Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Hom complexes and hypergraph colorings $\stackrel{\star}{\approx}$

Kouyemon Iriye^a, Daisuke Kishimoto^{b,*}

^a Department of Mathematics and Information Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
 ^b Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

ARTICLE INFO

Article history: Received 28 August 2012 Received in revised form 30 April 2013 Accepted 3 May 2013

MSC: 05C15 57M15

Keywords: Hom-complex Uniform hypergraph Chromatic number

1. Introduction

1.1. Hom-complexes of graphs

Since Lovász solved the famous Kneser conjecture by relating the chromatic number of a given graph to connectivity of its neighborhood complex [7], it is a standard method to study combinatorial properties of graphs by relating them with topological properties of appropriately constructed polyhedral complexes from graphs. Then as is seen in [5], a plenty of complexes have been constructed from graphs. Among others, let us consider Hom-complexes which were first introduced by Lovász and studied further by Babson and Kozlov [2,10,11]. Compared to other complexes of graphs, the construction of Hom-complex Hom(G, H) for graphs G, H is quite natural; it is a *space* of maps from G to H. Moreover, some complexes of graphs concerning colorings are realized by special Hom-complexes [2,10] by which one can easily understand related construction. For example, a result of Lovász [7] can be reproved easily by using Hom-complexes as follows.

Let us start with a standard observation. Recall that an *n*-coloring of a graph *G* is a labeling of vertices of *G* by *n* colors in such a way that adjacent vertices have distinct colors. Then if K_n denotes the complete graph with *n* vertices, there is a one-to-one correspondence between *n*-colorings of *G* and homomorphisms of *G* into K_n . Suppose *G* admits an *n*-coloring. Then since the Hom-complex Hom(*G*, *H*) is natural with respect to *G*, *H*, there is a map

 $\operatorname{Hom}(T, G) \to \operatorname{Hom}(T, K_n)$

* This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Corresponding author.

ABSTRACT

Babson and Kozlov (2006) [2] studied Hom-complexes of graphs with a focus on graph colorings. In this paper, we generalize Hom-complexes to *r*-uniform hypergraphs (with multiplicities) and study them mainly in connection with hypergraph colorings. We reinterpret a result of Alon, Frankl and Lovász (1986) [1] by Hom-complexes and show a hierarchy of known lower bounds for the chromatic numbers of *r*-uniform hypergraphs (with multiplicities) using Hom-complexes.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

(1)

E-mail addresses: kiriye@mi.s.osakafu-u.ac.jp (K. Iriye), kishi@math.kyoto-u.ac.jp (D. Kishimoto).

^{0166-8641/\$ –} see front matter $\,\, \textcircled{}^{\circ}$ 2013 The Authors. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.topol.2013.05.002

for any graph *T*. Specialize *T* to the complete graph K_2 with 2 vertices. Then a natural C_2 -action on K_2 yields C_2 -actions on both Hom(T, G) and $Hom(T, K_n)$, and furthermore, the map (1) is a C_2 -map for $T = K_2$, where C_k denotes the cyclic group of order *k*. One can easily see that the C_2 -actions are free and can also easily count the dimension of $Hom(K_2, K_n)$ as n - 2 by definition. Then it follows from the Borsuk–Ulam theorem that

$$\operatorname{conn}\operatorname{Hom}(K_2,G) \leq n-3$$

where conn *X* denotes connectivity of a space *X*. Finally, since $Hom(K_2, G)$ has the homotopy type of the neighborhood complex of *G* as in [2], we obtain the result of Lovász [7]. The point of this proof is that we can get C_2 -actions and a C_2 -map quite naturally, which is often the most difficult part of the above mentioned topological method for graphs.

1.2. Generalization to r-graphs

Let us now generalize graphs to r-uniform hypergraphs. Recall that an r-uniform hypergraph (or an r-graph, for short) G consists of the vertex set and the edge set which is a collection of r elements subsets of the vertex set. Then 2-graphs are simple graphs, for instance. Homomorphisms of r-graphs are obviously defined. In [11, Definition 9.24], Kozlov suggested a recipe to construct a space of a collection of maps between finite sets. Then one can define Hom-complexes for r-graphs as well. We would like to study colorings of r-graphs by using Hom-complexes as in the above case of graphs. Colorings of graphs are generalized to r-graphs as follows. An n-coloring of an r-graph is a labeling of vertices by n colors such that each edge contains more than 2 colors. Then for $r \ge 3$, colorings of r-graphs cannot be realized as homomorphisms. Then in order to study r-graph colorings by Hom-complexes, we must extend the category of r-graphs so that colorings become homomorphisms. If we extend the category of r-graphs to that of all hypergraphs, colorings become homomorphisms. However, this category is too big to control objects. So we need a much smaller extension of the category of r-graphs. For this purpose, we will consider r-graphs with multiplicities which were first introduced by Lange [6] in a different context. Then we will study colorings of r-graphs with multiplicities through Hom-complexes. More precisely, we will give a lower bound for the chromatic numbers of r-graphs with multiplicities using group actions on special Hom-complexes. Alon, Frankl and Lovász [1] defined certain simplicial complexes of r-graphs (without multiplicities) and gave a lower bound for the chromatic numbers by a rather tricky construction. We will show that these complexes are essentially the same as the above special Hom-complexes, and then we can interpret their construction in terms of Hom-complexes, which will make things clear. We will also consider Hom₊-complexes of r-graphs with multiplicities (cf. [11, Definition 20.1]) and show a hierarchy among lower bounds for the chromatic numbers.

1.3. Organization

The organization of the paper is as follows. In Section 2, we introduce *r*-graphs with multiplicities generalizing *r*-graphs by which we can study colorings of *r*-graphs as special homomorphisms. In Section 3, we recall a general construction of Hom-complexes of classes of maps between finite sets and then apply it to *r*-graphs with multiplicities. We show analogy of results of Babson and Kozlov [2] for Hom-complexes of *r*-graphs with multiplicities and give a lower bound for the chromatic number by special Hom-complexes. In Section 4, we show that the box-edge complexes of Alon, Frankl and Lovász [1] are realized by the above special Hom-complexes, by which we see that the above lower bound is the same as the one given by Alon, Frankl and Lovász [1]. In Section 5, we consider Hom-complexes of *r*-graphs with multiplicities and give another lower bound for the chromatic number. By comparing Hom-complexes and Hom₊-complexes, we show a hierarchy among the above two lower bounds.

2. *r*-Graphs with multiplicities

2.1. r-Graphs

Let us explain in detail why we introduce *r*-graphs with multiplicities. Recall that an *r*-uniform hypergraph (*r*-graph, for short) *G* is a pair of a finite set V(G) and a collection E(G) of *r* elements subsets of V(G). V(G) and E(G) are respectively called the vertex set and the edge set of *G*. For *r*-graphs *G*, *H*, a homomorphism $f: G \to H$ is a map $f: V(G) \to V(H)$ satisfying $f_*(E(G)) \subset E(H)$. Our objects are colorings of *r*-graphs. An *n*-coloring of an *r*-graph *G* is a map $c: V(G) \to [n]$ such that if $\{v_1, \ldots, v_r\} \in E(G), \{c(v_1), \ldots, c(v_r)\} \subset [n]$ is not a singleton, where $[n] = \{1, 2, \ldots, n\}$. Then one sees that colorings cannot be realized by homomorphisms in general as in the case of graphs. Then generalizing *r*-graphs, we introduce *r*-graphs with multiplicities among which colorings are homomorphisms.

2.2. r-Graphs with multiplicities

Recall that the *n*th symmetric product of a set *V* is defined as

$$\operatorname{SP}^n(V) = \underbrace{V \times \cdots \times V}_n / \Sigma_n,$$

where the action of the symmetric group Σ_n is given as $\sigma(v_1, \ldots, v_n) = (v_{\sigma(1)}, \ldots, v_{\sigma(n)})$ for $\sigma \in \Sigma_n$ and $v_1, \ldots, v_n \in V$. We denote an element of $SP^n(V)$ by $v_1 \cdots v_n$ for $v_1, \ldots, v_n \in V$. In [6], Lange used multisets which are naturally identified with elements of symmetric products. We now define *r*-graphs with multiplicities and their homomorphisms and colorings.

Definition 1.

- (1) An *r*-graph with multiplicities *G* consists of a finite set V(G) and a subset E(G) of $SP^r(V(G)) \setminus \Delta$, where $\Delta = \{v \cdots v \in SP^r(V(G))\}$. V(G) and E(G) are called the vertex set and the edge set of *G*, respectively.
- (2) Let *G*, *H* be *r*-graphs with multiplicities. A homomorphism $f: G \to H$ is a map $g: V(G) \to V(H)$ satisfying $f_*(E(G)) \subset E(H)$.
- (3) An *n*-coloring of an *r*-graph with multiplicities *G* is a map $c: V(G) \rightarrow [n]$ such that if $v_1 \cdots v_r \in E(G)$, $\{c(v_1), \ldots, c(v_r)\} \subset [n]$ is not a singleton.
- (4) The chromatic number $\chi(G)$ of an *r*-graph with multiplicities *G* is the minimum integer *n* such that *G* admits an *n*-coloring.

Remark 2. If we allow *r*-graphs with multiplicities to have diagonal edges in Δ , some *r*-graphs do not admit any colorings. Since we will study colorings, we have omitted diagonal edges from *r*-graphs with multiplicities.

Since *r* elements subsets of a set *V* may be regarded as elements of $SP^r(V) \setminus \Delta$, *r*-graphs with multiplicities and their homomorphisms and colorings include *r*-graphs and their homomorphisms and colorings.

Define an *r*-graph with multiplicities $\mathcal{K}_n^{(r)}$ as the maximum *r*-graph with multiplicities with *n* vertices. Namely,

$$V(\mathcal{K}_n^{(r)}) = [n]$$
 and $E(\mathcal{K}_n^{(r)}) = SP^r([n]) \setminus \Delta$.

It is clear that there is the desired property as follows.

Proposition 3. There is a one-to-one correspondence between n-colorings of an r-graph with multiplicities G and homomorphisms from G to $\mathcal{K}_n^{(r)}$.

3. Hom-complexes of *r*-graphs with multiplicities

3.1. General Hom-complexes

Let us first recall a recipe of general Hom-complexes suggested by Kozlov [11, Definition 9.24]. Let S, T be finite sets. Then a map $S \to T$ is identified with an element of T^S . Let Δ^T be the simplex whose vertex set is T. Since T^S is the vertex set of a direct product $\prod_S \Delta^T$, a map $S \to T$ is identified with a vertex of $\prod_S \Delta^T$. This simple observation leads us to the following definition of Hom-complexes which may be regarded as *spaces* of given maps between finite sets.

Definition 4. Let *S*, *T* be finite sets and *C* be a class of maps from *S* to *T*. The Hom-complex Hom^{*C*}(*S*, *T*) is the maximum subcomplex of $\prod_{S} \Delta^{T}$ whose vertex set is *C*.

Let S, T be finite sets and C be a class of maps from S to T. Given a map $f: T \to T'$ with T' finite and a class D of maps from S to T'. If $f_*(C) \subset D$, we can define a map of polyhedral complexes

 $f_*: \operatorname{Hom}^{\mathcal{C}}(S, T) \to \operatorname{Hom}^{\mathcal{D}}(S, T')$

by sending $h \in C$ to $f \circ h \in D$. Dually, given a map $g: S' \to S$ and a class \mathcal{E} of maps from S' to T satisfying $g^*(\mathcal{C}) \subset \mathcal{E}$, we can also define a map of polyhedral complexes

 $g^*: \operatorname{Hom}^{\mathcal{C}}(S, T) \to \operatorname{Hom}^{\mathcal{E}}(S', T)$

by sending $h \in \mathcal{E}$ to $h \circ g \in \mathcal{C}$.

By definition of the above induced maps, we have the following functoriality.

Proposition 5. Let S, T be finite sets and C be a class of maps from S to T.

(1) Let T_1, T_2 be finite sets and $\mathcal{D}_1, \mathcal{D}_2$ be classes of maps from S to T_1 and T_2 , respectively. If maps $f_1: T \to T_1$ and $f_2: T_1 \to T_2$ satisfy $(f_1)_*(\mathcal{C}) \subset \mathcal{D}_1$ and $(f_2)_*(\mathcal{D}_1) \subset \mathcal{D}_2$, the induced maps on Hom-complexes satisfy

 $(f_2 \circ f_1)_* = (f_2)_* \circ (f_1)_*.$

(2) Let S_1, S_2 be finite sets and $\mathcal{E}_1, \mathcal{E}_2$ be classes of maps from S_1 and S_2 to T, respectively. If maps $g_1: S_1 \to S$ and $g_2: S_2 \to S_1$ satisfy $(g_1)^*(\mathcal{C}) \subset \mathcal{E}_1$ and $(g_2)^*(\mathcal{E}_1) \subset \mathcal{E}_2$, the induced maps on Hom-complexes satisfy

 $(g_2 \circ g_1)^* = (g_1)^* \circ (g_2)^*.$

3.2. Hom-complexes of r-graphs with multiplicities

Let us return to r-graphs with multiplicities. Homomorphisms of r-graphs with multiplicities are maps between vertices satisfying certain properties. Since we are assuming vertex sets of r-graphs with multiplicities to be finite, we can apply the above general construction of Hom-complexes to r-graphs with multiplicities.

Definition 6. Let *G*, *H* be *r*-graphs with multiplicities and *C* be the set of homomorphisms from *G* to *H*. The Hom-complex Hom(G, H) is defined as $Hom^{\mathcal{C}}(V(G), V(H))$.

By Proposition 5, we have the following.

Proposition 7. Let $Graph^{(r)}$ and Poly be the categories of r-graphs with multiplicities and polyhedral complexes, respectively. Then

$$(\mathbf{Graph}^{(r)})^{\mathrm{op}} \times \mathbf{Graph}^{(r)} \to \mathbf{Poly}, \quad (G, H) \mapsto \mathrm{Hom}(G, H)$$

is a functor.

By Proposition 3, the Hom-complex Hom(G, $\mathcal{K}_n^{(r)}$) for an *r*-graph with multiplicities *G* is considered as a *space* of *n*-colorings of *G*. Then Hom(G, $\mathcal{K}_n^{(r)}$) is especially important, and hence we here give some easy examples. Let $L_n^{(r)}$ denote the line *r*-graph with *n* vertices. Namely, $L_n^{(r)}$ is defined as

$$V(L_n^{(r)}) = [n]$$
 and $E(L_n^{(r)}) = \{\{i, i+1, \dots, i+r-1\} \mid i = 1, \dots, n-r+1\}.$

Then $Hom(L_n^{(3)}, \mathcal{K}_2^{(3)})$ for n = 3, 4, 5 are given as follows.

Note that $Hom(L_n^{(3)}, \mathcal{K}_2^{(3)})$ for n = 3, 4, 5 have the same homotopy type. This will be justified below in a more general setting.

Let $C_n^{(r)}$ be the cyclic *r*-graph with *n* vertices. That is, $C_n^{(r)}$ is given as

 $V(C_n^{(r)}) = \mathbb{Z}/n \text{ and } E(C_n^{(r)}) = \{\{i, i+1, \dots, i+r-1\} \mid i \in \mathbb{Z}/n\}.$

Let us next consider $\operatorname{Hom}(C_n^{(3)}, \mathcal{K}_2^{(3)})$. Since $C_3^{(3)} = L_3^{(3)}$, $\operatorname{Hom}(C_3^{(3)}, \mathcal{K}_2^{(3)})$ is a hexagon. One can easily see that $\operatorname{Hom}(C_4^{(3)}, \mathcal{K}_2^{(3)})$ consists of discrete six points and that $\operatorname{Hom}(C_5^{(3)}, \mathcal{K}_2^{(3)})$ is the outer polygon of $\operatorname{Hom}(L_5^{(3)}, \mathcal{K}_2^{(3)})$. Then their homotopy types are not the same.

3.3. Lower bound for the chromatic number

By functoriality of Hom(G, H), group actions on G and H induce those on Hom(G, H). We next consider these group actions for special G. Let $K_n^{(r)}$ be the maximum r-graph with n vertices. Namely,

$$V(K_n^{(r)}) = [n]$$
 and $E(K_n^{(r)}) = \operatorname{SP}^r([n]) \setminus \Delta_n$,

where $\Delta_n = \{v_1 \cdots v_r \in SP^r([n]) \mid v_i \neq v_j \text{ for } i \neq j\}$. Notice that by a cyclic permutation of vertices, the cyclic group C_n acts on $K_n^{(r)}$.

Lemma 8. If r is a prime, the induced C_r -action on $Hom(K_r^{(r)}, G)$ is free.

Proof. Any face of $\operatorname{Hom}(K_r^{(r)}, G)$ is of the form $\Delta^{S_1} \times \cdots \times \Delta^{S_r}$ such that each $(v_1, \ldots, v_r) \in S_1 \times \cdots \times S_r$ satisfies $v_1 \cdots v_r \in E(G)$. Then in particular, there is no diagonal element (v, \ldots, v) in $S_1 \times \cdots \times S_r$. Let g be a non-trivial element of C_r . Then by renumbering if necessary, we have

$$g \cdot (v_1, ..., v_r) = (v_r, v_1, ..., v_{r-1})$$

for $(v_1, ..., v_r) \in S_1 \times \cdots \times S_r$ since *r* is a prime. Suppose $g(\Delta^{S_1} \times \cdots \times \Delta^{S_r}) = \Delta^{S_1} \times \cdots \times \Delta^{S_r}$. Then we have observed that elements of S_1 belong to all $S_1, ..., S_r$, a contradiction. \Box

Using the index of the above free group action [8, Definition 6.2.3], we give a lower bound for the chromatic numbers of r-graphs with multiplicities. We set some notation. Let Γ be a non-trivial finite group (with the discrete topology). Let $E_n\Gamma$ be the join of n + 1 copies of Γ on which Γ acts diagonally. Then this Γ -action on $E_n\Gamma$ is free and $E_n\Gamma$ has the homotopy type of a wedge of n-dimensional spheres. For a free Γ -complex X, the Γ -index of X is defined as

 $\operatorname{ind}_{\Gamma} X = \min\{n \mid \text{there is a } \Gamma \operatorname{-map} X \to E_n \Gamma\}.$

Let us list basic properties of $\operatorname{ind}_{\Gamma} X$.

Proposition 9. Let Γ be a non-trivial finite group and let X, Y be free Γ -complexes.

(1) If there is a Γ -map from X to Y, we have

 $\operatorname{ind}_{\Gamma} X \leq \operatorname{ind}_{\Gamma} Y.$

(2) The join X * Y is a free Γ -space by the diagonal Γ -action for which it holds that

 $\operatorname{ind}_{\Gamma}(X * Y) \leq \operatorname{ind}_{\Gamma} X + \operatorname{ind}_{\Gamma} Y + 1.$

(3) It holds that

 $\operatorname{conn} X + 1 \leq \operatorname{ind}_{\Gamma} X \leq \operatorname{dim} X.$

Proof. (1) follows from definition and (2) follows from the fact that $E_n \Gamma = E_m \Gamma * E_{n-m-1} \Gamma$. By the Borsuk–Ulam theorem due to Dold [3], we have $\operatorname{ind}_{\Gamma} E_n \Gamma = n$. Then (3) is shown by an easy obstruction argument. \Box

Put $B_n\Gamma = E_n\Gamma/\Gamma$, $B\Gamma = \bigcup_{n \ge 1} B_n\Gamma$ and $E\Gamma = \bigcup_{n \ge 1} E_n\Gamma$. Then the natural projection $E\Gamma \to B\Gamma$ is the well-known Milnor's universal principal Γ -bundle. Let $\varphi: X/\Gamma \to B\Gamma$ be the classifying map of a free Γ -complex X. Then it follows that $\operatorname{ind}_{\Gamma} X$ coincides with the minimum integer n such that φ factors through the inclusion $B_n\Gamma \to B\Gamma$, up to homotopy. By [4, Proposition 8.4], we obtain that $\operatorname{ind}_{\Gamma} X$ is equal to the LS-category of the classifying map φ , implying that there are a lot of quantities estimating $\operatorname{ind}_{\Gamma} X$ other than connectivity and dimension.

We now give a lower bound for the chromatic number of r-graphs with multiplicities.

Theorem 10. Let G be an r-graph with multiplicities. If r is a prime, there holds

$$\chi(G) \geq \frac{\operatorname{ind}_{C_r} \operatorname{Hom}(K_r^{(r)}, G) + 1}{r - 1} + 1.$$

Proof. By Lemma 8, $\operatorname{Hom}(K_r^{(r)}, H)$ is a free C_r -complex for any r-graph with multiplicities H. Suppose there is an n-coloring of G, or equivalently, a homomorphism $f: G \to \mathcal{K}_n^{(r)}$. By Proposition 7, the induced map $f_*: \operatorname{Hom}(K_r^{(r)}, G) \to \operatorname{Hom}(K_r^{(r)}, \mathcal{K}_n^{(r)})$ is a C_r -map, implying

$$\operatorname{ind}_{C_r} \operatorname{Hom}(K_r^{(r)}, G) \leq \dim \operatorname{Hom}(K_r^{(r)}, \mathcal{K}_n^{(r)})$$

by Proposition 9. We then count the dimension of $\operatorname{Hom}(K_r^{(r)}, \mathcal{K}_n^{(r)})$. Any face of $\operatorname{Hom}(K_r^{(r)}, \mathcal{K}_n^{(r)})$ is given as $\Delta^{S_1} \times \cdots \times \Delta^{S_r}$ such that $S_1, \ldots, S_r \subset [n]$ and $S_1 \cap \cdots \cap S_r = \emptyset$. The maximum of $|S_1| + \cdots + |S_r|$ is nr - n and then the dimension of $\operatorname{Hom}(K_r^{(r)}, \mathcal{K}_n^{(r)})$ is nr - n - r = (r - 1)(n - 1) - 1, completing the proof. \Box

By Proposition 9, we obtain the following.

Corollary 11. Let G be an r-graph with multiplicities. If r is a prime, we have

$$\chi(G) \ge \frac{\operatorname{conn}\operatorname{Hom}(K_r^{(r)},G)+2}{r-1}+1$$

3.4. Homotopy lemmas

Let us recall three lemmas from [2, Proposition 3.2] and [11, Theorems 15.24, 15.28] which will be used below. We first set some notation. Let *P* be a poset. We denote the order complex of *P* by $\Delta(P)$. That is, $\Delta(P)$ is a simplicial complex whose *n*-simplices are chains in *P* of length n + 1. For $p \in P$, let

 $P_{\leq p} = \{q \in P \mid q \leq p\}$ and $P_{\geq p} = \{q \in P \mid q \geq p\}.$

We first state the famous Quillen fiber lemma.

Lemma 12. ([11, Theorem 15.28]) Let $\varphi : P \to Q$ be a poset map between finite posets. If $\Delta(\varphi^{-1}(Q_{\leq}q))$ is contractible for any $q \in Q$, then $\Delta(\varphi) : \Delta(P) \to \Delta(Q)$ is a homotopy equivalence.

We next state a variant of the Quillen fiber lemma proved in [2, Proposition 3.2].

Lemma 13. ([2, Proposition 3.2]) For a poset map $\varphi : P \to Q$ between finite posets, suppose the following conditions.

(1) $\Delta(\varphi^{-1}(q))$ is contractible for any $q \in Q$.

(2) For any $q \in Q$ and $p \in \varphi^{-1}(Q_{\geq q})$, the poset $\varphi^{-1}(q) \cap P_{\leq p}$ has the maximum.

Then $\Delta(\varphi) : \Delta(P) \to \Delta(Q)$ is a homotopy equivalence.

Finally, we recall the generalized nerve lemma which is frequently used in combinatorial algebraic topology. Let A be a covering of a space X by non-empty subspaces A_1, \ldots, A_n . Then we associate to A a poset whose elements are non-empty intersections of A_1, \ldots, A_n and the order is defined by inclusions. The nerve of A is by definition the order complex of this poset associated to A.

Lemma 14. ([11, Theorem 15.24]) Let \mathcal{A} be a covering of a polyhedral complex K by non-empty subcomplexes A_1, \ldots, A_n . Suppose that for any $i_1 < \cdots < i_t$, there exists k such that $A_{i_1} \cap \cdots \cap A_{i_t}$ is either empty or (k - t + 1)-connected. Then K is k-connected if and only if so is the nerve of \mathcal{A} .

3.5. Homotopy type of $\operatorname{Hom}(K_m^{(r)}, \mathcal{K}_n^{(r)})$

As is mentioned above, for an *r*-graph with multiplicities *G*, the Hom-complex Hom($G, \mathcal{K}_n^{(r)}$) is especially important. Then we determine the homotopy type of this Hom-complex in the special case $G = \mathcal{K}_m^{(r)}$.

For $\mathbf{t} = (t_1, \dots, t_n)$ with non-negative integers t_1, \dots, t_n , we define a polyhedral complex $\Delta^m(\mathbf{t})$ as the subcomplex of $\underline{\Delta^{[n]} \times \dots \times \Delta^{[n]}}_{m}$ whose faces are $\Delta^{S_1} \times \dots \times \Delta^{S_m}$ such that $|\{k \in [m] \mid i \in S_k\}| \leq t_i$ for $i = 1, \dots, n$. Note that if $\mathbf{t}' = m$

 (t'_1, \ldots, t'_n) satisfies $t_k, t'_k \ge m$ for some k and $t_i = t'_i$ for $i \ne k$, then $\Delta^m(\mathbf{t}) = \Delta^m(\mathbf{t}')$. As in the proof of Theorem 10, for $\mathbf{s} = (r-1, \ldots, r-1) \in [m]^n$, we have

$$\Delta^m(\mathbf{s}) = \operatorname{Hom}(K_m^{(r)}, \mathcal{K}_n^{(r)}).$$

We determine the homotopy type of $\Delta^m(t)$ and, consequently, the homotopy type of $\operatorname{Hom}(K_m^{(r)}, \mathcal{K}_n^{(r)})$. For a polyhedral complex K, let $\mathcal{F}(K)$ denote the face poset of K.

Theorem 15. For $\mathbf{t} = (t_1, \dots, t_n)$ with $0 \le t_i \le m$, $\Delta^m(\mathbf{t})$ has the homotopy type of a wedge of $(t_1 + \dots + t_n - m)$ -dimensional spheres.

Proof. Put $|\mathbf{t}| = t_1 + \cdots + t_n$. As in the proof of Theorem 10, one can easily deduce that the dimension of $\Delta^m(\mathbf{t})$ is $|\mathbf{t}| - m$. Then we only have to show that $\Delta^m(\mathbf{t})$ is $(|\mathbf{t}| - m - 1)$ -connected.

For $F \subset [n]$, put $\boldsymbol{t} - F = (t'_1, \dots, t'_n)$ such that

$$t'_{i} = \begin{cases} \max\{t_{i} - 1, 0\} & i \in F, \\ t_{i} & i \notin F. \end{cases}$$

Then if $F \subset F' \subset [n]$, we have $\Delta^{\ell}(\boldsymbol{t} - F) \supset \Delta^{\ell}(\boldsymbol{t} - F')$. We also have that if $|\boldsymbol{t}| - |F| - \ell < 0$ for $F \subset [n]$, $\Delta^{\ell}(\boldsymbol{t} - F) = \emptyset$. We now define a functor

$$\rho: \mathcal{F}(\mathrm{sk}_{|t|-m}\Delta^{[n]})^{\mathrm{op}} \to \mathbf{Poly}$$

by $\rho(F) = \Delta^{m-1}(t - F)$ and inclusions $\Delta^{m-1}(t - F) \supset \Delta^{m-1}(t - F')$ for $F \subset F' \in \mathcal{F}(\mathrm{sk}_{|t|-m}\Delta^{[n]})$, where $\mathrm{sk}_k K$ denotes the *k*-skeleton of a polyhedral complex *K*. By definition, $\Delta^m(t)$ is the union of $\Delta^F \times \Delta^{m-1}(t - F)$ for all non-empty $F \in \mathcal{F}(\mathrm{sk}_{|t|-m}\Delta^{[n]})$. Namely, we have

$$\Delta^m(\mathbf{t}) = \operatorname{hocolim} \rho.$$

Since ρ maps every arrow to a cofibration, we get a homotopy equivalence

hocolim $\rho \xrightarrow{\simeq}$ colim ρ .

See [11, Theorem 15.19]. Notice that colim ρ is covered by subcomplexes $\Delta^{m-1}(\mathbf{t} - \{i\})$ for $i \in [n]$ and that $\Delta^{m-1}(\mathbf{t} - F) \cap \Delta^{m-1}(\mathbf{t} - F') = \Delta^{m-1}(\mathbf{t} - F \cup F')$ for $F, F' \in \mathcal{F}(\mathrm{sk}_{|\mathbf{t}| - m} \Delta^{[n]})$.

If $|\mathbf{t}| = m$, $\Delta^m(\mathbf{t})$ is a discrete finite set. Apply Lemma 14 to the above covering of colim ρ inductively on $|\mathbf{t}| - m$. Thus we obtain the desired result. \Box

Corollary 16. Hom $(K_m^{(r)}, \mathcal{K}_n^{(r)})$ has the homotopy type of a wedge of ((r-1)n-m)-dimensional spheres.

3.6. Vertex deletion and Hom-complexes

In [2, Proposition 5.1], a relation between vertex deletion of *G* and the homotopy type of Hom(G, H) is considered when *G*, *H* are graphs. We prove analogy for *r*-graphs with multiplicities here by a quite similar way. In [2, Proposition 5.1], a condition for vertex deletion is given by a neighborhood of a vertex. As for graphs, a neighborhood of a vertex *v* is considered as both the set of vertices adjacent to *v* and the set of edges with the end *v*. As for *r*-graphs with multiplicities, these two sets cannot be identified for $r \ge 3$, and then we define two kinds of neighborhoods of vertices.

Let *G* be an *r*-graph with multiplicities. For a vertex *v* of *G*, we define $\mathbb{N}(v)$ as the set of $v_1 \cdots v_s \in SP^s(V(G))$ for some $1 \leq s \leq r-1$ satisfying $\underbrace{v \cdots v}_{r-s} v_1 \cdots v_s \in E(G)$ and $v_1, \ldots, v_s \neq v$. For $v_1 \cdots v_s \in SP^s(V(G))$ with $1 \leq s \leq r-1$, we also define

 $\check{\mathbb{N}}(v_1 \cdots v_s)$ as the set of vertices w of G satisfying $\underbrace{w \cdots w}_{r-s} v_1 \cdots v_s \in E(G)$.

For a vertex v of G, let $G \setminus v$ denote the maximum r-subgraph with multiplicities of G whose vertex set is $V(G) \setminus v$. We now state our result.

Theorem 17. Let *G*, *H* be an *r*-graph with multiplicities. Suppose that there are vertices u, v of *G* satisfying $\mathbb{N}(u) \supset \mathbb{N}(v)$. Then the inclusion $i: G \setminus v \rightarrow G$ induces a homotopy equivalence

 i^* : Hom $(G, H) \xrightarrow{\simeq}$ Hom $(G \setminus v, H)$.

Proof. As is mentioned above, the proof is quite analogous to [2, Proposition 5.1]. Note that any face of Hom(T, H) for an r-graph with multiplicities T is identified with a map $V(T) \rightarrow 2^{V(H)} \setminus \emptyset$. For $\eta \in \mathcal{F}(\text{Hom}(G \setminus v, H))$, the fiber $\mathcal{F}(i^*)^{-1}(\eta)$ is the set of $\tau \in \mathcal{F}(\text{Hom}(G, H))$ satisfying

$$\tau|_{V(G)\setminus v}=\eta.$$

Since

$$\bigcap_{v_1 \cdots v_s \in \mathbb{N}(v)} \bigcap_{(w_1, \dots, w_s) \in \eta(v_1) \times \dots \times \eta(v_s)} \check{\mathbb{N}}(w_1 \cdots w_s) \supset \bigcap_{v_1 \cdots v_s \in \mathbb{N}(u)} \bigcap_{(w_1, \dots, w_s) \in \eta(v_1) \times \dots \times \eta(v_s)} \check{\mathbb{N}}(w_1 \cdots w_s)$$
$$\supset \eta(u) \neq \emptyset,$$

we can define $\nu \in \mathcal{F}(i^*)^{-1}(\eta)$ by

$$\nu(\nu) = \bigcap_{\nu_1 \cdots \nu_s \in \mathbb{N}(\nu)} \bigcap_{(w_1, \dots, w_s) \in \eta(\nu_1) \times \cdots \times \eta(\nu_s)} \check{\mathbb{N}}(w_1 \cdots w_s)$$

and $\nu|_{V(G)\setminus\nu} = \eta$. By definition, ν is the maximum of $\mathcal{F}(i^*)^{-1}(\eta)$, and thus in particular, the order complex $\Delta(\mathcal{F}(i^*)^{-1}(\eta))$ is contractible.

Choose $\tau \in \mathcal{F}(\operatorname{Hom}(G, H))$ and $\eta \in \mathcal{F}(\operatorname{Hom}(G \setminus v, H))$ satisfying $\tau(w) \supset \eta(w)$ for $w \in V(G) \setminus v$. Observe that $\mathcal{F}(i^*)^{-1}(\eta) \cap \mathcal{F}(\operatorname{Hom}(G, H))_{\leq \tau}$ consists of $\sigma \in \mathcal{F}(\operatorname{Hom}(G, H))$ satisfying $\sigma(v) \subset \tau(v)$ and $\sigma|_{V(G)\setminus v} = \eta$. Then it has the maximum μ such that $\mu(v) = \tau(v)$ and $\mu|_{V(G)\setminus v} = \eta$. We have seen that Lemma 13 can be applied to $\mathcal{F}(i^*): \mathcal{F}(\operatorname{Hom}(G, H)) \to \mathcal{F}(\operatorname{Hom}(G \setminus v, H))$, which completes the proof. \Box

We generalize the above observation on the homotopy type of $Hom(L_n^{(3)}, \mathcal{K}_2^{(3)})$.

Corollary 18. Let $L_n^{(r)}$ be the line *r*-graph with *n* vertices as above, and let *G* be an *r*-graph with multiplicities. Then for $n \ge r$, we have

 $\operatorname{Hom}(L_n^{(r)}, G) \simeq \operatorname{Hom}(L_r^{(r)}, G).$

Proof. If n > r, we have $N(n) \subset N(n-r)$. Then by Theorem 17, it holds that $Hom(L_n^{(r)}, G) \simeq Hom(L_{n-1}^{(r)}, G)$. Thus the result follows by induction on n. \Box

4. Relation between box-edge complexes and Hom-complexes

4.1. Box-edge complexes

Let *G* be an *r*-graph (without multiplicities). In [1], Alon, Frankl and Lovász introduced a simplicial complex $\mathbb{B}_{edge}(G)$ with a C_r -action which we call the box-edge complex of *G*, where we follow the name and the notation of [9]. By an ad-hoc and tricky construction concerning $\mathbb{B}_{edge}(G)$, they gave a lower bound for the chromatic number of *G*. We will show that this construction is realized by special Hom-complexes of *r*-graphs with multiplicities, by which we can reprove and interpret a result of Alon, Frankl and Lovász [1, Proposition 2.1] in a quite natural way.

Let $\pi : V^n \to SP^n(V)$ denote the projection for a set *V*. Originally, the box-edge complexes were defined only for *r*-graphs (without multiplicities). However, their definition can be applied to *r*-graphs with multiplicities straightforwardly.

Definition 19. Let *G* be an *r*-graph with multiplicities. The box-edge complex of *G* is an abstract simplicial complex defined as

$$B_{\text{edge}}(G) = \left\{ F \subset V(G)^r \mid \pi(F) \subset E(G) \right\}$$
(2)

on which the cyclic group C_r acts as the restriction of the permutation action on $V(G)^r$.

Notice here that as is shown in [1, Proposition 2.1], if r is a prime, the C_r -action on $\mathbb{B}_{edge}(G)$ is free.

4.2. Result of Alon, Frankl and Lovász

We prove that the box-edge complex $B_{edge}(G)$ is given by a special Hom-complex.

Theorem 20. For an *r*-graph with multiplicities G, there is a C_r -map

$$B_{edge}(G) \rightarrow Hom(K_r^{(r)}, G)$$

which is a homotopy equivalence. In particular, if r is a prime, it is a C_r -homotopy equivalence.

Proof. The face poset of $Hom(K_r^{(r)}, G)$ is given as

$$\mathcal{F}(\operatorname{Hom}(K_r^{(r)},G)) = \{F_1 \times \dots \times F_r \mid F_1, \dots, F_r \subset V(G) \text{ and } \pi(F_1 \times \dots \times F_r) \subset E(G)\},\tag{3}$$

where the order is given by inclusions. Then as the face poset of $\mathbb{B}_{edge}(G)$ is given in (2), we can define a map

 $\varphi: \mathcal{F}(\mathsf{B}_{\mathsf{edge}}(G)) \to \mathcal{F}(\mathsf{Hom}(K_r^{(r)}, G)), \qquad F \mapsto \pi_1(F) \times \cdots \times \pi_r(F),$

where $\pi_i: V(G)^r \to V(G)$ is the *i*th projection. Then by definition, φ is a C_r -map and hence so is $\Delta(\varphi)$.

Take any $F_1 \times \cdots \times F_r \in \mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G))$. Then the poset $\varphi^{-1}(\operatorname{Hom}(K_r^{(r)}, G)_{\leq F_1 \times \cdots \times F_r})$ has the maximum $F_1 \times \cdots \times F_r$, implying that $\Delta(\varphi^{-1}(\operatorname{Hom}(K_r^{(r)}, G)_{\leq F_1 \times \cdots \times F_r}))$ is contractible. Thus by Lemma 12, $\Delta(\varphi)$ is a homotopy equivalence. The desired map is the composite

$$\mathbb{B}_{edge}(G) \stackrel{\cong}{\to} \Delta \big(\mathcal{F} \big(\mathbb{B}_{edge}(G) \big) \big) \stackrel{\Delta(\varphi)}{\to} \Delta \big(\mathcal{F} \big(\operatorname{Hom} \big(K_r^{(r)}, G \big) \big) \stackrel{\cong}{\to} \operatorname{Hom} \big(K_r^{(r)}, G \big),$$

where the first and the last arrows are the natural homeomorphisms between polyhedral complexes and their barycentric subdivision. Therefore we have established the first assertion. Suppose r is a prime. Then the C_r -action on $Hom(K_r^{(r)}, G)$ is free by Lemma 8. Moreover, the C_r -action on $B_{edge}(G)$ is also free as is noted above. Thus the second assertion follows from the first one. \Box

Remark 21. Recently, Thansri [14, Corollary 4.9] showed that $\mathbb{B}_{edge}(G)$ and $\operatorname{Hom}(K_r^{(r)}, G)$ has the same Σ_r -equivariant simple homotopy type for an *r*-graph (without multiplicities) *G*.

By Corollary 11, we obtain a result of Alon, Frankl and Lovász [1, Proposition 2.1].

Corollary 22. Let G be an r-graph with multiplicities. If r is a prime, we have

$$\chi(G) \geq \frac{\operatorname{conn} \mathbb{B}_{\operatorname{edge}}(G) + 2}{r - 1} + 1.$$

Alon, Frankl and Lovász [1, §3] proved Corollary 22 by constructing a map from $\mathbb{B}_{edge}(G)$ into a Euclidean space with a certain C_r -action, which seems quite ad-hoc and tricky. Using Hom-complexes, this construction will turn out to be the induced map between Hom-complexes from a given coloring.

Let $M_{r,n}(\mathbb{R})$ be the space of $r \times n$ real matrices. We let C_r act on $M_{r,n}(\mathbb{R})$ as the cyclic permutation of rows. Let Y be a subspace of $M_{r,n}(\mathbb{R})$ consisting of matrices (a_{ij}) satisfying

$$\sum_{i=1}^{r} a_{ik} = 0, \qquad \sum_{j=1}^{n} a_{\ell j} = 0 \quad \text{and} \quad \sum_{i,j} a_{ij}^{2} \neq 0$$

for k = 1, ..., n and $\ell = 1, ..., r$. Then Y is also a C_r -subspace of $M_{r,n}(\mathbb{R})$. Let G be an r-graph with multiplicities which admits an *n*-coloring, say c. Alon, Frankl and Lovász [1, §3] defined a C_r -map

$$\bar{c}: \mathbb{B}_{edge}(G) \to M_{r,n}(\mathbb{R})$$

by sending a vertex (v_1, \ldots, v_r) of $\mathbb{B}_{edge}(G)$ to a matrix $\sum_{i=1}^r (E_{i,c(i)} - E_{i,c(i)+1})$, where $E_{i,j}$ is the matrix whose (i, j) entry is 1 and other entries are 0 and $E_{i,n+1}$ means $E_{i,1}$. They showed that \overline{c} has its image in Y and applied a special generalization of the Borsuk–Ulam theorem to obtain Corollary 22.

We now define a map $g: \operatorname{Hom}(K_r^{(r)}, \mathcal{K}_n^{(r)}) \to M_{r,n}(\mathbb{R})$ by sending a vertex $(i_1, \ldots, i_r) \in [n]^r$ to a matrix $\sum_{k=1}^r (E_{k,i_k} - E_{k,i_k+1})$. Then one can easily see that g is a C_r -map and has is image in Y. By definition, we have the following.

Proposition 23. Let G be an r-graph with multiplicities which has an n-coloring c. Then there is a commutative diagram

where the left vertical arrow is as in Theorem 20.

We close this section by remarking that the complex of an *r*-graph (without multiplicities) introduced by Kříž [12, §4] is the barycentric subdivision of $Hom(K_r^{(r)}, G)$ and then essentially the same as the box-edge complex $B_{edge}(G)$.

5. Hom₊-complexes and colorings

5.1. General Hom₊-complexes

In [11, Definition 20.1], Hom_+ -complexes of graphs were introduced which are variants of Hom-complexes. As in the case of Hom-complexes, we can give a general recipe for Hom_+ -complexes of partial maps between finite sets and will apply it to *r*-graphs with multiplicities.

Let S, T be finite sets. A partial map from S to T is a map from a non-empty subset of S into T. Then a partial map from S to T is identified with an element of

 $(T \cup \{\emptyset\})^{S} \setminus (\emptyset, \ldots, \emptyset).$

Let K, L be abstract simplicial complexes. Recall that the join K * L is an abstract simplicial complex whose simplices are of the form (σ, τ) where $\sigma \in K$, $\tau \in L$ and either σ or τ is not empty. Then a partial map from S to T is identified with a vertex of the join $*_{s \in S} \Delta^T$. Analogously to Hom-complexes, we are led to the following definition.

Definition 24. Let *S*, *T* be finite sets and *C* be a class of partial maps from *S* to *T*. The Hom₊-complex Hom₊^{*C*}(*S*, *T*) is defined as the maximum subcomplex of $*_{s \in S} \Delta^T$ whose vertex set is *C*.

Analogously to Hom-complexes, we can define induced maps between Hom_+ -complexes under certain conditions and see that these induced maps satisfy naturality corresponding to Proposition 5.

5.2. Hom₊-complexes of *r*-graphs with multiplicities

Let G, H be r-graphs with multiplicities. A partial homomorphism from G to H is a map from a subset V of V(G) into V(H) which is a homomorphism from the maximum r-subgraph with multiplicities of G whose vertex set is V into H. We now define Hom₊-complexes of r-graphs with multiplicities.

Definition 25. Let G, H be *r*-graphs with multiplicities. The Hom₊-complex Hom₊(G, H) is defined as Hom₊^C(V(G), V(H)) for the set C of all partial homomorphisms from G to H.

Similarly to Proposition 7, we have the following.

Proposition 26. Let **Graph**^(r) and **Poly** be the categories of *r*-graphs with multiplicities and polyhedral complexes, respectively. Then

$$(\mathbf{Graph}^{(r)})^{\mathrm{op}} \times \mathbf{Graph}^{(r)} \to \mathbf{Poly}, \quad (G, H) \mapsto \mathrm{Hom}_+(G, H)$$

is a functor.

Then as in the case of Hom-complexes, we can construct group actions on Hom_+ -complexes by those on *r*-graphs with multiplicities. For instance, the natural C_r -action on $K_r^{(r)}$ induces a C_r -action on $Hom_+(K_r^{(r)}, G)$ for an *r*-graph with multiplicities *G*. Analogously to Lemma 8, we can prove the following.

Lemma 27. Let G be an r-graph with multiplicities. If r is a prime, the C_r -action on $Hom_+(K_r^{(r)}, G)$ is free.

Using this C_r -action, we obtain a lower bound for the chromatic numbers.

Theorem 28. Let G be an r-graph with multiplicities. If r is a prime, it holds that

$$\chi(G) \geqslant \frac{\operatorname{ind}_{C_r} \operatorname{Hom}_+(K_r^{(r)}, G) + 1}{r-1}.$$

Proof. Note that the dimension of $\text{Hom}_+(K_r^{(r)}, \mathcal{K}_n^{(r)})$ is nr - n - 1 = (r - 1)n - 1. Then the result follow quite similarly to Theorem 10. \Box

Corollary 29. Let G be an r-graph with multiplicities. If r is a prime, we have

$$\chi(G) \geqslant \frac{\operatorname{conn} \operatorname{Hom}_+(K_r^{(r)}, G) + 2}{r - 1}$$

In [6, p. 5], Lange defined a complex $B_0(G)$ for an *r*-graph with multiplicities and gave a lower bound for the chromatic number of *G* by using $B_0(G)$. By definition, $B_0(G)$ coincides with $Hom_+(K_r^{(r)}, G)$ and a lower bound in Theorem 28 is the same as the one given by Lange.

As in Section 3, let us consider the homotopy type of $\text{Hom}_+(K_m^{(r)}, \mathcal{K}_n^{(r)})$. In the case of Hom_+ -complexes, one can describe $\text{Hom}_+(K_m^{(r)}, \mathcal{K}_n^{(r)})$ explicitly by Sarkaria's formula [13, (2.2)] as follows.

Theorem 30. ([13, (2.2)]) We have

$$\operatorname{Hom}_+(K_m^{(r)},\mathcal{K}_n^{(r)})\cong *_n\operatorname{sk}_{r-2}\Delta^{[m]}.$$

In particular, $\operatorname{Hom}_+(K_m^{(r)}, \mathcal{K}_n^{(r)})$ has the homotopy type of a wedge of $\binom{m-1}{r-1}^n$ copies of ((r-1)n-1)-dimensional spheres.

5.3. Hierarchy of lower bounds for the chromatic number

Let *G* be an *r*-graph with multiplicities. We have obtained so far two kinds of lower bounds for the chromatic number of *G*, one is given by $Hom(K_r^{(r)}, G)$ in Theorem 10 and the other is given by $Hom_+(K_r^{(r)}, G)$ in Theorem 28. We have also seen that these lower bounds are related to formerly known ones [1, Proposition 2.1], [6, Theorem 3]. We describe $Hom_+(K_r^{(r)}, G)$ by using $Hom(K_r^{(r)}, G)$ and then get an inequality between the above lower bounds. **Theorem 31.** For an r-graph with multiplicities G, there is a C_r -map

$$\operatorname{Hom}_+(K_r^{(r)},G) \to \partial \Delta^{[r]} * \operatorname{Hom}(K_r^{(r)},G)$$

which is a homotopy equivalence, where C_r acts diagonally on $\partial \Delta^{[r]} * \operatorname{Hom}(K_r^{(r)}, G)$.

Proof. Let *P*, *Q* be finite posets. Recall that the join P * Q is a poset whose underlying set is $P \sqcup Q$ and order is defined as x < y if either $x, y \in P$ with $x < y, x, y \in Q$ with x < y or $x \in P, y \in Q$. Then it follows that

$$\Delta(P * Q) = \Delta(P) * \Delta(Q)$$

Note that the face poset of $Hom_+(K_r^{(r)}, G)$ is the disjoint union of $\mathcal{F}(Hom(K_r^{(r)}, G))$ in (3) and

$$\left\{F_1 \times \cdots \times F_r \mid F_1, \dots, F_r \subset V(G), F_i = \emptyset \text{ for some } i \text{ and } \bigcup_{i=1}^r F_i \neq \emptyset\right\},\$$

where the order is given by inclusions and $F_1 \times \cdots \times F_n$ with $F_{i_1}, \ldots, F_{i_k} \neq \emptyset$ and $F_j = \emptyset$ for $j \neq i_1, \ldots, i_k$ means $F_{i_1} \times \cdots \times F_{i_k}$. We then define a poset map

$$\varphi: \mathcal{F}(\operatorname{Hom}_+(K_r^{(r)}, G)) \to \mathcal{F}(\partial \Delta^{[r]}) * \mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G))$$

as

$$\varphi(F_1 \times \dots \times F_r) = \begin{cases} \{i_1, \dots, i_k\} \in \mathcal{F}(\partial \Delta^{[r]}) & \bigcup_{i \neq i_1, \dots, i_k} F_i = \emptyset \text{ and } F_{i_1}, \dots, F_{i_k} \neq \emptyset, \\ F_1 \times \dots \times F_r \in \mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G)) & F_1, \dots, F_r \neq \emptyset. \end{cases}$$

By definition, φ is a C_r -map. For $F_1 \times \cdots \times F_r \in \mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G)) \subset \mathcal{F}(\partial \Delta^{[r]}) * \mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G)), \varphi^{-1}((\mathcal{F}(\partial \Delta^{[r]}) * \mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G))) \leq F_1 \times \cdots \times F_r)$ has the maximum $F_1 \times \cdots \times F_r$. For $\{i_1, \ldots, i_k\} \in \partial \Delta^{[r]} \subset \mathcal{F}(\partial \Delta^{[r]}) * \mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G)), \varphi^{-1}((\mathcal{F}(\partial \Delta^{[r]}) * \mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G))) \leq F_1 \times \cdots \times F_r)$ has the maximum

$$F_1 \times \cdots \times F_r$$
, $F_{i_1} = \cdots = F_{i_k} = [n]$ and $\bigcup_{i \neq i_1, \dots, i_k} F_i = \emptyset$.

Then for any $x \in \mathcal{F}(\partial \Delta^{[r]}) * \mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G))$, $\Delta((\mathcal{F}(\partial \Delta^{[r]}) * \mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G)))_{\leq x})$ is contractible, and it follows from Lemma 12 that $\Delta(\varphi)$ is a homotopy equivalence. Thus the composite

$$\operatorname{Hom}_+(K_r^{(r)}, G) \xrightarrow{\cong} \Delta(\mathcal{F}(\operatorname{Hom}_+(K_r^{(r)}, G))) \xrightarrow{\Delta(\varphi)} \Delta(\mathcal{F}(\partial \Delta^{[r]}) * \mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G))) = \Delta(\mathcal{F}(\partial \Delta^{[r]})) * \Delta(\mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G))) \xrightarrow{\cong} \partial \Delta^{[r]} * \operatorname{Hom}(K_r^{(r)}, G)$$

is the desired homotopy equivalence, where the first and the last arrows are the natural homeomorphisms. \Box

Corollary 32. Let G be an r-graph with multiplicities. If r is a prime, there holds

$$\chi(G) \ge \frac{\inf_{C_r} \operatorname{Hom}(K_r^{(r)}, G) + 1}{r - 1} + 1 \ge \frac{\inf_{C_r} \operatorname{Hom}_+(K_r^{(r)}, G) + 1}{r - 1} \ge \frac{\inf_{C_r} \operatorname{Hom}(K_r^{(r)}, G) + 1}{r - 1}$$
$$\ge \frac{\operatorname{conn} \operatorname{Hom}(K_r^{(r)}, G) + 1}{r - 1} = \frac{\operatorname{conn} \operatorname{Hom}_+(K_r^{(r)}, G) + 1}{r - 1} - 1.$$

Proof. The first inequality follows from Theorem 10 and the second from Proposition 9 and Theorem 31. As in the proof of Theorem 31, $\mathcal{F}(\operatorname{Hom}(K_r^{(r)}, G))$ is a subposet of $\mathcal{F}(\operatorname{Hom}_+(K_r^{(r)}, G))$ including the C_r -actions. Then there is a C_r -map $\operatorname{Hom}(K_r^{(r)}, G) \to \operatorname{Hom}_+(K_r^{(r)}, G)$, implying the third inequality by Proposition 9. The fourth inequality follows from Proposition 9 and the last equality from Theorem 31. \Box

References

- [1] N. Alon, P. Frankl, L. Lovász, The chromatic number of Kneser hypergraphs, Trans. Amer. Math. Soc. 298 (1986) 359–370.
- [2] E. Babson, D.N. Kozlov, Complexes of graph homomorphisms, Israel J. Math. 152 (2006) 285-312.
- [3] A. Dold, Simple proofs of some Borsuk–Ulam results, in: H.R. Miller, S.B. Priddy (Eds.), Northwestern Homotopy Conference, in: Contemp. Math., vol. 19, 1983, pp. 65–69.
- [4] I.M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978) 331-348.
- [5] J. Jonsson, Simplicial Complexes of Graphs, Lecture Notes in Mathematics, vol. 1928, Springer-Verlag, Berlin, 2008.
- [6] C. Lange, On generalized Kneser colourings, preprint.

- [7] L. Lovász, Kneser's conjecture, chromatic number and homotopy, J. Comb. Theory, Ser. A 25 (1978) 319-324.
- [8] J. Matoušek, Using the Borsuk–Ulam Theorem, Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag, Heidelberg, 2003.
- [9] J. Matoušek, G.M. Ziegler, Topological lower bounds for the chromatic number: A hierarchy, Jahresber. Deutsch. Math.-Verein. 106 (2) (2004) 71–90.
- [10] D.N. Kozlov, Simple homotopy types of Hom-complexes, neighborhood complexes, Lovász complexes, and atom crosscut complexes, Topology Appl. 153 (14) (2006) 2445–2454.
- [11] D.N. Kozlov, Combinatorial Algebraic Topology, Algorithms and Computation in Mathematics, vol. 21, Springer, Berlin, 2008.
- [12] I. Kříž, Equivariant cohomology and lower bounds for chromatic numbers, Trans. Amer. Math. Soc. 333 (1992) 567–577;
 I. Kříž, A correction to "Equivariant cohomology and lower bounds for chromatic numbers", Trans. Amer. Math. Soc. 352 (2000) 1951–1952.
- [13] K.S. Sarkaria, A generalized Kneser conjecture, J. Comb. Theory, Ser. B 49 (1990) 236–240.
- [14] T. Thansri, Simple Σ_r -homotopy types of Hom complexes and box complexes assigned to r-graphs, Kyushu J. Math. 66 (2) (2012) 493–508.