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Abstract. The conjecture of Bahri, Bendersky, Cohen and Gitler [BBCG] on wedge decom-
positions of polyhedral products of shifted complexes is settled affirmatively. As a corollary,
it is proved that the homotopy type of the complement of a coordinate subspace arrangement
associated with a shifted complex, tensored with Rr for any r ≥ 1, has the homotopy type of
a wedge of spheres.

1. Introduction

Throughout the paper, spaces and maps mean compactly generated weak Hausdorff spaces

having non-degenerate base points and base point preserving maps.

Let us begin with defining polyhedral products. Let K be an abstract simplicial complex

on the index set [m] = {1, . . . ,m}, where we assume that the empty set is a simplex of K for

our convention. Let (X,A) be a collection of pairs of spaces indexed by [m], say (X,A) =

{(Xi, Ai)}i∈[m]. For a simplex σ of K, we put

(X,A)σ = Y1 × · · · × Ym, where Yi =

{
Xi i ∈ σ

Ai i ̸∈ σ.

The polyhedral product (or the generalized moment-angle complex) of (X,A) with respect to

K is defined as

ZK(X,A) =
∪
σ∈K

(X,A)σ,

where the union is taken in X1 × · · · ×Xm.

Polyhedral products (with respect to the boundary of a simplex) first appeared in the work of

Porter [P] in which higher order Whitehead products are defined as the natural maps between

certain polyhedral products. After this work, polyhedral products have been studied in homo-

topy theory along several directions. Recently, in the work of Davis and Januszkiewicz [DJ],

the special polyhedral product ZK(D
2, S1), called the moment-angle complex of K, was found

to play a fundamental role in their theory of, so-called, quasi-toric manifolds (cf. [BP]), which

is a topological analogue of theory of toric varieties, where (D2, S1) is the m-copies of (D2, S1).

Since then, many mathematicians have been studying polyhedral products in a variety of direc-

tions, not only in homotopy theory. See [Ba], [BBCG], [DO], [DS], [FT], [GT], [N], for example.

In this paper, we are particularly interested in wedge decompositions of polyhedral products.

Let us recall two results on wedge decompositions of polyhedral products; one is due to Grbić

and Theriault [GT] and the other is Bahri, Bendersky, Cohen and Gitler [BBCG].

To state the result of Grbić and Theriault [GT], we introduce special simplicial complexes

called shifted complexes.
1
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Definition 1.1. An abstract simplicial complex K is called shifted if its vertex set is given a

total order satisfying for any simplex σ ∈ K and a vertex v ∈ σ, (σ − v) ∪ w is also a simplex

of K whenever a vertex w satisfies v < w.

Remark 1.2. In the above definition of shifted complexes, the order of vertices is opposite to

the one in [BBCG], [GT], which is convenient for us and is just a notational difference.

The most elementary examples of shifted complexes are skeleta of simplices. Other examples

will be given in §5 below. We now state the result of Grbić and Theriault [GT].

Theorem 1.3 (Grbić and Theriault [GT]). If K is a shifted complex, ZK(D
2, S1) has the

homotopy type of a wedge of spheres.

Remark 1.4. The proof of Grbić and Theriault [GT] heavily relies on the fact that S1 has the

classifying space, and then it cannot be applied to a general collection (CX,X) = {(CXi, Xi)}i∈[m].

A few years after the work of Grbić and Theriault [GT], Bahri, Bendersky, Cohen and Gitler

[BBCG] gave another wedge decomposition of a suspension of a polyhedral product, which is a

simple generalization of the standard homotopy equivalence Σ(X×Y ) ≃ ΣX∨ΣY ∨Σ(X∧Y ).

Although they considered a general polyhedral product ZK(X,A), what we are interested in is

the special polyhedral product ZK(CX,X), and then we here state the result for ZK(CX,X)

only. Let us set notation. For a non-empty subset I of the vertex set of a simplicial complex

K, let KI denote the induced subcomplex on I (or the full subcomplex on I), that is, KI is

the maximum subcomplex of K whose vertex set is I. Let |K| denote the geometric realization

of K. For ∅ ̸= J = {j1 < · · · < jk} ⊂ [m] and a collection of spaces X = {Xi}i∈[m], we put

X̂J = Xj1 ∧ · · · ∧Xjk . We now state:

Theorem 1.5 (Bahri, Bendersky, Cohen and Gitler [BBCG]). Let K be a simplicial complex

on the index set [m] and let (CX,X) = {(CXi, Xi)}i∈[m]. Then there is a homotopy equivalence

ΣZK(CX,X) ≃ Σ
∨

∅≠I⊂[m]

|KI | ∗ X̂I .

Since shifted complexes have the homotopy types of wedges of spheres as we will see in

§5 below, Theorem 1.3 seems to be a desuspension of Theorem 1.5 in the special case that

(CX,X) = (D2, S1). Supported by this observation, the following conjecture was posed in

[BBCG].

Conjecture 1.6 (Bahri, Bendersky, Cohen and Gitler [BBCG]). Let K be a simplicial complex

on the index set [m] and let (CX,X) = {(CXi, Xi)}i∈[m]. If K is shifted, then there is a

homotopy equivalence

(1.1) ZK(CX,X) ≃
∨

∅≠I⊂[m]

|KI | ∗ X̂I .

The aim of this paper is to prove:

Theorem 1.7. Conjecture 1.6 is true.
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Let us consider an application of Theorem 1.7 to coordinate subspace arrangements as in

[GT]. Let A be a subspace arrangement in Rm which is a collection of vector subspaces of

Rm. Subspace arrangements have been studied by the interplay of technology in a wide area of

mathematics including algebra, combinatorics, geometry and topology. Among other things,

the topology of the complements of subspace arrangements plays a fundamental role in the

investigation of subspace arrangements. Let M(A) denote the complement Rm − A. Let us

concentrate our discussion on the special subspace arrangements called the coordinate subspace

arrangements. For I ⊂ [m], we put

LI = {(x1, . . . , xm) ∈ (Rr)m |xi = 0 for i ̸∈ I}

which is called the coordinate subspace of (Rr)m, and a collection of such coordinate subspaces

is called a coordinate subspace arrangement. One can assign a coordinate subspace arrangement

to a simplicial complex K on the index set [m] as

Ar
K = {Lσ |σ is a simplex of K}.

By definition, the complementM(Ar
K) is identified with the polyhedral product ZK(Rr,Rr − 0).

Through this identification, when K is a shifted complex, we apply Theorem 1.7 to M(Ar
K)

and determine its homotopy type.

Corollary 1.8. If K is a shifted complex on the index set [m], then ZK(Rr,Rr − 0), and

therefore M(Ar
K), has the homotopy type of a wedge of spheres.

The organization of the paper is as follows. In §2, a sketch of the proof of Theorem 1.7 is

given in order to clarify the crucial points and to motivate the construction below. In §3, we
collect technical lemmas on pushouts which will be used in the following sections. In §4, the
space Zm

K is introduced as a generalization of the polyhedral product ZK(CX,X). It is also

proved that there are two pushouts involving Zm
K by which Zm

K turns out to be constructed

inductively on m. In §5, the topology of shifted complexes is considered, by which the space

Wm
K is introduced in §6. In §6, it is also shown that there are two pushouts involvingWm

K which

are analogous to those involving Zm
K in §3. In §7, a stronger form of Theorem 1.7 is proved by

collecting all the result obtained so far. Corollary 1.8 is also proved in this section.

The authors are grateful to the referee for useful advice and comments.

2. Sketch of the proof

The idea of the proof of Theorem 1.7 is quite simple, but it needs particular constructions

and arguments. So it may be helpful to clarify the crucial points of the proof by giving its

rough sketch. Detailed constructions and arguments will be given in the following sections.

Let K be a simplicial complex on the index set [k + 1,m] = {k + 1, k + 2, . . . ,m} and let L

be its subcomplex on [ℓ+1,m]. We fix a collection of spaces X = {Xi}i∈[m]. We first introduce

the space Zm
K and the map ρmK,L : Zm

L → Zm
K . In the special case k = 0,

Zm
K = ZK(CX,X).
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SupposeK,L are shifted. Then we also introduce the spaceWm
K and the map λm

K,L :Wm
L →Wm

K

by using a property of shifted complexes. Likewise, if k = 0, by definition

Wm
K ≃

∨
∅≠I⊂[m]

|KI | ∗ X̂I .

Then our aim is to construct a homotopy equivalence ϵmK : Zm
K → Wm

K , which is done by

induction on m as follows. Observe that the simplicial complex K is obtained as the union of

the cone of the link of the vertex m, say L′, with the cone point m and the induced subcomplex

K ′ = K[k+1,m−1], that is, K is obtained from a subcomplex with less vertices by adding a new

vertex. This is the direction of our induction. It is proved that Zm
K is given as the pushout of

Zm−1
K′ ×Xm

ρm−1
K′,L′×1

←−−−−− Zm−1
L′ ×Xm

1×ι−−→ Zm−1
L′ × CXm,

where ι : Xm → CXm is the inclusion, and that Wm
K is naturally homotopy equivalent to the

pushout of

Wm−1
K′ ×Xm

λm−1
K′,L′×1

←−−−−− Wm−1
L′ ×Xm

1×ι−−→Wm−1
L′ × CXm.

Then, using these pushouts, the homotopy equivalences ϵm−1
K′ and ϵm−1

L′ are glued together to

produce the homotopy equivalence ϵmK . To do this, the naturality of ϵm−1
K′ with respect to ρm−1

K′,L′

and λm−1
K′,L′ is necessary. Thus the induction must be proceeded by constructing ϵmK as above

together with showing the naturality

(2.1) ϵmK ◦ ρmK,L = λm
K,L ◦ ϵmL

for which constructions and discussions are elaborated.

Remark 2.1. We actually introduce the space Wm
K in order to work only with strictly commu-

tative diagrams instead of homotopy commutative diagrams. Let us here explain the reason

why we restrict ourselves to work only with strictly commutative diagrams. Our reference for

homotopy pushouts is [M]. Suppose there is the following diagram of solid arrows.

A //

��

B

��

��

C //

..

Q
w

��
?

?
?

?

D

If the inner square ABCQ is a homotopy pushout and the outer face ABCD is homotopy

commutative, then there exists a dotted arrow w making the whole diagram commute up to

homotopy. But the problem is that (the homotopy class of) w depends on the commuting

homotopy of the outer face ABCD. If we would like to show the naturality of the form (2.1)

for w, its uniqueness is needed. To this end, all commuting homotopies are imposed to be

constant, i.e. we work only with strictly commutative diagrams. Otherwise, we must keep

track on all homotopies, including higher homotopies, which is impossible in general.
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3. Lemmas on pushouts

In this section, before getting onto the main subject, we collect technical lemmas on pushouts

which will be used below. Let us first consider the product of a pushout and a space. We will

use this lemma without mentioning in what follows.

Lemma 3.1. Suppose there is a pushout

A
f

//

g
��

B

h
��

C
k

// D.

Then the square

A× E
f×1

//

g×1
��

B × E

h×1
��

C × E
k×1

// D × E

is also a pushout.

Proof. Since spaces are compactly generated and weak Hausdorff as is remarked in the beginning

of the paper, the exponential law holds as

map(X × E, Y ) ∼= map(X,map(E, Y )),

i.e. the functor −× E is a left adjoint. Since left adjoint functors commute with colimits, the

proof is completed. □

The following two lemmas concern pushouts which are also homotopy pushouts. The first

one computes special such pushouts.

Lemma 3.2. Define Q as a pushout

(3.1) A× (B ∨ C)
ι×(1∨1)

//

1×(1∨∗)
��

CA× (B ∨ C)

��

A× (B ∨D) // Q,

where ι : A→ CA is the inclusion. Then there is a homotopy equivalence

Q
≃−→ B ∨ Σ(A ∧ C) ∨ (A⋉D)

which is natural with respect to A,B,C,D.

Proof. Embed the pushout

A
ι
// CA

A
ι
// CA
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into (3.1). Taking the quotient of each corner, the resulting square

A⋉ (B ∨ C)
ι⋉(1∨1)

//

1⋉(1∨∗)
��

CA⋉ (B ∨ C)

��

A⋉ (B ∨D) // Q/CA

is also a pushout since colimits commute with colimits, where X ⋉ Y denotes the half smash

product X × Y/X × ∗. Then since half smash products are distributive with respect to wedge

sums as X ⋉ (Y ∨ Z) = (X ⋉ Y ) ∨ (X ⋉ Z), we get

Q/CA = (CA⋉B) ∨R ∨ (A⋉D),

where R is defined as the pushout

A⋉ C
ι⋉1

//

��

CA⋉ C

��

∗ // R.

One easily sees that R = Σ(A ∧ C) and then the projection

(3.2) Q/CA→ B ∨ Σ(A ∧ C) ∨ (A⋉D)

is a homotopy equivalence which is natural with respect to A,B,C,D.

Given neighborhoods of base points of B,C,D, one can define a neighborhood of CA in

Q by restricting (3.1) to these neighborhoods. Moreover, if the neighborhoods of base points

in B,C,D satisfy the conditions for NDR pairs, then so does the above neighborhood of CA

in Q also. Then since B,C,D have non-degenerate base points, the inclusion CA → Q is

a cofibration, implying the projection Q → Q/CA is a homotopy equivalence. The desired

homotopy equivalence is the composite of this projection and (3.2). □

The next lemma shows that one can produce a new homotopy equivalence by gluing together

homotopy equivalences along pushouts which are also homotopy pushouts. The result is classical

and well known so that the proof is skipped, see [Br].

Lemma 3.3. Suppose there is a commutative diagram

A1

h1

��

A2
oo

f
//

h2

��

A3

h3

��

B1 B2
oo

g
// B3

in which f, g are cofibrations and h1, h2, h3 are homotopy equivalences. If A and B are pushouts

of the first and the second rows, then the canonical map A→ B is also a homotopy equivalence.

4. The space Zm
K

In this section, we introduce the space Zm
K and consider two pushouts involving Zm

K as is

mentioned in §2.
From now on, the following notation is fixed.
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• a collection of spaces {Xi}i∈[m]

• a simplicial complex K on the index set [k + 1,m].

• subcomplexes L ⊃ L′ of K on the index sets [ℓ+ 1,m] ⊃ [ℓ′ + 1,m]

(Elements of [k] are sometimes called the ghost vertices of K.)

If we put (CX,X) = {(CXi, Xi)}i∈[k+1,m], the polyhedral product ZK(CX,X) can be defined

as above. Let us define the space Zm
K as

Zm
K = X [k] ×ZK(CX,X),

where for I = {i1 < · · · < ik} ⊂ [m], XI denotes the product Xi1 × · · · × Xik . In particular,

Zm
∅ = X [m] and for k = 0,

Zm
K = ZK(CX,X).

Let us denote the inclusion Zm
L → Zm

K by ρmK,L. Then it holds that

ρmK,L′ = ρmK,L ◦ ρmL,L′

where L′ can be the empty set. If K,L are clear in the context, ρmK,L is abbreviated by ρm.

Let us consider pushouts involving Zm
K . We first set some notation. For a vertex v of K, let

linkK(v) and starK(v) denote the link and the star of v, respectively. The induced subcomplex

K[k+1,m]−v is also denoted by restK(v), following the notation of [GT].

Proposition 4.1. There are two pushouts

Zm−1
linkK(m) ×Xm

1×ι
//

ρm−1×1

��

Zm−1
linkK(m) × CXm

incl

��

Zm−1
restK(m) ×Xm

incl
// Zm

K

and X [m] incl
//

ρK,∅

��

X [k−1] × CXk ×X [k+1,m]

incl
��

Zm
K

ρmK⊔k
// Zm

K⊔k.

Proof. Observe that the pushout of simplicial complexes

(4.1) linkK(m) //

��

starK(m)

��

restK(m) // K

induces a pushout of spaces

(4.2) Zm−1
linkK(m) ×Xm

incl
//

ρm−1×1

��

Zm
starK(m)

ρm

��

Zm−1
restK(m) ×Xm

incl
// Zm

K .

Since every maximal simplex of starK(m) contains the vertex m, it holds that

Zm
starK(m) = Zm−1

linkK(m) × CXm

and that the inclusion Zm−1
linkK(m)×Xm → Zm

starK(m) is identified with 1×ι. Then the first pushout

is obtained.
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The second pushout is induced from the pushout of simplicial complexes

∅ //

��

k

��

K // K ⊔ k.

□

5. Topology of shifted complexes

Although combinatorial properties of shifted complexes have been studied extensively, their

topological properties is rarely found in literature. Then in this section, we record elemen-

tary topological properties of shifted complexes. Using these topological properties of shifted

complexes, the space Wm
K will be defined in the next section.

To help understand shifted complexes, let us first give some examples.

Example 5.1. Any skeleton of a simplex is shifted by any order on vertices.

Example 5.2. The square graph is not shifted by any order on vertices.

Example 5.3. In the above two examples, the shiftiness does not depend on the order of

vertices. However, by definition, the shiftiness depends on the order on vertices in general.

Consider two 1-dimensional simplicial complexes on [4] whose edge sets are

{{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} and {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}}.

These two simplicial complexes are isomorphic; a square with one diagonal edge. However, the

former is shifted but not the latter.

Let us consider a subcomplex of a shifted complex. Of course, not every subcomplex of a

shifted complex is a shifted complex. For example, the square graph is not shifted by any order

on vertices as in Example 5.2 and it is a subcomplex of the 3-simplex which is shifted by any

order on vertices. Notice that since every simplicial complex is a subcomplex of a simplex,

the above third example implies that there is a subcomplex of a shifted complex which is not

shifted by the induced order but is shifted by an alternative order. We are now interested in

subcomplexes of a shifted complex which are shifted by the induced order. We here give two

examples of such subcomplexes of a shifted complex.

Example 5.4. Any induced subcomplex of a shifted complex is shifted by the induced order.

In particular, if K is shifted, for any vertex v of K, restK(v) is shifted by the induced order.

Example 5.5. If K is shifted, starK(m) is shifted by the induced order. Then since linkK(m)

is an induced subcomplex of starK(m) and is included in restK(m), linkK(m) is a subcomplex

of restK(m) which is shifted by the induced order. Notice that if v < m, starK(v) may not be

shifted by the induced order.

Let us start to consider the topology of shifted complexes. We first look at the connected

components, by which the construction of the homotopy equivalence of Theorem 1.7 is divided

into two cases; the connected component of the maximum vertex m of K and the remaining

part.
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Proposition 5.6. If K is shifted and K0 is the connected component of the vertex m, then it

holds that for some k0 ∈ [k + 1,m],

V (K0) = V (starK(m)) = [k0,m]

and that the remaining part K−K0 is discrete, where V (A) denotes the vertex set of a simplicial

complex A.

Proof. If K0 = {m}, the proposition is trivial. Suppose K0 ̸= {m}. Let k0 be the minimum

vertex of K0. Then k0 is adjacent to some vertex, say v, implying that v is adjacent to m since

v ≤ m. This also implies that any w ∈ [k0,m] is adjacent to m. Then the first assertion is

proved. Take any vertex u of K −K0. If u is adjacent to some vertex, it is also adjacent to m

as above, a contradiction. Then u is isolated, implying the second assertion. □

We next give a convenient description of the homotopy types of shifted complexes, which

enables us to work only with strictly commutative diagrams as is remarked in §2. Let us set

notation. Put

m(K) = {simplices of restK(m) which are maximal in K}

and

K = |K|/|starK(m)|,
where m(K) is not a simplicial complex, just a collection of simplices. Notice that since

|starK(m)| is contractible, the projection |K| → K is a homotopy equivalence. Let αK,L denote

the map L→ K induced from the inclusion L→ K. It is clear that

(5.1) αK,L′ = αK,L ◦ αL,L′ .

Proposition 5.7. Suppose K,L are shifted. Then there is an identification

K =
∨

σ∈m(K)

Sdimσ

through which the map αK,L is identified with a wedge of the identity map of
∨

σ∈m(L)∩m(K)

Sdimσ

and the constant map on the remaining summand.

Proof. For any simplex σ ofK, ∂σ is included in starK(m) by the definition of shifted complexes.

Then |K| − |starK(m)| is the disjoint union of the interior of maximal simplices of K which do

not contain the vertex m, completing the proof. □

Let us give an alternative description of K which is convenient to construct K inductively

by the pushout corresponding to (4.1) as is seen in the proof of Proposition 6.1 below. Set

m1(K) = {σ ∈ K |m− 1 ̸∈ σ and σ ∪ (m− 1) ∈ m(K)},
m2(K) = {τ ∈ m(K) |m− 1 ̸∈ τ}.

It will be useful in the proof of Proposition 6.1 below to write m1(K) and m2(K) by using

m(linkK(m)) and m(restK(m)): if we put m0(K) = m(linkK(m)) ∩m(restK(m)), we have

m1(K) = m(linkK(m))−m0(K) and m2(K) = m(restK(m))−m0(K).
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Proposition 5.8. Suppose K,L are shifted. Then there is an identification

K =
∨

σ∈m1(K)

ΣSdimσ ∨
∨

τ∈m2(K)

Sdim τ

through which the map αK,L is identified with the restriction of ΣαlinkK(m),linkL(m)∨αrestK(m),restL(m).

Proof. By definition, we have

m(K) = m2(K) ⊔ {σ ∪ (m− 1) |σ ∈ m1(K)}.

Then the proof is completed by Proposition 5.7. □

We close this section with an observation about the dimension of simplices in m2(K).

Proposition 5.9. If K is connected, then dimσ > 0 whenever σ ∈ m2(K).

Proof. By Proposition 5.6, we have V (linkK(m)) = V (restK(m)). Then if σ ∈ m(restK(m))

satisfies dim σ = 0, σ must belong to m(linkK(m)) also. This completes the proof. □

6. The space Wm
K

In this section, we introduce the space Wm
K and consider two pushouts involving Wm

K which

correspond to those in Proposition 4.1. The map θmK(i) is also introduced which will be used

to prove the naturality (2.1).

When K is shifted, define the space Wm
K as

Wm
K = X [k] ×

∨
∅≠I⊂[k+1,m]

ΣKI ∧ X̂I .

Then since KI ≃ |KI |, if k = 0,

Wm
K ≃

∨
∅≠I⊂[m]

|KI | ∗ X̂I .

Let δi denote the composite

(6.1) Xi ⋉ ΣA
1⋉∇−−→ Xi ⋉ (ΣA ∨ ΣA) = (Xi ⋉ ΣA) ∨ (Xi ⋉ ΣA)

proj−−→ ΣA ∨ (Xi ∧ ΣA)

which is a homotopy equivalence, where X ⋉ Y is the half smash product X × Y/X × ∗ as

above and ∇ is the comultiplication of ΣA. We now define the map

(6.2) π(ℓ, k) : X [ℓ] × ΣA→ X [k] ×
∨

J⊂[k+1,ℓ]

ΣA ∧ X̂J

by applying 1× δℓ ◦πℓ, . . . , 1× δk+1 ◦πk+1 in turn, where π : Xi×Y → Xi⋉Y is the projection.

When K,L are shifted, the map λm
K,L :Wm

L →Wm
K is defined as the composite

Wm
L = X [ℓ] ×

∨
∅≠I⊂[ℓ+1,m]

ΣLI ∧ X̂I π(ℓ,k)−−−→ X [k] ×
∨

∅≠I⊂[ℓ+1,m]
J⊂[k+1,ℓ]

ΣLI ∧ X̂I∪J

1×∨(αKI∪J ,LI
∧1)

−−−−−−−−−−→ X [k] ×
∨

∅≠H⊂[k+1,m]

ΣKH ∧ X̂H =Wm
K .
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The definition of λm
K,L is actually motivated by Lemma 3.2. Note, in particular, that the map

λm
K,∅ is the composite

Wm
∅ = X [m] proj−−→ X [k] incl−−→Wm

K .

It follows from (5.1) that

(6.3) λm
K,L′ = λm

K,L ◦ λm
L,L′ ,

where L′ can be the empty set.

Let us consider two pushouts involving Wm
K corresponding to those in Proposition 4.1. Let

us first consider the left one in Proposition 4.1. When K is shifted, define Wm

K as the pushout

(6.4) Wm−1
linkK(m) ×Xm

1×ι
//

λm−1×1

��

Wm−1
linkK(m) × CXm

��

Wm−1
restK(m) ×Xm

//Wm

K ,

where we often abbreviate λm
K,L by λm when K,L are clear in the context. If L is also shifted,

we also define λ̄m
K,L :Wm

L →W
m

K as the induced map from a commutative diagram

Wm−1
restL(m) ×Xm

λm−1×1
��

Wm−1
linkL(m) ×Xm

λm−1×1
��

1×ι
//

λm−1×1
oo Wm−1

linkL(m) × CXm

λm−1×1
��

Wm−1
restK(m) ×Xm Wm−1

linkK(m) ×Xm
1×ι

//
λm−1×1

oo Wm−1
linkK(m) × CXm.

By (6.3) and the universality of pushouts, if L′ is shifted, it holds that

λ̄m
K,L′ = λ̄m

K,L ◦ λ̄m
L,L′ ,

where L′ can be the empty set.

Proposition 6.1. Suppose K,L are connected and shifted. Then there is a homotopy equiva-

lence

φ̄m
K :Wm

K
≃−→Wm

K

satisfying φ̄m
K ◦ λ̄m

K,L = λm
K,L ◦ φ̄m

L .

Proof. Note first that since K is connected, V (linkK(m)) = V (restK(m)) = [k + 1,m − 1] by

Proposition 5.6. Put

WK(i) =
∨

∅̸=I⊂[k+1,m−1]

∨
σ∈mi(KI∪m)

ΣSdimσ ∧ X̂I

for i = 0, 1, 2. Since linkKI∪m
(m) = (linkK(m))I and restKI∪m

(m) = (restK(m))I for ∅ ̸= I ⊂
[k + 1,m− 1], there are identifications

Wm−1
linkK(m) = X [k] × (WK(0) ∨WK(1)) and Wm−1

restK(m) = X [k] × (WK(0) ∨WK(2)).

Through these identifications, one gets

λm−1
restK(m),linkK(m) = 1X[k] × (1WK(0) ∨ ∗)
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by Proposition 5.7. Then Lemma 3.2 can be applied to the pushout (6.4) and hence a homotopy

equivalence

(6.5) ϕ̄m
K :Wm

K
≃−→ X [k] × (WK(0) ∨ Σ(WK(1) ∧Xm) ∨ (WK(2)⋊Xm))

is obtained, which is natural with respect to WK(i) for i = 0, 1, 2.

Since K is connected, it follows from Proposition 5.6 that KI∪m is connected for any ∅ ̸= I ∈
[k + 1,m − 1]. Then by Proposition 5.9, one has dim σ > 0 for any σ ∈ m2(KI∪m), implying

that Σ−1WK(2) =
∨

∅̸=I⊂[k+1,m−1]

∨
σ∈m2(KI∪m) S

dimσ∧X̂I is a suspension. Using this suspension

parameter, one gets a homotopy equivalence

Σ−1WK(2)⋉Xm
≃−→ Σ−1WK(2) ∨ (Σ−1WK(2) ∧Xm).

Hence one obtains a homotopy equivalence

X [k] × (WK(0) ∨ Σ(WK(1) ∧Xm) ∨ (WK(2)⋊Xm))
≃−→ X [k] × (WK(0) ∨ Σ(WK(1) ∧Xm) ∨WK(2) ∨ (WK(2) ∧Xm))

which we denote by δ′m.

By Proposition 5.7,

WK(0) ∨WK(2) =
∨

∅≠I⊂[k+1,m−1]

ΣKI ∧ X̂I

and by Proposition 5.8,

Σ(WK(1) ∧Xm) ∨ (WK(2) ∧Xm) =
∨

∅≠I⊂[k+1,m−1]

ΣKI∪m ∧ X̂I∪m.

Then it follows that

(6.6) Wm
K = X [k] × (WK(0) ∨ Σ(WK(1) ∧Xm) ∨WK(2) ∨ (WK(2) ∧Xm)).

Thus we define the homotopy equivalence as

φ̄m
K = δ′m ◦ ϕ̄m

K .

Our remaining task is to show the naturality of φ̄m
K . By definition, the map λm−1

linkK(m),linkL(m)

is described as the composite

Wm−1
linkL(m) = X [ℓ] × (WL(0) ∨WL(1))

π(ℓ,k)−−−→ X [k] ×
∨

J⊂[k+1,ℓ]

((WL(0) ∧ X̂J) ∨ (WL(1) ∧ X̂J))

1×(α0∨α1)−−−−−−→ X [k] × (WK(0) ∨WK(1)) =Wm−1
linkK(m),

where π(ℓ, k) is as in (6.2) and αi :
∨

J⊂[k+1,ℓ]WL(i) ∧ X̂J → WK(i) is given by the restriction

of α(linkK(m))I⊔J ,(linkL(m))I for ∅ ≠ I ⊂ [ℓ + 1,m]. The same is true for λm−1
restK(m),restL(m). Then if

we define the map

µm
K,L : X [ℓ] × (WL(0) ∨ Σ(WL(1) ∧Xm) ∨ (WL(2)⋊Xm))

→ X [k] × (WK(0) ∨ Σ(WK(1) ∧Xm) ∨ (WK(2)⋊Xm))
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as the composite (1×(α0∨Σ(α1∧1)∨(α2⋊1)))◦π(ℓ, k), then by the naturality of the homotopy

equivalence of Lemma 3.2, it holds that

ϕ̄m
K ◦ λ̄m

K,L = µm
K,L ◦ ϕ̄m

L .

On the other hand, by Proposition 5.8, λm
K,L is given as the composite (1 × (α0 ∨ Σ(α1 ∧ 1) ∨

α2 ∨ (α2 ∧ 1))) ◦ π(ℓ, k). Since the suspension parameters used by δ′m above and by δi in the

definition of µm
K,L are distinct, they commute, implying

(6.7) δ′m ◦ µm
K,L = λm

K,L ◦ δ′m.

Thus, summarizing, we have obtained

φ̄m
K ◦ λ̄m

K,L = δ′m ◦ ϕ̄m
K ◦ λ̄m

K,L = δ′m ◦ µm
K,L ◦ ϕ̄m

L = λm
K,L ◦ δ′m ◦ ϕ̄m

L = λm
K,L ◦ φ̄m

L

which is the desired naturality. □

Let us next consider the pushout involvingWm
K corresponding to the right one in Proposition

4.1. When K is shifted, define Ŵm
K⊔k as the pushout

(6.8) X [m] incl
//

λm
K,∅

��

X [k−1] × CXk ×X [k+1,m]

��

Wm
K

// Ŵm
K⊔k.

When L is also shifted and ℓ = k, the map λ̂m
K⊔k,L⊔k : Ŵm

L⊔k → Ŵm
K⊔k is defined as the induced

map from a commutative diagram

Wm
L

λm
K,L

��

X [m]
λm
L,∅

oo
incl

// X [k−1] × CXk ×X [k+1,m]

Wm
K X [m]

λm
K,∅

oo
incl

// X [k−1] × CXk ×X [k+1,m].

Then, analogously to λ̄m
K,L above, if L′ is also shifted and ℓ′ = k, it holds that

λ̂m
K⊔k,L′⊔k = λ̂m

K⊔k,L⊔k ◦ λ̂m
L⊔k,L′⊔k.

Proposition 6.2. If K,L are shifted and k = ℓ, there is a homotopy equivalence

φ̂m
K⊔k : Ŵm

K⊔k
≃−→Wm

K⊔k

satisfying φ̂m
K⊔k ◦ λ̂m

K⊔k,L⊔k = λm
K⊔k,L⊔k ◦ φ̂m

L⊔k. Moreover, the composite

Wm
K

ν−→ Ŵm
K⊔k

φ̂m
K⊔k−−−→Wm

K⊔k

coincides with the map λm
K⊔k,K, where ν is is the bottom arrow of (6.8).

Proof. Let us first define a homotopy equivalence δ̂i as the composite

Σ(A×Xi)
(1×∇)◦∇−−−−−→

3∨
Σ(A×Xi)

proj−−→ ΣA ∨ ΣXi ∨ Σ(A ∧Xi),



14 KOUYEMON IRIYE AND DAISUKE KISHIMOTO

where ∇ is the comultiplication. Using δ̂i, let us next define a homotopy equivalence

(6.9) δm(i) : ΣXi ∧X [i+1,m] ≃−→
∨

∅≠I⊂[i+1,m]

Σ(Î ⊔ i) ∧ X̂I⊔i,

where Î denotes the maximum of I and the base point of the two points set Î ⊔ i is Î. Applying
δ̂m, δ̂m−1, . . . , δ̂i+2 to ΣXi ∧X [i+1,m] in turn, one gets a homotopy equivalence

ΣXi ∧X [i+1,m] ≃−→
∨

∅≠I⊂[i+1,m]

ΣX̂I⊔i.

By identifying ΣX̂I⊔i with Σ(Î ⊔ i) ∧ X̂I⊔i, δm(i) is defined.

Applying Lemma 3.2, there is a natural homotopy equivalence

ϕ̂m
K⊔k : Ŵ

m
K⊔k

≃−→ X [k−1] × (Σ(Xk ∧X [k+1,m]) ∨ (Xk ⋉
∨

∅̸=I⊂[k+1,m]

ΣKI ∧ X̂I)).

Consider the homotopy equivalence

1× (δm(k) ∨ δk) : X
[k−1] × (Σ(Xk ∧X [k+1,m]) ∨ (Xk ⋉

∨
∅̸=I⊂[k+1,m]

ΣKI ∧ X̂I))

≃−→ X [k−1] ×
∨

∅̸=I⊂[k+1,m]

(Σ(KI ∧ X̂I) ∨ Σ(KI ∨ (Î ⊔ k)) ∧ X̂I⊔k).

Since KI ∨ (Î ⊔ k) = KI⊔k, the right hand side is identified with Wm
K⊔k, and then we define the

homotopy equivalence as

φ̂m
K⊔k = (1× (δm(k) ∨ δk)) ◦ ϕ̂m

K⊔k.

We next prove the naturality of φ̂m
K⊔k. By the naturality of ϕ̂m

K⊔k,

(1× (1 ∨ (1⋉ λm
K,L))) ◦ ϕ̂m

L⊔k = ϕ̂m
K⊔k ◦ λ̂m

K⊔k,L⊔k.

On the other hand, it clearly holds that

(1× (δm(k) ∨ δk)) ◦ (1× (1 ∨ (1⋉ λm
K,L))) = λm

K⊔k,L⊔k ◦ (1× (δm(k) ∨ δk)).

Then, combining the above two equalities together with the definition of φ̂m
K⊔k, the naturality

of φ̂m
K⊔k is proved.

The last assertion follows from the construction of φ̂m
K⊔k and of the homotopy equivalence of

Lemma 3.2. Thus the proof is completed. □

Suppose K is shifted. Let us further investigate the pushout (6.8) by describing its right

arrow X [k−1] ×CXk ×X [k+1,m] → Ŵm
K⊔k which we denote by ϑK . For i ∈ [k + 1,m− 1], define

the map θmK(i) : X
[i−1] × CXi ×X [i+1,m] →Wm

K as

θmK(i) = λm
K,[i,m] ◦ φ̂m

[i,m] ◦ ϑ[i+1,m]

which will be used to prove the naturality (2.1) in the next section, where [j,m] means the

discrete simplicial complex on the index set [j,m]. Define θmK(m) also as the composite

X [m−1] × CXm
proj−−→ X [k] incl−−→Wm

K .

We here list some properties of θmK(i).

Proposition 6.3. If K,L are shifted, the map θmK(i) has the following properties.
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(1) For i ∈ [k + 1,m], θmK(i)|X[m] = λm
K,∅.

(2) For i ∈ [ℓ+ 1,m], θmK(i) = λm
K,L ◦ θmL (i).

(3) The composite

X [k−1] × CXk ×X [k+1,m] ϑK−−→ Ŵm
K⊔k

φ̂m
K⊔k−−−→Wm

K⊔k

coincides with θmK⊔k(k).

Proof. (1) and (2) immediately follow from the definition of θmK(i). (3) follows from the natu-

rality of φ̂m
K in Proposition 6.2. □

Let us consider another naturality of φ̂m
K . When L is also shifted and k < ℓ, the map

νm
K,L⊔ℓ : ŴL⊔ℓ →Wm

K is defined as the induced map from a commutative diagram

Wm
L

λm
K,L

��

X [m]
λm
L,∅

oo
incl

//

λm
K,∅

��

X [ℓ−1] × CXℓ ×X [ℓ+1,m]

θmK (ℓ)

��

Wm
K Wm

K Wm
K .

By Proposition 6.3 (2), if L,L′ are shifted and k ≤ ℓ < ℓ′, then

(6.10) νm
K,L′⊔ℓ′ = λm

K,L ◦ νm
L,L′⊔ℓ′ .

Corollary 6.4. If K,L are shifted and k < ℓ, then νm
K,L⊔ℓ = λm

K,L⊔ℓ ◦ φ̂m
L⊔ℓ.

Proof. By Proposition 6.3 (3), we have νm
L⊔ℓ,L⊔ℓ = φ̂m

L⊔ℓ. Then by (6.10), it holds that

νm
K,L⊔ℓ = λm

K,L⊔ℓ ◦ νm
L⊔ℓ,L⊔ℓ = λm

K,L⊔ℓ ◦ φ̂m
L⊔ℓ,

completing the proof. □

Let us next consider the relation of θmK(i) and the pushout (6.4). To this end, we give an

explicit description of θmK(i). Put

Sm(i, j) = X [j−1] ×
∨

∅̸=I⊂[i+1,m]
J⊂[j,i−1]

Σ(Î ⊔ i) ∧ X̂I⊔J⊔i

for j ≤ i ∈ [m], where Î is the maximum of I and the base point of the two points set Î ⊔ i

is Î as in the proof of Proposition 6.2. Notice that Sm(i, j) is a wedge summand of Wm
[j,m] and

that the restriction of λm
[j′,m],[j,m] to Sm(i, j) factors through Sm(i, j′) ⊂ Wm

[j′,m] for j ≥ j′. Let

δm(i, j) be the composite

X [i−1] × CXi ×X [i+1,m] proj−−→ X [i−1] × Σ(Xi ∧X [i+1,m])
δm(i)−−−→ Sm(i, i)→ Sm(i, j),

where the last arrow is the restriction of λm
[j,m],[i,m]. For i ∈ [k+1,m− 1], put τmK (i) : Sm(i, k+

1)→Wm
K to be the restriction of λm

K,[k+1,m]. By the definition of θmK(i) and the construction of

the homotopy equivalence of Lemma 3.2, one sees that

θmK(i) = τmK (i) ◦ δm(i, k + 1)

for i ∈ [k + 1,m− 1]. Let us now state the relation of θmK(i) and the pushout (6.4).



16 KOUYEMON IRIYE AND DAISUKE KISHIMOTO

Proposition 6.5. If K is connected and shifted, for i ∈ [k + 1,m− 1], the composite

X [i−1] × CXi ×X [i+1,m−1] ×Xm
1×κi×1×1−−−−−−→ X [i−1] × CXi ×X [i+1,m−1] ×Xm

θm−1
restK (m)

(i)×1

−−−−−−−−→Wm−1
restK(m) ×Xm

µ−→Wm

K

φ̄m
K−−→Wm

K

coincides with θmK(i), where κi : CXi → CXi pinches the upper half of CXi and µ is the bottom

arrow of (6.1).

Proof. By the construction of the homotopy equivalence of Lemma 3.2, if k + 1 = m− 1, then

the proposition holds for θmK(k + 1). Suppose k + 1 < m − 1 and take k + 1 ≤ i < m. For

j = 1, 2, 3, let WK(j) be as in the proof of Proposition 6.1. By Proposition 5.6 and 5.7, τmK (i)

factors through X [k]×
∨

I ΣKI∧X̂I ⊂ Wm
K , where I runs over all non-empty subsets of [k+1,m]

such that KI is discrete. Then it follows from Proposition 5.9 and (6.6) that there is a map

f : Sm−1(i, k + 1)→ X [k] ×WK(0) such that the composite

(6.11) Sm(i, k + 1)
proj−−→ Sm−1(i, k + 1)

f−→ X [k] ×WK(0)
incl−−→Wm

K

is equal to τmK (i). Moreover, the map f also satisfies that the composite

Sm−1(i, k + 1)
f−→ X [k] ×WK(0)

incl−−→Wm−1
restK(m)

coincides with τm−1
restK(m)(i). By the construction of φ̄m

K and of the homotopy equivalence of

Lemma 3.2, the restriction of φ̄m
K ◦ µ to X [k] ×WK(0)×Xm is given as the composite

X [k] ×WK(0)×Xm
proj−−→ X [k] ×WK(0)

incl−−→Wm
K .

Then we get a commutative diagram

Sm−1(i, k + 1)×Xm
f×1

//

proj

��

τm−1
restK (m)

(i)×1

**

X [k] ×WK(0)×Xm
incl

//

proj

��

Wm−1
restK(m) ×Xm

φ̄m
K◦µ

��

Sm(i, k + 1)
proj

//

τmK (i)

33Sm−1(i, k + 1)
f

// X [k] ×WK(0)
incl

//Wm
K .

On the other hand, by the definition of δm(i, k + 1), there is also a commutative diagram

X [i−1] × CXi ×X [i+1,m−1] ×Xm

δm−1(i,k+1)×1
// Sm−1(i, k + 1)×Xm

proj

��

X [i−1] × CXi ×X [i+1,m−1] ×Xm

1×κi×1×1

OO

δm(i,k+1)
// Sm(i, k + 1)

proj
// Sm−1(i, k + 1).

Therefore, by combining the above two commutative diagrams, the proof is completed. □
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7. Proof of Theorem 1.7

The aim of this section is to prove:

Theorem 7.1. If K,L are shifted, there is a homotopy equivalence

ϵmK : Zm
K

≃−→Wm
K

satisfying ϵmK ◦ ρmK,L = λm
K,L ◦ ϵmL .

Let us first prove Theorem 1.7 and Corollary 1.8 by assuming Theorem 7.1 holds.

Proof of Theorem 1.7. As is noted above, if k = 0,

Zm
K = ZK(CX,X) and Wm

K ≃
∨

∅≠I⊂[m]

|KI | ∗ K̂I .

Therefore the proof is completed by Theorem 7.1. □

Proof of Corollary 1.8. Buchstaber and Panov proved in [BP] that ZK(D
2, S1) is a deformation

retract of ZK(R2,R2 − 0). Their proof can be easily generalized to arbitrary r ≥ 1, implying

ZK(Rr,Rr − 0) ≃ ZK(D
r, Sr−1).

Therefore the proof of Corollary 1.8 is completed by Proposition 5.7 and Theorem 1.7. □

We now give a proof of Theorem 7.1.

Proof of Theorem 7.1. By induction onm, we construct the homotopy equivalence ϵmK satisfying

ϵmK ◦ ρmK,L = λm
K,L ◦ ϵmL together with the equality θmK(i) = ϵmK ◦ ρ̂mK,i for i ∈ [k + 1,m], where

ρ̂mK,i : X
[i−1]×CXi×X [i+1,m] → Zm

K denotes the inclusion. We abbreviate ϵmK by ϵm when K is

clear in the context.

For m = 1, K must be the one point set 1 or the empty set ∅. We put ϵ1∅ to be the identity

map of X1 and ϵ11 to be the constant map, whereW1
1 = ∗. Then it follows that ϵ11◦ρ1,∅ = λ1,∅◦ϵ1∅.

By definition, θ11(1) is the constant map, implying θ11(1) = ϵ11 ◦ ρ̂11,1.
Suppose the desired homotopy equivalence ϵbA has been constructed for any simplicial complex

A on the index set [a, b] with b < m. Let us first construct the homotopy equivalence ϵmK
satisfying ϵmK ◦ρmK,∅ = λm

K,∅ ◦ ϵm∅ by considering the following two cases: Let K0 be the connected

component of the vertex m. We first construct ϵmK0
by Construction 1 and then next ϵmK by

Construction 2 and the induction on k.

Let κm
K : Zm

K → Zm
K be the restriction of κ1 × · · · × κm :

∏
i∈[m]CXi →

∏
i∈[m] CXi to Zm

K ,

where κi : CXi → CXi pinches the upper half of CXi as in the previous section. Then one has

(7.1) κm
K ◦ ρmK,L = ρmK,L ◦ κm

L .

Construction 1 : K is connected.
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By the induction hypothesis, there is a commutative diagram

Zm−1
restK(m) ×Xm

ϵm−1×1
��

Zm−1
linkK(m) ×Xm

ρm−1×1
oo

1×ι
//

ϵm−1×1
��

Zm−1
linkK(m) × CXm

ϵm−1×1
��

Wm−1
restK(m) ×Xm Wm−1

linkK(m) ×Xm
ρm−1×1

oo
1×ι

//Wm−1
linkK(m) × CXm.

By Proposition 4.1 and Lemma 3.3, this commutative diagram induces a homotopy equivalence

ϵ̄mK : Zm
K →W

m

K between pushouts, and then we put

ϵmK = φ̄m
K ◦ ϵ̄mK ◦ κm

K

where φ̄m
K is as in Proposition 6.1. In order to make the equality for θmK(i) hold, the map κm

K is

inserted. By construction, ϵmK ◦ ρmK,∅ = λm
K,∅ ◦ ϵm∅ .

Construction 2 : K ⊔ k from K.

By Proposition 4.1 and Lemma 3.3, the map ϵ̂mK⊔k : Zm
K⊔k → Ŵm

K⊔k between pushouts induced

from the following commutative diagram is a homotopy equivalence.

Zm
K

ϵmK
��

X [m]
ρm
K,∅

oo
1×ι×1

// X [k−1] × CXk ×X [k+1,m]

Wm
K X [m]

λm
K,∅

oo
1×ι×1

// X [k−1] × CXk ×X [k+1,m]

Then we define

ϵmK⊔k = φ̂m
K⊔k ◦ ϵ̂mK⊔k

which satisfies ϵmK⊔k ◦ ρmK⊔k,∅ = λm
K⊔k,∅ ◦ ϵm∅ by construction, where φ̂m

K⊔k is as in Proposition 6.2

Let us next show the naturality of ϵmK by considering the following three cases, in between the

equality for θmK(i) is also shown. These three cases are used as: Let K0 and L0 be the connected

component of K and L, respectively. First, the naturality for the pair K0 ⊃ L0 is proved by

Naturality 1. Next, the naturality for K ⊃ L0 is proved by Naturality 2 and the induction on

k, and then, finally, the naturality for K ⊃ L is proved by Naturality 3 and the induction on

ℓ. Therefore the proof of Theorem 7.1 is completed by proving the following.

Naturality 1 : K ⊃ L where K,L are connected.
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By the induction hypothesis, there is a commutative diagram

Zm−1
restL(m) ×Xm

ρm−1×1

��

ϵm−1×1

%%LL
LLL

LLL
LL

Zm−1
linkL(m) ×Xm

ρm−1×1
oo

1×ι
//

ρm−1×1

��

ϵm−1×1

%%LL
LLL

LLL
LL

Zm−1
linkL(m) × CXm

ρm−1×1

��

ϵm−1×1

%%LL
LLL

LLL
LL

Wm−1
restL(m) ×Xm

λm−1×1

��

Wm−1
linkL(m) ×Xm

λm−1×1
oo

1×ι
//

λm−1×1

��

Wm−1
linkL(m) × CXm

λm−1×1

��

Zm−1
restK(m) ×Xm

ϵm−1×1

%%LL
LLL

LLL
LL

Zm−1
linkK(m) ×Xm

ρm−1×1
oo

1×ι
//

ϵm−1×1

%%LL
LLL

LLL
LL

Zm−1
linkK(m) × CXm

ϵm−1×1

%%LL
LLL

LLL
LL

Wm−1
restK(m) ×Xm Wm−1

linkK(m) ×Xm
λm−1×1

oo
1×ι

//Wm−1
linkK(m) × CXm.

It is clear from Proposition 4.1 that the pushout of the back face is the map ρmK,L : Zm
L → Zm

K .

By the definition of ¯λm
K,L, the pushout of the front face is the map λ̄m

K,L : Wm

L →W
m

K . By the

definition of ϵ̄mL and ϵ̄mK in Construction 1, the pushouts of the top and the bottom faces are

the maps ϵ̄mL : Zm
L → W

m

L and ϵ̄mK : Zm
K → W

m

K , respectively. Then the above commutative

diagram yields a commutative square

Zm
L

ϵ̄mL
//

ρmK,L

��

Wm

L

λ̄m
K,L

��

Zm
K

ϵ̄mK
//Wm

K .

Thus by the definition of ϵmK , (7.1) and Proposition 6.1, we obtain

ϵmK ◦ ρmK,L = φ̄m
K ◦ ϵ̄mK ◦ κm

K ◦ ρmK,L = φ̄m
K ◦ ϵ̄mK ◦ ρmK,L ◦ κm

L

= φ̄m
K ◦ λ̄m

K,L ◦ ϵ̄mL ◦ κm
L = λm

K,L ◦ φ̄m
L ◦ ϵ̄mL ◦ κm

L = λm
K,L ◦ ϵmL .

Naturality 2 : K ⊔ k ⊃ K.

By Proposition 4.1 and 6.2, there is a commutative diagram

Zm
K

ρmK⊔k,K
//

ϵmK
��

Zm
K⊔k

ϵ̂mK⊔k
��

Wm
K

ν
// Ŵm

K⊔k

where ν is as in Proposition 6.2. Then by the definition of ϵmK⊔k and Proposition 6.2,

ϵmK⊔k ◦ ρmK⊔k,K = φ̂m
K⊔k ◦ ϵ̂mK⊔k ◦ ρmK⊔k,K = φ̂m

K⊔k ◦ ν ◦ ϵmK = λm
K⊔k,K ◦ ϵmK .

Equality for θmK(i).

Before proceeding to the last case, let us prove the equality θmK(i) = ϵmK ◦ ρ̂mK,i. Let K0 be the

connected component of the vertex m. If i is a vertex of K0 and i < m, then by Proposition
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6.3, the naturality of ρ̂mK,i and Naturality 2, it holds that

ϵmK ◦ ρ̂mK,i = ϵmK ◦ ρmK,K0
◦ ρ̂mK0,i

= λm
K,K0

◦ ϵmK0
◦ ρ̂mK0,i

.

It also holds that

ϵmK0
◦ ρ̂mK0,i

= φ̄m
K0
◦ ϵ̄mK0

◦ κm
K ◦ ρ̂mK0,i

definition of ϵmK0

= φ̄m
K0
◦ ϵ̄mK0

◦ ρ̂mK0,i
◦ (1× κi × 1) (7.1)

= φ̄m
K0
◦ ϵ̄mK0

◦ ρ ◦ (ρ̂m−1
restK0

(m),i × 1) ◦ (1× κi × 1) naturality of ρ̂mK,i

= φ̄m
K0
◦ µ ◦ (ϵm−1

restK0
(m) ◦ ρ̂

m−1
restK0

(m),i × 1) ◦ (1× κi × 1) definition of ϵ̄mK0

= φ̄m
K0
◦ µ ◦ (θm−1

restK0
(m)(i)× 1) ◦ (1× κi × 1) induction hypothesis

= θmK0
(i) Proposition 6.5

where ρ : Zm−1
restK0

(m)×Xm → Zm
K0

denotes the inclusion and µ is as in Proposition 6.5. Therefore

θmK(i) = λm
K,K0

◦ θmK0
(i) = λm

K,K0
◦ ϵmK0

◦ ρ̂mK0,i
= ϵmK ◦ ρ̂mK,i

for i ∈ [k + 1,m − 1]. If i = m, the equality is obvious. If i ∈ [k + 1,m] but not in K0, the

equality follows from Proposition 6.3 and Naturality 2.

Naturality 3 : K ⊃ L ⊔ ℓ for k < ℓ.

By the equality for θmK(i) proved above, there is a commutative diagram

Zm
L

ρmK,L

��

ϵmL

%%KK
KKK

KKK
KKK

X [m]
ρm
L,∅

oo
1×ι×1

//

ρm
K,∅

��

KKK
KKK

KKK
KK

KKK
KKK

KKK
KK

X [ℓ−1] × CXℓ ×X [ℓ+1,m]

ρ̂mK,i

��

KKK
KKK

KKK
K

KKK
KKK

KKK
K

Wm
L

λm
K,L

��

X [m]
λm
K,∅

oo
1×ι×1

//

λm
K,∅

��

X [ℓ−1] × CXℓ ×X [ℓ+1,m]

θmK (i)

��

Zm
K

ϵmK

&&LL
LLL

LLL
LLL

Zm
K

ϵmK

&&LL
LLL

LLL
LLL

Zm
K

ϵmK

&&LL
LLL

LLL
LLL

Wm
K Wm

K Wm
K .

Since the map Zm
L⊔ℓ → Zm

K induced from the back face is ρmK,L⊔ℓ by Proposition 4.1, the above

diagram implies

ϵmK ◦ ρmK,L⊔ℓ = νm
K,L⊔ℓ ◦ ϵ̂mL⊔ℓ

and then by Corollary 6.4, the naturality is obtained as

ϵmK ◦ ρmK,L⊔ℓ = νm
K,L⊔ℓ ◦ ϵ̂mL⊔ℓ = λm

K,L⊔ℓ ◦ φ̂m
L⊔ℓ ◦ ϵ̂mL⊔ℓ = λm

K,L⊔ℓ ◦ ϵmL⊔ℓ.

□
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