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Bayesian Estimation of Multi-Trap RTN Parameters Using Markov
Chain Monte Carlo Method

Hiromitsu AWANO†a), Nonmember, Hiroshi TSUTSUI†b), Hiroyuki OCHI†c), and Takashi SATO†d), Members

SUMMARY Random telegraph noise (RTN) is a phenomenon that is
considered to limit the reliability and performance of circuits using ad-
vanced devices. The time constants of carrier capture and emission and the
associated change in the threshold voltage are important parameters com-
monly included in various models, but their extraction from time-domain
observations has been a difficult task. In this study, we propose a statisti-
cal method for simultaneously estimating interrelated parameters: the time
constants and magnitude of the threshold voltage shift. Our method is based
on a graphical network representation, and the parameters are estimated us-
ing the Markov chain Monte Carlo method. Experimental application of the
proposed method to synthetic and measured time-domain RTN signals was
successful. The proposed method can handle interrelated parameters of
multiple traps and thereby contributes to the construction of more accurate
RTN models.
key words: random telegraph noise, Bayesian estimation, Markov chain
Monte Carlo, device characterization, source separation, statistical ma-
chine learning

1. Introduction

Random telegraph noise (RTN) is the temporal change in
threshold voltages observed in metal-oxide-semiconductor
(MOS) transistors. Figure 1 shows the RTN generation
mechanism. The capture of a carrier to an electrically ac-
tive trap (defect) and its release cause a charge change in
the dielectric, leading to shifts in the threshold voltage [1].
As device sizes shrink, the effects of RTN are expected to
become more serious [2].

Nagumo et al. introduced a time lag plot (TLP) to in-
vestigate the magnitude of the threshold voltage shift caused
by RTN [3]. They further analyzed other parameters such
as trap position by measuring devices with a single observ-
able trap [4]. Miki et al. [5] and Realov et al. [6] applied
a hidden Markov model (HMM) for investigating the time
constants of RTN. In the conventional studies, however, ex-
traction of amplitudes has been limited to devices that have
equal to or less than two traps. Since devices having more
than two traps in measurement data are common, it is im-
portant to develop a method that is applicable to arbitrary
number of traps. Furthermore, the extraction of time con-
stants cannot be conducted through HMM. Hence, a sep-
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Fig. 1 Generation process of RTN.

Fig. 2 Two examples of threshold voltage fluctuation caused by RTN.

arate process, such as application of TLP, is required. Ap-
plication of two different analyses to extract interrelated pa-
rameters leads to insufficient accuracy in parameter extrac-
tion. In Table 1, characteristics of the proposed and the
existing methods are compared. Figure 2 shows two ex-
amples of measured threshold voltage shifts due to RTN.
In the case of devices with a single trap, we can estimate
the magnitude of the threshold voltage shift simply by cal-
culating the distance between two peaks in threshold volt-
age histogram. On the other hand, in the case of multi-
ple traps, parameter extraction becomes much more com-
plicated because parameters such as magnitudes, time con-
stants, and trap states are strongly interrelated. Furthermore,
it is an under-determined problem because it requires recon-
struction of multi-trap time series sequences from only the
threshold voltage fluctuation, which is superimposed with
multi-trap activity. Hence, the direct use of HMM, as in
conventional estimation methods, is inappropriate.

In this paper, we propose a novel method for extract-
ing RTN parameters based on a machine learning method.
We construct a statistical generation model that reflects the
device physics of RTN, in which magnitudes, time con-
stants, and trap states are random parameter variables. In
our method, these parameters are estimated using Markov
chain Monte Carlo methods (MCMC) so that they best fit
the model to an observed RTN signal.

The proposed method has advantages over existing
methods, which are summarized as follows.

1. There is no limit to the number of traps. More than two
traps can be treated by the proposed method.

2. All RTN parameters are directly estimated. No post-
processing is necessary.
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Table 1 Summary of capabilities among the proposed and the existing methods.

Number of traps Amplitudes extraction Time constants extraction
Proposed Method Can be applied to more than two traps OK OK

TLP [3] Equal to or less than two traps OK NG
TLP+HMM [5], [6] Equal to or less than two traps OK OK (insufficient accuracy)

3. The RTN parameters are simultaneously estimated so
that estimations of the interrelated parameters become
consistent.

The rest of this paper is organized as follows. In Sect. 2,
we will describe the proposed method for decomposing the
statistics of traps. In Sect. 3, we will describe the experi-
mental validation of the method using synthetic RTN and its
results. We will also discuss the ability of the method. In
Sect. 4, we will describe the results of a parameter extrac-
tion experiment using measured threshold voltages. Finally,
Sect. 6 summarizes this paper.

2. Proposed Method

In this section, we describe the proposed model and param-
eter extraction method.

2.1 Problem Setting

The input and output of the proposed method is summarized
as follows.

• Input: measured RTN and the maximum number of
traps assumed.
• Output: estimated temporal sequence of trap states,

magnitudes of threshold voltage shift, and time con-
stants of the traps.

The inputs of the proposed method are the threshold volt-
ages as a function of time and the maximum number of traps
assumed. The determination of the number of traps will also
be described in Sect. 2.3. Figure 3(a) shows an example of
the measured threshold voltage time series. The outputs of
the proposed method are the RTN parameters, i.e., the es-
timated trap states and magnitude of the threshold voltage
shifts caused by the respective traps, as shown in Fig. 3(c).
Figure 3(b) shows the reconstructed threshold voltage shift
using the estimated magnitudes and trap states.

2.2 Proposed Statistical Generation Model

Figure 4 shows the graphical model defined in the proposed
method. Each node corresponds to a random variable. The
links among nodes represent the relationships among the
random variables. The variable w which represent magni-
tudes of threshold voltage shifts, for example, depend on
αw and βw. The trap states represented by the binary la-
tent variables z(t,i), where t = 1, · · · ,N are the time steps,
i = 1, · · · ,K are the indices of the traps, N is the number of
observations, and K is the number of traps. The threshold
voltages at each time step are X = {x1, x2, · · · , xN}.

Fig. 3 Example input and outputs of the proposed method.

Fig. 4 Proposed graphical model representing the generation process of
RTN. a) t = 1, b) transition of a state from t − 1 to t, and c) modeling of a
trap.

The total threshold voltage shift is modeled as a linear
summation of the threshold voltage shifts caused by each
trap, which in turn is modeled as the product of the trap
state and corresponding magnitude. Here, we assume that
the observation error follows a normal distribution whose
standard deviation is

√
1
γ
. The probability distribution of xt

can be written as

p
(
xt

∣∣∣z(t,1:K), w1:K , γ
)
= N
⎛⎜⎜⎜⎜⎜⎜⎜⎝xt

∣∣∣∣∣∣∣∣
K∑

i=1

wiz(t,i),

√
1
γ

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (1)

where w1:K is the magnitude of the trap and N (x|μ, σ) rep-
resents a probability distribution function of the normal dis-
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tribution defined as

N (x|μ, σ) =
1√
2πσ

exp

(
− (x − μ)2

2σ2

)
. (2)

The probability distribution of zt depends on zt−1, which is
the state of the previous time. The conditional distribution
p
(
z(t,i)|z(t−1,i),

1
τ

)
can be written as

p
(
z(t,i)|z(t−1,i)

)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp
(−1/τ(i,0)

)
z(t−1,i) = 0, z(t,i) = 0

1−exp
(−1/τ(i,0)

)
z(t−1,i) = 0, z(t,i) = 1

1−exp
(−1/τ(i,1)

)
z(t−1,i) = 1, z(t,i) = 0

exp
(−1/τ(i,1)

)
z(t−1,i) = 1, z(t,i) = 1

. (3)

The initial latent node z1 is special because it does not de-
pend on the previous node, so we give z1 a marginal distri-
bution p

(
z(1,i)|πi
)

defined as

p
(
z(1,i)|πi
)
= π

1−z(1,i)

i (1 − πi)
z(1,i) . (4)

Each model parameter has the following prior distribution

p
(
wi

∣∣∣θwi

)
= G
(
wi

∣∣∣αwi , βwi

)
, (5)

p
(
1/τi

∣∣∣θ1/τi ) = G (1/τi

∣∣∣α1/τi , β1/τi

)
, (6)

p
(
γ
∣∣∣θγ ) = G (γ ∣∣∣αγ, βγ ) , (7)

p (πi |θπ ) = B
(
πi

∣∣∣απi , βπi

)
, (8)

p
(
αwi

∣∣∣λαwi

)
= L
(
αwi

∣∣∣λαwi

)
, (9)

p
(
βwi

∣∣∣λβwi

)
= L
(
βwi

∣∣∣λβwi

)
, (10)

p
(
α1/τi

∣∣∣λα1/τi

)
= L
(
α1/τi

∣∣∣λα1/τi

)
, and (11)

p
(
β1/τi

∣∣∣λβ1/τi

)
= L
(
β1/τi

∣∣∣λβ1/τi

)
, (12)

where G
(
x
∣∣∣αG, βG ), B (x |αB, βB ), and L (x |λ ) are the

gamma, beta, and exponential distributions, respectively.
They are defined as

G (x |α, β ) = 1
Γ(α)βα xα−1exp

(
− x
β

)
x > 0, (13)

B (x |α, β ) =
xα−1(1 − x)β−1

B(α, β)
, and (14)

L (x |λ ) = λexp (−λx) x≥0. (15)

Here, B(α, β) and Γ(α) are the beta function and the gamma
function defined as

B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt and

Γ(α) =
∫ ∞

0
e−ttα−1dt, respectively. (16)

2.3 Determination of the Number of Traps

The proposed method automatically adjusts the model com-
plexity based on Bayesian inference. Owing to the sparse
assumption placed to the prior distribution, excess traps

will be degenerated, i.e., amplitudes of those traps that are
unnecessary to explain a given RTN waveform converge
around zero. By comparing the estimated magnitude of
noise and the amplitude of a trap, we can determine the
most appropriate number of traps. Hence, when we apply
the proposed method to an RTN waveform having unknown
number of traps, we may give a large number, such as five,
as the initial number of traps. Alternatively, we can also
loosely estimate the number of traps using TLP.

2.4 Parameter Estimation Algorithm

To estimate the model parameters, we have to evaluate the
posterior distribution

P
(
w, 1/τ, γ, Z, αw, βw, α1/τ, β1/τ |X ) , (17)

which represents the model parameter probability after X
is observed. However, the posterior distribution cannot be
analytically calculated because this requires analytical inte-
gration of the posterior density function. Hence, we approx-
imate the posterior distribution by samples generated from
the distribution using the MCMC method.

2.4.1 Gibbs Sampling

Gibbs sampling is an example of an MCMC algorithm. The
purpose of this algorithm is to generate a sequence of sam-
ples from a joint probability distribution of multivariate ran-
dom variables [7]. Each step in the Gibbs sampling algo-
rithm involves replacing the value of one random variable
with a new sample generated from the distribution condi-
tioned on the values of the remaining variables. Here, we
outline how Gibbs sampling can be applied to a Monte Carlo
approximation of Eq. (17). The following procedures are it-
erated after initialization of each random variables, and w(n)

indicates the samples drawn from the corresponding distri-
bution in the n-th iteration of Gibbs sampling.

1. For i = 1, · · · ,K, sample wi from the following condi-
tional posterior density,

w(n+1)
i ∼p

(
wi

∣∣∣∣x(1:N), w
(n+1)
(1:i−1),

w(n)
(i+1:K), z

(n)
(1:N), γ

(n), α(n)
wi
, β(n)
wi

)
. (18)

2. Sample γ(n+1) from the following conditional posterior
density,

γ(n+1)∼p
(
γ
∣∣∣∣x(1:N), w

(n+1)
(1:K) , z

(n)
(1:N,1:K), α

prior
γ , β

prior
γ

)
. (19)

Note that the new sample of wi drawn at the previous
step is used.

3. Sample z(n+1)
1 from the following posterior density,

z(n+1)
1 ∼p

(
z1

∣∣∣∣z(n)
2 , x1, w

(n+1)
(1:N) , γ

(n+1), 1/τ(n), π(n)
)
. (20)

In this step, w and γ are replaced with the new samples
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w(n+1) and γ(n+1).
4. For i = 1, · · · ,K, sample π(n+1)

i from the following pos-
terior density,

π(n+1)
i ∼p

(
πi

∣∣∣∣z(n+1)
(1,k) , α

prior
πi
, β

prior
πi

)
. (21)

5. For t = 2, · · · ,N, sample z(n+1)
t from the following pos-

terior density,

z(n+1)
t ∼p

(
zt

∣∣∣∣xt, z
(n+1)
t−1 , z

(n)
t+1, 1/τ

(n), w(n+1)
(1:K) , γ

(n+1)
)
. (22)

6. For i = 1, · · · ,K and l = 0, 1, sample 1
τ(i,l)

from the
following posterior density,

1/τ(n+1)
(i,l) ∼p

(
1/τ(i,l)

∣∣∣∣z(n+1)
(1:N,i), α

(n)
1/τ(i,l)
, β(n)

1/τ(i,l)

)
. (23)

7. For i = 1, · · · ,K, sample α(n+1)
wi

and β(n+1)
wi

from the fol-
lowing posterior densities, respectively,

α(n+1)
wi

∼ p
(
αwi

∣∣∣w(n+1)
i , β(n)

wi
, λαwi

)
and (24)

β(n+1)
wi

∼ p
(
βwi

∣∣∣w(n+1)
i , α(n+1)

wi
, λβwi

)
. (25)

8. For i = 1, · · · ,K and l = 0, 1, sample α1/τ(i,l) and β1/τ(i,l)
in the same way as sampling αwi and βwi .

2.4.2 Conditional Posterior Density

A part of developing the posterior density is derived from a
paper on sound source separation using MCMC [8].

1. The posterior density corresponding to w(n+1)
i is

p
(
wi

∣∣∣∣X, w(n+1)
(1:i−1), w

(n)
(i+1:K), z

(n)
(1:N), γ

(n), α(n)
wi
, β(n)
wi

)
∝ p
(
x(1:N)

∣∣∣∣z(n)
(1:N,1:K), w

(n+1)
(1:i−1), wi, w

(n)
(i+1:K), γ

(n)
)

×p
(
wi

∣∣∣αwi , βwi

)
. (26)

The first term on the right-hand side of Eq. (26) can be
written as

p
(
x(1:N)

∣∣∣∣z(n)
(1:N,1:K), w

(n+1)
(1:i−1), wi, w

(n)
(i+1:K), γ

(n)
)

∝ exp

⎧⎪⎪⎨⎪⎪⎩−γ
likel
wi

2

(
wi − μlikel

wi

)⎫⎪⎪⎬⎪⎪⎭ , (27)

where γlikel
wi

, μlikel
wi

, and E(−i)
(t) are defined as

γlikel
wi
= γ(n)

⎛⎜⎜⎜⎜⎜⎝ N∑
t=1

z(n)
(t,i)

2
⎞⎟⎟⎟⎟⎟⎠ , (28)

μlikel
wi
=

∑N
t=1z(n)

(t,i)E(−i)
(t)∑N

t=1z(n)
(t,i)

2
, and (29)

E(−i)
(t) = xt −

i−1∑
j=1

z(n)
(t, j)w

(n+1)
j −

K∑
j=i+1

z(n)
(t,i)w

(n)
j . (30)

The second term on the right-hand side of Eq. (26) is
the probability density function of the gamma distribu-
tion defined in Eq. (13). Therefore, the posterior den-
sity function can be written as

p
(
wi

∣∣∣∣X, w(n+1)
(1:i−1), w

(n)
(i+1:K), z

(n)
(1:N), γ

(n), α(n)
wi
, β(n)
wi

)

∝ wα
(n)
wi
−1

i exp

⎧⎪⎪⎨⎪⎪⎩−γ
likel
wi

2

(
wi − μlikel

wi

)2 − wi

β(n)
wi

⎫⎪⎪⎬⎪⎪⎭ . (31)

The shape of this distribution is too complex to analyt-
ically calculate the normalization constant, which re-
quires analytical integration of the distribution. Hence,
we sample wi by using the Metropolis method [9]. To
construct a proposal distribution, we approximate the
posterior distribution by a Gaussian distribution whose
variance and mode is same as the posterior distribution.
First, Eq. (31) is rewritten as follows,

p
(
wi

∣∣∣∣X, w(n+1)
(1:i−1), w

(n)
(i+1:K), z

(n)
(1:N), γ

(n), α(n)
wi
, β(n)
wi

)

∝ wα
(n)
wi
−1

i exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
(
wi − μpost

wi

)2
γ

post
wi

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (32)

where γpost
wi

and μpost
wi

are defined as

γ
post
wi
= γlikel

wi
and (33)

μ
post
wi
= μlikel

wi
− 1

β(n)
wi
γlikel
wi

. (34)

The mode of the posterior density can be calculated as
the solution of the following equation,

w
α(n)
wi
−2

i exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
(
wi − μpost

wi

)2
γ

post
wi

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
×
⎛⎜⎜⎜⎜⎜⎝w2

i − μpost
wi
wi − α

(n)
wi
− 1

γ
post
wi

⎞⎟⎟⎟⎟⎟⎠ = 0. (35)

Therefore, the mode of the posterior distribution can be
written as

μmax
wi
=

{
0 D < 0
max
{

1
2

(
μ

post
wi
+
√

D
)
, 0
}

otherwise
(36)

D =
(
μ

post
wi

)2
+ 4
α(n)
wi
− 1

γ
post
wi

. (37)

Finally, we can obtain the following proposal distribu-
tion,

q(wi) = N
(
w(n+1)

i

∣∣∣∣∣μmax
wi
,

√
1/γpost

wi

)
. (38)

2. The posterior density corresponding to γ(n+1) is

p
(
γ
∣∣∣∣x(1:N), z

(n)
(1:N,1:K), w

(n+1)
(1:K) , α

prior
γ , β

prior
γ

)
∝ p
(
x(1:N)

∣∣∣∣z(n)
(1:N,1:K), w

(n+1)
(1:K) , γ

)
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×p
(
γ|αprior
γ , β

prior
γ

)
. (39)

The first term on the right-hand side of Eq. (39) can be
written as

p
(
x(1:N)|z(n)

(1:N,1:K), w
(n+1)
(1:K) , γ
)

=
∏N

t=1
N
⎛⎜⎜⎜⎜⎜⎝xt

∣∣∣∣∣∣∣
K∑

i=1

z(n)
(t,i)w

(n+1)
i , γ

⎞⎟⎟⎟⎟⎟⎠
∝ γN/2exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−γ2
N∑

t=1

⎛⎜⎜⎜⎜⎜⎝xt −
K∑

i=1

z(n)
(t,i)w

(n+1)
i

⎞⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (40)

Because the prior distribution p
(
γ
∣∣∣∣αprior
γ , β

prior
γ

)
is a

gamma distribution, the posterior distribution can also
be written as the following gamma distribution,

p
(
γ(n+1)
∣∣∣∣x(1:N), z

(n)
(1:N,1:K), w

(n+1)
(1:K) , α

prior
γ , β

prior
γ

)
= G
(
γ(n+1)|αpost

γ , β
post
γ

)
, (41)

where

α
post
γ = α

prior
γ +

N
2

and (42)

β
post
γ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1

β
prior
γ

+
1
2

N∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎝xt−
K∑

j=1

z(n)
(t, j)w

(n)
j

⎞⎟⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎪⎬⎪⎪⎪⎭
−1

. (43)

3. The posterior distribution corresponding to z(n+1)
t is

p
(
zt

∣∣∣∣xt, z
(n+1)
t−1 , z

(n)
t+1, 1/τ

(n), w(n+1)
(1:K) , γ

(n+1)
)

∝ p
(
xt

∣∣∣∣zt, w
(n+1)
(1:K) , γ

(n+1)
)

p
(
zt

∣∣∣z(n+1)
t−1 , 1/τ

(n)
)

×p
(
z(n)

t+1

∣∣∣zt, 1/τ
(n)
)
, (44)

where p
(
xt

∣∣∣zt, w(1:K), γ
)

and p
(
z(t,i)

∣∣∣z(t−1,i), 1/τ
)

are de-
fined in Eq. (1) and Eq. (3), respectively. To sample zt,
we enumerate the possible combinations of zt (number
of combinations: 2K), calculate the probability of each
combination, and sample zt according to the probabil-
ity.

4. The posterior distribution corresponding to z(n+1)
1 is

p
(
z1

∣∣∣∣x1, z
(n)
2 , 1/τ

(n), w(n+1)
(1:K) , γ

(n+1)
)

∝ p
(
x1

∣∣∣∣z1, w
(n+1)
(1:K) , γ

(n+1)
)

×p
(
z(n)

2

∣∣∣z1, 1/τ
(n)
)

p
(
z1

∣∣∣π(n)
)
, (45)

where p
(
z1| π(n)
)

is defined as Eq. (4). Drawing sam-
ples from the posterior distribution is done in the same
way as sampling zt (n + 1).

5. The posterior distribution corresponding to 1/τ(n+1)
(i,l) is

p

(
1
τ(i,l)

∣∣∣∣z(n+1)
1:N,i , α

(n)
1/τ(i,l)
, β(n)

1/τ(i,l)

)

∝ p

(
z(n+1)

(1:N,i)

∣∣∣∣∣∣ 1
τ(i,l)

)
p

(
1
τ(i,l)

∣∣∣∣α(n)
1/τ(i,l)
, β(n)

1/τ(i,l)

)
. (46)

The first term on the right-hand side of Eq. (46) can be
written as

p

(
z(n+1)

(1:N,i)

∣∣∣∣∣∣ 1
τ(i,l)

)

= exp

(
− 1
τ(i,l)

)nl→l
{

1 − exp

(
− 1
τ(i,l)

)}nl→l̄

(47)

where nl→l is the number of steps whose state is the
same as the previous one (z(n+1)

(t,i) = z(n+1)
(t+1,i) = l), and nl→l̄

is the number of steps whose state is different from the
previous one (z(n+1)

(t,i) = l and z(n+1)
(t+1,i)�l). The second term

on the right-hand side of Eq. (46) is the gamma dis-
tribution. The posterior distribution does not belong
to well-known distributions. Therefore, samples are
drawn using the Metropolis method.

6. The posterior distribution corresponding to π(n+1)
i is

p
(
πi

∣∣∣∣z(n+1)
(1,i) , α

prior
πi
, β

prior
πi

)
∝ p
(
z(n+1)

(1,i)

∣∣∣∣ πi

)
p
(
πi

∣∣∣∣αprior
πi
, β

prior
πi

)
. (48)

The first term on the right-hand side of Eq. (48) is de-
fined in Eq. (4). The second term on the right-hand side
of Eq. (48) is the beta distribution defined in Eq. (15).
Hence, the posterior distribution also becomes the fol-
lowing beta distribution,

p
(
πi

∣∣∣∣z(n+1)
(1,i) , α

prior
πi
, β

prior
πi

)
= B
(
πi|αpost

πi
, β

post
πi

)
, (49)

where

α
post
πi
= α

prior
πi
− z(n+1)

(1,i) + 1 and (50)

β
post
πi
= β

prior
πi
+ z(n+1)

(1,i) . (51)

7. The posterior distribution corresponding to α(n+1)
wi

is

p
(
αwi

∣∣∣w(n+1)
i , β(n)

wi
, λαwi

)
∝ p
(
w(n+1)

i

∣∣∣αwi , β
(n)
wi

)
p
(
αwi

∣∣∣λαwi

)
= G
(
w(n+1)

i

∣∣∣αwi , β
(n)
wi

)
L
(
αwi

∣∣∣λαwi

)
. (52)

This posterior distribution also does not belong to well-
known distributions. Therefore, the Metropolis method
is used to draw samples from the posterior distribution.

8. The posterior distribution for sampling βwi , α1/τ(i,l) and
β1/τ(i,l) is the same as the posterior distribution of αwi .

2.4.3 Proposed Parameter Estimation Algorithm

The proposed parameter estimation algorithm is defined as
below.

1. Initialize the following random variables: z(0)
(1:N,1:K),

γ(0), w(0)
(1:K), 1/τ(0)

(1:K,0:1), π
(0)
1:K , α(0)

w1:K
, β(0)
w1:K

, α(0)
1/τ(1:K,0:1)

, and
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β(0)
1/τ(1:K,0:1)

.
2. Repeat the following steps until generated samples be-

come independent of the initial values.

a. Sample w(n+1)
i for i = 1, · · · ,K:

draw a candidate sample of w(n+1)
i from Eq. (38)

(w∗). Sample u from a uniform distribution. Ac-

cept w∗ as w(n+1)
i if min

(
1, p(w∗)

p
(
w(n)

i

)
)
> u. Otherwise,

the candidate sample is rejected and w(n+1)
i is set

to w(n)
i .

b. Sample γ(n+1):
draw a sample from Eq. (41) conditioned on X,
z(n)

(1:N,1:K), w
(n+1)
(1:K) , αγ, and βγ.

c. Sample z(n+1)
1 :

calculate the probabilities of each possible combi-
nation of z1 by Eq. (45). Calculate the cumulative
probability and sample z(n+1)

1 according to a ran-
dom value drawn from uniform distribution.

d. Sample πi for i = 1, · · · ,K:
draw a sample from Eq. (49) conditioned on z(n+1)

1 ,
απi , and βπi .

e. Sample z(n+1)
t for t = 2, · · · ,N:

calculate the cumulative probability by Eq. (44)
and sample zt in the same manner as sampling z1.

f. Sample 1
τ(n+1)

(i,l)

for i = 1, · · · ,K, l = 0, 1:

draw a sample from Eq. (46) conditioned on
z(n+1)

(1:N,1:K), α1/τ(n)
(1:K,0:1)

, and β1/τ(n)
(1:K,0:1)

.

g. Sample α(n+1)
wi

for i = 1, · · · ,K:
draw a sample from Eq. (52) conditioned on
w(n+1)

i , β(n)
wi

, and λαwi
.

h. Sample β(n+1)
wi

for i = 1, · · · ,K:
draw a sample from Eq. (52) conditioned on
w(n+1)

i , α(n+1)
wi

, and λβwi
.

i. Sample α1/τ(i,l) and β1/τ(i,l) :
draw samples in the same way as sampling αwi and
βwi , respectively.

3. Experimental Validation

3.1 Preliminary Experiment Using Synthetic RTN Data

To validate the proposed estimation algorithm, we first con-
duct an experiment with a synthetic RTN signal. We gener-
ate a time series signal with 100,000 steps that simulates the
threshold voltage shift caused by RTN. Three traps are used
for the simulated RTN data, and the amplitudes and time
constants are set as listed in Table 2. The parameters of the
prior distributions are set to αγ = 106, βγ = 10−3, λαw = 0.1,
λβw = 0.1, λα1/τ = 1.0, λβ1/τ = 1.0, απ = 1.0, and βπ = 1.0.
The estimated parameters are listed in Table 3. Figure 5
shows the estimated trap states and reconstructed RTN us-
ing these estimated parameters. The first 20,000 steps of the
time series are plotted.

Comparing Table 3 with Table 2, we can see that the

Table 2 Parameters used for generating synthetic RTN data.

Trap #1 #2 #3
Amplitude 0.603 0.957 1.84
τ0 300 500 800
τ1 300 500 800

Table 3 Estimated parameters using the proposed method from the syn-
thetic RTN data. Note that trap numbers are arbitrary compared with Ta-
ble 2.

Trap #1 #2 #3
Amplitude 1.72 0.862 0.518
τ0 712 571 306
τ1 696 473 288

Fig. 5 Estimated trap states and reconstructed RTN signal. The time
change of the three trap states and their amplitudes are cleanly extracted
in (b). Good agreement is observed between the estimation in (c) and the
input data in (a).

proposed method successfully estimates the magnitude and
time constants of the traps of the synthetic RTN signal
within an error of 13.9% and 14.2%, respectively. From
Fig. 5, we can see that the amplitude and trap states are ex-
tracted with good accuracy from the input data. They match
the results obtained from a manual extraction.

3.2 Failure Analysis Using Synthetic RTN Data

To estimate the parameters of the measured RTN signal, it
is important that they are validated because we cannot know
the ground truth. Therefore, we conduct a Monte Carlo sim-
ulation experiment to evaluate the performance of proposed
method.
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3.2.1 Experimental Procedure

Amplitudes w and time constants τ are randomly sampled
from the following distributions

w∼lognormal(−1, 2) and (53)

τ∼lognormal(7, 1), (54)

where lognormal (w |μ, σ ) indicates log-normal distribution
with the following probability density function,

p (w |μ, σ ) =
1√

2πσx
exp

(
− (lnx − μ)2

2σ2

)
. (55)

In order to choose the distribution suitable for the following
experiments, we examined existing studies though most of
the analysis are limited to a single trap. One paper [6] re-
ports that the amplitudes are well represented by log-normal
distribution. On the other hand, it looks there is no con-
sensus to the time constants distribution. In the following,
based on [10], [11], we adopt log-normal distribution as the
time constants model. We first generate a clean RTN sig-
nal by using w and τ generated from the distributions above.
Then, Gaussian noise that simulates measurement noise is
injected. Here, the standard variation of the noise is set to
0.01. We then compare the estimated parameters with those
used for generating the test sequence. Note here that the
comparison is non-trivial because the trap permutation can
be arbitrary. For example, the parameters of trap #1 in Ta-
ble 2 correspond to those of trap #3 in Table 3. We need a
unified approach to match the estimated traps to those in the
generation.

In this experiment, we solve this permutation prob-
lem by maximizing the match between the temporal trap
sequences of the generated and estimated signals. For this
purpose, we introduce the Rogers-Tanimoto coefficient [12]
to evaluate the similarity of trap states x and y,

DRogers−Tanimoto (x, y) =
a00 + a11

a00 + a11 + 2 (a01 + a10)
. (56)

Here, a00, a01, a10, and a11 are

a00 = # (xi = 0 ∧ yi = 0) , (57)

a01 = # (xi = 0 ∧ yi = 1) , (58)

a10 = # (xi = 1 ∧ yi = 0) , and (59)

a11 = # (xi = 1 ∧ yi = 1) , (60)

where xi and yi are the temporal sequences of the trap states
for time-step i. The coefficient increases when two traps
are more similar. Then, the permutation that maximizes the
above similarity is used for the evaluation. Once correspon-
dence between traps is determined, we can define estimation
errors corresponding to each trap.

3.2.2 Confidence Evaluation of Estimated Parameters

Because there is no way of knowing the ground truth of pa-
rameters, i.e., the amplitudes and time constants, a method

Fig. 6 Distances between states. The distances between each VTH levels
(d1, d2, d3) should be sufficiently large to distinguish each states.

to evaluate the confidence of the estimated parameters is
definitely required. For that purpose, we propose the fol-
lowing criteria to recognize the accuracy of the decomposed
multi-trap parameters in the proposed method.

Estimated noise accuracy γ Good noise accuracy, which
can be observed as γ (the inverse of the noise variance),
indicates good agreement between the input and recon-
structed signals. This means that the proposed method
successfully decomposed the trap properties.

Similarities between estimated trap states When multi-
ple traps exhibit similar temporal trapping-and-
emitting sequences, it is difficult to estimate the pa-
rameters of each trap separately. In these input signals,
confidence of the estimated result becomes low. Here,
the similarities between estimated trap sequences can
again be evaluated using the Rogers-Tanimoto coeffi-
cient. The maximum similarity is used as a criterion
among possible K (K + 1) /2 pairs for K traps.

Difference in VTH levels between states There is an ambi-
guity in the amplitude if the threshold voltage shift
caused by some trap combinations is similar to that
caused by another trap combination (Fig. 6). The his-
togram peaks formed by projection onto the threshold
voltage axis should be clearly distinguished from each
other. We calculate the reconstructed signal and then
calculate a voltage histogram to investigate the dis-
tances between states. When there are K traps, the
number of VTH levels to be distinguished is 2K . This
means that the problem becomes inherently difficult as
the number of states increases. The minimum distance
is used as the criterion.

3.2.3 Experimental Result

The results of the Monte Carlo experiment are shown in
Figs. 7 and 8. Here, two traps are used and 5,000 sam-
ples are generated. The parameters for the prior distribu-
tions are set to αγ = 105, βγ = 10−1, λαw = 1.0, λβw = 0.1,
απ = 1.0, βπ = 1.0, λα1/τ = 10, and λβ1/τ = 1. Figures 7(a)
and 8(a) show the maximum estimation error of the ampli-
tudes and time constants (Z axis) versus the estimated noise
accuracy γ and maximum similarity of the estimated trap
states (X and Y axis), respectively. Figures 7(b) and 8(b)
show the maximum estimation error of the amplitudes and
time constants (Y axis) versus the minimum distance of VTH

levels (X axis), respectively. The blue diamonds represent
estimated results that fall into the trust region and those for
which the maximum estimation error of the amplitudes and
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Fig. 7 Estimation accuracy of the amplitudes. Samples inside the trust
region are indicated by red crosses and blue diamonds. Red crosses indicate
that the maximum estimation error of the amplitudes is larger than 10%.
Blue diamonds indicate that the proposed method successfully estimated
the amplitude with a 10% accuracy. Samples outside the trust region are
indicated by the green triangles.

time constants is less than 10% and 50%, respectively. The
red crosses indicate that estimated results fall into the trust
region with at least one of the estimation errors of the ampli-
tudes and time constants being greater than 10% and 50%,
respectively. The green triangles indicate estimated results
that fall outside of the trust region. The followings is a de-
scription of the trust region.

1. The estimated noise accuracy γ is greater than 9.8×103.
2. The maximum similarity of estimated trap states is less

than 0.9.
3. The minimum distance of the VTH levels between esti-

mated states is greater than 10−2.

Because we assume that the standard variation of the mea-
surement noise is 0.01, the estimated noise accuracy should
be around 104. By the same token, the distances between
each state should be greater than the amplitude fluctuation

Fig. 8 Estimation accuracy of the time constants. Samples inside the
trust region are indicated by red crosses and blue diamonds. Red crosses
indicate the maximum estimation error of the time constants is larger than
50%. Blue diamonds indicate the proposed method successfully estimated
the time constant with a 50% accuracy. Samples outside the trust region
are indicated by the green triangles.

caused by noise. The maximum similarity reaches 1.0 if and
only if two traps exhibit the same temporal trapping-and-
emitting sequences. To exclude such cases, we introduce a
condition for the similarity.

Figure 9 shows the relationship between amplitudes
and time constants of generated sequences (X axis) and
estimation accuracy (Y axis). The green diamonds repre-
sent estimated results that fall into the trust region while the
black crosses represent estimated results that fall outside of
the trust region. We can see that estimation accuracy be-
comes low as the amplitudes become small (less than 0.01)
and the time constants become large (greater than 10k). In
this Monte Carlo simulation experiment, 3,571 out of 5,000
samples fall into the trust region. Among those, 3,499 sam-
ples succeeded in estimating amplitudes within 10% accu-
racy. Similarly, 2,833 samples in the trust region succeeded
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Fig. 9 The relationship between generation parameters and estimation
accuracy. Green diamonds indicate the samples inside the trust region and
black crosses indicate the samples outside of the trust region, respectively.
The estimation error of amplitudes tend to increase as amplitude becomes
small (a) while the estimation error of time constants tend to increase as
time constants become large (b).

in estimating time constants within 50% accuracy. 2,823
samples simultaneously satisfied the above amplitudes and
time constants bounds. On the other hand, relative errors
become large for those samples having traps with small
amplitudes. In our experiment, the estimation accuracy is
judged by the maximum estimation error of all traps. Thus,
traps with small amplitudes have a low estimation accuracy,
whereas other parameters are estimated with good accuracy.
Furthermore, estimating time constants is difficult owing to
the weak sensitivity of the transition probabilities to the time
constants. When τ is 100, for example, exp (−1/τ) is about
0.990, which increases by only 0.005 when τ is increased to
200.

4. Experiments Using Measured RTN Data

We extract parameters from the measured threshold volt-
age shift of a pMOS transistor fabricated in a 65-nm pro-

Table 4 Estimated parameters from the measured RTN signal
(W/L=360/120).

Trap #1 #2

Amplitude [a.u.] 0.43×10−2 1.12×10−2

τ0 [a.u] 1.80×103 8.80×103

τ1 [a.u.] 2.34×102 1.47×103

cess [13]. All parameters for the prior distribution remain
fixed as those of the previous section. We have to know the
ground truth of the noise variance of the measured RTN data
so that we can apply the same trust region as we used in the
previous section. To calculate the ground truth of the noise
variance, measured signals unaffected by RTN are used.
Then, measured signals with the RTN effects are scaled so
that they have the same noise variance as the synthetic RTN
signal in the previous section. Estimation results that fall
outside the trust region defined in the previous section are
omitted. These procedures are summarized as follows.

1. Find the trust region using the synthetic RTN data.
2. Apply a model estimation algorithm to the measured

signal:

a. Calculate the noise variance using the measured
data without the effects of RTN.

b. Scale the measured data that includes the RTN ef-
fects.

c. Omit the estimation results that fall outside the
trust region.

The estimated results of 46 out of 128 devices fall into
the trust region, one of them is shown in Fig. 10. The chan-
nel length L and width W are W/L = 360 nm/120 nm, re-
spectively. The estimated amplitudes and time constants
are listed in Table 4. The estimated noise accuracy γ is
1.27×104. It takes about 15 minutes for estimating the pa-
rameters of a single device on Core i7 at 2.8 GHz.

From Fig. 10, we can see that the temporal sequences
of two traps are clearly decomposed. The residue signal af-
ter subtraction of the reconstructed RTN shows that the ef-
fect of RTN is clearly removed. This means that the pro-
posed method successfully captures the statistics of multi-
trap RTN. Evaluation of the appropriateness of the parame-
ters for existing research, although work is limited to the sin-
gle observable trap case, is one topic of our future work. We
carefully examined the estimation results and identified the
questionable cases. The proposed estimation method seems
to fail when the amplitude of threshold voltage shift is less
than the amplitude of observation noise, or when time con-
stants are larger than 10% of observation time period. Even
if above conditions are not met, there are still some ques-
tionable results. We found that when the posterior distri-
butions are multimodal, the proposed sampling procedure
can be trapped in local optima, and thus fails to obtain the
global optimum solution. We found that at the experiments
on measured RTN data, the estimation of 15 out of 128 de-
vices were failed due to above reason. Further improvement
of the estimation algorithm using other sampling techniques,
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Fig. 10 Estimated trap states and reconstructed RTN signal (W/L = 360/
120).

such as with parallel tempering, is also one topic of our fu-
ture work.

5. Comparative Experiments with Existing Method

In this section, we compare our method with hidden Markov
model (HMM) [14]. HMM is a popular and widely used
method which is suitable to build a statistical model for
time-domain sequences, such as voices. In the context of
RTN analysis, HMM can be used to extract transition prob-
abilities between discrete threshold voltage states. The main
difference between the proposed method and HMM is that
the proposed method takes into account the generation pro-
cess of RTN while HMM does not. Large threshold voltage
fluctuation is usually caused by combination of two or more
trap activities. On the other hand, estimating the probability
that a large threshold voltage shift occurs is difficult because
such states that multi traps capture electrons will hardly be
observed. In the following experiment, we show that extrac-
tion accuracy of such probability is improved over HMM by
proposed method.

5.1 Experiment Setup

We show the estimation accuracy of the transition probabil-

Fig. 11 Test sequences and estimated results by proposed method and
HMM.

ity of proposed method and HMM using the artificially gen-
erated test sequence that is shown in Fig. 11(a). Here, we
use the HMM of MATLAB toolkit [15]. Assuming that am-
plitudes are extracted accurately using other method such as
TLP in advance to the transition probability estimation us-
ing HMM, the emission probabilities of each state are mod-
eled as Gaussian distributions whose mean and variance are
considered to be the ground truth. They are fixed during
parameter update. Hence, in this experiment, HMM only
estimates transition probabilities.

5.2 Results and Discussion

Figure 11(b) shows the decomposed trap states using the
proposed method and Fig. 11(c) shows the reconstructed
RTN waveform using Viterbi path of trained HMM [16].
The Viterbi path means the most probable sequence of hid-
den states for a given observation sequence. In the context
of RTN analysis, the Viterbi path represent the most prob-
able trapping-and-emitting sequence for a given threshold
voltage sequence. The direct comparison between HMM
and proposed method is difficult because HMM can only
estimate transition probability matrix. Therefore, we cre-
ate the transition probability matrix of the proposed method
from the estimated time constants as shown in Fig. 12. For
evaluation, we analyze the steady state of estimated Markov
model. A steady state probability πi = (π1, · · ·, π2K ) of
Markov model is a solution of the following linear equation

Aπ = π, (61)

where A is the transition probability matrix. The calculated
steady state probabilities using estimated transition proba-
bility of HMM and the proposed method are listed in Ta-
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Fig. 12 Superposition state of two traps. For the comparison to HMM,
we need to create transition probability matrix because proposed method
outputs decomposed trap statistics.

Table 5 The steady state probabilities.

State
Method 00 01 10 11

Ground Truth 4.76e−1 2.39e−2 4.76e−1 2.39e−2

HMM 6.12e−1 3.68e−2 3.46e−1 5.53e−3
Error (HMM) 28.5% 53.8% −27.3% −76.9%

Proposed method 6.12e−1 3.23e−2 3.30e−1 1.72e−2
Error (proposed method) 30.2% 35.1% −30.6% −28.0%

ble 5. Note that HMM is given ground truth of amplitudes
while proposed method is not. From Table 5, we can see that
the proposed method accurately estimates the steady state
probability of state 11 which gives large threshold voltage
shift with only 28.0% error, while HMM exhibits 76.9% er-
ror. This difference comes from the fact that the proposed
method can utilize the previous knowledge about generation
process of RTN while HMM cannot.

6. Conclusion

In this study, we have proposed a statistical machine learn-
ing approach to simultaneously estimate the amplitude and
time constants of each trap from measured threshold volt-
age fluctuation caused by RTN. The proposed method can
handle interrelated parameters of mutiple traps and thereby
contributes to the construction of more accurate RTN mod-
els. The experiments using synthetic and measurement data
showed that the proposed method successfully estimated the
magnitudes of the threshold voltage shift. Further improve-
ment of the estimation algorithm and application of the pro-
posed method to a variety of MOS devices are the subject of
future work.
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