<table>
<thead>
<tr>
<th>Title</th>
<th>Hom complexes and hypergraph colorings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Iriye, Kouyemon; Kishimoto, Daisuke</td>
</tr>
<tr>
<td>Citation</td>
<td>Topology and its Applications (2013), 160(12): 1333-1344</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/178718</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 The Authors. Published by Elsevier B.V.; This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Institution</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Hom complexes and hypergraph colorings

Kouyemon Iriye a, Daisuke Kishimoto b, *

a Department of Mathematics and Information Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
b Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

ARTICLE INFO
Article history:
Received 28 August 2012
Received in revised form 30 April 2013
Accepted 3 May 2013

MSC:
05C15
57M15

Keywords:
Hom-complex
Uniform hypergraph
Chromatic number

ABSTRACT
Babson and Kozlov (2006) [2] studied Hom-complexes of graphs with a focus on graph colorings. In this paper, we generalize Hom-complexes to r-uniform hypergraphs (with multiplicities) and study them mainly in connection with hypergraph colorings. We reinterpret a result of Alon, Frankl and Lovász (1986) [1] by Hom-complexes and show a hierarchy of known lower bounds for the chromatic numbers of r-uniform hypergraphs (with multiplicities) using Hom-complexes.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

1.1. Hom-complexes of graphs

Since Lovász solved the famous Kneser conjecture by relating the chromatic number of a given graph to connectivity of its neighborhood complex [7], it is a standard method to study combinatorial properties of graphs by relating them with topological properties of appropriately constructed polyhedral complexes from graphs. Then as is seen in [5], a plenty of complexes have been constructed from graphs. Among others, let us consider Hom-complexes which were first introduced by Lovász and studied further by Babson and Kozlov [2,10,11]. Compared to other complexes of graphs, the construction of Hom-complex Hom(G, H) for graphs G, H is quite natural; it is a space of maps from G to H. Moreover, some complexes of graphs concerning colorings are realized by special Hom-complexes [2,10] by which one can easily understand related construction. For example, a result of Lovász [7] can be reproved easily by using Hom-complexes as follows.

Let us start with a standard observation. Recall that an n-coloring of a graph G is a labeling of vertices of G by n colors in such a way that adjacent vertices have distinct colors. Then if \(K_n \) denotes the complete graph with \(n \) vertices, there is a one-to-one correspondence between n-colorings of G and homomorphisms of G into \(K_n \). Suppose G admits an n-coloring.

Then since the Hom-complex Hom(G, H) is natural with respect to G, H, there is a map

\[\text{Hom}(T, G) \rightarrow \text{Hom}(T, K_n) \]

(1)

© This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Corresponding author.
E-mail addresses: kiriyeye@mi.osakafu-u.ac.jp (K. Iriye), kishi@math.kyoto-u.ac.jp (D. Kishimoto).
for any graph \(T \). Specialize \(T \) to the complete graph \(K_2 \) with 2 vertices. Then a natural \(C_2 \)-action on \(K_2 \) yields \(C_2 \)-actions on both \(\text{Hom}(T, G) \) and \(\text{Hom}(T, K_0) \), and furthermore, the map (1) is a \(C_2 \)-map for \(T = K_2 \), where \(C_k \) denotes the cyclic group of order \(k \). One can easily see that the \(C_2 \)-actions are free and can also easily count the dimension of \(\text{Hom}(K_2, K_0) \) as \(n - 2 \) by definition. Then it follows from the Borsuk–Ulam theorem that

\[
\text{conn} \text{Hom}(K_2, G) \leq n - 3,
\]

where \(\text{conn} X \) denotes connectivity of a space \(X \). Finally, since \(\text{Hom}(K_2, G) \) has the homotopy type of the neighborhood complex of \(G \) as in [2], we obtain the result of Lovász [7]. The point of this proof is that we can get \(C_2 \)-actions and a \(C_2 \)-map quite naturally, which is often the most difficult part of the above mentioned topological method for graphs.

1.2. Generalization to \(r \)-graphs

Let us now generalize graphs to \(r \)-uniform hypergraphs. Recall that an \(r \)-uniform hypergraph (or an \(r \)-graph, for short) \(G \) consists of the vertex set and the edge set which is a collection of \(r \) elements subsets of the vertex set. Then \(2 \)-graphs are simple graphs, for instance. Homomorphisms of \(r \)-graphs are obviously defined. In [11, Definition 9.24], Kozlov suggested a recipe to construct a space of a collection of maps between finite sets. Then one can define \(\text{Hom} \)-complexes for \(r \)-graphs as well. We would like to study colorings of \(r \)-graphs by using \(\text{Hom} \)-complexes as in the above case of graphs. Colorings of graphs are generalized to \(r \)-graphs as follows. An \(n \)-coloring of an \(r \)-graph is a labeling of vertices by \(n \) colors such that each edge contains more than \(2 \) colors. Then for \(r > 3 \), colorings of \(r \)-graphs cannot be realized as homomorphisms. Then in order to study \(r \)-graph colorings by \(\text{Hom} \)-complexes, we must extend the category of \(r \)-graphs so that colorings become homomorphisms. If we extend the category of \(r \)-graphs to that of all hypergraphs, colorings become homomorphisms. However, this category is too big to control objects. So we need a much smaller extension of the category of \(r \)-graphs. For this purpose, we will consider \(r \)-graphs with multiplicities which were first introduced by Lange [6] in a different context. Then we will study colorings of \(r \)-graphs with multiplicities through \(\text{Hom} \)-complexes. More precisely, we will give a lower bound for the chromatic numbers of \(r \)-graphs with multiplicities using group actions on special \(\text{Hom} \)-complexes. Alon, Frankl and Lovász [1] defined certain simplicial complexes of \(r \)-graphs (without multiplicities) and gave a lower bound for the chromatic numbers by a rather tricky construction. We will show that these complexes are essentially the same as the above special \(\text{Hom} \)-complexes, and then we can interpret their construction in terms of \(\text{Hom} \)-complexes, which will make things clear. We will also consider \(\text{Hom}_+ \)-complexes of \(r \)-graphs with multiplicities (cf. [11, Definition 20.1]) and show a hierarchy among lower bounds for the chromatic numbers.

1.3. Organization

The organization of the paper is as follows. In Section 2, we introduce \(r \)-graphs with multiplicities generalizing \(r \)-graphs by which we can study colorings of \(r \)-graphs as special homomorphisms. In Section 3, we recall a general construction of \(\text{Hom} \)-complexes of classes of maps between finite sets and then apply it to \(r \)-graphs with multiplicities. We show analogy of results of Babson and Kozlov [2] for \(\text{Hom} \)-complexes of \(r \)-graphs with multiplicities and give a lower bound for the chromatic number by special \(\text{Hom} \)-complexes. In Section 4, we show that the box-edge complexes of Alon, Frankl and Lovász [1] are realized by the above special \(\text{Hom} \)-complexes, by which we see that the above lower bound is the same as the one given by Alon, Frankl and Lovász [1]. In Section 5, we consider \(\text{Hom}_+ \)-complexes of \(r \)-graphs with multiplicities and give another lower bound for the chromatic number. By comparing \(\text{Hom} \)-complexes and \(\text{Hom}_+ \)-complexes, we show a hierarchy among the above two lower bounds.

2. \(r \)-Graphs with multiplicities

2.1. \(r \)-Graphs

Let us explain in detail why we introduce \(r \)-graphs with multiplicities. Recall that an \(r \)-uniform hypergraph (\(r \)-graph, for short) \(G \) is a pair of a finite set \(V(G) \) and a collection \(E(G) \) of \(r \) elements subsets of \(V(G) \). \(V(G) \) and \(E(G) \) are respectively called the vertex set and the edge set of \(G \). For \(r \)-graphs \(G, H \), a homomorphism \(f : G \rightarrow H \) is a map \(f : V(G) \rightarrow V(H) \) satisfying \(f_*(E(G)) \subseteq E(H) \). Our objects are colorings of \(r \)-graphs. An \(n \)-coloring of an \(r \)-graph \(G \) is a map \(c : V(G) \rightarrow [n] \) such that if \(\{v_1, \ldots, v_l\} \in E(G) \), \(c(v_1), \ldots, c(v_l) \subseteq [n] \) is not a singleton, where \([n] = \{1, 2, \ldots, n\} \). Then one sees that colorings cannot be realized by homomorphisms in general as in the case of graphs. Then generalizing \(r \)-graphs, we introduce \(r \)-graphs with multiplicities among which colorings are homomorphisms.

2.2. \(r \)-Graphs with multiplicities

Recall that the \(n \)th symmetric product of a set \(V \) is defined as

\[
\text{SP}^n(V) = \underbrace{V \times \cdots \times V}_{n} / \Sigma_n,
\]
where the action of the symmetric group Σ_n is given as $\sigma (v_1, \ldots, v_n) = (v_{\sigma(1)}, \ldots, v_{\sigma(n)})$ for $\sigma \in \Sigma_n$ and $v_1, \ldots, v_n \in V$. We denote an element of $SP^n(V)$ by $v_1 \cdots v_n$ for $v_1, \ldots, v_n \in V$. In [6], Lange used multisets which are naturally identified with elements of symmetric products. We now define r-graphs with multiplicities and their homomorphisms and colorings.

Definition 1.

1. An r-graph with multiplicities G consists of a finite set $V(G)$ and a subset $E(G)$ of $SP^r(V(G)) \setminus \Delta$, where $\Delta = \{v \cdots v \in SP^r(V(G)) \setminus \Delta, V(G)$ and $E(G)$ are called the vertex set and the edge set of G, respectively.
2. Let G, H be r-graphs with multiplicities. A homomorphism $f : G \to H$ is a map $g : V(G) \to V(H)$ satisfying $f_*(E(G)) \subset E(H)$.
3. An n-coloring of an r-graph with multiplicities G is a map $c : V(G) \to [n]$ such that if $v_1 \cdots v_r \in E(G)$, $\{c(v_1), \ldots, c(v_r)\} \subset [n]$ is not a singleton.
4. The chromatic number $\chi(G)$ of an r-graph with multiplicities G is the minimum integer n such that G admits an n-coloring.

Remark 2. If we allow r-graphs with multiplicities to have diagonal edges in Δ, some r-graphs do not admit any colorings. Since we will study colorings, we have omitted diagonal edges from r-graphs with multiplicities.

Since r elements subsets of a set V may be regarded as elements of $SP^r(V) \setminus \Delta$, r-graphs with multiplicities and their homomorphisms and colorings include r-graphs and their homomorphisms and colorings.

Define an r-graph with multiplicities $k_n^{(r)}$ as the maximum r-graph with multiplicities with n vertices. Namely,

$$V(k_n^{(r)}) = [n] \text{ and } E(k_n^{(r)}) = SP^r([n]) \setminus \Delta.$$

It is clear that there is the desired property as follows.

Proposition 3. There is a one-to-one correspondence between n-colorings of an r-graph with multiplicities G and homomorphisms from G to $k_n^{(r)}$.

3. Hom-complexes of r-graphs with multiplicities

3.1. General Hom-complexes

Let us first recall a recipe of general Hom-complexes suggested by Kozlov [11, Definition 9.24]. Let S, T be finite sets. Then a map $S \to T$ is identified with an element of T^S. Let Δ^T be the simplex whose vertex set is T. Since T^S is the vertex set of a direct product $\prod S \Delta^T$, a map $S \to T$ is identified with a vertex of $\prod S \Delta^T$. This simple observation leads us to the following definition of Hom-complexes which may be regarded as spaces of given maps between finite sets.

Definition 4. Let S, T be finite sets and C be a class of maps from S to T. The Hom-complex $\text{Hom}^C(S, T)$ is the maximum subcomplex of $\prod S \Delta^T$ whose vertex set is C.

Let S, T be finite sets and C be a class of maps from S to T. Given a map $f : T \to T'$ with T' finite and a class D of maps from S to T. If $f_s(C) \subset D$, we can define a map of polyhedral complexes

$$f_* : \text{Hom}^C(S, T) \to \text{Hom}^D(S, T')$$

by sending $h \in C$ to $f \circ h \in D$. Dually, given a map $g : S' \to S$ and a class E of maps from S' to T satisfying $g^*(C) \subset E$, we can also define a map of polyhedral complexes

$$g^* : \text{Hom}^C(S, T) \to \text{Hom}^E(S', T)$$

by sending $h \in C$ to $h \circ g \in E$.

By definition of the above induced maps, we have the following functoriality.

Proposition 5. Let S, T be finite sets and C be a class of maps from S to T.

1. Let T_1, T_2 be finite sets and D_1, D_2 be classes of maps from S to T_1 and T_2, respectively. If maps $f_1 : T \to T_1$ and $f_2 : T \to T_2$ satisfy $(f_1)_*(C) \subset D_1$ and $(f_2)_*(D_1) \subset D_2$, the induced maps on Hom-complexes satisfy

$$(f_2 \circ f_1)_* = (f_2)_* \circ (f_1)_*.$$
Let S_1, S_2 be finite sets and $\mathcal{E}_1, \mathcal{E}_2$ be classes of maps from S_1 and S_2 to T, respectively. If maps $g_1 : S_1 \to S$ and $g_2 : S_2 \to S_1$ satisfy $(g_1)^* (g_2^*) (\mathcal{E}_1) \subset \mathcal{E}_1$ and $(g_2)^* (\mathcal{E}_2) \subset \mathcal{E}_2$, the induced maps on Hom-complexes satisfy
\[(g_2 \circ g_1)^* = (g_1)^* \circ (g_2)^*. \]

3.2. Hom-complexes of r-graphs with multiplicities

Let us return to r-graphs with multiplicities. Homomorphisms of r-graphs with multiplicities are maps between vertices satisfying certain properties. Since we are assuming vertex sets of r-graphs with multiplicities to be finite, we can apply the above general construction of Hom-complexes to r-graphs with multiplicities.

Definition 6. Let G, H be r-graphs with multiplicities and C be the set of homomorphisms from G to H. The Hom-complex $\text{Hom}(G, H)$ is defined as $\text{Hom}^C(V(G), V(H))$.

By Proposition 5, we have the following.

Proposition 7. Let $\text{Graph}^{(r)}$ and Poly be the categories of r-graphs with multiplicities and polyhedral complexes, respectively. Then
\[(\text{Graph}^{(r)})^{\text{op}} \times \text{Graph}^{(r)} \to \text{Poly}, \quad (G, H) \mapsto \text{Hom}(G, H) \]

is a functor.

By Proposition 3, the Hom-complex $\text{Hom}(G, K_n^{(r)})$ for an r-graph with multiplicities G is considered as a space of n-colorings of G. Then $\text{Hom}(G, K_n^{(r)})$ is especially important, and hence we here give some easy examples. Let $L_n^{(r)}$ denote the line r-graph with n vertices. Namely, $L_n^{(r)}$ is defined as
\[V(L_n^{(r)}) = [n] \quad \text{and} \quad E(L_n^{(r)}) = \{(i, i + 1, \ldots, i + r - 1) \mid i = 1, \ldots, n - r + 1\}. \]

Then $\text{Hom}(L_n^{(r)}, K_2^{(3)})$ for $n = 3, 4, 5$ are given as follows.

Note that $\text{Hom}(L_n^{(3)}, K_2^{(3)})$ for $n = 3, 4, 5$ have the same homotopy type. This will be justified below in a more general setting.

Let $C_n^{(r)}$ be the cyclic r-graph with n vertices. That is, $C_n^{(r)}$ is given as
\[V(C_n^{(r)}) = \mathbb{Z}/n \quad \text{and} \quad E(C_n^{(r)}) = \{(i, i + 1, \ldots, i + r - 1) \mid i \in \mathbb{Z}/n\}. \]

Let us next consider $\text{Hom}(C_n^{(3)}, K_2^{(3)})$. Since $C_n^{(3)} = r_3^{(3)}$, $\text{Hom}(C_n^{(3)}, K_2^{(3)})$ is a hexagon. One can easily see that $\text{Hom}(r_3^{(3)}, K_2^{(3)})$ consists of discrete six points and that $\text{Hom}(r_3^{(3)}, K_2^{(3)})$ is the outer polygon of $\text{Hom}(L_5^{(3)}, K_2^{(3)})$. Then their homotopy types are not the same.

3.3. Lower bound for the chromatic number

By functoriality of $\text{Hom}(G, H)$, group actions on G and H induce those on $\text{Hom}(G, H)$. We next consider these group actions for special G. Let $K_n^{(r)}$ be the maximum r-graph with n vertices. Namely,
\[V(K_n^{(r)}) = [n] \quad \text{and} \quad E(K_n^{(r)}) = \text{SP}^r([n]) \setminus \Delta_n, \]
where $\Delta_n = \{v_1 \cdots v_r \in \text{SP}^r([n]) \mid v_i \neq v_j \text{ for } i \neq j\}$. Notice that by a cyclic permutation of vertices, the cyclic group C_n acts on $K_n^{(r)}$.
Lemma 8. If r is a prime, the induced C_r-action on $\text{Hom}(K^{(r)}, G)$ is free.

Proof. Any face of $\text{Hom}(K^{(r)}, G)$ is of the form $\Delta_{S_1} \times \cdots \times \Delta_{S_r}$ such that each $(v_1, \ldots, v_r) \in S_1 \times \cdots \times S_r$ satisfies $v_1 \cdots v_r \in E(G)$. Then in particular, there is no diagonal element (v_1, \ldots, v) in $S_1 \times \cdots \times S_r$. Let g be a non-trivial element of C_r. Then by renumbering if necessary, we have

$$g \cdot (v_1, \ldots, v_r) = (v_r, v_1, \ldots, v_{r-1})$$

for $(v_1, \ldots, v_r) \in S_1 \times \cdots \times S_r$ since r is a prime. Suppose $g(\Delta_{S_1} \times \cdots \times \Delta_{S_r}) = \Delta_{S_1} \times \cdots \times \Delta_{S_r}$. Then we have observed that elements of S_1 belong to all S_1, \ldots, S_r, a contradiction. \hfill \square

Using the index of the above free group action [8, Definition 6.2.3], we give a lower bound for the chromatic numbers of r-graphs with multiplicities. We set some notation. Let Γ be a non-trivial finite group (with the discrete topology). Let $E_n\Gamma$ be the join of $n + 1$ copies of Γ on which Γ acts diagonally. Then this Γ-action on $E_n\Gamma$ is free and $E_n\Gamma$ has the homotopy type of a wedge of n-dimensional spheres. For a free Γ-complex X, the Γ-index of X is defined as

$$\text{ind}_{\Gamma} X = \min\{n \mid \text{there is a } \Gamma\text{-map } X \to E_n\Gamma\}.$$

Let us list basic properties of $\text{ind}_{\Gamma} X$.

Proposition 9. Let Γ be a non-trivial finite group and let X, Y be free Γ-complexes.

1. If there is a Γ-map from X to Y, we have

$$\text{ind}_{\Gamma} X \leq \text{ind}_{\Gamma} Y.$$

2. The join $X \star Y$ is a free Γ-space by the diagonal Γ-action for which it holds that

$$\text{ind}_{\Gamma} (X \star Y) \leq \text{ind}_{\Gamma} X + \text{ind}_{\Gamma} Y + 1.$$

3. It holds that

$$\text{conn} X + 1 \leq \text{ind}_{\Gamma} X \leq \text{dim} X.$$

Proof. (1) follows from definition and (2) follows from the fact that $E_n\Gamma = E_m\Gamma \ast E_{n-m-1}\Gamma$. By the Borsuk–Ulam theorem due to Dold [3], we have $\text{ind}_{\Gamma} E_n\Gamma = n$. Then (3) is shown by an easy obstruction argument. \hfill \square

Put $B_n\Gamma = E_n\Gamma / \Gamma$, $B\Gamma = \bigcup_{n \geq 1} B_n\Gamma$ and $E\Gamma = \bigcup_{n \geq 1} E_n\Gamma$. Then the natural projection $E\Gamma \to B\Gamma$ is the well-known Milnor’s universal principal Γ-bundle. Let $\varphi : X / \Gamma \to B\Gamma$ be the classifying map of a free Γ-complex X. Then it follows that $\text{ind}_{\Gamma} X$ coincides with the minimum integer n such that φ factors through the inclusion $B_n\Gamma \to B\Gamma$, up to homotopy. By [4, Proposition 8.4], we obtain that $\text{ind}_{\Gamma} X$ is equal to the LS-category of the classifying map φ, implying that there are a lot of quantities estimating $\text{ind}_{\Gamma} X$ other than connectivity and dimension.

We now give a lower bound for the chromatic number of r-graphs with multiplicities.

Theorem 10. Let G be an r-graph with multiplicities. If r is a prime, there holds

$$\chi(G) \geq \frac{\text{ind}_{C_r} \text{Hom}(K^{(r)}, G) + 1}{r - 1} + 1.$$

Proof. By Lemma 8, $\text{Hom}(K^{(r)}, H)$ is a free C_r-complex for any r-graph with multiplicities H. Suppose there is an n-coloring of G, or equivalently, a homomorphism $f : G \to K_n^{(r)}$. By Proposition 7, the induced map $f_* : \text{Hom}(K^{(r)}, G) \to \text{Hom}(K^{(r)}, K_n^{(r)})$ is a C_r-map, implying

$$\text{ind}_{C_r} \text{Hom}(K^{(r)}, G) \leq \text{dim} \text{Hom}(K^{(r)}, K_n^{(r)})$$

by Proposition 9. We then count the dimension of $\text{Hom}(K^{(r)}, K_n^{(r)})$. Any face of $\text{Hom}(K^{(r)}, K_n^{(r)})$ is given as $\Delta_{S_1} \times \cdots \times \Delta_{S_r}$ such that $S_1, \ldots, S_r \subseteq [n]$ and $S_1 \cap \cdots \cap S_r = \emptyset$. The maximum of $|S_1| + \cdots + |S_r|$ is $nr - n$ and then the dimension of $\text{Hom}(K^{(r)}, K_n^{(r)})$ is $nr - n - r = (r - 1)(n - 1) - 1$, completing the proof. \hfill \square

By Proposition 9, we obtain the following.

Corollary 11. Let G be an r-graph with multiplicities. If r is a prime, we have

$$\chi(G) \geq \frac{\text{conn} \text{Hom}(K^{(r)}, G) + 2}{r - 1} + 1.$$
3.4. Homotopy lemmas

Let us recall three lemmas from [2, Proposition 3.2] and [11, Theorems 15.24, 15.28] which will be used below. We first set some notation. Let P be a poset. We denote the order complex of P by $\Delta(P)$. That is, $\Delta(P)$ is a simplicial complex whose n-simplices are chains in P of length $n + 1$. For $p \in P$, let

$$P_{\leq p} = \{ q \in P \mid q \leq p \} \quad \text{and} \quad P_{\geq p} = \{ q \in P \mid q \geq p \}.$$

We first state the famous Quillen fiber lemma.

Lemma 12. ([11, Theorem 15.28]) Let $\varphi : P \to Q$ be a poset map between finite posets. If $\Delta(\varphi^{-1}(Q \leq q))$ is contractible for any $q \in Q$, then $\Delta(\varphi) : \Delta(P) \to \Delta(Q)$ is a homotopy equivalence.

We next state a variant of the Quillen fiber lemma proved in [2, Proposition 3.2].

Lemma 13. ([2, Proposition 3.2]) For a poset map $\varphi : P \to Q$ between finite posets, suppose the following conditions.

1. $\Delta(\varphi^{-1}(q))$ is contractible for any $q \in Q$.
2. For any $q \in Q$ and $p \in \varphi^{-1}(Q \geq q)$, the poset $\varphi^{-1}(q) \cap P_{\leq p}$ has the maximum.

Then $\Delta(\varphi) : \Delta(P) \to \Delta(Q)$ is a homotopy equivalence.

Finally, we recall the generalized nerve lemma which is frequently used in combinatorial algebraic topology. Let \mathcal{A} be a covering of a space X by non-empty subspaces A_1, \ldots, A_n. Then we associate to \mathcal{A} a poset whose elements are non-empty intersections of A_1, \ldots, A_n and the order is defined by inclusions. The nerve of \mathcal{A} is by definition the order complex of this poset associated to \mathcal{A}.

Lemma 14. ([11, Theorem 15.24]) Let \mathcal{A} be a covering of a polyhedral complex K by non-empty subcomplexes A_1, \ldots, A_n. Suppose that for any $i_1 < \cdots < i_t$, there exists k such that $A_{i_1} \cap \cdots \cap A_{i_t}$ is either empty or $(k-t+1)$-connected. Then K is k-connected if and only if so is the nerve of \mathcal{A}.

3.5. Homotopy type of $\text{Hom}(K_m^{(r)}, K_n^{(r)})$

As is mentioned above, for an r-graph with multiplicities G, the hom-complex $\text{Hom}(G, K_m^{(r)})$ is especially important. Then we determine the homotopy type of this hom-complex in the special case $G = K_m^{(r)}$.

For $t = (t_1, \ldots, t_n)$ with non-negative integers t_1, \ldots, t_n, we define a polyhedral complex $\Delta^m(t)$ as the subcomplex of $\Delta[m] \times \cdots \times \Delta[n]$ whose faces are $\Delta^{S_1} \times \cdots \times \Delta^{S_m}$ such that $|\{k \in [m] \mid i \in S_k\}| \leq t_i$ for $i = 1, \ldots, n$. Note that if $t' = (t'_1, \ldots, t'_n)$ satisfies $t_k, t'_k \geq m$ for some k and $t_i = t'_i$ for $i \neq k$, then $\Delta^m(t) = \Delta^m(t')$. As in the proof of Theorem 10, for $s = (r-1, \ldots, r-1) \in [m]^n$, we have

$$\Delta^m(s) = \text{Hom}(K_m^{(r)}, K_n^{(r)}).$$

We determine the homotopy type of $\Delta^m(t)$ and, consequently, the homotopy type of $\text{Hom}(K_m^{(r)}, K_n^{(r)})$. For a polyhedral complex K, let $\mathcal{F}(K)$ denote the face poset of K.

Theorem 15. For $t = (t_1, \ldots, t_n)$ with $0 \leq t_i \leq m$, $\Delta^m(t)$ has the homotopy type of a wedge of $(t_1 + \cdots + t_n - m)$-dimensional spheres.

Proof. Put $|t| = t_1 + \cdots + t_n$. As in the proof of Theorem 10, one can easily deduce that the dimension of $\Delta^m(t)$ is $|t| - m$. Then we only have to show that $\Delta^m(t)$ is $(|t| - m - 1)$-connected.

For $F \subset [n]$, put $t - F = (t'_1, \ldots, t'_n)$ such that

$$t'_i = \begin{cases} \max(t_i - 1, 0) & i \in F, \\ t_i & i \notin F. \end{cases}$$

Then if $F \subset F' \subset [n]$, we have $\Delta^{t - F} \supset \Delta^{t - F'}$. We also have that if $|t| - |F| - \ell < 0$ for $F \subset [n]$, $\Delta^{t - F} = \emptyset$. We now define a functor

$$\rho : \mathcal{F}(sk_{|t|-m}[n])^{op} \to \text{Poly}.$$
by $\rho(F) = \Delta^{m-1}(t - F)$ and inclusions $\Delta^{m-1}(t - F) \supset \Delta^{m-1}(t - F')$ for $F \subset F' \in F(\sk_k \Delta^{|n|})$, where $\sk_k K$ denotes the k-skeleton of a polyhedral complex K. By definition, $\Delta^m(t)$ is the union of $\Delta^F \times \Delta^{m-1}(t - F)$ for all non-empty $F \in F(\sk_k \Delta^{|n|})$. Namely, we have

$$\Delta^m(t) = \text{hocolim} \, \rho.$$

Since ρ maps every arrow to a cofibration, we get a homotopy equivalence

$$\text{hocolim} \, \rho \cong \colim \, \rho.$$

See [11, Theorem 15.19]. Notice that $\colim \, \rho$ is covered by subcomplexes $\Delta^{m-1}(t - [i])$ for $i \in [n]$ and that $\Delta^{m-1}(t - F) \cap \Delta^{m-1}(t - F') = \Delta^{m-1}(t - F \cup F')$ for $F, F' \in F(\sk_k \Delta^{|n|})$.

If $|t| = m$, $\Delta^m(t)$ is a discrete finite set. Apply Lemma 14 to the above covering of $\colim \, \rho$ inductively on $|t| - m$. Thus we obtain the desired result. \square

Corollary 16. $\text{Hom}(K_m^{(r)}, K_n^{(r)})$ has the homotopy type of a wedge of $((r - 1)n - m)$-dimensional spheres.

3.6. Vertex deletion and Hom-complexes

In [2, Proposition 5.1], a relation between vertex deletion of G and the homotopy type of $\text{Hom}(G, H)$ is considered when G, H are graphs. We prove analogy for r-graphs with multiplicities here by a quite similar way. In [2, Proposition 5.1], a condition for vertex deletion is given by a neighborhood of a vertex. As for graphs, a neighborhood of a vertex v is considered as both the set of vertices adjacent to v and the set of edges with the end v. As for r-graphs with multiplicities, these two sets cannot be identified for $r \geq 3$, and then we define two kinds of neighborhoods of vertices.

Let G be an r-graph with multiplicities. For a vertex v of G, we define $N(v)$ as the set of $v_1 \cdots v_s \in \SP^r(V(G))$ for some $1 \leq s \leq r - 1$ satisfying $\bigcap_{i=1}^s v_i \in E(G)$ and $v_1, \ldots, v_s \neq v$. For $v_1 \cdots v_s \in \SP^r(V(G))$ with $1 \leq s \leq r - 1$, we also define

$$\tilde{N}(v_1 \cdots v_s)$$

as the set of vertices w of G satisfying $w_1 \cdots w_s \in E(G)$.

For a vertex v of G, let $G \setminus v$ denote the maximum r-subgraph with multiplicities of G whose vertex set is $V(G) \setminus v$. We now state our result.

Theorem 17. Let G, H be an r-graph with multiplicities. Suppose that there are vertices u, v of G satisfying $N(u) \supset N(v)$. Then the inclusion $i : G \setminus v \to G$ induces a homotopy equivalence

$$i^* : \text{Hom}(G, H) \cong \text{Hom}(G \setminus v, H).$$

Proof. As is mentioned above, the proof is quite analogous to [2, Proposition 5.1]. Note that any face of $\text{Hom}(T, H)$ for an r-graph with multiplicities T is identified with a map $V(T) \to 2^{|V(H)| \setminus \emptyset}$. For $\eta \in F(\text{Hom}(G \setminus v, H))$, the fiber $F(i^*)^{-1}(\eta)$ is the set of $\tau \in F(\text{Hom}(G, H))$ satisfying

$$\tau|_{V(G) \setminus v} = \eta.$$

Since

$$\bigcup_{v_1 \cdots v_s \in \tilde{N}(v)} (w_1, \ldots, w_s) \in \eta(v_1) \times \cdots \times \eta(v_s) \supset \bigcup_{v_1 \cdots v_s \in N(u)} (w_1, \ldots, w_s) \in \eta(v_1) \times \cdots \times \eta(v_s) \supset \eta(u) \neq \emptyset,$$

we can define $v \in F(i^*)^{-1}(\eta)$ by

$$v(v) = \bigcup_{v_1 \cdots v_s \in \tilde{N}(v)} (w_1, \ldots, w_s) \in \eta(v_1) \times \cdots \times \eta(v_s)$$

and $v|_{V(G) \setminus v} = \eta$. By definition, v is the maximum of $F(i^*)^{-1}(\eta)$, and thus in particular, the order complex $\Delta(F(i^*)^{-1}(\eta))$ is contractible.

Choose $\tau \in F(\text{Hom}(G, H))$ and $\eta \in F(\text{Hom}(G \setminus v, H))$ satisfying $\tau(w) \supset \eta(w)$ for $w \in V(G) \setminus v$. Observe that $F(i^*)^{-1}(\eta) \cap F(\text{Hom}(G, H))_{\tau|_{V(G) \setminus v}}$ consists of $\sigma \in F(\text{Hom}(G, H))$ satisfying $\sigma(v) \subset \tau(v)$ and $\sigma|_{V(G) \setminus v} = \eta$. Then it has the maximum μ such that $\mu(v) = \tau(v)$ and $\mu|_{V(G) \setminus v} = \eta$. We have seen that Lemma 13 can be applied to $F(i^*) : F(\text{Hom}(G, H)) \to F(\text{Hom}(G \setminus v, H))$, which completes the proof. \square
We generalize the above observation on the homotopy type of $\Hom(L^{(3)}_n, K^{(3)}_2)$.

Corollary 18. Let $I_n^{(r)}$ be the line r-graph with n vertices as above, and let G be an r-graph with multiplicities. Then for $n \geq r$, we have

$$\Hom(I_n^{(r)}, G) \simeq \Hom(I_n^{(r)}, G).$$

Proof. If $n > r$, we have $\mathbb{N}(n) \subset \mathbb{N}(n-r)$. Then by Theorem 17, it holds that $\Hom(I_n^{(r)}, G) \simeq \Hom(I_n^{(r)}, G)$. Thus the result follows by induction on n. \hfill \square

4. Relation between box-edge complexes and \Hom-complexes

4.1. Box-edge complexes

Let G be an r-graph (without multiplicities). In [1], Alon, Frankl and Lovász introduced a simplicial complex $B_{\text{edge}}(G)$ with a C_r-action which we call the box-edge complex of G, where we follow the name and the notation of [9]. By an ad-hoc and tricky construction concerning $B_{\text{edge}}(G)$, they gave a lower bound for the chromatic number of G. We will show that this construction is realized by special \Hom-complexes of r-graphs with multiplicities, by which we can reprove and interpret a result of Alon, Frankl and Lovász [1, Proposition 2.1] in a quite natural way.

Let $\pi : V^n \rightarrow \text{SP}^n(V)$ denote the projection for a set V. Originally, the box-edge complexes were defined only for r-graphs (without multiplicities). However, their definition can be applied to r-graphs with multiplicities straightforwardly.

Definition 19. Let G be an r-graph with multiplicities. The box-edge complex of G is an abstract simplicial complex defined as

$$B_{\text{edge}}(G) = \{ F \subset V(G)^r \mid \pi(F) \subset E(G) \},$$

on which the cyclic group C_r acts as the restriction of the permutation action on $V(G)^r$.

Notice here that as is shown in [1, Proposition 2.1], if r is a prime, the C_r-action on $B_{\text{edge}}(G)$ is free.

4.2. Result of Alon, Frankl and Lovász

We prove that the box-edge complex $B_{\text{edge}}(G)$ is given by a special \Hom-complex.

Theorem 20. For an r-graph with multiplicities G, there is a C_r-map

$$B_{\text{edge}}(G) \rightarrow \Hom(K^{(r)}_r, G)$$

which is a homotopy equivalence. In particular, if r is a prime, it is a C_r-homotopy equivalence.

Proof. The face poset of $\Hom(K_r^{(r)}, G)$ is given as

$$\mathcal{F}(\Hom(K_r^{(r)}, G)) = \{ F_1 \times \cdots \times F_r \mid F_1, \ldots, F_r \subset V(G) \text{ and } \pi(F_1 \times \cdots \times F_r) \subset E(G) \},$$

where the order is given by inclusions. Then as the face poset of $B_{\text{edge}}(G)$ is given in (2), we can define a map

$$\varphi : \mathcal{F}(B_{\text{edge}}(G)) \rightarrow \mathcal{F}(\Hom(K_r^{(r)}, G)), \quad F \mapsto \pi_1(F) \times \cdots \times \pi_r(F),$$

where $\pi_i : V(G)^r \rightarrow V(G)$ is the ith projection. Then by definition, φ is a C_r-map and hence so is $\Delta(\varphi)$.

Take any $F_1 \times \cdots \times F_r \in \mathcal{F}(\Hom(K_r^{(r)}, G))$. Then the post $\varphi^{-1}(\Hom(K_r^{(r)}, G)_{\leq F_1 \times \cdots \times F_r})$ has the maximum $F_1 \times \cdots \times F_r$, implying that $\Delta(\varphi^{-1}(\Hom(K_r^{(r)}, G)_{\leq F_1 \times \cdots \times F_r}))$ is contractible. Thus by Lemma 12, $\Delta(\varphi)$ is a homotopy equivalence. The desired map is the composite

$$B_{\text{edge}}(G) \xrightarrow{\cong} \Delta(\mathcal{F}(B_{\text{edge}}(G))) \xrightarrow{\Delta(\varphi)} \Delta(\mathcal{F}(\Hom(K_r^{(r)}, G))) \xrightarrow{\cong} \Hom(K_r^{(r)}, G),$$

where the first and the last arrows are the natural homeomorphisms between polyhedral complexes and their barycentric subdivision. Therefore we have established the first assertion. Then the C_r-action on $\Hom(K_r^{(r)}, G)$ is free by Lemma 8. Moreover, the C_r-action on $B_{\text{edge}}(G)$ is also free as is noted above. Thus the second assertion follows from the first one. \hfill \square

Remark 21. Recently, Thansri [14, Corollary 4.9] showed that $B_{\text{edge}}(G)$ and $\Hom(K_r^{(r)}, G)$ has the same Σ_r-equivariant simple homotopy type for an r-graph (without multiplicities) G.

By Corollary 11, we obtain a result of Alon, Frankl and Lovász [1, Proposition 2.1].

Corollary 22. Let G be an r-graph with multiplicities. If r is a prime, we have

$$
\chi(G) \geq \frac{\text{conn} \mathcal{B}_{\text{edge}}(G) + 2}{r - 1} + 1.
$$

Alon, Frankl and Lovász [1, §3] proved Corollary 22 by constructing a map from $\mathcal{B}_{\text{edge}}(G)$ into a Euclidean space with a certain C_r-action, which seems quite ad-hoc and tricky. Using Hom-complexes, this construction will turn out to be the induced map between Hom-complexes from a given coloring.

Let $M_{r,n}(\mathbb{R})$ be the space of $r \times n$ real matrices. We let C_r act on $M_{r,n}(\mathbb{R})$ as the cyclic permutation of rows. Let Y be a subspace of $M_{r,n}(\mathbb{R})$ consisting of matrices (a_{ij}) satisfying

$$
\sum_{i=1}^{r} a_{ik} = 0, \quad \sum_{j=1}^{n} a_{ij} = 0 \quad \text{and} \quad \sum_{i,j} a_{ij}^2 \neq 0
$$

for $k = 1, \ldots, n$ and $\ell = 1, \ldots, r$. Then Y is also a C_r-subspace of $M_{r,n}(\mathbb{R})$. Let G be an r-graph with multiplicities which admits an n-coloring, say c. Alon, Frankl and Lovász [1, §3] defined a C_r-map

$$
\tilde{c}: \mathcal{B}_{\text{edge}}(G) \to M_{r,n}(\mathbb{R})
$$

by sending a vertex (v_1, \ldots, v_r) of $\mathcal{B}_{\text{edge}}(G)$ to a matrix $\sum_{i=1}^{r} (E_{i,c(i)} - E_{i,c(i)+1})$, where $E_{i,j}$ is the matrix whose (i, j) entry is 1 and other entries are 0 and $E_{i,n+1}$ means $E_{i,1}$. They showed that \tilde{c} has its image in Y and applied a special generalization of the Borsuk–Ulam theorem to obtain Corollary 22.

We now define a map $g: \text{Hom}(K_r^{(r)}, K_n^{(r)}) \to M_{r,n}(\mathbb{R})$ by sending a vertex $(i_1, \ldots, i_r) \in [n]^r$ to a matrix $\sum_{k=1}^{r} (E_{k,i_k} - E_{k, i_{k+1}})$. Then one can easily see that g is a C_r-map and has is image in Y. By definition, we have the following.

Proposition 23. Let G be an r-graph with multiplicities which has an n-coloring c. Then there is a commutative diagram

$$
\text{Hom}(K_r^{(r)}), G) \xrightarrow{c} \text{Hom}(K_r^{(r)}, K_n^{(r)}) \xrightarrow{g} M_{r,n}(\mathbb{R})
$$

where the left vertical arrow is as in Theorem 20.

We close this section by remarking that the complex of an r-graph (without multiplicities) introduced by Kříž [12, §4] is the barycentric subdivision of $\text{Hom}(K_r^{(r)}, G)$ and then essentially the same as the box-edge complex $\mathcal{B}_{\text{edge}}(G)$.

5. **Hom_+^+-complexes and colorings**

5.1. **General Hom_+^+-complexes**

In [11, Definition 20.1], Hom_+^+-complexes of graphs were introduced which are variants of Hom-complexes. As in the case of Hom-complexes, we can give a general recipe for Hom_+^+-complexes of partial maps between finite sets and will apply it to r-graphs with multiplicities.

Let S, T be finite sets. A partial map from S to T is a map from a non-empty subset of S into T. Then a partial map from S to T is identified with an element of

$$(T \cup \{\emptyset\})^S \setminus (\emptyset, \ldots, \emptyset).$$

Let K, L be abstract simplicial complexes. Recall that the join $K \ast L$ is an abstract simplicial complex whose simplices are of the form (σ, τ) where $\sigma \in K$, $\tau \in L$ and either σ or τ is not empty. Then a partial map from S to T is identified with a vertex of the join $*_S \Delta^T$. Analogously to Hom-complexes, we are led to the following definition.

Definition 24. Let S, T be finite sets and C be a class of partial maps from S to T. The Hom_+^+-complex $\text{Hom}_+^C(S, T)$ is defined as the maximum subcomplex of $*_S \Delta^T$ whose vertex set is C.

Analogously to Hom-complexes, we can define induced maps between Hom_+^+-complexes under certain conditions and see that these induced maps satisfy naturality corresponding to **Proposition 5**.
5.2. \(\text{Hom}_+\)-complexes of \(r\)-graphs with multiplicities

Let \(G, H\) be \(r\)-graphs with multiplicities. A partial homomorphism from \(G\) to \(H\) is a map from a subset \(V\) of \(V(G)\) into \(V(H)\) which is a homomorphism from the maximum \(r\)-subgraph with multiplicities of \(G\) whose vertex set is \(V\) into \(H\). We now define \(\text{Hom}_+\)-complexes of \(r\)-graphs with multiplicities.

Definition 25. Let \(G, H\) be \(r\)-graphs with multiplicities. The \(\text{Hom}_+\)-complex \(\text{Hom}_+(G, H)\) is defined as \(\text{Hom}^C_r(V(G), V(H))\) for the set \(C\) of all partial homomorphisms from \(G\) to \(H\).

Similarly to Proposition 7, we have the following.

Proposition 26. Let \(\text{Graph}^{(r)}\) and \(\text{Poly}\) be the categories of \(r\)-graphs with multiplicities and polyhedral complexes, respectively. Then

\[(\text{Graph}^{(r)})^{\text{op}} \times \text{Graph}^{(r)} \to \text{Poly}, \quad (G, H) \mapsto \text{Hom}_+(G, H)\]

is a functor.

Then as in the case of \(\text{Hom}\)-complexes, we can construct group actions on \(\text{Hom}_+\)-complexes by those on \(r\)-graphs with multiplicities. For instance, the natural \(C_r\)-action on \(K^{(r)}_r\) induces a \(C_r\)-action on \(\text{Hom}_+(K^{(r)}_r, G)\) for an \(r\)-graph with multiplicities \(G\). Analogously to Lemma 8, we can prove the following.

Lemma 27. Let \(G\) be an \(r\)-graph with multiplicities. If \(r\) is a prime, the \(C_r\)-action on \(\text{Hom}_+(K^{(r)}_r, G)\) is free.

Using this \(C_r\)-action, we obtain a lower bound for the chromatic numbers.

Theorem 28. Let \(G\) be an \(r\)-graph with multiplicities. If \(r\) is a prime, it holds that

\[\chi(G) \geq \frac{\text{ind}_{C_r} \text{Hom}_+(K^{(r)}_r, G) + 1}{r - 1}\]

Proof. Note that the dimension of \(\text{Hom}_+(K^{(r)}_r, K^{(r)}_m)\) is \(nr - n - 1 = (r - 1)n - 1\). Then the result follow quite similarly to Theorem 10. \(\Box\)

Corollary 29. Let \(G\) be an \(r\)-graph with multiplicities. If \(r\) is a prime, we have

\[\chi(G) \geq \frac{\text{conn} \text{Hom}_+(K^{(r)}_r, G) + 2}{r - 1}\]

In [6, p. 5] Lange defined a complex \(B_0(G)\) for an \(r\)-graph with multiplicities and gave a lower bound for the chromatic number of \(G\) by using \(B_0(G)\). By definition, \(B_0(G)\) coincides with \(\text{Hom}_+(K^{(r)}_r, G)\) and a lower bound in Theorem 28 is the same as the one given by Lange.

As in Section 3, let us consider the homotopy type of \(\text{Hom}_+(K^{(r)}_r, K^{(r)}_m)\). In the case of \(\text{Hom}_+\)-complexes, one can describe \(\text{Hom}_+(K^{(r)}_m, K^{(r)}_n)\) explicitly by Sarkaria’s formula [13, (2.2)] as follows.

Theorem 30. ([13, (2.2)]) We have

\[\text{Hom}_+(K^{(r)}_m, K^{(r)}_n) \cong \ast_{\Delta^{[m]}}\ast_{K^{(r)}_{r-2}}\Delta^{[n]}\]

In particular, \(\text{Hom}_+(K^{(r)}_m, K^{(r)}_n)\) has the homotopy type of a wedge of \(\binom{m-1}{r-1}\) copies of \((r - 1)n - 1\)-dimensional spheres.

5.3. Hierarchy of lower bounds for the chromatic number

Let \(G\) be an \(r\)-graph with multiplicities. We have obtained so far two kinds of lower bounds for the chromatic number of \(G\), one is given by \(\text{Hom}(K^{(r)}_r, G)\) in Theorem 10 and the other is given by \(\text{Hom}_+(K^{(r)}_r, G)\) in Theorem 28. We have also seen that these lower bounds are related to formerly known ones [1, Proposition 2.1], [6, Theorem 3]. We describe \(\text{Hom}_+(K^{(r)}_r, G)\) by using \(\text{Hom}(K^{(r)}_r, G)\) and then get an inequality between the above lower bounds.
Theorem 31. For an r-graph with multiplicities G, there is a C_r-map

$$\text{Hom}_+(K_r^{(r)}, G) \to \partial \Delta^{[r]} \ast \text{Hom}(K_r^{(r)}, G)$$

which is a homotopy equivalence, where C_r acts diagonally on $\partial \Delta^{[r]} \ast \text{Hom}(K_r^{(r)}, G)$.

Proof. Let P, Q be finite posets. Recall that the join $P \ast Q$ is a poset whose underlying set is $P \sqcup Q$ and order is defined as $x < y$ if either $x, y \in P$ with $x < y$, $x, y \in Q$ with $x < y$ or $x \in P, y \in Q$. Then it follows that

$$\Delta(P \ast Q) = \Delta(P) \ast \Delta(Q).$$

Note that the face poset of $\text{Hom}_+(K_r^{(r)}, G)$ is the disjoint union of $\mathcal{F}(\text{Hom}(K_r^{(r)}, G))$ in (3) and

$$\begin{cases} F_1 \times \cdots \times F_r \mid F_1, \ldots, F_r \subset V(G), \ F_i = \emptyset \text{ for some } i \text{ and } \bigcup_{i=1}^r F_i \neq \emptyset \end{cases},$$

where the order is given by inclusions and $F_1 \times \cdots \times F_n$ with $F_{i_1}, \ldots, F_{i_k} \neq \emptyset$ and $F_j = \emptyset$ for $j \neq i_1, \ldots, i_k$ means $F_{i_1} \times \cdots \times F_{i_k}$.

We then define a poset map

$$\varphi: \mathcal{F}(\text{Hom}_+(K_r^{(r)}, G)) \to \mathcal{F}(\partial \Delta^{[r]} \ast \text{Hom}(K_r^{(r)}, G))$$

as

$$\varphi(F_1 \times \cdots \times F_r) = \begin{cases} \{i_1, \ldots, i_k\} \in \mathcal{F}(\partial \Delta^{[r]}) & \bigcup_{i \neq i_1, \ldots, i_k} F_i = \emptyset \text{ and } F_{i_1}, \ldots, F_{i_k} \neq \emptyset, \\ F_1 \times \cdots \times F_r \in \mathcal{F}(\text{Hom}_+(K_r^{(r)}, G)) & F_1, \ldots, F_r \neq \emptyset. \end{cases}$$

By definition, φ is a C_r-map. For $F_1 \times \cdots \times F_r \in \mathcal{F}(\text{Hom}(K_r^{(r)}, G)) \subset \mathcal{F}(\partial \Delta^{[r]} \ast \mathcal{F}(\text{Hom}(K_r^{(r)}, G)))$, $\varphi^{-1}(\mathcal{F}(\partial \Delta^{[r]} \ast \mathcal{F}(\text{Hom}(K_r^{(r)}, G))))$ has the maximum $F_1 \times \cdots \times F_r$. For $\{i_1, \ldots, i_k\} \in \partial \Delta^{[r]} \subset \mathcal{F}(\partial \Delta^{[r]} \ast \mathcal{F}(\text{Hom}(K_r^{(r)}, G)))$, $\varphi^{-1}(\mathcal{F}(\partial \Delta^{[r]} \ast \mathcal{F}(\text{Hom}(K_r^{(r)}, G))))$ has the maximum

$$F_1 \times \cdots \times F_r, \quad F_{i_1} = \cdots = F_{i_k} = [n] \quad \text{and} \quad \bigcup_{i \neq i_1, \ldots, i_k} F_i = \emptyset.$$

Then for any $x \in \mathcal{F}(\partial \Delta^{[r]} \ast \mathcal{F}(\text{Hom}(K_r^{(r)}, G)))$, $\Delta(\mathcal{F}(\partial \Delta^{[r]} \ast \mathcal{F}(\text{Hom}(K_r^{(r)}, G))))$ is contractible, and it follows from Lemma 12 that $\Delta(\varphi)$ is a homotopy equivalence. Thus the composite

$$\text{Hom}_+(K_r^{(r)}, G) \xrightarrow{\cong} \Delta(\mathcal{F}(\text{Hom}_+(K_r^{(r)}, G))) \xrightarrow{\Delta(\varphi)} \Delta(\mathcal{F}(\partial \Delta^{[r]} \ast \mathcal{F}(\text{Hom}(K_r^{(r)}, G))))$$

$$= \Delta(\mathcal{F}(\partial \Delta^{[r]})) \ast \Delta(\mathcal{F}(\text{Hom}(K_r^{(r)}, G))) \xrightarrow{\cong} \partial \Delta^{[r]} \ast \text{Hom}(K_r^{(r)}, G)$$

is the desired homotopy equivalence, where the first and the last arrows are the natural homeomorphisms. \(\square\)

Corollary 32. Let G be an r-graph with multiplicities. If r is a prime, there holds

$$\chi(G) \geq \frac{\text{ind}_{C_r} \text{Hom}(K_r^{(r)}, G) + 1}{r - 1} + 1 \geq \frac{\text{ind}_{C_r} \text{Hom}_+(K_r^{(r)}, G) + 1}{r - 1} \geq \frac{\text{ind}_{C_r} \text{Hom}(K_r^{(r)}, G) + 1}{r - 1} \geq \frac{\text{ind}_{C_r} \text{Hom}(K_r^{(r)}, G) + 1}{r - 1} - 1.$$

Proof. The first inequality follows from Theorem 10 and the second from Proposition 9 and Theorem 31. As in the proof of Theorem 31, $\mathcal{F}(\text{Hom}(K_r^{(r)}, G))$ is a subposet of $\mathcal{F}(\text{Hom}_+(K_r^{(r)}, G))$ including the C_r-actions. Then there is a C_r-map $\text{Hom}(K_r^{(r)}, G) \to \text{Hom}_+(K_r^{(r)}, G)$, implying the third inequality by Proposition 9. The fourth inequality follows from Proposition 9 and the last equality from Theorem 31. \(\square\)

References