Hom complexes and hypergraph colorings ${ }^{*}$

Kouyemon Iriye ${ }^{\text {a }}$, Daisuke Kishimoto ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics and Information Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
${ }^{\mathrm{b}}$ Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

A R T I C L E I N F O

Article history:

Received 28 August 2012
Received in revised form 30 April 2013
Accepted 3 May 2013
MSC:
05 C 15
57M15

Abstract

Babson and Kozlov (2006) [2] studied Hom-complexes of graphs with a focus on graph colorings. In this paper, we generalize Hom-complexes to r-uniform hypergraphs (with multiplicities) and study them mainly in connection with hypergraph colorings. We reinterpret a result of Alon, Frankl and Lovász (1986) [1] by Hom-complexes and show a hierarchy of known lower bounds for the chromatic numbers of r-uniform hypergraphs (with multiplicities) using Hom-complexes.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

Keywords:

Hom-complex
Uniform hypergraph
Chromatic number

1. Introduction

1.1. Hom-complexes of graphs

Since Lovász solved the famous Kneser conjecture by relating the chromatic number of a given graph to connectivity of its neighborhood complex [7], it is a standard method to study combinatorial properties of graphs by relating them with topological properties of appropriately constructed polyhedral complexes from graphs. Then as is seen in [5], a plenty of complexes have been constructed from graphs. Among others, let us consider Hom-complexes which were first introduced by Lovász and studied further by Babson and Kozlov [2,10,11]. Compared to other complexes of graphs, the construction of Hom-complex $\operatorname{Hom}(G, H)$ for graphs G, H is quite natural; it is a space of maps from G to H. Moreover, some complexes of graphs concerning colorings are realized by special Hom-complexes [2,10] by which one can easily understand related construction. For example, a result of Lovász [7] can be reproved easily by using Hom-complexes as follows.

Let us start with a standard observation. Recall that an n-coloring of a graph G is a labeling of vertices of G by n colors in such a way that adjacent vertices have distinct colors. Then if K_{n} denotes the complete graph with n vertices, there is a one-to-one correspondence between n-colorings of G and homomorphisms of G into K_{n}. Suppose G admits an n-coloring. Then since the $\operatorname{Hom}-\operatorname{complex} \operatorname{Hom}(G, H)$ is natural with respect to G, H, there is a map

$$
\begin{equation*}
\operatorname{Hom}(T, G) \rightarrow \operatorname{Hom}\left(T, K_{n}\right) \tag{1}
\end{equation*}
$$

[^0]for any graph T. Specialize T to the complete graph K_{2} with 2 vertices. Then a natural C_{2}-action on K_{2} yields C_{2}-actions on both $\operatorname{Hom}(T, G)$ and $\operatorname{Hom}\left(T, K_{n}\right)$, and furthermore, the map (1) is a C_{2}-map for $T=K_{2}$, where C_{k} denotes the cyclic group of order k. One can easily see that the C_{2}-actions are free and can also easily count the dimension of $\operatorname{Hom}\left(K_{2}, K_{n}\right)$ as $n-2$ by definition. Then it follows from the Borsuk-Ulam theorem that
$$
\text { conn } \operatorname{Hom}\left(K_{2}, G\right) \leqslant n-3,
$$
where conn X denotes connectivity of a space X. Finally, since $\operatorname{Hom}\left(K_{2}, G\right)$ has the homotopy type of the neighborhood complex of G as in [2], we obtain the result of Lovász [7]. The point of this proof is that we can get C_{2}-actions and a C_{2}-map quite naturally, which is often the most difficult part of the above mentioned topological method for graphs.

1.2. Generalization to r-graphs

Let us now generalize graphs to r-uniform hypergraphs. Recall that an r-uniform hypergraph (or an r-graph, for short) G consists of the vertex set and the edge set which is a collection of r elements subsets of the vertex set. Then 2-graphs are simple graphs, for instance. Homomorphisms of r-graphs are obviously defined. In [11, Definition 9.24], Kozlov suggested a recipe to construct a space of a collection of maps between finite sets. Then one can define Hom-complexes for r-graphs as well. We would like to study colorings of r-graphs by using Hom-complexes as in the above case of graphs. Colorings of graphs are generalized to r-graphs as follows. An n-coloring of an r-graph is a labeling of vertices by n colors such that each edge contains more than 2 colors. Then for $r \geqslant 3$, colorings of r-graphs cannot be realized as homomorphisms. Then in order to study r-graph colorings by Hom-complexes, we must extend the category of r-graphs so that colorings become homomorphisms. If we extend the category of r-graphs to that of all hypergraphs, colorings become homomorphisms. However, this category is too big to control objects. So we need a much smaller extension of the category of r-graphs. For this purpose, we will consider r-graphs with multiplicities which were first introduced by Lange [6] in a different context. Then we will study colorings of r-graphs with multiplicities through Hom-complexes. More precisely, we will give a lower bound for the chromatic numbers of r-graphs with multiplicities using group actions on special Hom-complexes. Alon, Frankl and Lovász [1] defined certain simplicial complexes of r-graphs (without multiplicities) and gave a lower bound for the chromatic numbers by a rather tricky construction. We will show that these complexes are essentially the same as the above special Hom-complexes, and then we can interpret their construction in terms of Hom-complexes, which will make things clear. We will also consider Hom+-complexes of r-graphs with multiplicities (cf. [11, Definition 20.1]) and show a hierarchy among lower bounds for the chromatic numbers.

1.3. Organization

The organization of the paper is as follows. In Section 2, we introduce r-graphs with multiplicities generalizing r-graphs by which we can study colorings of r-graphs as special homomorphisms. In Section 3, we recall a general construction of Hom-complexes of classes of maps between finite sets and then apply it to r-graphs with multiplicities. We show analogy of results of Babson and Kozlov [2] for Hom-complexes of r-graphs with multiplicities and give a lower bound for the chromatic number by special Hom-complexes. In Section 4, we show that the box-edge complexes of Alon, Frankl and Lovász [1] are realized by the above special Hom-complexes, by which we see that the above lower bound is the same as the one given by Alon, Frankl and Lovász [1]. In Section 5, we consider Hom + -complexes of r-graphs with multiplicities and give another lower bound for the chromatic number. By comparing Hom-complexes and Hom+-complexes, we show a hierarchy among the above two lower bounds.

2. r-Graphs with multiplicities

2.1. r-Graphs

Let us explain in detail why we introduce r-graphs with multiplicities. Recall that an r-uniform hypergraph (r-graph, for short) G is a pair of a finite set $V(G)$ and a collection $E(G)$ of r elements subsets of $V(G) . V(G)$ and $E(G)$ are respectively called the vertex set and the edge set of G. For r-graphs G, H, a homomorphism $f: G \rightarrow H$ is a map $f: V(G) \rightarrow V(H)$ satisfying $f_{*}(E(G)) \subset E(H)$. Our objects are colorings of r-graphs. An n-coloring of an r-graph G is a map $c: V(G) \rightarrow[n]$ such that if $\left\{v_{1}, \ldots, v_{r}\right\} \in E(G),\left\{c\left(v_{1}\right), \ldots, c\left(v_{r}\right)\right\} \subset[n]$ is not a singleton, where $[n]=\{1,2, \ldots, n\}$. Then one sees that colorings cannot be realized by homomorphisms in general as in the case of graphs. Then generalizing r-graphs, we introduce r-graphs with multiplicities among which colorings are homomorphisms.

2.2. r-Graphs with multiplicities

Recall that the nth symmetric product of a set V is defined as

$$
\mathrm{SP}^{n}(V)=\underbrace{V \times \cdots \times V}_{n} / \Sigma_{n}
$$

where the action of the symmetric group Σ_{n} is given as $\sigma\left(v_{1}, \ldots, v_{n}\right)=\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)$ for $\sigma \in \Sigma_{n}$ and $v_{1}, \ldots, v_{n} \in V$. We denote an element of $\mathrm{SP}^{n}(V)$ by $v_{1} \cdots v_{n}$ for $v_{1}, \ldots, v_{n} \in V$. In [6], Lange used multisets which are naturally identified with elements of symmetric products. We now define r-graphs with multiplicities and their homomorphisms and colorings.

Definition 1.

(1) An r-graph with multiplicities G consists of a finite set $V(G)$ and a subset $E(G)$ of $\operatorname{SP}^{r}(V(G)) \backslash \Delta$, where $\Delta=\{v \cdots v \in$ $\left.\mathrm{SP}^{r}(V(G))\right\} . V(G)$ and $E(G)$ are called the vertex set and the edge set of G, respectively.
(2) Let G, H be r-graphs with multiplicities. A homomorphism $f: G \rightarrow H$ is a map $g: V(G) \rightarrow V(H)$ satisfying $f_{*}(E(G)) \subset$ $E(H)$.
(3) An n-coloring of an r-graph with multiplicities G is a map $c: V(G) \rightarrow[n]$ such that if $v_{1} \cdots v_{r} \in E(G),\left\{c\left(v_{1}\right), \ldots\right.$, $\left.c\left(v_{r}\right)\right\} \subset[n]$ is not a singleton.
(4) The chromatic number $\chi(G)$ of an r-graph with multiplicities G is the minimum integer n such that G admits an n-coloring.

Remark 2. If we allow r-graphs with multiplicities to have diagonal edges in Δ, some r-graphs do not admit any colorings. Since we will study colorings, we have omitted diagonal edges from r-graphs with multiplicities.

Since r elements subsets of a set V may be regarded as elements of $\mathrm{SP}^{r}(V) \backslash \Delta, r$-graphs with multiplicities and their homomorphisms and colorings include r-graphs and their homomorphisms and colorings.

Define an r-graph with multiplicities $\mathcal{K}_{n}^{(r)}$ as the maximum r-graph with multiplicities with n vertices. Namely,

$$
V\left(\mathcal{K}_{n}^{(r)}\right)=[n] \quad \text { and } \quad E\left(\mathcal{K}_{n}^{(r)}\right)=\mathrm{SP}^{r}([n]) \backslash \Delta
$$

It is clear that there is the desired property as follows.
Proposition 3. There is a one-to-one correspondence between n-colorings of an r-graph with multiplicities G and homomorphisms from G to $\mathcal{K}_{n}^{(r)}$.

3. Hom-complexes of r-graphs with multiplicities

3.1. General Hom-complexes

Let us first recall a recipe of general Hom-complexes suggested by Kozlov [11, Definition 9.24]. Let S, T be finite sets. Then a map $S \rightarrow T$ is identified with an element of T^{S}. Let Δ^{T} be the simplex whose vertex set is T. Since T^{S} is the vertex set of a direct product $\prod_{S} \Delta^{T}$, a map $S \rightarrow T$ is identified with a vertex of $\prod_{S} \Delta^{T}$. This simple observation leads us to the following definition of Hom-complexes which may be regarded as spaces of given maps between finite sets.

Definition 4. Let S, T be finite sets and \mathcal{C} be a class of maps from S to T. The Hom-complex $\operatorname{Hom}^{\mathcal{C}}(S, T)$ is the maximum subcomplex of $\prod_{S} \Delta^{T}$ whose vertex set is \mathcal{C}.

Let S, T be finite sets and \mathcal{C} be a class of maps from S to T. Given a map $f: T \rightarrow T^{\prime}$ with T^{\prime} finite and a class \mathcal{D} of maps from S to T^{\prime}. If $f_{*}(\mathcal{C}) \subset \mathcal{D}$, we can define a map of polyhedral complexes

$$
f_{*}: \operatorname{Hom}^{\mathcal{C}}(S, T) \rightarrow \operatorname{Hom}^{\mathcal{D}}\left(S, T^{\prime}\right)
$$

by sending $h \in \mathcal{C}$ to $f \circ h \in \mathcal{D}$. Dually, given a map $g: S^{\prime} \rightarrow S$ and a class \mathcal{E} of maps from S^{\prime} to T satisfying $g^{*}(\mathcal{C}) \subset \mathcal{E}$, we can also define a map of polyhedral complexes

$$
g^{*}: \operatorname{Hom}^{\mathcal{C}}(S, T) \rightarrow \operatorname{Hom}^{\mathcal{E}}\left(S^{\prime}, T\right)
$$

by sending $h \in \mathcal{E}$ to $h \circ g \in \mathcal{C}$.
By definition of the above induced maps, we have the following functoriality.
Proposition 5. Let S, T be finite sets and \mathcal{C} be a class of maps from S to T.
(1) Let T_{1}, T_{2} be finite sets and $\mathcal{D}_{1}, \mathcal{D}_{2}$ be classes of maps from S to T_{1} and T_{2}, respectively. If maps $f_{1}: T \rightarrow T_{1}$ and $f_{2}: T_{1} \rightarrow T_{2}$ satisfy $\left(f_{1}\right)_{*}(\mathcal{C}) \subset \mathcal{D}_{1}$ and $\left(f_{2}\right)_{*}\left(\mathcal{D}_{1}\right) \subset \mathcal{D}_{2}$, the induced maps on Hom-complexes satisfy

$$
\left(f_{2} \circ f_{1}\right)_{*}=\left(f_{2}\right)_{*} \circ\left(f_{1}\right)_{*} .
$$

(2) Let S_{1}, S_{2} be finite sets and $\mathcal{E}_{1}, \mathcal{E}_{2}$ be classes of maps from S_{1} and S_{2} to T, respectively. If maps $g_{1}: S_{1} \rightarrow S$ and $g_{2}: S_{2} \rightarrow S_{1}$ satisfy $\left(g_{1}\right)^{*}(\mathcal{C}) \subset \mathcal{E}_{1}$ and $\left(g_{2}\right)^{*}\left(\mathcal{E}_{1}\right) \subset \mathcal{E}_{2}$, the induced maps on Hom-complexes satisfy

$$
\left(g_{2} \circ g_{1}\right)^{*}=\left(g_{1}\right)^{*} \circ\left(g_{2}\right)^{*}
$$

3.2. Hom-complexes of r-graphs with multiplicities

Let us return to r-graphs with multiplicities. Homomorphisms of r-graphs with multiplicities are maps between vertices satisfying certain properties. Since we are assuming vertex sets of r-graphs with multiplicities to be finite, we can apply the above general construction of Hom-complexes to r-graphs with multiplicities.

Definition 6. Let G, H be r-graphs with multiplicities and \mathcal{C} be the set of homomorphisms from G to H. The Hom-complex $\operatorname{Hom}(G, H)$ is defined as $\operatorname{Hom}^{\mathcal{C}}(V(G), V(H))$.

By Proposition 5, we have the following.
Proposition 7. Let Graph ${ }^{(r)}$ and Poly be the categories of r-graphs with multiplicities and polyhedral complexes, respectively. Then

$$
\left(\operatorname{Graph}^{(r)}\right)^{\mathrm{op}} \times \mathbf{G r a p h}^{(r)} \rightarrow \mathbf{P o l y}, \quad(G, H) \mapsto \operatorname{Hom}(G, H)
$$

is a functor.
By Proposition 3, the Hom-complex $\operatorname{Hom}\left(G, \mathcal{K}_{n}^{(r)}\right)$ for an r-graph with multiplicities G is considered as a space of n-colorings of G. Then $\operatorname{Hom}\left(G, \mathcal{K}_{n}^{(r)}\right)$ is especially important, and hence we here give some easy examples. Let $L_{n}^{(r)}$ denote the line r-graph with n vertices. Namely, $L_{n}^{(r)}$ is defined as

$$
V\left(L_{n}^{(r)}\right)=[n] \quad \text { and } E\left(L_{n}^{(r)}\right)=\{\{i, i+1, \ldots, i+r-1\} \mid i=1, \ldots, n-r+1\} .
$$

Then $\operatorname{Hom}\left(L_{n}^{(3)}, \mathcal{K}_{2}^{(3)}\right)$ for $n=3,4,5$ are given as follows.

$\operatorname{Hom}\left(L_{4}^{(3)}, \mathcal{K}_{2}^{(3)}\right)$

Note that $\operatorname{Hom}\left(L_{n}^{(3)}, \mathcal{K}_{2}^{(3)}\right)$ for $n=3,4,5$ have the same homotopy type. This will be justified below in a more general setting.

Let $C_{n}^{(r)}$ be the cyclic r-graph with n vertices. That is, $C_{n}^{(r)}$ is given as

$$
V\left(C_{n}^{(r)}\right)=\mathbb{Z} / n \quad \text { and } \quad E\left(C_{n}^{(r)}\right)=\{\{i, i+1, \ldots, i+r-1\} \mid i \in \mathbb{Z} / n\}
$$

Let us next consider $\operatorname{Hom}\left(C_{n}^{(3)}, \mathcal{K}_{2}^{(3)}\right)$. Since $C_{3}^{(3)}=L_{3}^{(3)}, \operatorname{Hom}\left(C_{3}^{(3)}, \mathcal{K}_{2}^{(3)}\right)$ is a hexagon. One can easily see that $\operatorname{Hom}\left(C_{4}^{(3)}, \mathcal{K}_{2}^{(3)}\right)$ consists of discrete six points and that $\operatorname{Hom}\left(C_{5}^{(3)}, \mathcal{K}_{2}^{(3)}\right)$ is the outer polygon of $\operatorname{Hom}\left(L_{5}^{(3)}, \mathcal{K}_{2}^{(3)}\right)$. Then their homotopy types are not the same.

3.3. Lower bound for the chromatic number

By functoriality of $\operatorname{Hom}(G, H)$, group actions on G and H induce those on $\operatorname{Hom}(G, H)$. We next consider these group actions for special G. Let $K_{n}^{(r)}$ be the maximum r-graph with n vertices. Namely,

$$
V\left(K_{n}^{(r)}\right)=[n] \quad \text { and } \quad E\left(K_{n}^{(r)}\right)=\mathrm{SP}^{r}([n]) \backslash \Delta_{n}
$$

where $\Delta_{n}=\left\{v_{1} \cdots v_{r} \in \operatorname{SP}^{r}([n]) \mid v_{i} \neq v_{j}\right.$ for $\left.i \neq j\right\}$. Notice that by a cyclic permutation of vertices, the cyclic group C_{n} acts on $K_{n}^{(r)}$.

Lemma 8. If r is a prime, the induced C_{r}-action on $\operatorname{Hom}\left(K_{r}^{(r)}, G\right)$ is free.
Proof. Any face of $\operatorname{Hom}\left(K_{r}^{(r)}, G\right)$ is of the form $\Delta^{S_{1}} \times \cdots \times \Delta^{S_{r}}$ such that each $\left(v_{1}, \ldots, v_{r}\right) \in S_{1} \times \cdots \times S_{r}$ satisfies $v_{1} \cdots v_{r} \in$ $E(G)$. Then in particular, there is no diagonal element (v, \ldots, v) in $S_{1} \times \cdots \times S_{r}$. Let g be a non-trivial element of C_{r}. Then by renumbering if necessary, we have

$$
g \cdot\left(v_{1}, \ldots, v_{r}\right)=\left(v_{r}, v_{1}, \ldots, v_{r-1}\right)
$$

for $\left(v_{1}, \ldots, v_{r}\right) \in S_{1} \times \cdots \times S_{r}$ since r is a prime. Suppose $g\left(\Delta^{S_{1}} \times \cdots \times \Delta^{S_{r}}\right)=\Delta^{S_{1}} \times \cdots \times \Delta^{S_{r}}$. Then we have observed that elements of S_{1} belong to all S_{1}, \ldots, S_{r}, a contradiction.

Using the index of the above free group action [8, Definition 6.2.3], we give a lower bound for the chromatic numbers of r-graphs with multiplicities. We set some notation. Let Γ be a non-trivial finite group (with the discrete topology). Let $E_{n} \Gamma$ be the join of $n+1$ copies of Γ on which Γ acts diagonally. Then this Γ-action on $E_{n} \Gamma$ is free and $E_{n} \Gamma$ has the homotopy type of a wedge of n-dimensional spheres. For a free Γ-complex X, the Γ-index of X is defined as

$$
\operatorname{ind}_{\Gamma} X=\min \left\{n \mid \text { there is a } \Gamma \text {-map } X \rightarrow E_{n} \Gamma\right\} .
$$

Let us list basic properties of ind ${ }_{\Gamma} X$.
Proposition 9. Let Γ be a non-trivial finite group and let X, Y be free Γ-complexes.
(1) If there is a Γ-map from X to Y, we have

$$
\operatorname{ind}_{\Gamma} X \leqslant \operatorname{ind}_{\Gamma} Y
$$

(2) The join $X * Y$ is a free Γ-space by the diagonal Γ-action for which it holds that

$$
\operatorname{ind}_{\Gamma}(X * Y) \leqslant \operatorname{ind}_{\Gamma} X+\operatorname{ind}_{\Gamma} Y+1
$$

(3) It holds that

$$
\operatorname{conn} X+1 \leqslant \operatorname{ind}_{\Gamma} X \leqslant \operatorname{dim} X
$$

Proof. (1) follows from definition and (2) follows from the fact that $E_{n} \Gamma=E_{m} \Gamma * E_{n-m-1} \Gamma$. By the Borsuk-Ulam theorem due to Dold [3], we have $\operatorname{ind}_{\Gamma} E_{n} \Gamma=n$. Then (3) is shown by an easy obstruction argument.

Put $B_{n} \Gamma=E_{n} \Gamma / \Gamma, B \Gamma=\bigcup_{n \geqslant 1} B_{n} \Gamma$ and $E \Gamma=\bigcup_{n \geqslant 1} E_{n} \Gamma$. Then the natural projection $E \Gamma \rightarrow B \Gamma$ is the well-known Milnor's universal principal Γ-bundle. Let $\varphi: X / \Gamma \rightarrow B \Gamma$ be the classifying map of a free Γ-complex X. Then it follows that $\operatorname{ind}_{\Gamma} X$ coincides with the minimum integer n such that φ factors through the inclusion $B_{n} \Gamma \rightarrow B \Gamma$, up to homotopy. By [4, Proposition 8.4], we obtain that ind ${ }_{\Gamma} X$ is equal to the LS-category of the classifying map φ, implying that there are a lot of quantities estimating ind $\Gamma_{\Gamma} X$ other than connectivity and dimension.

We now give a lower bound for the chromatic number of r-graphs with multiplicities.
Theorem 10. Let G be an r-graph with multiplicities. If r is a prime, there holds

$$
\chi(G) \geqslant \frac{\operatorname{ind}_{C_{r}} \operatorname{Hom}\left(K_{r}^{(r)}, G\right)+1}{r-1}+1
$$

Proof. By Lemma 8, $\operatorname{Hom}\left(K_{r}^{(r)}, H\right)$ is a free C_{r}-complex for any r-graph with multiplicities H. Suppose there is an n-coloring of G, or equivalently, a homomorphism $f: G \rightarrow \mathcal{K}_{n}^{(r)}$. By Proposition 7, the induced map $f_{*}: \operatorname{Hom}\left(K_{r}^{(r)}, G\right) \rightarrow \operatorname{Hom}\left(K_{r}^{(r)}, \mathcal{K}_{n}^{(r)}\right)$ is a C_{r}-map, implying

$$
\operatorname{ind}_{C_{r}} \operatorname{Hom}\left(K_{r}^{(r)}, G\right) \leqslant \operatorname{dim} \operatorname{Hom}\left(K_{r}^{(r)}, \mathcal{K}_{n}^{(r)}\right)
$$

by Proposition 9. We then count the dimension of $\operatorname{Hom}\left(K_{r}^{(r)}, \mathcal{K}_{n}^{(r)}\right)$. Any face of $\operatorname{Hom}\left(K_{r}^{(r)}, \mathcal{K}_{n}^{(r)}\right)$ is given as $\Delta^{S_{1}} \times \cdots \times \Delta^{S_{r}}$ such that $S_{1}, \ldots, S_{r} \subset[n]$ and $S_{1} \cap \cdots \cap S_{r}=\emptyset$. The maximum of $\left|S_{1}\right|+\cdots+\left|S_{r}\right|$ is $n r-n$ and then the dimension of $\operatorname{Hom}\left(K_{r}^{(r)}, \mathcal{K}_{n}^{(r)}\right)$ is $n r-n-r=(r-1)(n-1)-1$, completing the proof.

By Proposition 9, we obtain the following.
Corollary 11. Let G be an r-graph with multiplicities. If r is a prime, we have

$$
\chi(G) \geqslant \frac{\operatorname{conn} \operatorname{Hom}\left(K_{r}^{(r)}, G\right)+2}{r-1}+1
$$

3.4. Homotopy lemmas

Let us recall three lemmas from [2, Proposition 3.2] and [11, Theorems 15.24, 15.28] which will be used below. We first set some notation. Let P be a poset. We denote the order complex of P by $\Delta(P)$. That is, $\Delta(P)$ is a simplicial complex whose n-simplices are chains in P of length $n+1$. For $p \in P$, let

$$
P_{\leqslant p}=\{q \in P \mid q \leqslant p\} \quad \text { and } \quad P_{\geqslant p}=\{q \in P \mid q \geqslant p\} .
$$

We first state the famous Quillen fiber lemma.
Lemma 12. ([11, Theorem 15.28]) Let $\varphi: P \rightarrow Q$ be a poset map between finite posets. If $\Delta\left(\varphi^{-1}\left(Q_{\leqslant} q\right)\right)$ is contractible for any $q \in Q$, then $\Delta(\varphi): \Delta(P) \rightarrow \Delta(Q)$ is a homotopy equivalence.

We next state a variant of the Quillen fiber lemma proved in [2, Proposition 3.2].
Lemma 13. ([2, Proposition 3.2]) For a poset map $\varphi: P \rightarrow Q$ between finite posets, suppose the following conditions.
(1) $\Delta\left(\varphi^{-1}(q)\right)$ is contractible for any $q \in Q$.
(2) For any $q \in Q$ and $p \in \varphi^{-1}(Q \geqslant q)$, the poset $\varphi^{-1}(q) \cap P \leqslant p$ has the maximum.

Then $\Delta(\varphi): \Delta(P) \rightarrow \Delta(Q)$ is a homotopy equivalence.
Finally, we recall the generalized nerve lemma which is frequently used in combinatorial algebraic topology. Let \mathcal{A} be a covering of a space X by non-empty subspaces A_{1}, \ldots, A_{n}. Then we associate to \mathcal{A} a poset whose elements are non-empty intersections of A_{1}, \ldots, A_{n} and the order is defined by inclusions. The nerve of \mathcal{A} is by definition the order complex of this poset associated to \mathcal{A}.

Lemma 14. ([11, Theorem 15.24]) Let \mathcal{A} be a covering of a polyhedral complex K by non-empty subcomplexes A_{1}, \ldots, A_{n}. Suppose that for any $i_{1}<\cdots<i_{t}$, there exists k such that $A_{i_{1}} \cap \cdots \cap A_{i_{t}}$ is either empty or $(k-t+1)$-connected. Then K is k-connected if and only if so is the nerve of \mathcal{A}.

3.5. Homotopy type of $\operatorname{Hom}\left(K_{m}^{(r)}, \mathcal{K}_{n}^{(r)}\right)$

As is mentioned above, for an r-graph with multiplicities G, the Hom-complex $\operatorname{Hom}\left(G, \mathcal{K}_{n}^{(r)}\right)$ is especially important. Then we determine the homotopy type of this Hom-complex in the special case $G=K_{m}^{(r)}$.

For $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)$ with non-negative integers t_{1}, \ldots, t_{n}, we define a polyhedral complex $\Delta^{m}(\boldsymbol{t})$ as the subcomplex of $\underbrace{\Delta^{[n]} \times \cdots \times \Delta^{[n]}}_{m}$ whose faces are $\Delta^{S_{1}} \times \cdots \times \Delta^{S_{m}}$ such that $\left|\left\{k \in[m] \mid i \in S_{k}\right\}\right| \leqslant t_{i}$ for $i=1, \ldots, n$. Note that if $\boldsymbol{t}^{\prime}=$ $\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$ satisfies $t_{k}, t_{k}^{\prime} \geqslant m$ for some k and $t_{i}=t_{i}^{\prime}$ for $i \neq k$, then $\Delta^{m}(\boldsymbol{t})=\Delta^{m}\left(\boldsymbol{t}^{\prime}\right)$. As in the proof of Theorem 10 , for $\boldsymbol{s}=(r-1, \ldots, r-1) \in[m]^{n}$, we have

$$
\Delta^{m}(\boldsymbol{s})=\operatorname{Hom}\left(K_{m}^{(r)}, \mathcal{K}_{n}^{(r)}\right)
$$

We determine the homotopy type of $\Delta^{m}(\boldsymbol{t})$ and, consequently, the homotopy type of $\operatorname{Hom}\left(K_{m}^{(r)}, \mathcal{K}_{n}^{(r)}\right)$. For a polyhedral complex K, let $\mathcal{F}(K)$ denote the face poset of K.

Theorem 15. For $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)$ with $0 \leqslant t_{i} \leqslant m, \Delta^{m}(\boldsymbol{t})$ has the homotopy type of a wedge of $\left(t_{1}+\cdots+t_{n}-m\right)$-dimensional spheres.

Proof. Put $|\boldsymbol{t}|=t_{1}+\cdots+t_{n}$. As in the proof of Theorem 10, one can easily deduce that the dimension of $\Delta^{m}(\boldsymbol{t})$ is $|\boldsymbol{t}|-m$. Then we only have to show that $\Delta^{m}(\boldsymbol{t})$ is $(|\boldsymbol{t}|-m-1)$-connected.

For $F \subset[n]$, put $\boldsymbol{t}-F=\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$ such that

$$
t_{i}^{\prime}= \begin{cases}\max \left\{t_{i}-1,0\right\} & i \in F \\ t_{i} & i \notin F\end{cases}
$$

Then if $F \subset F^{\prime} \subset[n]$, we have $\Delta^{\ell}(\boldsymbol{t}-F) \supset \Delta^{\ell}\left(\boldsymbol{t}-F^{\prime}\right)$. We also have that if $|\boldsymbol{t}|-|F|-\ell<0$ for $F \subset[n], \Delta^{\ell}(\boldsymbol{t}-F)=\emptyset$. We now define a functor

$$
\rho: \mathcal{F}\left(\mathrm{sk}_{|\boldsymbol{t}|-m} \Delta^{[n]}\right)^{\mathrm{op}} \rightarrow \text { Poly }
$$

by $\rho(F)=\Delta^{m-1}(\boldsymbol{t}-F)$ and inclusions $\Delta^{m-1}(\boldsymbol{t}-F) \supset \Delta^{m-1}\left(\boldsymbol{t}-F^{\prime}\right)$ for $F \subset F^{\prime} \in \mathcal{F}\left(\mathrm{sk}_{|\boldsymbol{t}|-m} \Delta^{[n]}\right)$, where sk $\mathrm{k}_{k} K$ denotes the k-skeleton of a polyhedral complex K. By definition, $\Delta^{m}(\boldsymbol{t})$ is the union of $\Delta^{F} \times \Delta^{m-1}(\boldsymbol{t}-F)$ for all non-empty $F \in$ $\mathcal{F}\left(\mathrm{sk}_{|\boldsymbol{t}|-m} \Delta^{[n]}\right)$. Namely, we have

$$
\Delta^{m}(\boldsymbol{t})=\operatorname{hocolim} \rho
$$

Since ρ maps every arrow to a cofibration, we get a homotopy equivalence
$\operatorname{hocolim} \rho \xrightarrow{\simeq} \operatorname{colim} \rho$.
See [11, Theorem 15.19]. Notice that colim ρ is covered by subcomplexes $\Delta^{m-1}(\boldsymbol{t}-\{i\})$ for $i \in[n]$ and that $\Delta^{m-1}(\boldsymbol{t}-F) \cap$ $\Delta^{m-1}\left(\boldsymbol{t}-F^{\prime}\right)=\Delta^{m-1}\left(\boldsymbol{t}-F \cup F^{\prime}\right)$ for $F, F^{\prime} \in \mathcal{F}\left(\mathrm{sk}_{|\boldsymbol{t}|-m} \Delta^{[n]}\right)$.

If $|\boldsymbol{t}|=m, \Delta^{m}(\boldsymbol{t})$ is a discrete finite set. Apply Lemma 14 to the above covering of colim ρ inductively on $|\boldsymbol{t}|-m$. Thus we obtain the desired result.

Corollary 16. $\operatorname{Hom}\left(K_{m}^{(r)}, \mathcal{K}_{n}^{(r)}\right)$ has the homotopy type of a wedge of $((r-1) n-m)$-dimensional spheres.

3.6. Vertex deletion and Hom-complexes

In [2, Proposition 5.1], a relation between vertex deletion of G and the homotopy type of $\operatorname{Hom}(G, H)$ is considered when G, H are graphs. We prove analogy for r-graphs with multiplicities here by a quite similar way. In [2, Proposition 5.1], a condition for vertex deletion is given by a neighborhood of a vertex. As for graphs, a neighborhood of a vertex v is considered as both the set of vertices adjacent to v and the set of edges with the end v. As for r-graphs with multiplicities, these two sets cannot be identified for $r \geqslant 3$, and then we define two kinds of neighborhoods of vertices.

Let G be an r-graph with multiplicities. For a vertex v of G, we define $\mathrm{N}(v)$ as the set of $v_{1} \cdots v_{s} \in \mathrm{SP}^{s}(V(G))$ for some $1 \leqslant s \leqslant r-1$ satisfying $\underbrace{v \cdots v}_{r-s} v_{1} \cdots v_{s} \in E(G)$ and $v_{1}, \ldots, v_{s} \neq v$. For $v_{1} \cdots v_{s} \in \operatorname{SP}^{s}(V(G))$ with $1 \leqslant s \leqslant r-1$, we also define $\check{\mathrm{N}}\left(v_{1} \cdots v_{s}\right)$ as the set of vertices w of G satisfying $\underbrace{w \cdots w}_{r-s} v_{1} \cdots v_{s} \in E(G)$.

For a vertex v of G, let $G \backslash v$ denote the maximum r-subgraph with multiplicities of G whose vertex set is $V(G) \backslash v$. We now state our result.

Theorem 17. Let G, H be an r-graph with multiplicities. Suppose that there are vertices u, v of G satisfying $\mathrm{N}(u) \supset \mathrm{N}(v)$. Then the inclusion $i: G \backslash v \rightarrow G$ induces a homotopy equivalence

$$
i^{*}: \operatorname{Hom}(G, H) \stackrel{\simeq}{\leftrightarrows} \operatorname{Hom}(G \backslash v, H)
$$

Proof. As is mentioned above, the proof is quite analogous to [2, Proposition 5.1]. Note that any face of $\operatorname{Hom}(T, H)$ for an r-graph with multiplicities T is identified with a map $V(T) \rightarrow 2^{V(H)} \backslash \emptyset$. For $\eta \in \mathcal{F}(\operatorname{Hom}(G \backslash v, H))$, the fiber $\mathcal{F}\left(i^{*}\right)^{-1}(\eta)$ is the set of $\tau \in \mathcal{F}(\operatorname{Hom}(G, H))$ satisfying

$$
\left.\tau\right|_{V(G) \backslash v}=\eta .
$$

Since

we can define $\nu \in \mathcal{F}\left(i^{*}\right)^{-1}(\eta)$ by

$$
v(v)=\bigcap_{v_{1} \cdots v_{s} \in \mathbb{N}(v)} \bigcap_{\left(w_{1}, \ldots, w_{s}\right) \in \eta\left(v_{1}\right) \times \cdots \times \eta\left(v_{s}\right)} \check{\mathrm{N}}\left(w_{1} \cdots w_{s}\right)
$$

and $\left.\nu\right|_{V(G) \backslash v}=\eta$. By definition, v is the maximum of $\mathcal{F}\left(i^{*}\right)^{-1}(\eta)$, and thus in particular, the order complex $\Delta\left(\mathcal{F}\left(i^{*}\right)^{-1}(\eta)\right)$ is contractible.

Choose $\tau \in \mathcal{F}(\operatorname{Hom}(G, H))$ and $\eta \in \mathcal{F}(\operatorname{Hom}(G \backslash v, H))$ satisfying $\tau(w) \supset \eta(w)$ for $w \in V(G) \backslash v$. Observe that $\mathcal{F}\left(i^{*}\right)^{-1}(\eta) \cap$ $\mathcal{F}(\operatorname{Hom}(G, H)) \leqslant \tau$ consists of $\sigma \in \mathcal{F}(\operatorname{Hom}(G, H))$ satisfying $\sigma(v) \subset \tau(v)$ and $\left.\sigma\right|_{V(G) \backslash v}=\eta$. Then it has the maximum μ such that $\mu(v)=\tau(v)$ and $\left.\mu\right|_{V(G) \backslash v}=\eta$. We have seen that Lemma 13 can be applied to $\mathcal{F}\left(i^{*}\right): \mathcal{F}(\operatorname{Hom}(G, H)) \rightarrow \mathcal{F}(\operatorname{Hom}(G \backslash$ $v, H)$), which completes the proof.

We generalize the above observation on the homotopy type of $\operatorname{Hom}\left(L_{n}^{(3)}, \mathcal{K}_{2}^{(3)}\right)$.
Corollary 18. Let $L_{n}^{(r)}$ be the line r-graph with n vertices as above, and let G be an r-graph with multiplicities. Then for $n \geqslant r$, we have

$$
\operatorname{Hom}\left(L_{n}^{(r)}, G\right) \simeq \operatorname{Hom}\left(L_{r}^{(r)}, G\right) .
$$

Proof. If $n>r$, we have $N(n) \subset \mathbb{N}(n-r)$. Then by Theorem 17, it holds that $\operatorname{Hom}\left(L_{n}^{(r)}, G\right) \simeq \operatorname{Hom}\left(L_{n-1}^{(r)}, G\right)$. Thus the result follows by induction on n.

4. Relation between box-edge complexes and Hom-complexes

4.1. Box-edge complexes

Let G be an r-graph (without multiplicities). In [1], Alon, Frankl and Lovász introduced a simplicial complex $B_{\text {edge }}(G)$ with a C_{r}-action which we call the box-edge complex of G, where we follow the name and the notation of [9]. By an ad-hoc and tricky construction concerning $\mathrm{Bedge}^{(G)}$, they gave a lower bound for the chromatic number of G. We will show that this construction is realized by special Hom-complexes of r-graphs with multiplicities, by which we can reprove and interpret a result of Alon, Frankl and Lovász [1, Proposition 2.1] in a quite natural way.

Let $\pi: V^{n} \rightarrow \mathrm{SP}^{n}(V)$ denote the projection for a set V. Originally, the box-edge complexes were defined only for r-graphs (without multiplicities). However, their definition can be applied to r-graphs with multiplicities straightforwardly.

Definition 19. Let G be an r-graph with multiplicities. The box-edge complex of G is an abstract simplicial complex defined as

$$
\begin{equation*}
\operatorname{Bedge}(G)=\left\{F \subset V(G)^{r} \mid \pi(F) \subset E(G)\right\} \tag{2}
\end{equation*}
$$

on which the cyclic group C_{r} acts as the restriction of the permutation action on $V(G)^{r}$.
Notice here that as is shown in [1, Proposition 2.1], if r is a prime, the C_{r}-action on $\mathrm{B}_{\mathrm{edge}}(G)$ is free.

4.2. Result of Alon, Frankl and Lovász

We prove that the box-edge complex $\mathrm{B}_{\text {edge }}(G)$ is given by a special Hom-complex.
Theorem 20. For an r-graph with multiplicities G, there is a C_{r}-map

$$
\operatorname{Bedge}(G) \rightarrow \operatorname{Hom}\left(K_{r}^{(r)}, G\right)
$$

which is a homotopy equivalence. In particular, if r is a prime, it is a C_{r}-homotopy equivalence.
Proof. The face poset of $\operatorname{Hom}\left(K_{r}^{(r)}, G\right)$ is given as

$$
\begin{equation*}
\mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)=\left\{F_{1} \times \cdots \times F_{r} \mid F_{1}, \ldots, F_{r} \subset V(G) \text { and } \pi\left(F_{1} \times \cdots \times F_{r}\right) \subset E(G)\right\}, \tag{3}
\end{equation*}
$$

where the order is given by inclusions. Then as the face poset of $\mathrm{B}_{\text {edge }}(G)$ is given in (2), we can define a map

$$
\varphi: \mathcal{F}\left(\operatorname{Bedge}^{\text {edg }}(G)\right) \rightarrow \mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right), \quad F \mapsto \pi_{1}(F) \times \cdots \times \pi_{r}(F),
$$

where $\pi_{i}: V(G)^{r} \rightarrow V(G)$ is the i th projection. Then by definition, φ is a C_{r}-map and hence so is $\Delta(\varphi)$.
Take any $F_{1} \times \cdots \times F_{r} \in \mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)$. Then the poset $\varphi^{-1}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)_{\left.\leqslant F_{1} \times \cdots \times F_{r}\right)}\right.$ has the maximum $F_{1} \times \cdots \times F_{r}$, implying that $\Delta\left(\varphi^{-1}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)_{\left.\left.\leqslant F_{1} \times \cdots \times F_{r}\right)\right)}\right.\right.$ is contractible. Thus by Lemma $12, \Delta(\varphi)$ is a homotopy equivalence. The desired map is the composite

$$
\mathrm{B}_{\mathrm{edge}}(G) \xlongequal{\cong} \Delta\left(\mathcal{F}\left(\mathrm{B}_{\text {edge }}(G)\right)\right) \xrightarrow{\Delta(\varphi)} \Delta\left(\mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)\right) \stackrel{\cong}{\rightrightarrows} \operatorname{Hom}\left(K_{r}^{(r)}, G\right),
$$

where the first and the last arrows are the natural homeomorphisms between polyhedral complexes and their barycentric subdivision. Therefore we have established the first assertion. Suppose r is a prime. Then the C_{r}-action on $\operatorname{Hom}\left(K_{r}^{(r)}, G\right)$ is free by Lemma 8. Moreover, the C_{r}-action on $B_{\text {edge }}(G)$ is also free as is noted above. Thus the second assertion follows from the first one.

Remark 21. Recently, Thansri [14, Corollary 4.9] showed that $B_{\text {edge }}(G)$ and $\operatorname{Hom}\left(K_{r}^{(r)}, G\right)$ has the same Σ_{r}-equivariant simple homotopy type for an r-graph (without multiplicities) G.

By Corollary 11, we obtain a result of Alon, Frankl and Lovász [1, Proposition 2.1].

Corollary 22. Let G be an r-graph with multiplicities. If r is a prime, we have

$$
\chi(G) \geqslant \frac{\text { conn } \mathrm{B}_{\mathrm{edge}}(G)+2}{r-1}+1
$$

Alon, Frankl and Lovász [1, §3] proved Corollary 22 by constructing a map from $\mathrm{B}_{\text {edge }}(G)$ into a Euclidean space with a certain C_{r}-action, which seems quite ad-hoc and tricky. Using Hom-complexes, this construction will turn out to be the induced map between Hom-complexes from a given coloring.

Let $\mathrm{M}_{r, n}(\mathbb{R})$ be the space of $r \times n$ real matrices. We let C_{r} act on $\mathrm{M}_{r, n}(\mathbb{R})$ as the cyclic permutation of rows. Let Y be a subspace of $\mathrm{M}_{r, n}(\mathbb{R})$ consisting of matrices ($a_{i j}$) satisfying

$$
\sum_{i=1}^{r} a_{i k}=0, \quad \sum_{j=1}^{n} a_{\ell j}=0 \quad \text { and } \quad \sum_{i, j} a_{i j}^{2} \neq 0
$$

for $k=1, \ldots, n$ and $\ell=1, \ldots, r$. Then Y is also a C_{r}-subspace of $\mathrm{M}_{r, n}(\mathbb{R})$. Let G be an r-graph with multiplicities which admits an n-coloring, say c. Alon, Frankl and Lovász [1, §3] defined a C_{r}-map

$$
\bar{c}: \mathrm{B}_{\text {edge }}(G) \rightarrow \mathrm{M}_{r, n}(\mathbb{R})
$$

by sending a vertex $\left(v_{1}, \ldots, v_{r}\right)$ of $\mathrm{B}_{\text {edge }}(G)$ to a matrix $\sum_{i=1}^{r}\left(E_{i, c(i)}-E_{i, c(i)+1}\right)$, where $E_{i, j}$ is the matrix whose (i, j) entry is 1 and other entries are 0 and $E_{i, n+1}$ means $E_{i, 1}$. They showed that \bar{c} has its image in Y and applied a special generalization of the Borsuk-Ulam theorem to obtain Corollary 22.

We now define a map $g: \operatorname{Hom}\left(K_{r}^{(r)}, \mathcal{K}_{n}^{(r)}\right) \rightarrow \mathrm{M}_{r, n}(\mathbb{R})$ by sending a vertex $\left(i_{1}, \ldots, i_{r}\right) \in[n]^{r}$ to a matrix $\sum_{k=1}^{r}\left(E_{k, i_{k}}-\right.$ $\left.E_{k, i_{k}+1}\right)$. Then one can easily see that g is a C_{r}-map and has is image in Y. By definition, we have the following.

Proposition 23. Let G be an r-graph with multiplicities which has an n-coloring c. Then there is a commutative diagram

where the left vertical arrow is as in Theorem 20.

We close this section by remarking that the complex of an r-graph (without multiplicities) introduced by Kříž [12, §4] is the barycentric subdivision of $\operatorname{Hom}\left(K_{r}^{(r)}, G\right)$ and then essentially the same as the box-edge complex $\mathrm{B}_{\text {edge }}(G)$.

5. Hom_{+}-complexes and colorings

5.1. General Hom_{+}-complexes

In [11, Definition 20.1], Hom -complexes of graphs were introduced which are variants of Hom-complexes. As in the case of Hom-complexes, we can give a general recipe for Hom_{+}-complexes of partial maps between finite sets and will apply it to r-graphs with multiplicities.

Let S, T be finite sets. A partial map from S to T is a map from a non-empty subset of S into T. Then a partial map from S to T is identified with an element of

$$
(T \cup\{\emptyset\})^{S} \backslash(\emptyset, \ldots, \emptyset)
$$

Let K, L be abstract simplicial complexes. Recall that the join $K * L$ is an abstract simplicial complex whose simplices are of the form (σ, τ) where $\sigma \in K, \tau \in L$ and either σ or τ is not empty. Then a partial map from S to T is identified with a vertex of the join $*_{s \in S} \Delta^{T}$. Analogously to Hom-complexes, we are led to the following definition.

Definition 24. Let S, T be finite sets and \mathcal{C} be a class of partial maps from S to T. The Hom ${ }_{+}$-complex $\mathrm{Hom}_{+}^{\mathcal{C}}(S, T)$ is defined as the maximum subcomplex of $*_{s \in S} \Delta^{T}$ whose vertex set is \mathcal{C}.

Analogously to Hom-complexes, we can define induced maps between Hom_{+}-complexes under certain conditions and see that these induced maps satisfy naturality corresponding to Proposition 5.

5.2. Hom_{+}-complexes of r-graphs with multiplicities

Let G, H be r-graphs with multiplicities. A partial homomorphism from G to H is a map from a subset V of $V(G)$ into $V(H)$ which is a homomorphism from the maximum r-subgraph with multiplicities of G whose vertex set is V into H. We now define Hom+-complexes of r-graphs with multiplicities.

Definition 25. Let G, H be r-graphs with multiplicities. The Hom_{+}-complex $\operatorname{Hom}_{+}(G, H)$ is defined as $\operatorname{Hom}_{+}^{\mathcal{C}}(V(G), V(H))$ for the set \mathcal{C} of all partial homomorphisms from G to H.

Similarly to Proposition 7, we have the following.

Proposition 26. Let Graph ${ }^{(r)}$ and Poly be the categories of r-graphs with multiplicities and polyhedral complexes, respectively. Then

$$
\left(\operatorname{Graph}^{(r)}\right)^{\mathrm{op}} \times \operatorname{Graph}^{(r)} \rightarrow \text { Poly }, \quad(G, H) \mapsto \operatorname{Hom}_{+}(G, H)
$$

is a functor.

Then as in the case of Hom-complexes, we can construct group actions on Hom ${ }_{+}$-complexes by those on r-graphs with multiplicities. For instance, the natural C_{r}-action on $K_{r}^{(r)}$ induces a C_{r}-action on $H_{o m}\left(K_{r}^{(r)}, G\right)$ for an r-graph with multiplicities G. Analogously to Lemma 8, we can prove the following.

Lemma 27. Let G be an r-graph with multiplicities. If r is a prime, the C_{r}-action on $\operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right)$ is free.
Using this C_{r}-action, we obtain a lower bound for the chromatic numbers.
Theorem 28. Let G be an r-graph with multiplicities. If r is a prime, it holds that

$$
\chi(G) \geqslant \frac{\operatorname{ind}_{C_{r}} \operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right)+1}{r-1}
$$

Proof. Note that the dimension of $\operatorname{Hom}_{+}\left(K_{r}^{(r)}, \mathcal{K}_{n}^{(r)}\right)$ is $n r-n-1=(r-1) n-1$. Then the result follow quite similarly to Theorem 10.

Corollary 29. Let G be an r-graph with multiplicities. If r is a prime, we have

$$
\chi(G) \geqslant \frac{\text { conn }^{H o m_{+}}\left(K_{r}^{(r)}, G\right)+2}{r-1}
$$

In [6, p. 5], Lange defined a complex $\mathrm{B}_{0}(G)$ for an r-graph with multiplicities and gave a lower bound for the chromatic number of G by using $\mathrm{B}_{0}(G)$. By definition, $\mathrm{B}_{0}(G)$ coincides with $\mathrm{Hom}_{+}\left(K_{r}^{(r)}, G\right)$ and a lower bound in Theorem 28 is the same as the one given by Lange.

As in Section 3, let us consider the homotopy type of $\operatorname{Hom}_{+}\left(K_{m}^{(r)}, \mathcal{K}_{n}^{(r)}\right)$. In the case of Hom -complexes, one can describe $\operatorname{Hom}_{+}\left(K_{m}^{(r)}, \mathcal{K}_{n}^{(r)}\right)$ explicitly by Sarkaria's formula [13, (2.2)] as follows.

Theorem 30. ([13, (2.2)]) We have

$$
\operatorname{Hom}_{+}\left(K_{m}^{(r)}, \mathcal{K}_{n}^{(r)}\right) \cong *_{n} \mathrm{sk}_{r-2} \Delta^{[m]}
$$

In particular, $\operatorname{Hom}_{+}\left(K_{m}^{(r)}, \mathcal{K}_{n}^{(r)}\right)$ has the homotopy type of a wedge of $\binom{m-1}{r-1}^{n}$ copies of $((r-1) n-1)$-dimensional spheres.

5.3. Hierarchy of lower bounds for the chromatic number

Let G be an r-graph with multiplicities. We have obtained so far two kinds of lower bounds for the chromatic number of G, one is given by $\operatorname{Hom}\left(K_{r}^{(r)}, G\right)$ in Theorem 10 and the other is given by $\operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right)$ in Theorem 28. We have also seen that these lower bounds are related to formerly known ones [1, Proposition 2.1], [6, Theorem 3]. We describe $\mathrm{Hom}_{+}\left(K_{r}^{(r)}, G\right)$ by using $\operatorname{Hom}\left(K_{r}^{(r)}, G\right)$ and then get an inequality between the above lower bounds.

Theorem 31. For an r-graph with multiplicities G, there is a C_{r}-map

$$
\operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right) \rightarrow \partial \Delta^{[r]} * \operatorname{Hom}\left(K_{r}^{(r)}, G\right)
$$

which is a homotopy equivalence, where C_{r} acts diagonally on $\partial \Delta^{[r]} * \operatorname{Hom}\left(K_{r}^{(r)}, G\right)$.
Proof. Let P, Q be finite posets. Recall that the join $P * Q$ is a poset whose underlying set is $P \sqcup Q$ and order is defined as $x<y$ if either $x, y \in P$ with $x<y, x, y \in Q$ with $x<y$ or $x \in P, y \in Q$. Then it follows that

$$
\Delta(P * Q)=\Delta(P) * \Delta(Q)
$$

Note that the face poset of $\operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right)$ is the disjoint union of $\mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)$ in (3) and

$$
\left\{F_{1} \times \cdots \times F_{r} \mid F_{1}, \ldots, F_{r} \subset V(G), F_{i}=\emptyset \text { for some } i \text { and } \bigcup_{i=1}^{r} F_{i} \neq \emptyset\right\}
$$

where the order is given by inclusions and $F_{1} \times \cdots \times F_{n}$ with $F_{i_{1}}, \ldots, F_{i_{k}} \neq \emptyset$ and $F_{j}=\emptyset$ for $j \neq i_{1}, \ldots, i_{k}$ means $F_{i_{1}} \times \cdots \times$ $F_{i_{k}}$. We then define a poset map

$$
\varphi: \mathcal{F}\left(\operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right)\right) \rightarrow \mathcal{F}\left(\partial \Delta^{[r]}\right) * \mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)
$$

as

$$
\varphi\left(F_{1} \times \cdots \times F_{r}\right)= \begin{cases}\left\{i_{1}, \ldots, i_{k}\right\} \in \mathcal{F}\left(\partial \Delta^{[r]}\right) & \bigcup_{i \neq i_{1}, \ldots, i_{k}} F_{i}=\emptyset \text { and } F_{i_{1}}, \ldots, F_{i_{k}} \neq \emptyset \\ F_{1} \times \cdots \times F_{r} \in \mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right) & F_{1}, \ldots, F_{r} \neq \emptyset\end{cases}
$$

By definition, φ is a C_{r}-map. For $F_{1} \times \cdots \times F_{r} \in \mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right) \subset \mathcal{F}\left(\partial \Delta^{[r]}\right) * \mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right), \varphi^{-1}\left(\left(\mathcal{F}\left(\partial \Delta^{[r]}\right) *\right.\right.$ $\left.\mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)\right)_{\left.\leqslant F_{1} \times \cdots \times F_{r}\right)}$ has the maximum $F_{1} \times \cdots \times F_{r}$. For $\left\{i_{1}, \ldots, i_{k}\right\} \in \partial \Delta^{[r]} \subset \mathcal{F}\left(\partial \Delta^{[r]}\right) * \mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)$, $\varphi^{-1}\left(\left(\mathcal{F}\left(\partial \Delta^{[r]}\right) * \mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)\right)_{\leqslant\left\{i_{1}, \ldots, i_{k}\right\}}\right)$ has the maximum

$$
F_{1} \times \cdots \times F_{r}, \quad F_{i_{1}}=\cdots=F_{i_{k}}=[n] \quad \text { and } \quad \bigcup_{i \neq i_{1}, \ldots, i_{k}} F_{i}=\emptyset
$$

Then for any $x \in \mathcal{F}\left(\partial \Delta^{[r]}\right) * \mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right), \Delta\left(\left(\mathcal{F}\left(\partial \Delta^{[r]}\right) * \mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)\right)_{\leqslant x}\right)$ is contractible, and it follows from Lemma 12 that $\Delta(\varphi)$ is a homotopy equivalence. Thus the composite

$$
\begin{aligned}
\operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right) & \xlongequal{\cong} \Delta\left(\mathcal{F}\left(\operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right)\right)\right) \xrightarrow{\Delta(\varphi)} \Delta\left(\mathcal{F}\left(\partial \Delta^{[r]}\right) * \mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)\right) \\
& =\Delta\left(\mathcal{F}\left(\partial \Delta^{[r]}\right)\right) * \Delta\left(\mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)\right) \xrightarrow{\cong} \partial \Delta^{[r]} * \operatorname{Hom}\left(K_{r}^{(r)}, G\right)
\end{aligned}
$$

is the desired homotopy equivalence, where the first and the last arrows are the natural homeomorphisms.
Corollary 32. Let G be an r-graph with multiplicities. If r is a prime, there holds

$$
\begin{aligned}
\chi(G) & \geqslant \frac{\operatorname{ind}_{C_{r}} \operatorname{Hom}\left(K_{r}^{(r)}, G\right)+1}{r-1}+1 \geqslant \frac{\operatorname{ind}_{C_{r}} \operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right)+1}{r-1} \geqslant \frac{\operatorname{ind}_{C_{r}} \operatorname{Hom}\left(K_{r}^{(r)}, G\right)+1}{r-1} \\
& \geqslant \frac{\operatorname{conn} \operatorname{Hom}\left(K_{r}^{(r)}, G\right)+1}{r-1}=\frac{\operatorname{conn} \operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right)+1}{r-1}-1 .
\end{aligned}
$$

Proof. The first inequality follows from Theorem 10 and the second from Proposition 9 and Theorem 31. As in the proof of Theorem 31, $\mathcal{F}\left(\operatorname{Hom}\left(K_{r}^{(r)}, G\right)\right)$ is a subposet of $\mathcal{F}\left(\operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right)\right)$ including the C_{r}-actions. Then there is a C_{r}-map $\operatorname{Hom}\left(K_{r}^{(r)}, G\right) \rightarrow \operatorname{Hom}_{+}\left(K_{r}^{(r)}, G\right)$, implying the third inequality by Proposition 9 . The fourth inequality follows from Proposition 9 and the last equality from Theorem 31.

References

[1] N. Alon, P. Frankl, L. Lovász, The chromatic number of Kneser hypergraphs, Trans. Amer. Math. Soc. 298 (1986) 359-370.
[2] E. Babson, D.N. Kozlov, Complexes of graph homomorphisms, Israel J. Math. 152 (2006) 285-312.
[3] A. Dold, Simple proofs of some Borsuk-Ulam results, in: H.R. Miller, S.B. Priddy (Eds.), Northwestern Homotopy Conference, in: Contemp. Math., vol. 19, 1983, pp. 65-69.
[4] I.M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978) 331-348.
[5] J. Jonsson, Simplicial Complexes of Graphs, Lecture Notes in Mathematics, vol. 1928, Springer-Verlag, Berlin, 2008.
[6] C. Lange, On generalized Kneser colourings, preprint.
[7] L. Lovász, Kneser's conjecture, chromatic number and homotopy, J. Comb. Theory, Ser. A 25 (1978) 319-324.
[8] J. Matoušek, Using the Borsuk-Ulam Theorem, Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag, Heidelberg, 2003.
[9] J. Matoušek, G.M. Ziegler, Topological lower bounds for the chromatic number: A hierarchy, Jahresber. Deutsch. Math.-Verein. 106 (2) (2004) 71-90.
[10] D.N. Kozlov, Simple homotopy types of Hom-complexes, neighborhood complexes, Lovász complexes, and atom crosscut complexes, Topology Appl. 153 (14) (2006) 2445-2454.
[11] D.N. Kozlov, Combinatorial Algebraic Topology, Algorithms and Computation in Mathematics, vol. 21, Springer, Berlin, 2008.
[12] I. Kříž, Equivariant cohomology and lower bounds for chromatic numbers, Trans. Amer. Math. Soc. 333 (1992) 567-577;
I. Kříž, A correction to "Equivariant cohomology and lower bounds for chromatic numbers", Trans. Amer. Math. Soc. 352 (2000) $1951-1952$.
[13] K.S. Sarkaria, A generalized Kneser conjecture, J. Comb. Theory, Ser. B 49 (1990) 236-240.
[14] T. Thansri, Simple Σ_{r}-homotopy types of Hom complexes and box complexes assigned to r-graphs, Kyushu J. Math. 66 (2) (2012) $493-508$.

[^0]: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 * Corresponding author.

 E-mail addresses: kiriye@mi.s.osakafu-u.ac.jp (K. Iriye), kishi@math.kyoto-u.ac.jp (D. Kishimoto).

