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A clue to the physical origin of the hydrophobicity is in the experimental observations manifesting that it is weakened at low
temperatures. By considering a solvophobic model protein immersed in water and three species of simple solvents, we analyze
the temperature dependences of the changes in free energy, energy, and entropy of the solvent upon protein unfolding. The angle-
dependent and radial-symmetric integral equation theories and the morphometric approach are employed in the analysis. Each
of the changes is decomposed into two terms which depend on the excluded volume and on the area and curvature of solvent-
accessible surface, respectively. The excluded-volume term of the entropy change is further decomposed into two components
representing the protein-solvent pair correlation and theprotein-solvent-solvent triplet and higher-order correlation, respectively.
We show that water crowding in the system becomes more serious upon protein unfolding but this effect becomes weaker as the
temperature is lowered. If the hydrophobicity originated from the water structuring near a nonpolar solute, it would bestrength-
ened upon the temperature lowering. Among the three speciesof simple solvents, considerable weakening of the solvophobicity
at low temperatures is observed only for the solvent where the particles interact through strongly attractive potential and the
particle size is as small as that of water. Even in the case of this solvent, however, cold denaturation of a protein cannotbe
reproduced. It would be reproducible if the attractive potential was substantially enhanced, but such enhancement causes the
appearance of the metastability limit for a single liquid phase.

1 Introduction

The hydrophobic effect at ambient temperature is powerful
enough to drive a variety of self-assembly processes in aque-
ous environments such as micelle formation, protein folding
and aggregation, receptor-ligand binding, and lipid membrane
formation1–7. However, there is much experimental evidence
showing that the hydrophobicity is weakened at low temper-
atures for small nonpolar solutes, amphiphilic molecules,and
biomolecules like proteins. For example, upon the temper-
ature lowering, the solubility of methane increases3,5,6, the
critical micelle concentration becomes higher, the average
size of micelles for nonionic amphiphilic molecules becomes
smaller8, most of the proteins unfold at 250∼ 260 K9–11 (this
unfolding is referred to as cold denaturation; yeast frataxin9

unfolds at the exceptionally high temperature,∼ 280 K), and
protein aggregation is dissociated12. Despite the crucial im-
portance of the hydrophobicity, its physical origin still remains
rather ambiguous. A prevailing view is that the hydrophobic-
ity originates from the inability of nonpolar solutes to partic-
ipate in hydrogen bonds of water molecules and the resultant
water structuring near the solutes giving rise to entropic loss1.
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If this was true, the hydrophobicity would be strengthened due
to the enhanced hydrogen bonding when the temperature is
lowered, which clearly conflicts with the experimental obser-
vations described above6. We believe that a clue to the phys-
ical origin of the hydrophobicity is in its weakening at low
temperatures.

In a previous study6, we calculated hydration thermody-
namic quantities (hydration free energyµ , entropySV , and
energyUV ) of small hard-sphere solutes using the angle-
dependent integral equation theory6,13–16 combined with a
multipolar water model13,14. The calculation was performed
under the isochoric condition. The dependence ofβ µ on T
(β = 1/(kBT ), kB is the Boltzmann constant, andT is the ab-
solute temperature) was discussed because the Ostwald coef-
ficient exp(−β µ) is a measure of the hydrophobicity. As the
measure increases, the hydrophobicity becomes weaker. In
what follows, we recapitulate the significant results obtained.
When the number density of bulk water is taken to be that of
real water along the saturation curve,β µ possesses the max-
imum value at∼ 323 K, which is consistent with the experi-
mental result known for methane3,5,6. The measure becomes
larger monotonically asT decreases from ambient tempera-
ture. This temperature dependence of the measure arises pri-
marily from that of the translational component ofSV . The ori-
entational component ofSV exhibits the opposite temperature
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dependence, which can be associated with the enhanced hy-
drophobicity at low temperatures and understood indisputably
on the basis of the conventional picture1. The translational
component is substantially larger than the orientational com-
ponent. Here, the translational and orientational components
represent the contributions from the translational and orien-
tational freedoms of water molecules restricted by solute in-
sertion, respectively. The proposition reached is the follow-
ing: What is responsible for the hydrophobic effect is not the
hydrogen-bonding property but the interplay of the exception-
ally small molecular size and strongly attractive interaction of
water6. However, the relation between this proposition and
the physical origin of the hydrophobicity exhibiting the char-
acteristic temperature dependence mentioned above is to be
elucidated further.

It has been pointed out for spherical solutes that the behav-
ior of a sufficiently large solute is qualitatively different from
that of a small one4. The hydration free energyµ of the former
at ambient pressure is scaled by the water-accessible surface
area (ASA)A as expressed by

µ ≃ γA (1)

whereγ is the surface tension of water that is positive. The
water-accessible surface is the surface that is accessibleto the
centers of water molecules17. On the other hand, it is well
known thatµ of a small solute is substantially dependent on
the excluded volume (EV) which is the volume enclosed by
the water-accessible surface17. One might think that a pro-
tein is large enough to obey the scaling of Eq. (1), but this
thought is inconsistent with cold denaturation caused by the
weakening of the hydrophobicity at low temperatures. This
inconsistency arises from the fact that asT becomes lower,γ
increases: The scaling indicates that the hydrophobicitywould
become stronger. A protein possesses hydrophobic regions of
widely varying length scales due to its complex polyatomic
structure, which may distinguish it from a large spherical so-
lute.

In the present study, we investigate the physical origin of
the hydrophobicityby revisiting cold denaturation of a protein.
Considering a completely solvophobic model protein18–23im-
mersed in water and three species of simple solvents for which
the same solvent packing fraction is assumed, we analyze
the temperature dependences of the changes in free energy,
energy, and entropy of the solvent upon protein unfolding.
The angle-dependent6,13–16 and radial-symmetric24–27 inte-
gral equation theories and the morphometric approach28–30

are employed in the analysis. The three species of simple
solvents considered are (i) a solvent in which the particles
interact through strongly attractive potential and the particle
diameter is as small as that of water (simple solvent 1); (ii)
a solvent in which the particles interact through strongly at-
tractive potential but the particle diameter is about 1.9 times

larger than that of water (simple solvent 2); and (iii) a hard-
sphere solvent whose particle diameter is the same as that of
water. The microscopic mechanism of cold denaturation of a
protein was studied in earlier works20,21,23, but the consider-
ation of these simple solvents in the present work is expected
to give a much larger amount of physically insightful informa-
tion on the nature of the hydrophobicity. The morphometric
approach allows us to decompose any of solvation thermo-
dynamic quantities or its change upon protein unfolding into
two terms which depend on the EV (term 1) and on the area
and curvature of solvent-accessible surface (term 2), respec-
tively. Effects due to the formation of ordered structure by
the solvent molecules near the protein surface are includedin
term 2. Term 1, on the other hand, represents the contribu-
tion from the solvent molecules in the system with the proviso
that the solvent molecules near the protein surface, which are
influenced by the solute-solvent potential, are not included;
See Subsection 2.5). For water and simple solvent 1, term
1 of the solvent-entropy change is further decomposed into
two components representing the protein-solvent pair corre-
lation and the protein-solvent-solvent triplet and higher-order
correlation, respectively. The former is relevant to the total
volume available to the translational displacement of solvent
molecules. The latter is related to solvent crowding in the sys-
tem. We note that the presence of a solvent molecule also gen-
erates an EV for the other solvent molecules, thus causing the
solvent crowding. Such correlation among solvent molecules
is not included in the protein-solvent pair correlation compo-
nent.

The principal results can be summarized as follows. For
water, the protein-solvent-solvent triplet and higher-order cor-
relation component of term 1 of the negative entropy change
upon protein unfolding becomes markedly smaller asT de-
creases, which leads to cold denaturation of a protein induced
by the weakening of the hydrophobicity. Water crowding in
the system becomes more serious upon protein unfolding, but
this effect becomes weaker asT becomes lower. If the hy-
drophobicity originated from the structuring of water near
a nonpolar solute as in the conventional view, it would be
strengthened upon the temperature lowering. The rotational-
entropy loss upon solute insertion is often emphasized for wa-
ter, but only the water molecules near the solute contributeto
it. Its effect is much less important than that of the transla-
tional entropy. Term 1 of the hydration free energy plays es-
sential roles for a protein like for small nonpolar solutes such
as methane. Among the three species of simple solvents, con-
siderable weakening of the solvophobicity at low temperatures
is observed only for simple solvent 1. Even in the case of this
solvent, however, cold denaturation cannot be reproduced.It
would be reproducible if the attractive potential was substan-
tially enhanced, but such enhancement gives rise to the ap-
pearance of the spinodal point beyond which the liquid state
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cannot exist as a single phase even in a metastable state. Wa-
ter is unique in the sense that the hydrophobicity is powerful
enough to form self-assembled structures at ambient tempera-
ture but substantially weakened when the temperature is low-
ered, leading to the collapse of the structures. We argue that
the weakening of the solvophobicity at low temperatures is
ascribed to enhanced local associations of solvent molecules
in the bulk, causing more inhomogeneity followed by the for-
mation of more void space: Due to the presence of more void
space, the solvent can accommodate a solvophobic solute with
less difficulty.

2 Models and Theories

2.1 Change in system free energy upon protein unfolding

We first consider a real protein immersed in aqueous solution.
Diluted proteins are considered. The free-energy difference
between the unfolded state and the native structure∆G can be
written as

∆G(T ) = ∆EI + ∆µ(T )−T∆SC(T ). (2)

Here,EI is the protein intramolecular energy andSC(T ) is the
conformational entropy of the protein.∆Z ≡ ZD −ZN denotes
the change in a thermodynamic quantity upon the unfolding.
The subscripts “N” and “D” represent the values for the native
structure and for the unfolded (denatured) state, respectively.
∆G, which is positive at ambient temperature, turns negative
below the cold denaturation temperature. Under the isochoric
condition,µ is expressed by

µ(T ) = UV (T )−TSV (T ). (3)

The justification of considering the isochoric condition isdis-
cussed in Subsection 2.5. Equation (2) is then written as

∆G(T ) = ∆EI + ∆UV (T )−T∆SV (T )−T∆SC(T ). (4)

We decompose∆UV (T ) into three terms as

∆UV (T ) = ∆UIN(T )+ ∆URO(T )+ ∆UV,HS(T ), (5)

where∆UV,HS(T ) is the change in the hydration energy cal-
culated by replacing all the protein atoms by hard spheres
(i.e., by modeling the protein as a set of fused hard spheres).
∆UIN(T ) and ∆URO(T ) correspond to the changes in the
protein-water interaction energy and in the water reorganiza-
tion energy, respectively. These changes arise from the incor-
poration of the protein-water van der Waals and electrostatic
interactions. Only the water molecules near the protein sur-
face contribute to them. According to a recent experimental
study31, ∆EI + ∆UIN(T )+ ∆URO(T )+ ∆UV,HS(T ) is negative
at ambient temperature and it decreases further asT becomes

lower. For a solvent in which the solvent molecules inter-
act through strongly attractive potential like water,∆UV,HS(T )
is negative and its absolute value becomes larger as the EV
of a solute increases orT decreases6. Since the EV of the
unfolded state is much larger than that of the native struc-
ture, ∆UV,HS(T ) takes a large, negative value. Moreover, it
decreases asT becomes lower. The experimentally known
behavior of ∆EI + ∆UIN(T ) + ∆URO(T ) + ∆UV,HS(T ) men-
tioned above is reproducible byUV,HS(T ). We assume that
∆EI +∆UIN(T )+∆URO(T ) can be neglected for the following
reason. When the protein unfolds, the protein intramolecular
hydrogen bonds and van der Waals interactions are lost, lead-
ing to a positive value of∆EI . However, due to the protein-
water hydrogen bonds and van der Waals interactions gained,
∆UIN(T ) takes a negative value. For the exposure of nonpolar
groups∆URO(T ) remains almost unchanged, while for that of
polar and charged groups∆URO(T ) becomes positive16. The
three terms,∆EI , ∆UIN(T ), and∆URO(T ) are somewhat com-
pensating32–34. As argued in our earlier work20, the neglect
of ∆EI + ∆UIN(T )+ ∆URO(T ) simply leads to a small shift of
the cold denaturation temperature.

In general,UV andµ are largely dependent on the solute-
water interaction potentials, whileSV is considerably insensi-
tive to them35,36. For example, using the three-dimensional
reference interaction site model (3D-RISM) theory combined
with all-atom potentials comprising Lennard-Jones (LJ) and
Coulomb terms and the SPC/E water model, Imaiet al.35 cal-
culatedSV of the native structures of a total of eight peptides
and proteins. Even when the protein-water electrostatic poten-
tials, which are quite strong, are shut off and only the LJ poten-
tials are retained,SV decreases merely by less than 5%. In our
earlier work36, µ , SV , andUV at 298.15 K were calculated for
a hard-sphere solute with diameter of water molecule using the
angle-dependent integral equation theory6,13,14,16 combined
with the multipolar water model13,14. The calculated values
areµ = 5.95kBT , SV =−9.22kB, andUV =−3.27kBT . When
the point charge−0.5e (e is the electronic charge) is embed-
ded at its center, the calculated values areµ = −32.32kBT ,
SV = −10.11kB, andUV = −42.43kBT : µ andUV exhibit
large decreases whileSV remains roughly unchanged. Thus,
SV can be approximated bySV,HS representing the hydration
entropy calculated for the model protein, a set of fused hard
spheres.

On the basis of the above discussion, Eq. (4) is approxi-
mately given by

∆G(T ) ≃ ∆µHS(T )−T∆SC(T ), (6)

whereµHS(T ) = UV,HS(T )−T SV,HS(T ) is the hydration free
energy of the protein modeled as a set of fused hard spheres.
Hereafter, the subscript “HS” is omitted (e.g.,µHS(T ) is de-
noted simply byµ(T )). We employ Eq. (6) by adopting a
set of fused hard spheres which is completely solvophobic as
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the protein model for all the solvents considered. It shouldbe
noted that the details of the polyatomic structure, which iscru-
cially important, are fully taken into account.T ∆SC(T ) and
∆µ(T ) take large, positive values.∆G(T ) is positive at ambi-
ent temperature.∆SC(T ) is almost constant37 or a slightly in-
creasing function ofT 38. In either case,−T∆SC(T ) increases
asT becomes lower, shifting∆G(T ) in a more positive direc-
tion. Therefore,∆µ(T ) must decrease to a sufficiently large
extent for∆G(T ) to turn negative below the cold denaturation
temperature.∆µ(T ) is the key quantity for describing the sta-
bility of the native structure of a protein.

The heat-capacity change for the entire system upon pro-
tein denaturation has experimentally been shown to be posi-
tive9–11. It comprises the contributions from the hydration of
nonpolar, polar, and charged groups and from the protein in-
tramolecular energy. The contribution from the hydration of
polar and charged groups is negative39,40 and that from the
intramolecular energy is negligibly small41,42. Therefore, the
contribution from the hydration of nonpolar groups, which is
positive41,43, is dominant. This gives another justification of
considering a completely hydrophobic model protein in the
present study. Completely hydrophobic model proteins were
considered in previous studies18–23as well.

2.2 Protein and solvent models

The protein we consider is protein G with 56 residues [PDB
code: 2GB1]. As explained above, the protein is modeled as
a set of fused hard spheres. The (x,y,z) coordinates of all
the protein atoms (hydrogen, carbon, nitrogen, oxygen, etc.)
in the backbone and side chains are used as part of the input
data to account for the characteristics of each structure onthe
atomic level. The diameter of each atom is set at theσ -value
of the LJ potential parameters of AMBER99. We assume that
the unfolded state comprises a set of random coils∗ 9. As in
our earlier work20, 32 random-coil structures32 are employed
as the unfolded state.

A water molecule is modeled as a hard sphere with diameter
dS = 0.28 nm in which a point dipole and a point quadrupole
of tetrahedral symmetry are embedded13,14. The influence of
molecular polarizability of water is included by employingthe
self-consistent mean field (SCMF) theory13,14. At the SCMF
level the many-body induced interactions are reduced to pair-
wise additive potentials involving an effective dipole moment.
The number density of the bulk waterρS is taken to be that
of real water along the saturation curve. The four tempera-
tures, 258.15, 263.15, 273.15, and 298.15 K, are examined and

∗ It has recently been shown that yeast frataxin, which is denatured at 280
K, possesses the properties of an unfolded protein at 272 K though a small
amount of local, residual secondary structure is retained44. Our conclusions
are not likely to be altered even when a completely unfolded state is consid-
ered as the cold-denatured one.

the values ofρSd3
S at these temperatures are 0.7312, 0.7325,

0.7338, and 0.7317, respectively.
Particles of the simple solvents interact through

uSS= ∞ for r < dS, (7a)

uSS= −εSS

(dS

r

)6
for r > dS. (7b)

For “simple solvent 1”,dS andεSS/(kBT ) are set at 0.28 nm
and 1.6 at 298.15 K, respectively. WhenεSS is set at zero, the
solvent is formed by hard spheres and referred to as “hard-
sphere solvent”. In simple solvent 1 and the hard-sphere sol-
vent,ρSd3

S at each temperature is taken to be the same as that
of water. It is physically insightful to look at the effect ofthe
solvent diameter. To this end, we consider a simple solvent
whose molecular diameterd′

S is set at 0.53 nm that equals the
σ -value of the LJ potential parameters for carbon tetrachloride
(CCl4)45. The number densityρ ′

S is evaluated so thatρ ′
Sd′

S
3

at each temperature becomes the same asρSd3
S of water, and

εSS/(kBT ) is set at 1.6 at 298.15 K (the same as that for simple
solvent 1). We refer to this solvent as “simple solvent 2”. We
note that all the four solvents share the same packing fraction
at each temperature.

2.3 Integral equation theories

The quantities we calculate are the hydration free-energyµ ,
entropySV , and energyUV (they are referred to as the sol-
vation free-energy, entropy, and energy, respectively, when
all the solvents are simultaneously considered) for a protein
with a prescribed structure. They are obtained through the in-
tegral equation theories and the morphometric approach28–30

described in the next subsection.
A hard-sphere solute of diameterdU is immersed in solvent

at infinite dilution. The solute-solvent correlation functions
are calculated by the integral equation theory for the simple
fluids24–27and by its angle-dependent version for water6,13–16,
andµ is obtained using the Morita-Hiroike formula46,47or its
extension to molecular liquids6,48. SV is evaluated through the
numerical differentiation ofµ with respect toT 6,48 as

SV = −

(

∂ µ
∂T

)

V
= −

µ(T + δT )− µ(T − δT )

2δT
, δT = 5 K.

(8)
UV is obtained fromUV = µ + T SV . In the hard-sphere sol-
vent,UV is zero andµ equals−TSV . The solvation thermody-
namic quantities are calculated for sufficiently many different
values ofdU for determining the coefficients in the morpho-
metric form (Eqs. (9) and (10)).

SV can be expressed as an expansion in terms of multipar-
ticle correlation functions for a solute immersed in solvent49.
On the basis of the expansion, we can decomposeSV into the
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two components: the solute-solvent pair correlation compo-
nent,SV,Pair, and the solute-solvent-solvent triplet and higher-
order correlation component,SV,Multi

50,51. SV,Pair is calculated
using the solute-solvent pair correlation function andSV,Multi

is obtained asSV −SV,Pair. Details of the decomposition were
described in our previous papers50,51.

The radial-symmetric integral equation theory has been ap-
plied to a number of problems for simple fluids with success-
ful results24–27. The reliability of the angle-dependent integral
equation theory has also been verified in a number of studies.
For example, the hydration free energies of small nonpolar so-
lutes calculated by the theory combined with the multipolar
water model are in perfect agreement with those from Monte
Carlo simulations with the SPC/E and TIP4P water models6.
The dielectric constant for bulk water, which is determined
from the water-water orientational correlation functions, is in
good agreement with the experimental data6. The theory is
also capable of elucidating the hydrophilic hydration experi-
mentally known16.

2.4 Morphometric approach: decomposition of thermo-
dynamic quantities of solvation and their changes
upon protein folding

In this approach, any of the solvation thermodynamic quanti-
ties is expressed using only four geometric measures of a so-
lute with a fixed structure and corresponding coefficients28–30.
The resultant morphometric form for the quantityZ is given by

Z = C1Vex+C2A +C3X +C4Y. (9)

Here,Vex is the EV,A is the ASA, andX andY are the inte-
grated mean and Gaussian curvatures of the water-accessible
surface, respectively, and they form the four geometric mea-
sures. We calculate them for a protein with a prescribed struc-
ture by means of the extension29 of Connolly’s algorithm52,53.
In Eq. (9), the solute shape entersZ only via the four ge-
ometric measures. Therefore, the four coefficients (C1-C4)
can be determined in simple geometries: They are determined
from the values ofZ for hard-sphere solutes with various di-
ameters (those in the range 0≤ dU ≤ 5dS; changing 5dS to
10dS, for example, leads to no changes in the four coeffi-
cients determined). For the determination, we employ the
angle-dependent (for water) or radial-symmetric (for the three
species of simple solvents) integral equation theory. Morede-
tails of the determination were described in our earlier publi-
cations21,48,51. Once the four coefficients are determined,Z
of a protein with any structure can be obtained by calculating
only its four geometric measures.

For Z, we consider such quantities asµ , SV , andUV . Z can
be decomposed into two terms. One of them consists of the
second, third, and fourth terms in Eq. (9). This term, which is
referred to as term 2, depends only on the area and curvatures

of the solvent-accessible surface of the protein. It represents
the contribution from the solvent molecules near the protein
surface. The other is the first term in Eq. (9) which is referred
to as term 1. The solvent molecules in the system, excluding
those near the protein surface, contribute to term 1 depending
on the EV of the protein. Terms 1 and 2 ofZ are denoted by
ZTerm1 andZTerm2, respectively.

We are concerned with∆Z denoting the change inZ upon
protein unfolding.Z of the unfolded state is calculated as its
average value for the 32 random coils. With the present pro-
tein model,∆µ , ∆UV , and∆SV correspond to the changes in
free energy, energy, and entropy of the solvent upon the un-
folding, respectively. It follows from Eq. (9) that∆Z is ex-
pressed as:

∆Z = C1∆Vex+C2∆A +C3∆X +C4∆Y. (10)

As in the case ofZ, we can discuss∆Z by decomposing it
into two terms, terms 1 and 220,21. Term 2, which consists of
the second, third, and fourth terms in Eq. (10), is dependent
only on the changes in the area and curvatures of the solvent-
accessible surface upon the unfolding. Term 1 is the first term
in Eq. (10) which is influenced by the change in the EV. Terms
1 and 2 of∆Z are denoted by(∆Z)Term1and(∆Z)Term2, respec-
tively.

In the case of water, any of the hydration thermodynamic
quantities can be decomposed into translational and orienta-
tional components6. We emphasize that the translational com-
ponent of−T∆SV possesses the EV term (term 1) while the
orientational component does not48,50. The physical meaning
of these components of∆SV , for instance, is the following:
Upon solute insertion, the translational and orientational free-
doms of water molecules are reduced, causing losses of trans-
lational and rotational entropy of water, respectively. Only
the water molecules near the solute undergo the orientational
reduction, while the translational reduction reaches the water
molecules in the bulk as well.

The usefulness of the morphometric approach has already
been demonstrated. For example, the results from the three-
dimensional integral equation theory54,55 applied to the same
model protein immersed in a simple solvent can be repro-
duced with sufficient accuracy by the morphometric approach
applied to the same solvent29,48. By a hybrid of the angle-
dependent integral equation theory combined with the multi-
polar water model and the morphometric approach, the experi-
mentally measured changes in thermodynamic quantities upon
apoPC folding are quantitatively reproduced48. Moreover,
great progresses have been made in elucidating the micro-
scopic mechanisms of pressure50,51, cold20,21, and heat56,57

denaturating of proteins, developing a physical picture for
the rotation of F1-ATPase58, and discrimination of a native
fold from misfolded decoys59–61 by our theoretical meth-
ods in which the morphometric approach is combined with
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the radial-symmetric integral equation theory or the angle-
dependent version.

2.5 Isochoric and isobaric conditions

We consider the isochoric condition while the experiments are
performed under the isobaric condition. This can be justified
as follows. Under the isobaric condition, the changes in the
solvent entropy and enthalpy upon protein unfolding,∆SP and
∆H, are related to∆SV and∆UV through the thermodynamic
relations15,62–64

∆SP/kB = ∆SV /kB +
α∗

κ∗
T

∆VP

d3
S

, (11a)

∆H/(kBT ) = ∆UV /(kBT )+
α∗

κ∗
T

∆VP

d3
S

, (11b)

whereVP is the partial molar volume of the protein (i.e.,
change in the system volume upon protein insertion under the
isobaric condition). The dimensionless parameters with the
superscript “*”, which depend only on the properties of bulk
solvent, are defined as

α∗ = αT, (12a)

κ∗
T = κT kBT/d3

S, (12b)

whereα is the isobaric thermal expansion coefficient andκT

is the isothermal compressibility.
We write∆SV and∆UV in Eq. (11) as

∆SV = (∆SV )Term1+(∆SV )Term2

= C1,SV ∆Vex+(∆SV )Term2, (13a)

∆UV = (∆UV )Term1+(∆UV )Term2

= C1,UV ∆Vex+(∆UV )Term2. (13b)

Here,C1,SV or C1,UV is the first coefficient in Eq. (10) applied
to SV orUV . ∆VP can be expressed by

∆VP = ∆Vex+(∆VP)Term2. (14)

Equation (11) is then given by

∆SP/kB =
(

C1,SV /kB +
α∗

κ∗
T

1

d3
S

)

∆Vex

+(∆SV/kB)Term2+
α∗

κ∗
T

1

d3
S

(∆VP)Term2, (15a)

∆H/(kBT ) =
(

C1,UV /(kBT )+
α∗

κ∗
T

1

d3
S

)

∆Vex

+(∆UV/(kBT ))Term2+
α∗

κ∗
T

1

d3
S

(∆VP)Term2. (15b)

Since∆VP is experimentally known to be essentially zero in a
wide range ofT 31,65:

∆VP ≃ 0, (16a)

(∆VP)Term2≃−∆Vex. (16b)

It follows that

∆SP/kB ≃ (C1,SV /kB)∆Vex+(∆SV/kB)Term2, (17a)

∆H/(kBT ) ≃C1,UV /(kBT )∆Vex+(∆UV/(kBT ))Term2. (17b)

It is apparent from Eq. (17) that

(∆SP)Term1≃ (∆SV )Term1, (18a)

(∆SP)Term2≃ (∆SV )Term2, (18b)

(∆H)Term1≃ (∆UV )Term1, (18c)

(∆H)Term2≃ (∆UV )Term2. (18d)

Namely,∆SP, ∆H, and their terms 1 and 2 are approximately
equal to∆SV , ∆UV , and their terms 1 and 2, respectively. Due
to the fact that|∆VP| is much smaller than|∆Vex| as in Eq. (16),
∆SP as well as∆SV possesses term 1 (i.e., the EV-dependent
term). As shown in Sec. 3, term 1 plays essential roles even
in µ . This gives another evidence that the behavior of a suf-
ficiently large solute expressed as Eq. (1), which is based on
the assumption that term 1 ofµ is negligibly small at ambient
pressure4,15, is not applicable to a protein.

2.6 Estimation of conformation-entropy change upon
protein unfolding at 298.15 K

The conformational-entropy change upon protein unfolding,
∆SC, at 298.15 K can be estimated in the following manner.
It is experimentally known for a number of proteins that∆G
in aqueous solution is approximately∼ 50 kJ/mol at 298.15
K 66. We assume that protein G is no exception. Equation (6)
applied to the case ofT = 298.15 K then becomes

∆µ(298.15K)−298.15×∆SC = 50kJ/mol. (19)

We can estimate∆SC using Eq. (19) into which∆µ(298.15K)
calculated for water through Eq. (10) is substituted. It is as-
sumed that∆SC takes the same value for all the solvents con-
sidered. Further, unless otherwise mentioned,∆SC is treated
as a constant that is independent ofT . The value of∆G
for any of the three species of simple solvents is given by
∆µ(298.15K)−298.15×∆SC where∆µ(298.15K) is calcu-
lated for the particular solvent.

3 Results and discussion

3.1 Temperature dependence of protein solvophobicity

The Ostwald coefficient exp(−β µ) is a measure of the hy-
drophobicity, and we first look at the temperature dependence
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of β µ . In Figures 1(a) and (b),β µ of the native structure of
protein G, which is modeled as a set of fused hard spheres, is
plotted againstT for water and the three species of simple sol-
vents. The decomposition ofβ µ into terms 1 and 2 is shown
in Figure 1(c) (water), (d) (simple solvent 1), (e) (simple sol-
vent 2), and (f) (hard-sphere solvent). We note thatβ µ of the
unfolded state displays qualitatively the same characteristics
(the data is not shown).

For water,β µ takes a large positive value (∼ 630) at 298.15
K but decreases asT becomes lower. It is observed in Figure
1(c) that this temperature dependence stems from that of term
1. Term 2, which is emphasized in the conventional view1,
exhibits the opposite temperatureµ , term 1, and term 2 for
simple solvent 1 are qualitatively similar to those for water,
thoughβ µ and term 1 for simple solvent 1 are significantly
larger.

The behavior for simple solvent 2 is substantially different
from that for simple solvent 1 (compare Figures 1(d) and (e))
despite that these two simple solvents share the same attrac-
tive potential parameter. For the is essentially constant.The
very minor change inβ µ is merely due to the change in the
solvent number density. Thus, the hydrophobicity can never
be reproduced even in a qualitative sense when the strongly
attractive potential is shut off. Sufficiently largeβ µ at ambi-
ent temperature and the appreciable reduction inβ µ upon the
lowering ofT is attributed to the interplay of the exceptionally
sspectively.

As observed in Figure 2(a) for water,∆µ decreases asT be-
comes lower: It decreases by∼ 115 kJ/mol upon the lowering
of T from 298.15 K to 258.15 K. Both of∆UV (Figure 2(b))
and∆SV (Figure 2(c)) are negative and they decrease further as
T becomes lower. It has experimentally been shown that the
changes in enthalpy and entropy for the entire system upon
protein unfolding are negative at ambient temperature and de-
crease further asT becomes lower31. The temperature depen-
dences of∆UV and∆SV are consistent with this experimental
result. It is observed in Figure 3(a) for simple solvent 1 that
∆SV and∆UV , which are both negative, decrease further asT
becomes lower.∆µ decreases by∼ 110 kJ/mol upon the low-
ering of T from 298.15 K to 258.15 K. These characteristics
are qualitatively similar to those observed for water.

We now discuss the temperature dependences of terms 1
and 2 of∆µ , ∆UV , and−T ∆SV or ∆SV . It is found that the
two terms exhibit similar dependences onT for water and sim-
ple solvent 1. The temperature dependence of−T∆SV or that
of ∆UV is governed by that of term 2. Term 2 of−T∆SV in-
creases while that of∆UV decreases asT becomes lower. The
increase and decrease are somewhat compensating but the in-
crease is more or less larger: Term 2 of∆µ does not decrease
asT becomes lower. Thus, cold denaturation cannot be in-
duced by term 2 of∆µ . A closer look at Figures 2 and 3 al-
lows us to appreciate the following difference between water

and simple solvent 1. For water, term 2 of∆UV or ∆SV de-
creases more sharply with decreasingT : the sign of term 2 of
∆SV turns negative at∼ 265 K and that of∆UV is also likely to
turn negative at a temperature lower than 258.15 K. This be-
havior, which is not shared by simple solvent 1, is attributable
to the formation of highly ordered structure of water near the
protein surface due to the enhancement of hydrogen bonding
or increase in the number of hydrogen bonds. Compared with
the native structure, the unfolded state possesses much larger
ASA and more water molecules participating in the ordered-
structure formation, leading to larger entropic loss and energy
decrease upon the unfolding at lower temperatures. However,
this entropic loss and energy decrease are almost cancelledout
and term 2 of∆µ remains almost unchanged.

As argued in our earlier publications20,21, the decrease in
∆µ by ∼ 115 kJ/mol mentioned above for water induces cold
denaturation of our model protein at∼ 259 K. This behav-
ior originates from the temperature dependence of term 1.
The decrease in term 1 of−T∆SV , which surpasses the in-
crease in term 1 of∆UV , is the cause of cold denaturation.
Here we decompose term 1 of−T∆SV into the two compo-
nents,−T∆SV,Pair and−T∆SV,Multi , representing the protein-
water pair correlation and the protein-water-water triplet and
higher-order correlation, respectively. A similar decomposi-
tion is performed for simple solvent 1. The results for water
and simple solvent 1 are compared in Figures 4(a) and (b).
We note thatC1 of SV,Pair is ρS

50,51 (only SV,Pair is incorpo-
rated in the Asakura-Oosawa theory67,68). For both of the two
solvents,−T∆SV,Multi is substantially larger than−T∆SV,Pair.
The temperature dependence of term 1 of−T∆SV arises from
that of −T∆SV,Multi . As a significant difference, for water,
−T ∆SV,Multi decreases more sharply asT becomes lower. The
weakening of the hydrophobicity followed by cold denatu-
ration in water is induced by the EV-dependent term of the
hydration entropy at the protein-solvent-solvent tripletand
higher-order correlation level.

The EV term (term 1) of−T∆SV is nothing but its transla-
tional component (the orientational component possesses no
EV term48,50; see Subsection 2.4). It should be emphasized
that the presence of a water molecule generates an EV for the
other water molecules, thus causing water crowding. The EV
of the native structure is much smaller than that of the un-
folded state48,69. Upon protein folding, the water crowding in
the system is substantially reduced, leading to a large gainin
the translational entropy of water48,69. This gain is a conse-
quence of the protein-solvent-solvent triplet and higher-order
correlation and the driving force of protein folding. However,
this force becomes much less powerful at low temperatures,
giving rise to cold denaturation.

As mentioned above, it is experimentally known that the
heat-capacity change for the entire system upon protein de-
naturation is positive9–11, implying the dominant contribution
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from the hydrophobic hydration. Since∆UV and∆SV for wa-
ter is an increasing function ofT as shown in Figures 2(b)
and (c),∆CV is positive, which is consistent with the experi-
mental result. As far as the temperature dependence of∆UV

or ∆SV is concerned, it is governed by term 2. This indicates
that∆CV is determined primarily by the contribution from hy-
drogen bonds of the water molecules near the protein surface.
Our result never conflicts with the empirical picture that the
change in the heat capacity upon protein denaturation can be
scaled by that in the ASA70. It is worthwhile to note that∆CV

is much larger for water than for simple solvent 1 probably
due to the hydrogen-bonding property (see Figures 2 and 3).

3.2 Temperature dependences of changes in thermody-
namic quantities of simple solvent 2 and hard-sphere
solvent upon protein unfolding

The temperature dependences of the changes in thermody-
namic quantities of simple solvent 2 and hard-sphere solvent
upon protein unfolding are shown in Figures 5 (simple solvent
2) and 6 (hard-sphere solvent). For the hard-sphere solvent,
∆UV = 0 and∆µ = −T∆SV .

By comparing Figures 3 and 5, we notice that the increase
of the solvent diameter by 1.9 times leads to a drastic change
in the behavior of thermodynamic quantities: The absolute
values of∆µ , ∆UV , ∆SV , and−T∆SV become substantially
smaller and they exhibit much weaker temperature depen-
dences. Qualitatively the same characteristics are observed
for their terms 1 and 2. As for the hard-sphere solvent (Figure
6), ∆SV is essentially independent ofT and∆µ = −T∆SV de-
creases simply in proportion toT asT becomes lower. The
absolute value of∆SV for the hard-sphere solvent is much
larger than for simple solvent 2, which should be due to the
smaller solvent diameter. However, the hard-sphere solvent
and simple solvent 2 share the behavior that∆SV remains al-
most constant against a temperature change. The experimen-
tally known result31, “the changes in enthalpy and entropy for
the entire system upon protein unfolding exhibit considerable
decrease with loweringT ”, can never be explained.

In summary, with respect to the temperature dependences
of changes in thermodynamic quantities of solvation upon pro-
tein unfolding, water and simple solvent 1 exhibit qualitatively
similar behavior. The increase in the solvent diameter by 1.9
times or removal of the solvent-solvent attractive interaction
potential in simple solvent 1 leads to drastically different be-
havior. The interplay of the exceptionally small molecularsize
and strongly attractive interaction of the solvent is important
in reproducing the behavior of water. However, there are cer-
tainly some differences in details of the behavior between wa-
ter and simple solvent 1, which is further discussed in a later
subsection.

3.3 Change in thermodynamic quantities of entire sys-
tem upon protein unfolding at ambient temperature

Table1 shows∆µ , −T∆SC, and∆G upon protein unfolding at
298.15 K calculated for water and the three species of simple
solvents in accordance with the procedure described in Sub-
section 2.6. According to the argument described in ref 48,
−T ∆SC of protein G should be in the range,−541 kJ/mol
< −T∆SC < −173 kJ/mol. The value of−T∆SC in Table 1
is certainly in this range, proving the validity of the value.
For simple solvent 1 or the hard-sphere solvent∆G takes a
larger positive value than for water. For simple solvent 2,∆µ
is much smaller than for any of the other solvents, leading to
the negative sign of∆G. This means that the unfolded state
is more stable than the native structure even at ambient tem-
perature. A solvent with too large a value of the molecular
diameter is not capable of driving a protein to fold. Simple
solvent 1 and the hard-sphere solvent possess this capability,
but cold denaturation, which can be caused by the weakening
of the solvophobicity at low temperatures, is not reproducible
for the model protein immersed in these solvents as discussed
below.

3.4 Possibility of cold denaturation of a protein in water,
simple solvent 1, and hard-sphere solvent

Since∆G = ∆µ −T∆SC, the cold denaturation temperature is
the temperature at which∆µ = T ∆SC. We assume that∆SC is
independent ofT 37. The temperature dependence of∆µ for
water and that ofT ∆SC are illustrated in Figure 7(a). The two
lines intersect at∼ 259 K being the denaturation temperature.
This temperature is quite consistent with the experimentally
observed one (250 K∼ 260 K)9–11. Even if ∆SC is treated
as an increasing function ofT , T ∆SC decreases a little more
rapidly asT becomes lower, leading to only a small shift of
the denaturation temperature in a lower direction.

Figure 7(b) shows the temperature dependence of∆µ for
simple solvent 1 and that ofT∆SC. By extrapolating the data
of ∆µ to the temperatures lower than 258.15 K, we estimate
that the two lines intersect at∼ 160 K. This temperature is un-
realistically low. Moreover, using the radial-symmetric inte-
gral equation theory, we find that the spinodal point at which
the isothermal compressibility diverges is encountered at∼
222 K whenT is progressively lowered. This means that sim-
ple solvent 1 cannot exist as a single liquid phase even in the
metastable state below∼ 222 K. It is concluded that cold de-
naturation is not reproducible in this solvent.

In the hard-sphere solvent,∆µ is equal to−T∆SV and∆G
is expressed as

∆G(T ) = −T (∆SV + ∆SC). (20)

∆SV /kB and∆SC/kB at ambient temperature are−284.2 and
111.2, respectively, as given in Table 1. We note that∆SV
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remains almost constant against the temperature lowering (see
Figure 6(a)). Hence, cold denaturation cannot occur when∆SC

is assumed to be independent ofT . Even if we consider that
∆SC decreases asT becomes lower,∆G can never become 0
because|∆SV /kB| > ∆SC/kB at ambient temperature and∆SV

remains almost constant. Thus, cold denaturation is not likely
to occur in the hard-sphere solvent.

3.5 Further comparison between water and simple sol-
vent 1

The solvophobicity is considerably weakened at low tempera-
tures for simple solvent 1 as well as for water. However, we
find the following differences between these solvents. As dis-
cussed above, for water at low temperatures, highly ordered
structure is formed near the protein surface due to the enhance-
ment of hydrogen bonding or increase in the number of hydro-
gen bonds. For simple solvent 1, on the other hand, we find no
appreciable sign of such solvent structuring near the protein
surface.

Cold denaturation of a protein is reproducible in water but
not in simple solvent 1. This is partly because the tempera-
ture dependence of the EV-dependent term of the hydration
entropy at the protein-solvent-solvent triplet and higher-order
correlation level is stronger for water. Another reason is in ∆µ
of simple solvent 1 at ambient temperature which is signifi-
cantly larger than that of water (see Table 1).The difference
between water and simple solvent 1 in∆µ can be explained
as follows. As shown in Figures 2(d) and 3(d), the two sol-
vents share essentially the same value of−T ∆SV . On the other
hand,∆UV is substantially more negative for water than for
simple solvent 1 (see Figures 2(b) and 3(b)). For a solvent
whose particles interact through attractive interaction,the so-
lute insertion causes the internal energy to decrease. Since
the direct solvent-solute interaction does not contributeen-
ergetically for our solute model, the energy decrease is due
to the structural changes induced in the solvent.UV = 0 for
the hard-sphere solvent butUV take a large, negative value
for simple solvent 1 or water.UV of the unfolded state of a
protein (UV,D) is more negative than that of its native struc-
ture (UV,N): ∆UV = UV,D −UV,N < 0. Further,UV,D, UV,N,
and∆UV for water are substantially more negative thanUV,D,
UV,N, and∆UV for simple solvent 1, respectively, due to the
considerably stronger attractive interaction. Thus, the differ-
ence between the two solvents in∆µ arises from that in the
strength of the solvent-solvent attractive interaction giving rise
to the internal-energy decrease upon solute insertion. (When
the temperature is lowered from 298.15 K to 258.15 K, the de-
crease in∆UV for water is larger than that for simple solvent
1 as expected, while the increase in−T∆SV for water is also
larger than for simple solvent 1 by almost the same magni-
tude: Due to the cancellation, the two solvent share almost the

same decrease in∆µ . The larger increase in−T ∆SV for wa-
ter originates from the enhanced hydrogen bonding near the
protein surface occurring in the very low temperature rangeas
discussed above.)

We find that∆µ of simple solvent 1 at ambient temperature
becomes closer to that of water when the solvent-solvent at-
tractive potential is enhanced by increasingεSS (ρSd3

S is fixed
at 0.7317). However, the radial-symmetric integral equation
theory looses its solution beforeβ µ for simple solvent 1 be-
comes sufficiently close to that for water whenεSS is progres-
sively increased: The divergence of the isothermal compress-
ibility of the bulk solvent is encountered. Thus, there are cer-
tainly some aspects in the water behavior which cannot be re-
produced by a simple model solvent with no hydrogen bonds.

As pointed out above, the interplay of the exceptionally
small molecular size and strongly attractive interaction of the
solvent is essential in mimicking the water behavior. At the
same time, hydrogen bonds are necessitated for the complete
elucidation of the hydrophobicity. Water is unique in the
sense that its hydrophobicity is powerful enough to form self-
assembled structures at ambient temperature but substantially
weakened when the temperature is lowered, leading to the col-
lapse of the structures. This feature cannot be reproduced even
by simple solvent 1 that is far closer to water in solvation ther-
modynamics than simple solvent 2 and the hard-sphere sol-
vent.

3.6 Physical origin of weakening of solvophobicity at low
temperatures for water and simple solvent 1

It is clear that a sufficiently strong attractive interaction be-
tween solvent particles is required for reproducing the weak-
ening of the solvophobicity at low temperatures. Consider first
the bulk solvent. As the temperature becomes lower, the ef-
fect of the attractive interaction becomes stronger, reducing
the number of accessible translational configurations of sol-
vent particles due to the constraints caused by the effect. For
water, the contact value of the solvent-solvent pair correlation
functiong(dS) is 18.2 at 298.15 K but it increases to 22.1 at
258.15 K. For the simple solvent 1, it is 6.11 at 298.15 K but
it increases to 6.56 at 258.15 K. This type of increase rep-
resents that associations of solvent molecules arelocally en-
hanced at low temperatures. Since the solvent number densi-
ties at 298 K and at 258 K share almost the same value (i.e.,
the system volume remains almost unchanged), the enhanced
associations accompany an increase in the inhomogeneity of
the solvent, producing more void space. Due to the presence
of more void space, the decrease in the number of accessible
translational configurations of solvent molecules upon theso-
lute insertion becomes smaller, the degree of the enhancement
of solvent crowding reduces, and the entropic loss becomes
less serious. Thus, the solvent can accommodate a solvopho-
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bic solute with less difficulty (i.e., the solvophobicity isweak-
ened) at low temperatures. Judging from the values ofg(dS)
given above, this temperature effect is much larger for water
than for simple solvent 1, because the solvent-solvent attrac-
tive interaction in simple solvent 1 is considerably weaker.

Matubayasi and Nakahara investigated the effect of the
dipole moment of water molecules onµ of a nonpolar solute
using a computer simulation71. The simulation was performed
under the isochoric condition. They found thatµ decreases as
the dipole moment becomes larger. It was then argued that the
enhanced hydrogen bonding arising from the increased dipole
moment gives rise to more void space, leading to a reduction
in µ . This interpretation is closely related and similar to ours
described above.

The water density decreases as the temperature becomes
lower from 277 K. However, this decrease is very minor
and cannot cause cold denaturation of a protein by itself.
To demonstrate this, we calculate∆µ for water at 258.15 K
with two number densities: the values pertinent to 258.15
K (ρSd3

S=0.7312) and 298.15 K (ρSd3
S=0.7317), respectively.

The result is given as Table 2:∆µ and its terms 1 and 2 with
ρSd3

S=0.7317 are almost indistinguishable from those with
ρSd3

S=0.7312. Thus, the weakening of the hydrophobicity at
low temperatures and cold denaturation of a protein are as-
cribed solely to the solvent-solvent attractive interaction cou-
pled with the temperature lowering. Graziano succeeded in
reproducing cold denaturation of a protein using the classical
scaled particle theory (SPT)23. The SPT, in which the sol-
vent is always formed by hard spheres, is capable of explicitly
incorporating neither the solvent-solvent attractive interaction
nor the temperature effect. In his work, however, the hard-
sphere diameter for the solvent is adjusted so that the experi-
mental value of the isothermal compressibility of water canbe
fitted with respect to the SPT relationship. The resulting di-
ameter is referred to as “effective diameter”. The effective di-
ameter decreases as the temperature becomes lower below 20
◦C. The decrease in the total packing fraction of the solvent at
low temperatures, which leads to the reduction in the work of
cavity creation and the occurrence of cold denaturation, arises
mostly from the smaller effective diameter. The decrease in
the solvent density itself has only very minor effects. In our
view, the effects of the solvent-solvent attractive interaction
coupled with the temperature lowering are implicitly incorpo-
rated in the treatment of Graziano through the adjustment of
the diameter. In this sense, our argument is never inconsistent
with that of Graziano.

4 Conclusions

We have investigated the physical origin of the hydrophobic-
ity by revisiting cold denaturation of a protein. There are
a number of phenomena manifesting that the hydrophobic-
ity is weakened at low temperatures, and cold denaturation
is a typical example. In order to explore the feature of wa-
ter, three species of simple solvents as well as water are con-
sidered in the investigation. Considering a completely solvo-
phobic model protein, we analyze the temperature depen-
dences of the solvation free energy multiplied byβ = 1/(kBT )
(β µ) of a folded protein, a measure of the solvophobicity.
Those of the changes in free energy∆µ , energy∆UV , and
entropy∆SV (or −T ∆SV ) of the solvent upon protein unfold-
ing are also analyzed. The angle-dependent6,13–16and radial-
symmetric24–27 integral equation theories and the morphome-
tric approach28–30 are employed in the analysis. The three
species of simple solvents considered are as follows: sim-
ple solvent 1 in which the particles interact through strongly
attractive potential and the particle diameter is as small as
that of water; simple solvent 2 in which the particles inter-
act through strongly attractive potential but the particlediam-
eter is about 1.9 times larger than that of water; and a hard-
sphere solvent whose particle diameter is the same as that of
water. The four solvents share the same packing fraction at
each temperature. The changes in thermodynamic quantities
of the solvent upon protein unfolding are decomposed into two
terms, term 1 which is scaled by the excluded volume (EV)
and term 2 depending on the area and curvature of solvent-
accessible surface, using the morphometric approach. The sol-
vent molecules near the protein surface and those in the system
(excluding those near the protein surface) contribute to term 2
and to term 1, respectively. Term 2 includes the effects due to
the formation of ordered structure by the solvent molecules
near the protein surface. For water and simple solvent 1,
term 1 of −T ∆SV is further decomposed into the protein-
solvent pair correlation component and the protein-solvent-
solvent triplet and higher-order correlation component. The
former is relevant to the total volume available to the transla-
tional displacement of solvent molecules. The latter is related
to the solvent crowding in the system which is caused by the
physical factor that the presence of a solvent molecule also
generates an EV for the other solvent molecules. Such corre-
lation among solvent molecules is not included in the protein-
solvent pair correlation component.

The following characteristics of water can qualitatively be
reproduced by simple solvent 1: (i)β µ decreases (i.e., the hy-
drophobicity is weakened) considerably asT becomes lower;
(ii) ∆µ reduces considerably with loweringT due to the de-
crease in its term 1 which is ascribed to the reduction in term
1 of −T∆SV ; and (iii) the reduction in term 1 of−T∆SV

originates from that in its protein-solvent-solvent triplet and
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higher-order correlation component. For water, term 1 ofµ
plays essential roles for a protein just as it does for small
nonpolar solutes such as methane. This is an important point
suggesting that the scaling behavior of Eq. (1) does not hold
for a protein. The results for simple solvent 2 and the hard-
sphere solvent are substantially different from those for water
and simple solvent 1: The temperature dependences ofβ µ ,
∆µ , ∆UV , and∆SV (or −T∆SV ) are much weaker. It is sug-
gested that the water characteristics are ascribed to the inter-
play of the two factors, the exceptionally small molecular size
and strongly attractive interaction. If one of the two factors
is absent, the characteristics of water are lost. Even between
water and simple solvent 1, the following differences are ap-
preciated in the behavior: (i) The temperature dependencesof
term 1 of−T∆SV and its protein-solvent-solvent triplet and
higher-order correlation component are significantly stronger
for water; (ii) though the two solvents share the result thatthe
temperature dependences of∆UV and ∆SV are governed by
their term 2 but they are compensating, the dependences for
water are much stronger; and (iii) there is a clear sign of water
structuring arising from the enhanced hydrogen bonding near
the protein surface at low temperatures whereas such a sign is
not found for simple solvent 1.

Not only water but also simple solvent 1 and the hard-
sphere solvent are capable of driving a protein to fold while
simple solvent 2 is not. Only in water, the solvophobic-
ity becomes weak enough to give rise to protein unfolding
at low temperatures. Cold denaturation is not reproducible
even in simple solvent 1 due to the insufficient weakening of
the solvophobicity despite that water and this solvent share
some qualitatively similar characteristics as described above.
It would be reproducible if the attractive potential was sub-
stantially enhanced, but such enhancement causes the appear-
ance of the metastability limit for a single liquid phase. Inthis
sense, the hydrogen bonds are related to the exhibition of the
hydrophobicity. However, this never implies the importance
of the orientational component of the hydration entropy. It
is relevant only to the water molecules near the protein sur-
face and much smaller than the translational component. Wa-
ter is unique in the sense that the hydrophobicity is powerful
enough to form a variety of self-assembled structures of solute
molecules at ambient temperature but substantially weakened
when the temperature is lowered, leading to the collapse of the
structures. This uniqueness is ascribed to the reduction inthe
EV term of the hydration entropy at the solute-solvent-solvent
triplet and higher-order correlation level. It should be empha-
sized that the presence of a water molecule generates an EV
for the other water molecules, thus causing water crowding.
Upon a self-assembly process, the water crowding in the sys-
tem is substantially reduced with the result of a large gain in
the translational entropy of water. However, this force driving
the process becomes much less powerful at low temperatures,

giving rise to the collapse of the self-assembled structures. In
our view, the weakening of the hydrophobicity at low temper-
atures leading to cold denaturation of a protein is attributable
to enhanced local associations of water molecules in the bulk,
giving rise to more inhomogeneity followed by the formation
of more void space: Due to the presence of more void space,
water can accommodate a hydrophobic solute with less diffi-
culty. We believe that the same physical origin is shared by the
following phenomena at low temperatures: The solubility of
methane increases, the critical micelle concentration becomes
higher, the average size of micelles for nonionic amphiphilic
molecules becomes smaller, most of the native structures of
proteins unfold, and protein aggregation is dissociated.

As described in Introduction, the behavior of the hydration
free energyµ (the solvent is water) of a sufficiently large so-
lute is quite different from that of a small solute4: While µ
of the former is scaled by the water-accessible surface area,
µ of the latter is largely dependent on the excluded volume.
We note that the four coefficients in the morphometric form
for µ are determined by the fitting to the hydration free ener-
gies of hard-sphere solutes. The resulting values of the four
coefficients can largely be influenced by the solute sizes cho-
sen in the fitting.C1 andC2 could be approximated byP (the
pressure) andγ (the surface tension), respectively, when only
sufficiently large hard-sphere solutes are employed in the fit-
ting. On the other hand, the coefficients adopted in our studies
are determined from small hard-sphere solutes (see Sec. 2.4).
In this case,C1 andC2 are substantially different fromP and
γ, respectively. Our proposition is that the coefficients deter-
mined using sufficiently small hard-sphere solutes should be
employed for proteins in order to reproduce the experimen-
tally observed behavior of cold denaturation. Namely, the
first term of the morphometric form forµ is not the pressure-
volume work. We have tackled a number of problems related
to solvation thermodynamics of a variety of solutes. On the
basis of the results obtained, we now believe that the large-
solute limit is inapplicable to proteins as well as to small
solutes like methane (this was already stated in our paper,
Ref. 20) when the solvent is water. At the large-solute limit,
with P = 1 atm, the first term in the morphometric form can be
neglected. With the absence of the first term, however, many
of the important problems (e.g., the very large entropic gain
upon folding of apoplastocyanin, cold and pressure denatu-
rating of a protein, and thermal stability of a protein) cannot
be elucidated. In summary, the first term in the morphomet-
ric form for µ is quite large even for water withP = 1 atm;
and the second and third terms of the morphometric form also
make significantly large contributions toµ . On the other hand,
for the hard-sphere solvent, when the four coefficients are de-
termined using hard-sphere solutes with diameterdU ranging
from dU1 to dU2, the resulting values are almost completely
independent ofdU1 and dU2 chosen. Since the large-solute
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limit seems to be applicable to a protein immersed in the hard-
sphere solvent, the morphometric form in Refs. 29 and 72 was
written for this limit. We remark that the large-solute limit is
not applicable to a protein immersed in simple solvent 1 as in
the case of water.

It is of great interest and importance to further examine
whether or not the proposition given in the present study is
universally applicable to the behavior of diverse self-assembly
processes. Work in this direction is in progress.
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Table 1Changes in solvation free energy∆µ, contribution to free
energy from conformational entropy of protein−T ∆SC, and free
energy of the entire system∆G upon protein unfolding atT=298.15
K (in kJ/mol).

∆µ −T∆SC ∆G
Water 479.1 −429.1 50.0

Simple solvent 1 622.3 −429.1 193.2
Simple solvent 2 204.5 −429.1 −224.6

Hard-sphere solvent 532.7−429.1 103.6

Table 2Changes in hydration free energy∆µ (i.e., free-energy
changes of water) upon protein unfolding and in its terms 1 and 2
calculated atT=258.15 K (in kJ/mol). The two values pertinent to
258.15 K (ρSd3

S = 0.7312) and 298.15 K (ρSd3
S = 0.7317),

respectively, are employed for the number densities of water.

∆µ Term 1 Term 2
ρSd3

S = 0.7312 369.4 80.93 288.4
ρSd3

S = 0.7317 370.7 82.18 288.5
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Fig. 1 (a) and (b): Temperature dependence ofβ µ of the native structure of protein G for water (circles), simple solvent 1 (squares), and
simple solvent 2 (rhombuses). The result for the hard-sphere solvent (triangles) is given in (b). Temperature dependences ofβ µ and its terms
1 and 2 are shown for water (c), simple solvent 1 (d), simple solvent 2 (e), and the hard-sphere solvent (f). “Total” is the sum of terms 1 and 2
and equal toβ µ itself.
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Fig. 2 Temperature dependences of changes in thermodynamic quantities of water upon protein unfolding: (a) free energy, (b) energy, (c)
entropy, and (d) entropy multiplied by−T (i.e., contribution to free energy from entropy). Term 1 is the first term in the right hand of Eq. (10)
and term 2 is the sum of the other three terms. “Total” denotesthe sum of terms 1 and 2.
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Fig. 3 Temperature dependences of changes in thermodynamic quantities of simple solvent 1 upon protein unfolding: (a) free energy, (b)
energy, (c) entropy, and (d) entropy multiplied by−T (i.e., contribution to free energy from entropy). Term 1 is the first term in the right hand
of Eq. (10) and term 2 is the sum of the other three terms. “Total” is the sum of terms 1 and 2.
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Fig. 4 Temperature dependences of term 1 of−T ∆SV at the protein-solvent pair correlation level [“Term 1 (Pair)”] and that at the
protein-solvent-solvent triplet and higher-order correlation level [“Term 1 (Multi)”]. The sum is indicated by “Term1 (Total)”. (a) Water. (b)
Simple solvent 1.
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Fig. 5 Temperature dependences of changes in thermodynamic quantities of simple solvent 2 upon protein unfolding: (a) free energy, (b)
energy, (c) entropy, and (d) entropy multiplied by−T (i.e., contribution to free energy from entropy). Term 1 is the first term in the right hand
of Eq. (10) and term 2 is the sum of the other three terms. “Total” is the sum of terms 1 and 2.
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Fig. 6 Temperature dependences of changes in thermodynamic quantities of hard-sphere solvent upon protein unfolding: (a) entropy and (b)
entropy multiplied by−T corresponding to∆µ. Term 1 is the first term in the right hand of Eq. (10) and term 2 is the sum of the other three
terms. “Total” is the sum of terms 1 and 2.
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Fig. 7 Temperature dependences of changes in solvation free energy, ∆µ, and in protein conformational entropy multiplied byT , T ∆SC. (a)
Water. (b) Simple solvent 1. The temperature at which the twolines intersect represents the cold denaturation temperature. In (b), we linearly
extrapolate∆µ for temperatures lower than 258.15 K. The dashed and dotted lines represent the extrapolated lines above and below the
spinodal point (∼ 222 K), respectively.
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