1 ! �i1 using Pðexp ½� i

ℏ

R
0!t!0 Hðt0Þdt0�Þ ¼ 1. If

j�i was chosen to be orthogonal to j�Fi, we could obtain
the quantum expectation values for quantum tunneling
from an excited state, as studied in [12]. We leave such
issues to future studies.

III. FORMULATION: INTERACTION PICTURE

A. Relation between interaction
and Schrödinger pictures

Since the expression given in Eq. (21) is difficult to
evaluate directly, in this section we will move from the
Schrödinger picture formulation to the interaction picture
one. This can be accomplished almost in the same way as
usual, but taking into account the nonunitarity of the
evolution operator for the imaginary part of the integration
path. The interaction picture formulation may be helpful
when considering the multidimensional tunneling system
in the context of quantum field theory, where the inter-
action picture is employed.

First of all, we introduce the evolution operator

Uðt2; t1Þ ¼ P

�
exp

�
� i

ℏ

Z t2

t1

HðtÞdt
��

� 1þ ð�iÞ
Z t2

t1

Hðt0Þdt0 þ ð�iÞ2

�
Z t2

t1

dt0
Z t0

t1

dt00Hðt0ÞHðt00Þ þ � � � ; (23)

where t1 and t2 are on the path C given by Eq. (22). The
inverse operator for Uðt2; t1Þ is given by

ðUðt2; t1ÞÞ�1 ¼ Uðt1; t2Þ; (24)

which can be confirmed by explicit calculation of
ðUðt2; t1ÞðUðt2; t1ÞÞ�1 using Eq. (23). The combination rule

Uðt3; t2ÞUðt2; t1Þ ¼ Uðt3; t1Þ; (25)

is satisfied as usual. It should be noted that Uðt2; t1Þ is not
generally a unitary operator since the path C includes the
imaginary part, and that Uðt2; t1Þ satisfies the relation
Uðt2; t1Þy ¼ Uðt�2; t�1Þ�1.

To find interaction picture expression, we expand the full
Hamiltonian given in Eq. (5) as HðtÞ ¼ H0ðtÞ þHintðtÞ,
where the free part H0ðtÞ and the interaction part HintðtÞ
are given, respectively, by

H0ðtÞ ¼
p2
�

2
þ!2ðtÞ

2
�2 � EF; HintðtÞ ¼ VintðyðtÞ; �Þ:

(26)

Using H0ðtÞ, we can define the annihilation and creation
operators at each t, respectively, as

at ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2!ðtÞ
ℏ

s
�þ i

ffiffiffiffiffiffiffiffiffiffiffiffi
2

ℏ!ðtÞ

s
p�;

ayt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2!ðtÞ
ℏ

s
�� i

ffiffiffiffiffiffiffiffiffiffiffiffi
2

ℏ!ðtÞ

s
p�;

(27)

where at and ayt satisfy the usual commutation relation.
The eigenstates with respect to H0ðtÞ can be defined with

at and ayt as

jnti ¼ 1ffiffiffiffiffi
n!

p ðayt Þnj0ti; atj0ti ¼ 0; (28)

where they satisfy

H0ðtÞjnti¼Ent jnti; Ent ¼ℏ!ðtÞ
�
nþ1

2

�
�EF: (29)

When H0ðtÞ explicitly depends on time, at and j0ti also
become time dependent. at at the times t ¼ t1 and t ¼ t2
are related by a Bogolubov transformation, and j0t1i andj0t2i are annihilated by at1 and at2 , respectively. The evo-

lution operator for the free Hamiltonian H0ðtÞ is given by

Uð0Þðt2; t1Þ ¼ P

�
exp

�
� i

ℏ

Z t2

t1

H0ðtÞdt
��

: (30)

Interaction picture operators OIðtÞ are defined by

OIðtÞ � Uð0Þð0; tÞOUð0Þðt; 0Þ; (31)

where O are Schrödinger picture operators. In the interac-
tion picture, states are evolved with the evolution operator
for HIðtÞ, given by

UIðt2; t1Þ ¼ P

�
exp

�
� i

ℏ

Z t2

t1

HIðtÞdt
��

; (32)

where the interaction Hamiltonian HIðtÞ is defined as

HIðtÞ � Hintð�IðtÞ; tÞ: (33)

For any t1 and t2 on C given by Eq. (22), we can rewire

UIðt2; t1Þ in terms of Uðt2; t1Þ from Eq. (23) and Uð0Þðt2; t1Þ
from Eq. (30) as

UIðt2;t1Þ¼Uðt2;t1ÞUð0Þðt1; t2Þ¼Uð0Þðt1; t2ÞUðt2; t1Þ; (34)

which can be confirmed by explicit calculation.
To describe �IðtÞ and p�IðtÞ in a simple way, we intro-

duce a positive frequency function uðtÞ and a negative
frequency function vðtÞ. They are defined as solutions to
the linearized EOM,

€uðtÞ ¼ �!2ðtÞuðtÞ; €vðtÞ ¼ �!2ðtÞvðtÞ; (35)

which are complex conjugate to each other when t is real;

u�ðtÞ ¼ vðtÞ for real t; (36)

and satisfy Klein-Goldon (KG) normalization,

uðtÞ _vðtÞ � _uðtÞvðtÞ ¼ iℏ: (37)

In-IN FORMALISM ON TUNNELING BACKGROUND: . . . PHYSICAL REVIEW D 88, 025037 (2013)

025037-5



Here, a dot denotes the derivative with respect to t. When t
is imaginary, since we define uðtÞ and vðtÞ by analytical
continuation from real t, Eqs. (35) and (37) still hold but
Eq. (36) is no longer true. It should be noted that the
freedom in choosing uðtÞ corresponds to the freedom to
make an arbitrary Bogolubov transformation.

Using uðtÞ and vðtÞ, we can define the annihilation
operator a and the creation operator ay, respectively, as

a ¼ � i

ℏ
ð�IðtÞ _vðtÞ � p�IðtÞvðtÞÞ;

ay ¼ i

ℏ
ð�IðtÞ _uðtÞ � p�IðtÞuðtÞÞ:

(38)

We will see below that the operators defined in Eq. (38) are
time independent and Hermitian conjugate to each other.
Firstly, it can be explicitly shown that these operators are
time independent by differentiating a and ay in Eq. (38)
with respect to t and using Eq. (35) and the evolution
equations for �IðtÞ and p�IðtÞ,

_�IðtÞ ¼ 1

iℏ
½�IðtÞ; H0ðtÞ� ¼ p�IðtÞ;

_p�IðtÞ ¼ 1

iℏ
½p�IðtÞ; H0ðtÞ� ¼ �!2ðtÞ�IðtÞ:

(39)

Since Eqs. (35) and (39) are valid not only for real t but also
for imaginary t, Eq. (38) can be used even when t is
imaginary. Secondly, by considering Eq. (38) when t is
real and using Eq. (36) and the Hermiticity of �IðtÞ and
p�IðtÞ, it is clear that a and ay defined in Eq. (38) are

Hermitian conjugate to each other. Using Eqs. (37) and
(38), �IðtÞ and p�IðtÞ can be written, respectively, as

�IðtÞ¼auðtÞþayvðtÞ; p�IðtÞ¼a _uðtÞþay _vðtÞ: (40)

It should be noted that Eq. (40) is valid not only for real t
but also for imaginary t.

B. In-in formalism along complex path

For later convenience, we introduce the state j�Ni,
which is the state at the nucleation point when nonlinear
interactions are switched off. By taking the limit t ! �i1

in Eqs. (26)–(29), we define !F, aF, jnFi, H0F and EnF .

Using those asymptotic quantities, j�Ni is obtained as

j�Ni ¼ lim
T!1e

E0F
TUð0Þð0; iTÞj0Fi; (41)

where the normalization factor eE0F
T is introduced to make

the expression finite and constant in the limit T ! 1. As a
result of the explicit t dependence of the free Hamiltonian
H0ðtÞ, j�Ni is not proportional to j0Fi in general. The
difference between j�Ni and j0Fi is determined by solving
the EOMs for the positive and negative frequency func-
tions given in Eq. (35).1

As will be confirmed below, the annihilation operator a
that annihilates j�Ni is associated with uðtÞ and vðtÞ
defined with the boundary conditions

uðtÞ ���!t!�i1
e�i!Ft; vðtÞ ���!t!þi1

ei!Ft; (42)

up to constant factors determined by the KG normalization.
Note that uðtÞ and vðtÞ satisfy the conditions for positive
and negative frequency functions given by Eqs. (36) and
(37). The corresponding annihilation operator is defined
by substituting vðtÞ given by Eq. (42) into Eq. (38), and can
be rewritten as

a ¼ � i

ℏ
Uð0Þð0; tÞð� _vðtÞ � p�vðtÞÞUð0Þðt; 0Þ

/ lim
T!1e

�!FTUð0Þð0; iTÞaFUð0ÞðiT; 0Þ: (43)

In deriving the first equality we used Eqs. (31) and (38) and
the t independence of a, and in deriving the second we used
Eq. (27) in the limit t ! i1 along with Eq. (42). Then,
using Eqs. (41) and (43), we can explicitly show that

aj�Ni / lim
T!1e

ðE0F
�!FÞTUð0Þð0; iTÞaFUð0ÞðiT; 0Þ

�Uð0Þð0; iTÞj0Fi ¼ 0; (44)

as we stated above.
Now we will move from the Schrödinger picture to the

interaction picture. By inserting Uð0Þðt1; t2ÞUð0Þðt2; t1Þ ¼ 1
into Eq. (21) many times, and using Eqs. (31) and (41), we
obtain

hOiy ¼
h�jUð0Þð�i1; 0ÞUð0Þð0;�i1ÞUð�i1; 0ÞUð0; tÞUð0Þðt; 0ÞUð0Þð0; tÞ

�OUð0Þðt; 0ÞUð0Þð0; tÞUðt; 0ÞUð0; i1ÞUð0Þði1; 0ÞUð0Þð0; i1Þj�i
h�jUð0Þð�i1; 0ÞUð0Þð0;�i1ÞUð�i1; 0ÞUð0; i1ÞUð0Þði1; 0ÞUð0Þð0; i1Þj�i

¼ h�NjUIð�i1; tÞOIðtÞUIðt; i1Þj�Ni
h�NjUIð�i1; i1Þj�Ni ; (45)

where the overall factors appearing in both numerator and denominator cancel each other. To make the correspondence
between this result and that of the conventional in-in formalism [23,24] clearer, we can rewrite Eq. (45) as

1The effect of the explicit t dependence of H0ðtÞ was determined by directly solving the Schrödinger equation in [12]. For the
correspondence between this work and [12], see the Appendix.
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hOðtÞi ¼ hPðOIðtÞ exp ½� i
ℏ

R
C HIðt0Þdt0�ÞiðNÞ

hPðexp ½� i
ℏ

R
C HIðt0Þdt0�ÞiðNÞ ; (46)

where the time integration path C is given by
Eq. (22), hOðtÞi � hOiy, and hiðNÞ is defined as hOiðNÞ �
h�NjOj�Ni=h�Nj�Ni. We can deform the integration
path in the denominator from C to i1 ! �i1 using
Pðexp ½� i

ℏ

R
0!t!0 HIðt0Þdt0�Þ ¼ 1.

Since the annihilation operator a annihilates j�Ni,
Wick’s theorem can be used to evaluate Eq. (46) as usual.
The N-point correlation function hPð�Iðt1Þ�Iðt2Þ . . .
�ðtNÞÞiðNÞ vanishes when N is odd, but is given by

hPð�Iðt1Þ�Iðt2Þ . . .�ðtNÞÞiðNÞ

¼ X
set of pairs

Y
pairs

hPð�IðtiÞ�IðtjÞÞiðNÞ; (47)

when N is even. Here, the 2-point correlation function

hPð�Iðt1Þ�Iðt2ÞÞiðNÞ can be evaluated as

hPð�Iðt1Þ�Iðt2ÞÞiðNÞ

¼
(
uðt1Þvðt2Þ when t1 precedes t2 alongC;

uðt2Þvðt1Þ when t2 precedes t1 alongC;
(48)

where uðtÞ and vðtÞ are given by Eq. (42).
Before closing this section, let us summarize what we

have found. The expression given in Eq. (46) is in the same
form as the conventional in-in formalism, which is often
used in quantum field theory calculations involving inter-
actions [23,24]. However, the time integration path
C: i1 ! 0 ! t ! 0 ! �i1 is different from the usual
case, where the time integration path is t0 ! t ! t0
when the initial state is given at an initial time t0 or
�1ð1� i�Þ ! t ! �1ð1þ i�Þ when the initial state is
given in the past infinity. In our case, the quasi-ground-
state is chosen as the initial state of the false vacuum, and
the corresponding time is given as t ¼ �i1 using the
instanton yð�Þ defined with Euclidean time � ¼ it. In
Eq. (46), the imaginary part of the integration path C
corresponds to the evolution inside the barrier, or during
tunneling, while the real part corresponds to the evolution
outside the barrier, or after tunneling.

IV. APPLICATION TO TOY MODEL

A. Toy model

For illustration purposes, we explicitly apply the formal-
ism obtained above to a simple toy model. We assume that
the instanton is given by

yð�Þ �
8><
>:
yF ð�1< �<��WÞ; ð�W < � <1Þ;
yN ð��W < � <þ�WÞ;
>yN ð0< tð¼ �i�Þ<1Þ;

(49)

where �W (0< �W) is the wall size of the thin-wall
instanton, and that the potential V�ðy; �Þ is given by

V�ðy; �Þ ¼ !2

2
�2 þ ~�ðyÞ�3; (50)

where the y-dependent coupling constant ~�ðyÞ is assumed
to be effective only inside the potential barrier (i.e.
yF < y < yN). By substituting Eqs. (49) and (50) into
Eq. (26), Hð�Þ ¼ H0 þHintð�Þ can be written as

H0 ¼ p2

2
þ!2

2
�2 � ℏ!

2
;

Hintð�Þ � ��ð�� �WÞ�3 þ ��ð�þ �WÞ�3;

(51)

where �ðxÞ is Dirac’s delta function and � ¼R��Wþ0
��W�0

~�ð �yð�ÞÞd�. Here, the eigenenergy of the quasi-

ground-state is given by EF ¼ ℏ!=2, since Hintð�Þ
vanishes around the false vacuum and the quasi-ground-
state is the ground state forH0. In the following, we denote
the ground state and the annihilation operator associated
with H0 as j0i and a, respectively. We will calculate h�iy,
or h�ðtÞi, using both the the Schrödinger and interaction
picture expressions, given in Eqs. (21) and (46), respec-
tively. Although h�ðtÞi ¼ 0 in the free theory calculation,
we obtain h�ðtÞiðtÞ � 0 as a result of the effect of nonlinear
interaction.

B. Calculation in Schrödinger picture

To evaluate Eq. (21), we obtain j�ðtÞi using Eq. (18).
The evolution of the ground state j0i defined at the false
vacuum (t0 ¼ þi1) to behind the wall (t0¼�ið��W�0Þ)
is trivial since Hðt0Þ is simply given by H0 in this region,
and we obtain

j�ð�ið��W � 0ÞÞi ¼ j0i: (52)

Using Eq. (51), the evolution of the state across the wall
[i.e. t0 ¼ �ið��W � 0Þ ! �ið��W þ 0Þ] is given by

j�ð��W þ 0Þi ¼ e��
ℏ�

3 j�ð��W � 0Þi: (53)

Since Hðt0Þ is again simply H0 from in front of the wall
(t0 ¼ �ið��W þ 0Þ) to outside the barrier (t0 ¼ t), the
evolution of the state between them is given by

j�ðtÞi ¼ exp

�
� i

ℏ
H0ðt� i�WÞ

�
j�ð�ið��W þ 0ÞÞi:

(54)

By combining Eqs. (52)–(54) we obtain, to first order in �,

j�ðtÞi � exp

�
� i

ℏ
H0ðt� i�WÞ

��
1� �

ℏ
�3

�
j0i; (55)

and its Hermitian conjugate is given by

h�ðtÞj � h0j
�
1� �

ℏ
�3

�
exp

�
i

ℏ
H0ðtþ i�WÞ

�
: (56)
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By substituting Eqs. (55) and (56) into Eq. (21) we obtain,
to leading order in �,

h�ðtÞi � ��

ℏ

�
0

��������� exp

�
� i

ℏ
H0ðt� i�WÞ

�
�3

þ �3 exp

�
i

ℏ
H0ðtþ i�WÞ

�
�

��������0
	

¼ � 3ℏ�
2!2

cos ð!tÞe�!�W : (57)

To obtain the second line, we used ½a; ay� ¼ 1, H0j0i ¼ 0,

½H0; a� ¼ �ℏ!, ½H0;a
y�¼ℏ! and �¼ðℏ=2!Þ1=2ðaþayÞ.

C. Calculation in interaction picture

Since H0 is independent of t, Eq. (35) can be easily
solved. uðtÞ and vðtÞ defined with the boundary conditions
in Eq. (42) are given, respectively, by

uðtÞ ¼
ffiffiffiffiffiffiffi
ℏ
2!

s
e�i!t; vðtÞ ¼

ffiffiffiffiffiffiffi
ℏ
2!

s
ei!t: (58)

By using Hintð�Þ given in Eq. (51) along with Eq. (32), we
obtain, to first order in �,

exp

�
� i

ℏ

Z
C
HIðt0Þdt0

�
� 1� �

ℏ
�3
I ði�WÞ �

�

ℏ
�3
I ð�i�WÞ:

(59)

By substituting Eq. (59) into Eq. (45) we obtain, to leading
order in �,

h�ðtÞi � ��

ℏ
h�IðtÞ�3

I ði�WÞ þ �3
I ð�i�WÞ�IðtÞiðNÞ

¼ � 3ℏ�
2!2

cos ð!tÞe�!�W ; (60)

which is in agreement with Eq. (57), as it should be.
To obtain the second line, we used Wick’s theorem, as

in Eq. (47). Here, for example, h�Iðt1Þ�3
I ðt2ÞiðNÞ can be

evaluated as

h�Iðt1Þ�3
I ðt2ÞiðNÞ ¼ 3h�Iðt1Þ�Iðt2ÞiðNÞh�2

I ðt2ÞiðNÞ

¼ 3uðt1Þuðt2Þv2ðt2Þ: (61)

V. CONCLUSION

Wehave studied a 2-dimensional tunneling system,where
the tunneling sector y is nonlinearly coupled to an oscillator
�. Assuming the system is initially in a quasi-ground-state at
the false vacuum, the 2-dimensional tunneling wave func-
tion c ðy; �Þ has been constructed using the WKB method.
We have considered the effect of nonlinear interactions,
which has not been studied in the context of multidimen-
sional tunneling systems before, to our knowledge.

We have determined the quantum expectation values
with respect to the � direction at a given y outside
the barrier. We first introduced a Schrödinger picture

formulation to obtain Eq. (21) in Sec. II, and then moved
to an interaction picture formulation in Sec. III to obtain
Eq. (46). The resulting formula given in Eq. (46) is of the
same form as the conventional in-in formalism, which is
often used in quantum field theory calculations with inter-
actions [23,24]. However, the time integration path is
modified to the one consisting of an imaginary part in
addition to a real part.
The difference in the integration path for the usual case

and the quantum tunneling case can be understood as
follows. In the usual case, an initial state is given at some
finite past t ¼ t0 or the infinite past t ¼ �1, both of which
are defined on the real axis. However, in the case of
quantum tunneling, the initial state is given at the false
vacuum, where the corresponding time is t ¼ �i1. In our
case, the imaginary part of the integration path corresponds
to the evolution of the quantum state during tunneling,
while the real part corresponds to the evolution after the
quantum tunneling.
In this paper, the formulation has been done in a multi-

dimensional quantum mechanical system. In order to apply
it to cosmology, we need to extend the formulation to field
theory, with gravitational effects included. Such an exten-
sion has been done in the case without interactions in
[12–14], and we expect similar extension to be possible in
the case with interactions. Although a full derivation is now
under investigation, one might naively expect that the inte-
gration path will also consist of an imaginary part corre-
sponding to the evolution during quantum tunneling, and
real part corresponding to the evolution after quantum tun-
neling. Calculations assuming this naive expectation to be
true have already been performed in the literature [21,22].
Observable effects resulting from nonlinear interactions,

such as the non-Gaussianity of cosmological fluctuations,
are now recognized as powerful tools to probe the early
universe. It is therefore important for us to be able to
determine such features that may result from models
involving quantum tunneling, which are motivated by the
string landscape.

ACKNOWLEDGMENTS

K. S. thanks J. White, M. Sasaki, T. Tanaka, and K.
Yamamoto for useful discussions and valuable comments.
This work was supported in part by Monbukagaku-sho
Grant-in-Aid for the Global COE programs, ‘‘The Next
Generation of Physics, Spun from Universality and
Emergence’’ at Kyoto University. K. S. was supported by
Grant-in-Aid for JSPS Fellows No. 23-3437.

APPENDIX: POSITIVE FREQUENCY FUNCTION
AND WAVE FUNCTION

In this appendix, we will illustrate the the relation
between the positive frequency function uðtÞ used in this
work and its corresponding wave function c ð�; tÞ used in

KAZUYUKI SUGIMURA PHYSICAL REVIEW D 88, 025037 (2013)

025037-8



the literature [12]. We will employ the 1-dimensional
harmonic oscillator with Hamiltonian

H ¼ p2
�

2
þ!2

2
�2; (A1)

as an example. We will also see how the freedom in
choosing uðtÞ and vðtÞ is related to the Bogolubov
transformation.

As usual, the ground state j0i and the corresponding
annihilation operator a are given by

a ¼
ffiffiffiffiffiffi
!

2ℏ

r
�þ i

1ffiffiffiffiffiffiffiffiffiffi
2ℏ!

p p�; aj0i ¼ 0; (A2)

where the Hamiltonian can be rewritten asH¼ℏ!ðayaþ1
2Þ

and the commutation relation is given by ½a; ay� ¼ 1.

The Bogolubov transformed vacuum state j~0i and corre-
sponding annihilation operator ~a are constructed as

~a ¼ �aþ �ay; ~aj~0i ¼ 0; (A3)

where � and � satisfy j�j2 � j�j2 ¼ 1. Here, ~a satisfies
the commutation relation ½~a; ~ay� ¼ 1 but is nothing to do
with the Hamiltonian.

In the Heisenberg picture, operators are defined as

OHðtÞ ¼ e
i
ℏHtOe� i

ℏHt, where operators with and without
subscript H correspond to Heisenberg and Schrödinger
operators, respectively. The positive frequency functions
uðtÞ, which are solutions to the EOM €uðtÞ ¼ �!2uðtÞ and
satisfy the Klein-Gordon normalization u _u� � _uu� ¼ iℏ,
define the corresponding annihilation operators au by

au ¼ 1

i
ð�HðtÞ _u�ðtÞ � p�HðtÞu�ðtÞÞ: (A4)

The positive frequency function u0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2!

p
e�i!t

gives the annihilation operator a of the ground state defined
in Eq. (A2), while ~uðtÞ ¼ ��u0ðtÞ � �u�0ðtÞ gives ~a of the

Bogolubov transformed vacuum state defined in Eq. (A3).
We will explicitly construct the wave function c uð�Þ ¼

h�j0ui where j0ui satisfies auj0ui ¼ 0. Using Eq. (A4),

OHðtÞ ¼ e
i
ℏHtOe� i

ℏHt and p� ¼ �iℏð@=@�Þ, we can

rewrite auj0ui ¼ 0 in terms of the wave function as�
iℏu�ðtÞ @

@�
þ _u�ðtÞ�

�
e� i

ℏHtc uð�; tÞ ¼ 0; (A5)

where H ¼ �ðℏ2=2Þð@2=@�2Þ þ ð!2=2Þ�2.
For the ground state, the positive frequency function is

given by u0ðtÞ and H ¼ ℏ!=2. By solving Eq. (A5), we
obtain, neglecting an imaginary phase,

c 0ð�Þ ¼
ffiffiffiffiffiffiffi
!

�ℏ

r
exp

�
�!�2

2ℏ

�
; (A6)

where c 0ð�Þ is the well known ground state wave function
for the harmonic oscillator, as expected. Here we choose
the overall normalization such that

R
d�jc 0ð�; tÞj2 ¼ 1.

For the Bogolubov transformed vacuum state, the
positive frequency function is given by ~uðtÞ. Using the
Hermiticity of H and solving Eq. (A5), we obtain, neglect-
ing an imaginary phase,

~c ð�; tÞ ¼ e
i
ℏHt

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

�ℏ

_~u�ðtÞ
~u�ðtÞ

s
exp

�
i

2ℏ

_~u�ðtÞ
~u�ðtÞ�

2

�1A; (A7)

where we again choose the overall normalization such thatR
d�j ~c ð�; tÞj2 ¼ 1.
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