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1. Introduction
1.1. Hom-complexes of graphs

Since Lovasz solved the famous Kneser conjecture by relating the chromatic number of a given graph to connectivity of
its neighborhood complex [7], it is a standard method to study combinatorial properties of graphs by relating them with
topological properties of appropriately constructed polyhedral complexes from graphs. Then as is seen in [5], a plenty of
complexes have been constructed from graphs. Among others, let us consider Hom-complexes which were first introduced
by Lovasz and studied further by Babson and Kozlov [2,10,11]. Compared to other complexes of graphs, the construction of
Hom-complex Hom(G, H) for graphs G, H is quite natural; it is a space of maps from G to H. Moreover, some complexes
of graphs concerning colorings are realized by special Hom-complexes [2,10] by which one can easily understand related
construction. For example, a result of Lovasz [7] can be reproved easily by using Hom-complexes as follows.

Let us start with a standard observation. Recall that an n-coloring of a graph G is a labeling of vertices of G by n colors
in such a way that adjacent vertices have distinct colors. Then if K, denotes the complete graph with n vertices, there is a
one-to-one correspondence between n-colorings of G and homomorphisms of G into K,. Suppose G admits an n-coloring.
Then since the Hom-complex Hom(G, H) is natural with respect to G, H, there is a map

Hom(T, G) — Hom(T, Ky) (1)
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for any graph T. Specialize T to the complete graph K, with 2 vertices. Then a natural C;-action on K, yields Ca-actions on
both Hom(T, G) and Hom(T, K,), and furthermore, the map (1) is a C;-map for T = K, where C denotes the cyclic group
of order k. One can easily see that the Cy-actions are free and can also easily count the dimension of Hom(K3, K,) as n — 2
by definition. Then it follows from the Borsuk-Ulam theorem that

connHom(K>, G) <n—3,

where conn X denotes connectivity of a space X. Finally, since Hom(K>, G) has the homotopy type of the neighborhood
complex of G as in [2], we obtain the result of Lovasz [7]. The point of this proof is that we can get Cz-actions and a
Cy-map quite naturally, which is often the most difficult part of the above mentioned topological method for graphs.

1.2. Generalization to r-graphs

Let us now generalize graphs to r-uniform hypergraphs. Recall that an r-uniform hypergraph (or an r-graph, for short)
G consists of the vertex set and the edge set which is a collection of r elements subsets of the vertex set. Then 2-graphs are
simple graphs, for instance. Homomorphisms of r-graphs are obviously defined. In [11, Definition 9.24], Kozlov suggested
a recipe to construct a space of a collection of maps between finite sets. Then one can define Hom-complexes for r-graphs
as well. We would like to study colorings of r-graphs by using Hom-complexes as in the above case of graphs. Colorings
of graphs are generalized to r-graphs as follows. An n-coloring of an r-graph is a labeling of vertices by n colors such that
each edge contains more than 2 colors. Then for r > 3, colorings of r-graphs cannot be realized as homomorphisms. Then
in order to study r-graph colorings by Hom-complexes, we must extend the category of r-graphs so that colorings become
homomorphisms. If we extend the category of r-graphs to that of all hypergraphs, colorings become homomorphisms.
However, this category is too big to control objects. So we need a much smaller extension of the category of r-graphs.
For this purpose, we will consider r-graphs with multiplicities which were first introduced by Lange [6] in a different
context. Then we will study colorings of r-graphs with multiplicities through Hom-complexes. More precisely, we will give a
lower bound for the chromatic numbers of r-graphs with multiplicities using group actions on special Hom-complexes. Alon,
Frankl and Lovasz [1] defined certain simplicial complexes of r-graphs (without multiplicities) and gave a lower bound for
the chromatic numbers by a rather tricky construction. We will show that these complexes are essentially the same as the
above special Hom-complexes, and then we can interpret their construction in terms of Hom-complexes, which will make
things clear. We will also consider Hom-complexes of r-graphs with multiplicities (cf. [11, Definition 20.1]) and show a
hierarchy among lower bounds for the chromatic numbers.

1.3. Organization

The organization of the paper is as follows. In Section 2, we introduce r-graphs with multiplicities generalizing r-graphs
by which we can study colorings of r-graphs as special homomorphisms. In Section 3, we recall a general construction of
Hom-complexes of classes of maps between finite sets and then apply it to r-graphs with multiplicities. We show analogy of
results of Babson and Kozlov [2] for Hom-complexes of r-graphs with multiplicities and give a lower bound for the chromatic
number by special Hom-complexes. In Section 4, we show that the box-edge complexes of Alon, Frankl and Lovasz [1] are
realized by the above special Hom-complexes, by which we see that the above lower bound is the same as the one given
by Alon, Frankl and Lovasz [1]. In Section 5, we consider Hom-complexes of r-graphs with multiplicities and give another
lower bound for the chromatic number. By comparing Hom-complexes and Hom,-complexes, we show a hierarchy among
the above two lower bounds.

2. r-Graphs with multiplicities
2.1. r-Graphs

Let us explain in detail why we introduce r-graphs with multiplicities. Recall that an r-uniform hypergraph (r-graph, for
short) G is a pair of a finite set V(G) and a collection E(G) of r elements subsets of V(G). V(G) and E(G) are respectively
called the vertex set and the edge set of G. For r-graphs G, H, a homomorphism f:G — H is a map f:V(G) — V(H)
satisfying f.(E(G)) C E(H). Our objects are colorings of r-graphs. An n-coloring of an r-graph G is a map c: V(G) — [n] such
that if {v1,...,v;} € E(G), {c(v1),...,c(vr)} C [n] is not a singleton, where [n] = {1, 2, ...,n}. Then one sees that colorings
cannot be realized by homomorphisms in general as in the case of graphs. Then generalizing r-graphs, we introduce r-graphs
with multiplicities among which colorings are homomorphisms.

2.2. r-Graphs with multiplicities
Recall that the nth symmetric product of a set V is defined as

SPY(V)=V x---x V /Xy,

n
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where the action of the symmetric group X, is given as o (v1,...,Vy) = (Vo1), ..., Vom)) for o € Xy and vq,..., v, € V.
We denote an element of SP"(V) by vq---v, for vi,..., vy, € V. In [6], Lange used multisets which are naturally identified
with elements of symmetric products. We now define r-graphs with multiplicities and their homomorphisms and colorings.

Definition 1.

(1) An r-graph with multiplicities G consists of a finite set V(G) and a subset E(G) of SP"(V(G)) \ A, where A={v---v €
SP"(V(G))}. V(G) and E(G) are called the vertex set and the edge set of G, respectively.

(2) Let G, H be r-graphs with multiplicities. A homomorphism f:G — H is a map g:V(G) — V (H) satisfying f.(E(G)) C
E(H).

(3) An n-coloring of an r-graph with multiplicities G is a map c:V(G) — [n] such that if v{---v; € E(G), {c(v1),...,
c(vy)} C [n] is not a singleton.

(4) The chromatic number x(G) of an r-graph with multiplicities G is the minimum integer n such that G admits an
n-coloring.

Remark 2. If we allow r-graphs with multiplicities to have diagonal edges in A, some r-graphs do not admit any colorings.
Since we will study colorings, we have omitted diagonal edges from r-graphs with multiplicities.

Since r elements subsets of a set V may be regarded as elements of SP"(V) \ A, r-graphs with multiplicities and their
homomorphisms and colorings include r-graphs and their homomorphisms and colorings.
Define an r-graph with multiplicities IC,Y) as the maximum r-graph with multiplicities with n vertices. Namely,

V(KY) =1 and E(K}”) =SP'(In]) \ A.

It is clear that there is the desired property as follows.

Proposition 3. There is a one-to-one correspondence between n-colorings of an r-graph with multiplicities G and homomorphisms
from G to IC,(f).

3. Hom-complexes of r-graphs with multiplicities
3.1. General Hom-complexes

Let us first recall a recipe of general Hom-complexes suggested by Kozlov [11, Definition 9.24]. Let S, T be finite sets.
Then a map S — T is identified with an element of TS. Let AT be the simplex whose vertex set is T. Since T* is the vertex
set of a direct product [[s AT, a map S — T is identified with a vertex of [ AT. This simple observation leads us to the
following definition of Hom-complexes which may be regarded as spaces of given maps between finite sets.

Definition 4. Let S, T be finite sets and C be a class of maps from S to T. The Hom-complex HomC (S, T) is the maximum
subcomplex of s AT whose vertex set is C.

Let S, T be finite sets and C be a class of maps from S to T. Given a map f:T — T’ with T’ finite and a class D of
maps from S to T'. If f,.(C) C D, we can define a map of polyhedral complexes

f. :Hom® (S, T) — Hom” (5.7

by sending h € C to f oh € D. Dually, given a map g:S’ — S and a class £ of maps from S’ to T satisfying g*(C) C &, we
can also define a map of polyhedral complexes

g* :Hom® (S, T) — Hom® (S, T)

by sending he £ to ho g €C.
By definition of the above induced maps, we have the following functoriality.

Proposition 5. Let S, T be finite sets and C be a class of maps from S to T.

(1) Let Ty, Ty be finite sets and D1, D, be classes of maps from S to T1 and T, respectively. If maps f1:T — T1 and f2:T1 — T2
satisfy (f1)«(C) C Dy and (f2)+(D1) C Do, the induced maps on Hom-complexes satisfy

(fZ © fl)* = (fZ)* o (fl)*
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(2) Let S1, Sy be finite sets and £1, &> be classes of maps from S1 and S to T, respectively. If maps g1:S1 — S and g2:S2 — S1
satisfy (g1)*(C) C &1 and (g2)* (1) C &, the induced maps on Hom-complexes satisfy

(§2081)" =(g1)" o (g2)".
3.2. Hom-complexes of r-graphs with multiplicities
Let us return to r-graphs with multiplicities. Homomorphisms of r-graphs with multiplicities are maps between vertices

satisfying certain properties. Since we are assuming vertex sets of r-graphs with multiplicities to be finite, we can apply the
above general construction of Hom-complexes to r-graphs with multiplicities.

Definition 6. Let G, H be r-graphs with multiplicities and C be the set of homomorphisms from G to H. The Hom-complex
Hom(G, H) is defined as Hom® (V (G), V (H)).

By Proposition 5, we have the following.

Proposition 7. Let Graph™ and Poly be the categories of r-graphs with multiplicities and polyhedral complexes, respectively. Then

(Graph™)” x Graph® — Poly, (G, H) > Hom(G, H)

is a functor.

By Proposition 3, the Hom-complex Hom(G,IC,([)) for an r-graph with multiplicities G is considered as a space of
n-colorings of G. Then Hom(G, IC,(f)) is especially important, and hence we here give some easy examples. Let L,(f) denote
the line r-graph with n vertices. Namely, L,(.,r) is defined as

V(L) =Ml and E(LY)={(i.i+1,....i+r—1)|i=1....n—r+1}.
Then Hom(L,(.,3), IC?)) for n=3,4,5 are given as follows.

Hom(Lés), 3{5‘5)) Hom(L{Y, %5V Hom(L?)7 3(55))

Note that Hom(L(3) Kf)) for n = 3, 4,5 have the same homotopy type. This will be justified below in a more general
setting.
Let c,ﬁ” be the cyclic r-graph with n vertices. That is, c,ﬁ” is given as

v(C ") =2Z/m and E(C(r)) {ti.i+1,....i+r—1}|ieZ/n}.

Let us next consider Hom(C(3) IC(3)) Since CG) L(3) Ho (C§3), ICf)) is a hexagon. One can easily see that Hom(Cf), ICf))

consists of discrete six points and that Hom(C(3), IC?)) is the outer polygon of Hom(L(B), ICf)). Then their homotopy types
are not the same.

3.3. Lower bound for the chromatic number

By functoriality of Hom(G, H), group actions on G and H induce those on Hom(G, H). We next consider these group
actions for special G. Let K,Sr) be the maximum r-graph with n vertices. Namely,

V(KS)=[n] and E(K\)=SP"([n]) \ Ap,

where Ap ={vq---v, € SP"([n]) | v # v; for i # j}. Notice that by a cyclic permutation of vertices, the cyclic group Cy acts
()
on Ky’ .
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Lemma 8. If r is a prime, the induced C,-action on Hom(K,(r), G) is free.

Proof. Any face of Hom(K\", G) is of the form AS! x --- x AS* such that each (vq,...,v;) € Sy x -+~ x Sy satisfies vq---v, €
E(G). Then in particular, there is no diagonal element (v,...,Vv) in S; x --- x S;. Let g be a non-trivial element of C;. Then
by renumbering if necessary, we have

g - (Vi,..., V) =(Vr, V1, .., V1)
for (vi,...,vy) €Sy x --- x S; since r is a prime. Suppose g(AST x --- x AS") = ASt x ... x ASr. Then we have observed
that elements of S belong to all Sy, ..., S;, a contradiction. O

Using the index of the above free group action [8, Definition 6.2.3], we give a lower bound for the chromatic numbers of
r-graphs with multiplicities. We set some notation. Let I" be a non-trivial finite group (with the discrete topology). Let E,I"
be the join of n+ 1 copies of I" on which I" acts diagonally. Then this I"-action on E,I" is free and E,I" has the homotopy
type of a wedge of n-dimensional spheres. For a free I"-complex X, the I'-index of X is defined as

indy X =min{n | thereisa I"-map X — E,I'}.

Let us list basic properties of ind X.
Proposition 9. Let I" be a non-trivial finite group and let X, Y be free I"-complexes.

(1) Ifthereis a I'-map from X to Y, we have

indr X< ind[‘ Y.
(2) Thejoin X = Y is a free I"-space by the diagonal I" -action for which it holds that

indp(X*Y)<indp X+indpY + 1.
(3) It holds that

connX + 1 <ind; X <dim X.

Proof. (1) follows from definition and (2) follows from the fact that E,I" = EyI” % Ep_p—1 1. By the Borsuk-Ulam theorem
due to Dold [3], we have indy E,I" =n. Then (3) is shown by an easy obstruction argument. O

Put B,I' = E /", BI' = Un21 B,I' and ET = U@] EnI". Then the natural projection EI" — BI is the well-known
Milnor’s universal principal I"-bundle. Let ¢ : X/I" — BI" be the classifying map of a free I"-complex X. Then it follows
that ind; X coincides with the minimum integer n such that ¢ factors through the inclusion B,I" — BI", up to homotopy.
By [4, Proposition 8.4], we obtain that ind, X is equal to the LS-category of the classifying map ¢, implying that there are
a lot of quantities estimating ind; X other than connectivity and dimension.

We now give a lower bound for the chromatic number of r-graphs with multiplicities.

Theorem 10. Let G be an r-graph with multiplicities. If r is a prime, there holds

indc, Hom(K{", G) + 1

1.
r—1 +

x(G) =

Proof. By Lemma 8, Hom(Kr(r), H) is a free Cr-complex for any r-graph with multiplicities H. Suppose there is an n-coloring

of G, or equivalently, a homomorphism f:G — ICflr). By Proposition 7, the induced map f,: Hom(Kr(r), G)— Hom(I(rm, ICflr))
is a C;-map, implying

indc, Hom(K,", G) < dimHom(K,"”, K\)

by Proposition 9. We then count the dimension of Hom(K.”, K). Any face of Hom(K."”, K") is given as AS1 x ... x ASt
such that Sy,...,S, C[n] and S;N---NS; =@. The maximum of |S{|+ ---+|S;| is nr —n and then the dimension of
Hom(K"”, K"y is nr —n—r = (r — 1)(n — 1) — 1, completing the proof. O

By Proposition 9, we obtain the following.

Corollary 11. Let G be an r-graph with multiplicities. If r is a prime, we have

)
connH K7, G 2
x() > CMERE B2y
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3.4. Homotopy lemmas

Let us recall three lemmas from [2, Proposition 3.2] and [11, Theorems 15.24, 15.28] which will be used below. We first
set some notation. Let P be a poset. We denote the order complex of P by A(P). That is, A(P) is a simplicial complex
whose n-simplices are chains in P of length n+ 1. For p € P, let

P<p={qePlq<p} and P>p={qeP|q=p}
We first state the famous Quillen fiber lemma.

Lemma 12. ([11, Theorem 15.28]) Let ¢ : P — Q be a poset map between finite posets. If A(p ™! (Q<q)) is contractible forany q € Q,
then A(¢): A(P) — A(Q) is a homotopy equivalence.

We next state a variant of the Quillen fiber lemma proved in [2, Proposition 3.2].

Lemma 13. (/2, Proposition 3.2]) For a poset map ¢ : P — Q between finite posets, suppose the following conditions.

(1) A(p~1(q)) is contractible for any q € Q.
(2) Foranyqe Q and p € ¢! (Q>q), the poset o lgn P<p, has the maximum.

Then A(p): A(P) — A(Q) is a homotopy equivalence.

Finally, we recall the generalized nerve lemma which is frequently used in combinatorial algebraic topology. Let A be a
covering of a space X by non-empty subspaces Aq, ..., A;. Then we associate to .4 a poset whose elements are non-empty
intersections of A1, ..., A, and the order is defined by inclusions. The nerve of A is by definition the order complex of this
poset associated to A.

Lemma 14. ([11, Theorem 15.24]) Let A be a covering of a polyhedral complex K by non-empty subcomplexes A1, ..., An. Suppose
that forany iy < --- < i, there exists k such that A;; N --- N A;, is either empty or (k — t + 1)-connected. Then K is k-connected if and
only if so is the nerve of A.

3.5. Homotopy type of Hom(K\", KI)

As is mentioned above, for an r-graph with multiplicities G, the Hom-complex Hom(G, ICﬁlr)) is especially important. Then
we determine the homotopy type of this Hom-complex in the special case G = K,%r).

For t = (t1,...,t;) with non-negative integers tq,...,t;, we define a polyhedral complex A™(t) as the subcomplex
of AY x ... x A whose faces are A5t x --- x ASm such that |{k € [m]|ie Si}| <t for i=1,...,n. Note that if t' =

m
(t}, ..., ty) satisfies ty,t; > m for some k and t; =t] for i #k, then A™(t) = A™(t'). As in the proof of Theorem 10, for
s=r—-1,...,r—1) € [m]", we have

A™(s) = Hom(Kyy, k).
We determine the homotopy type of A™(t) and, consequently, the homotopy type of Hom(K,g),IC,(,r)). For a polyhedral
complex K, let F(K) denote the face poset of K.

Theorem 15. For t = (t1,...,t;) with 0 < t; <m, A™(t) has the homotopy type of a wedge of (t; + - -- + t, — m)-dimensional
spheres.

Proof. Put |t| =t1 + ---+t,. As in the proof of Theorem 10, one can easily deduce that the dimension of A™(t) is [t| —m.
Then we only have to show that A™(t) is (|t| — m — 1)-connected.
For F C [n], put t — F =(t},...,t}) such that

o max{t; — 1,0} ieF,
Ty i¢F.

Then if F C F’ C [n], we have A¢(t — F) D A%(t — F’). We also have that if |t| — |F| — £ <0 for F C [n], A‘(t — F) = 0. We
now define a functor

p: F(skiel—m A™) P — Poly
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by p(F) = A™~1(t — F) and inclusions A™~'(t — F) > A™"1(t — F') for F C F' € F(skjg|-mAl"), where sk,K denotes the
k-skeleton of a polyhedral complex K. By definition, A™(t) is the union of AF x A™=1(t — F) for all non-empty F €
F(skje—m A™). Namely, we have

A™(t) = hocolim p.

Since p maps every arrow to a cofibration, we get a homotopy equivalence

hocolim p = colim 0.

See [11, Theorem 15.19]. Notice that colim p is covered by subcomplexes A™~1(t — {i}) for i € [n] and that A™1(t — F) N
A& —F)= A"t — FUF') for F, F’ € F(skjgj—mA™).

If |t| =m, A™(t) is a discrete finite set. Apply Lemma 14 to the above covering of colim p inductively on |t| — m. Thus
we obtain the desired result. O

Corollary 16. Hom(K,(nr), IC,([)) has the homotopy type of a wedge of ((r — 1)n — m)-dimensional spheres.

3.6. Vertex deletion and Hom-complexes

In [2, Proposition 5.1], a relation between vertex deletion of G and the homotopy type of Hom(G, H) is considered when
G, H are graphs. We prove analogy for r-graphs with multiplicities here by a quite similar way. In [2, Proposition 5.1],
a condition for vertex deletion is given by a neighborhood of a vertex. As for graphs, a neighborhood of a vertex v is
considered as both the set of vertices adjacent to v and the set of edges with the end v. As for r-graphs with multiplicities,
these two sets cannot be identified for r > 3, and then we define two kinds of neighborhoods of vertices.

Let G be an r-graph with multiplicities. For a vertex v of G, we define N(v) as the set of vq---v; € SPS(V(G)) for some
1<s<r—1satisfying v---vvy---vs € E(G) and v1q, ..., vs # v. For v ---vs € SPS(V(G)) with 1 <s<r—1, we also define

r—s
N(vq---vs) as the set of vertices w of G satisfying w---w vy ---vs € E(G).
r—s

For a vertex v of G, let G\ v denote the maximum r-subgraph with multiplicities of G whose vertex set is V(G) \ v. We

now state our result.

Theorem 17. Let G, H be an r-graph with multiplicities. Suppose that there are vertices u, v of G satisfying N(u) D N(v). Then the
inclusioni: G \ v — G induces a homotopy equivalence

i* : Hom(G, H) = Hom(G \ v, H).
Proof. As is mentioned above, the proof is quite analogous to [2, Proposition 5.1]. Note that any face of Hom(T, H) for an

r-graph with multiplicities T is identified with a map V(T) — 2Y™ \ ¢. For n € F(Hom(G \ v, H)), the fiber F(i*)~1(n) is
the set of 7 € F(Hom(G, H)) satisfying

Tlvew =1-
Since
m ﬂ N(wy---ws) D ﬂ m N(Wy -~ wg)
V1--VsEN(V) (W1,..., Ws)EN(V]) X X1 (V) V1--VsEN(U) (W1,...,Ws)EN(VT) X X1 (Vs)

D n(u) #9,
we can define v € F(i*)~1(n) by

v(v) = ﬂ ﬂ N(Wp -« Ws)

V1-VsEN(V) (W1, Ws)EN(V) X - X7 (Vs)

and v|y)\v = 1. By definition, v is the maximum of F(@*)~1(n), and thus in particular, the order complex A(F(i*)~1(n))
is contractible.

Choose T € F(Hom(G, H)) and n € F(Hom(G \ v, H)) satisfying T(w) D n(w) for w € V(G)\ v. Observe that F(i*)~1(n)N
F(Hom(G, H))<¢ consists of o € F(Hom(G, H)) satisfying o (v) C T(v) and o|y(c)\v =7. Then it has the maximum u such
that w(v) =7(v) and plyyv = n. We have seen that Lemma 13 can be applied to F(i*) : F (Hom(G, H)) — F(Hom(G \
v, H)), which completes the proof. O
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We generalize the above observation on the homotopy type of Hom(L,(f'), ICf)).

Corollary 18. Let L,(f) be the line r-graph with n vertices as above, and let G be an r-graph with multiplicities. Then for n > r, we have
Hom(L,(lr), G) ~ Hom(Lﬁr), G).

Proof. If n > r, we have N(n) C N(n — r). Then by Theorem 17, it holds that Hom(L{", G) ~ Hom(L"

n—1» G). Thus the result
follows by induction on n. 0O

4. Relation between box-edge complexes and Hom-complexes
4.1. Box-edge complexes

Let G be an r-graph (without multiplicities). In [1], Alon, Frankl and Lovasz introduced a simplicial complex Begge(G)
with a C;-action which we call the box-edge complex of G, where we follow the name and the notation of [9]. By an
ad-hoc and tricky construction concerning Bedge (G), they gave a lower bound for the chromatic number of G. We will show
that this construction is realized by special Hom-complexes of r-graphs with multiplicities, by which we can reprove and
interpret a result of Alon, Frankl and Lovasz [1, Proposition 2.1] in a quite natural way.

Let r : V" — SP"(V) denote the projection for a set V. Originally, the box-edge complexes were defined only for r-graphs
(without multiplicities). However, their definition can be applied to r-graphs with multiplicities straightforwardly.

Definition 19. Let G be an r-graph with multiplicities. The box-edge complex of G is an abstract simplicial complex defined
as

Bedge(G) = {F C V(G)" | m(F) CE(G)} (2)

on which the cyclic group C; acts as the restriction of the permutation action on V(G)".

Notice here that as is shown in [1, Proposition 2.1], if r is a prime, the C;-action on Beqge (G) is free.
4.2. Result of Alon, Frankl and Lovdsz

We prove that the box-edge complex Begge(G) is given by a special Hom-complex.

Theorem 20. For an r-graph with multiplicities G, there is a Cr-map

Bedge (G) — Hom(K,", G)

which is a homotopy equivalence. In particular, if r is a prime, it is a C,-homotopy equivalence.

Proof. The face poset of Hom(l(r(r), G) is given as

F(Hom(K\",G)) = {F1 x --- x Fr | F1,...,Fr CV(G) and  (Fy x --- x Fy) C E(G)}, 3)

where the order is given by inclusions. Then as the face poset of Begge(G) is given in (2), we can define a map

@1 F(Bedge(G)) = F(Hom(K\",G)),  Fr> 11 (F) x -+ x m(F),

where 7;: V(G)" — V(G) is the ith projection. Then by definition, ¢ is a C;-map and hence so is A(p).

Take any Fy x -+ x Fr € F(Hom(K"”, G)). Then the poset ¢! (Hom(K.", G)<Fyx--xF,) has the maximum Fy x --- x Fy,
implying that A(go‘l(Hom(Kﬁr), G)<F, x--xF,)) is contractible. Thus by Lemma 12, A(g) is a homotopy equivalence. The
desired map is the composite

= Ap) (r) = )
Bedge (G) = A(F(Bedge(G))) = A(F(Hom(K;:", G))) > Hom(K;", G),
where the first and the last arrows are the natural homeomorphisms between polyhedral complexes and their barycentric
subdivision. Therefore we have established the first assertion. Suppose r is a prime. Then the C;-action on Hom(Kﬁr), G) is
free by Lemma 8. Moreover, the Cy-action on Beqge (G) is also free as is noted above. Thus the second assertion follows from
the first one. O

Remark 21. Recently, Thansri [14, Corollary 4.9] showed that Begge (G) and Hom(Kﬁr), G) has the same X,-equivariant simple
homotopy type for an r-graph (without multiplicities) G.
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By Corollary 11, we obtain a result of Alon, Frankl and Lovasz [1, Proposition 2.1].

Corollary 22. Let G be an r-graph with multiplicities. If r is a prime, we have

€onn Begge (G) + 2

1.
r—1 +

x(G) =

Alon, Frankl and Lovasz [1, §3] proved Corollary 22 by constructing a map from Begge(G) into a Euclidean space with
a certain Cr-action, which seems quite ad-hoc and tricky. Using Hom-complexes, this construction will turn out to be the
induced map between Hom-complexes from a given coloring.

Let M; »(R) be the space of r x n real matrices. We let C; act on M; »(R) as the cyclic permutation of rows. Let Y be a
subspace of M; ,(IR) consisting of matrices (a;;) satisfying

r n
D ag=0, ) a;j=0 and ) af#0
i=1 j=1 ij

for k=1,...,nand £=1,...,r. Then Y is also a C;-subspace of M; ,(R). Let G be an r-graph with multiplicities which
admits an n-coloring, say c. Alon, Frankl and Lovasz [1, §3] defined a C,-map

c: Bedge(G) = My n(R)

by sending a vertex (v1, ..., V) Of Bedge(G) to a matrix Z?:1(Ei,c(i) —Ej ci)+1), where E; ; is the matrix whose (i, j) entry is
1 and other entries are 0 and E; ,+1 means E; ;. They showed that ¢ has its image in Y and applied a special generalization
of the Borsuk-Ulam theorem to obtain Corollary 22.

We now define a map g:Hom(Kr(r),lC,(p) — M; n(R) by sending a vertex (i, ...,ir) € [n]" to a matrix 2221 (E,i, —
E i,+1)- Then one can easily see that g is a C,-map and has is image in Y. By definition, we have the following.

Proposition 23. Let G be an r-graph with multiplicities which has an n-coloring c. Then there is a commutative diagram

Hom(K", G) —=>Hom(K", K

Bedge (6) —c
where the left vertical arrow is as in Theorem 20.

We close this section by remarking that the complex of an r-graph (without multiplicities) introduced by KfiZ [12, §4] is
the barycentric subdivision of Hom(Kr(r), G) and then essentially the same as the box-edge complex Beqge(G).

5. Hom, -complexes and colorings
5.1. General Hom, -complexes

In [11, Definition 20.1], Hom;-complexes of graphs were introduced which are variants of Hom-complexes. As in the case
of Hom-complexes, we can give a general recipe for Hom,-complexes of partial maps between finite sets and will apply it
to r-graphs with multiplicities.

Let S, T be finite sets. A partial map from S to T is a map from a non-empty subset of S into T. Then a partial map
from S to T is identified with an element of

(TUE)’\@.....0.

Let K, L be abstract simplicial complexes. Recall that the join K * L is an abstract simplicial complex whose simplices are of
the form (o, ) where 0 € K, 7 € L and either o or 7 is not empty. Then a partial map from S to T is identified with a
vertex of the join #sesAT. Analogously to Hom-complexes, we are led to the following definition.

Definition 24. Let S, T be finite sets and C be a class of partial maps from S to T. The Hom, -complex Homﬁ(s , T) is defined
as the maximum subcomplex of %;cs AT whose vertex set is C.

Analogously to Hom-complexes, we can define induced maps between Hom, -complexes under certain conditions and see
that these induced maps satisfy naturality corresponding to Proposition 5.
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5.2. Homy-complexes of r-graphs with multiplicities
Let G, H be r-graphs with multiplicities. A partial homomorphism from G to H is a map from a subset V of V(G) into
V (H) which is a homomorphism from the maximum r-subgraph with multiplicities of G whose vertex set is V into H. We

now define Hom-complexes of r-graphs with multiplicities.

Definition 25. Let G, H be r-graphs with multiplicities. The Hom-complex Hom, (G, H) is defined as Homg(V(G), V(H))
for the set C of all partial homomorphisms from G to H.

Similarly to Proposition 7, we have the following.

Proposition 26. Let Graph™ and Poly be the categories of r-graphs with multiplicities and polyhedral complexes, respectively. Then

(Graph®)*® x Graph™ — Poly, (G, H) - Hom, (G, H)
is a functor.

Then as in the case of Hom-complexes, we can construct group actions on Hom,-complexes by those on r-graphs with
multiplicities. For instance, the natural C,-action on Kr(r) induces a Cr-action on Hoer(Kr(r), G) for an r-graph with multi-
plicities G. Analogously to Lemma 8, we can prove the following.

Lemma 27. Let G be an r-graph with multiplicities. If r is a prime, the C,-action on Hom, (K, r(r) , G) is free.

Using this Cr-action, we obtain a lower bound for the chromatic numbers.

Theorem 28. Let G be an r-graph with multiplicities. If r is a prime, it holds that

indc, Homy (K", G) + 1
r—1 '

x(G) =

Proof. Note that the dimension of Hom+(1<r(r), IC,([)) isnr—n—1=(r — 1)n — 1. Then the result follow quite similarly to

Theorem 10. O

Corollary 29. Let G be an r-graph with multiplicities. If r is a prime, we have

connHomy (K", G) + 2

6 >
X (G) o

In [6, p. 5], Lange defined a complex By(G) for an r-graph with multiplicities and gave a lower bound for the chromatic
number of G by using Bo(G). By definition, Bo(G) coincides with Hom+(1(r<r), G) and a lower bound in Theorem 28 is the
same as the one given by Lange.

As in Section 3, let us consider the homotopy type of Hom+(1<,(rf), IC,(J)). In the case of Hom-complexes, one can describe

Hom+(1<,(nr), ICr(f)) explicitly by Sarkaria’s formula [13, (2.2)] as follows.
Theorem 30. ([13, (2.2)]) We have
Hom (K,(nr), IC,(,r)) = ypsky_a AlM.
In particular, Hom+(K,§1r), IC,(,”) has the homotopy type of a wedge of (T:11)n copies of ((r — 1)n — 1)-dimensional spheres.
5.3. Hierarchy of lower bounds for the chromatic number

Let G be an r-graph with multiplicities. We have obtained so far two kinds of lower bounds for the chromatic number
of G, one is given by Hom(Kﬁr), G) in Theorem 10 and the other is given by Hom+(l<ﬁr), G) in Theorem 28. We have also seen
that these lower bounds are related to formerly known ones [1, Proposition 2.1], [6, Theorem 3]. We describe Hom+(1<,(r), G)

by using Hom(Kﬁr), G) and then get an inequality between the above lower bounds.
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Theorem 31. For an r-graph with multiplicities G, there is a C,-map
Homy. (K", G) = A" s Hom(K"”, G)

which is a homotopy equivalence, where C; acts diagonally on d A" x Hom(K", G).

Proof. Let P, Q be finite posets. Recall that the join P % Q is a poset whose underlying set is P L Q and order is defined as
x <y ifeither x,ye P withx <y, x,y e Q withx<y or xe P,y € Q. Then it follows that

AP xQ)=A(P)*A(Q).
Note that the face poset of Hom, (K\", G) is the disjoint union of F(Hom(K\", G)) in (3) and

.
Fi.....F, CV(G), Fi=¢forsomeiand | |Fi# @1,
i=1

[F] X ++- X Fp

where the order is given by inclusions and Fq x --- x Fy with F;,..., Fj, #¢ and Fj = for j#iy,...,iy means F;; x--- X
Fj,. We then define a poset map

¢ : F(tomy (K", G)) — F(3AM) x F(Hom(K\", G))
as

{i1, ..., ik} e FOAIT) Uigiy..i Fi=0and Fy,, ..., Fi, #0,

(p(F]X"'XFF):{ )
Fix - x Fr e FHom(K",G)) Fi,...,Fr#0.

By definition, ¢ is a Cy-map. For F; x --- x F, € F(Hom(K",G)) ¢ FOAMN) x FHom(K ", G)), ¢ 1(F@OAI) x
FHom(K", G)))<F,x..xr,) has the maximum Fj x --- x F.. For {i1,...,ix} € 9" ¢ F@AI) « FHom(K", G)),
e V(FOAM) x FHom(K", G)))<{iy....ip)) has the maximum

J. 7%

Fix--xF, Fy=--=F=Mn ad |J Fi=0.
i, ik

Then for any x € F(IAM) « From(K", G)), A(F@OAM) x FHom(K\", G)))<y) is contractible, and it follows from
Lemma 12 that A(g) is a homotopy equivalence. Thus the composite

tom, (K, G) 5 A(F(somy (K. 6))) 2 A(F(0A) x F(som(K". G)))
= A(F(BAM)) % A(F(Hom(K", G))) S A s Hom(K", G)
is the desired homotopy equivalence, where the first and the last arrows are the natural homeomorphisms. O
Corollary 32. Let G be an r-graph with multiplicities. If r is a prime, there holds

indc, Hom(K{", G) + 1 s indc, Hom, (K", G) + 1  indc, Hom(K", G) +1

G) > >

X( ) r—1 r—1 r—1
- connHom(K,”,G) +1 _ connHom (K,”, G) +1 )
- r—1 - r—1 S

Proof. The first inequality follows from Theorem 10 and the second from Proposition 9 and Theorem 31. As in the proof
of Theorem 31, f(Hom(Kr(r),G)) is a subposet of f(Hom+(I<r(r),G)) including the C,-actions. Then there is a C,-map

Hom(Kr(r), G) - Hom+(1(r(r), G), implying the third inequality by Proposition 9. The fourth inequality follows from Propo-
sition 9 and the last equality from Theorem 31. O
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