DECOMPOSITIONS OF POLYHEDRAL PRODUCTS FOR SHIFTED
COMPLEXES

KOUYEMON IRIYE AND DAISUKE KISHIMOTO

ABSTRACT. The conjecture of Bahri, Bendersky, Cohen and Gitler [BBCG] on wedge decom-
positions of polyhedral products of shifted complexes is settled affirmatively. As a corollary,
it is proved that the homotopy type of the complement of a coordinate subspace arrangement
associated with a shifted complex, tensored with R” for any r» > 1, has the homotopy type of
a wedge of spheres.

1. INTRODUCTION

Throughout the paper, spaces and maps mean compactly generated weak Hausdorff spaces
having non-degenerate base points and base point preserving maps.

Let us begin with defining polyhedral products. Let K be an abstract simplicial complex
on the index set [m] = {1,...,m}, where we assume that the empty set is a simplex of K for
our convention. Let (X, A) be a collection of pairs of spaces indexed by [m], say (X, A) =
{(Xi, Ai) Yicpm)- For a simplex o of K, we put

Xi 1€0

X, A=Y x---xY,, wh Y, =
(X, 4)7 =" where {Ai ido.

The polyhedral product (or the generalized moment-angle complex) of (X, A) with respect to
K is defined as
Ze(X,4) = |J x4y,
ceK
where the union is taken in X; x --- x X,,.

Polyhedral products (with respect to the boundary of a simplex) first appeared in the work of
Porter [P] in which higher order Whitehead products are defined as the natural maps between
certain polyhedral products. After this work, polyhedral products have been studied in homo-
topy theory along several directions. Recently, in the work of Davis and Januszkiewicz [DJ],
the special polyhedral product Zy (22, S1), called the moment-angle complex of K, was found
to play a fundamental role in their theory of, so-called, quasi-toric manifolds (cf. [BP]), which
is a topological analogue of theory of toric varieties, where (D?, S*) is the m-copies of (D?, S1).
Since then, many mathematicians have been studying polyhedral products in a variety of direc-
tions, not only in homotopy theory. See [Ba], [BBCG], [DO], [DS], [FT], [GT], [N], for example.
In this paper, we are particularly interested in wedge decompositions of polyhedral products.
Let us recall two results on wedge decompositions of polyhedral products; one is due to Grbi¢
and Theriault [GT] and the other is Bahri, Bendersky, Cohen and Gitler [BBCG].

To state the result of Grbi¢ and Theriault [GT], we introduce special simplicial complexes

called shifted complexes.
1
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Definition 1.1. An abstract simplicial complex K is called shifted if its vertex set is given a
total order satisfying for any simplex o € K and a vertex v € o, (0 —v) Uw is also a simplex
of K whenever a vertex w satisfies v < w.

Remark 1.2. In the above definition of shifted complexes, the order of vertices is opposite to
the one in [BBCG], [GT], which is convenient for us and is just a notational difference.

The most elementary examples of shifted complexes are skeleta of simplices. Other examples
will be given in §5 below. We now state the result of Grbi¢ and Theriault [GT].

Theorem 1.3 (Grbi¢ and Theriault [GT)). If K is a shifted complex, Zx(D* S*) has the
homotopy type of a wedge of spheres.

Remark 1.4. The proof of Grbi¢ and Theriault [GT] heavily relies on the fact that S* has the
classifying space, and then it cannot be applied to a general collection (CX, X) = {(C X, X;) }icm)-

A few years after the work of Grbi¢ and Theriault [GT], Bahri, Bendersky, Cohen and Gitler
[BBCG] gave another wedge decomposition of a suspension of a polyhedral product, which is a
simple generalization of the standard homotopy equivalence L(X xY) ~ XX VYEY VE(X AY).
Although they considered a general polyhedral product Zx (X, A), what we are interested in is
the special polyhedral product Zx(CX, X), and then we here state the result for Zx(CX, X)
only. Let us set notation. For a non-empty subset I of the vertex set of a simplicial complex
K, let K denote the induced subcomplex on I (or the full subcomplex on I), that is, K7 is
the maximum subcomplex of K whose vertex set is I. Let | K| denote the geometric realization
of K. For 0 # J = {j1 < --- < ji} C [m] and a collection of spaces X = {X;}icpm], we put
X7 = X N+ AN Xj,. We now state:

Theorem 1.5 (Bahri, Bendersky, Cohen and Gitler [BBCG]). Let K be a simplicial complex
on the index set [m| and let (CX, X) = {(CX;, X;) }icim)- Then there is a homotopy equivalence

SZr(CX, X)~% \/ |Ki|* X",
0£IC[m]

Since shifted complexes have the homotopy types of wedges of spheres as we will see in
85 below, Theorem 1.3 seems to be a desuspension of Theorem 1.5 in the special case that
(CX,X) = (D* S"). Supported by this observation, the following conjecture was posed in
[BBCG].

Conjecture 1.6 (Bahri, Bendersky, Cohen and Gitler [BBCG]). Let K be a simplicial complex
on the index set [m] and let (CX,X) = {(CX;, X;)} i) If K is shifted, then there is a
homotopy equivalence

(1.1) Zr(CX, X)~ \/ |Ki|=X.
0#IC[m)]

The aim of this paper is to prove:

Theorem 1.7. Conjecture 1.6 s true.



DECOMPOSITIONS OF POLYHEDRAL PRODUCTS FOR SHIFTED COMPLEXES 3

Let us consider an application of Theorem 1.7 to coordinate subspace arrangements as in
[GT]. Let A be a subspace arrangement in R™ which is a collection of vector subspaces of
R™. Subspace arrangements have been studied by the interplay of technology in a wide area of
mathematics including algebra, combinatorics, geometry and topology. Among other things,
the topology of the complements of subspace arrangements plays a fundamental role in the
investigation of subspace arrangements. Let M(A) denote the complement R™ — A. Let us
concentrate our discussion on the special subspace arrangements called the coordinate subspace
arrangements. For I C [m], we put

Lr={(xy,...,2p) € R")"|ax; =0fori & I}

which is called the coordinate subspace of (R")™, and a collection of such coordinate subspaces
is called a coordinate subspace arrangement. One can assign a coordinate subspace arrangement
to a simplicial complex K on the index set [m] as

e ={L, |0 is a simplex of K}.

By definition, the complement M (A7) is identified with the polyhedral product Zx(R", R” — 0).
Through this identification, when K is a shifted complex, we apply Theorem 1.7 to M (A%)
and determine its homotopy type.

Corollary 1.8. If K is a shifted complex on the index set [m|, then Zx(R",R" —0), and
therefore M (A%, has the homotopy type of a wedge of spheres.

The organization of the paper is as follows. In §2, a sketch of the proof of Theorem 1.7 is
given in order to clarify the crucial points and to motivate the construction below. In §3, we
collect technical lemmas on pushouts which will be used in the following sections. In §4, the
space Z} is introduced as a generalization of the polyhedral product Zx(CX, X). It is also
proved that there are two pushouts involving Z3? by which Z7? turns out to be constructed
inductively on m. In §5, the topology of shifted complexes is considered, by which the space
Wi is introduced in §6. In §6, it is also shown that there are two pushouts involving Wy which
are analogous to those involving Z3? in §3. In §7, a stronger form of Theorem 1.7 is proved by
collecting all the result obtained so far. Corollary 1.8 is also proved in this section.

The authors are grateful to the referee for useful advice and comments.

2. SKETCH OF THE PROOF

The idea of the proof of Theorem 1.7 is quite simple, but it needs particular constructions
and arguments. So it may be helpful to clarify the crucial points of the proof by giving its
rough sketch. Detailed constructions and arguments will be given in the following sections.

Let K be a simplicial complex on the index set [k +1,m| ={k+1,k+2,...,m} and let L
be its subcomplex on [/ +1,m|. We fix a collection of spaces X = {X;}icm). We first introduce
the space Zj¢ and the map py ; : Z]" — Z¢. In the special case k = 0,

Zg = Zx(CX, X).
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Suppose K, L are shifted. Then we also introduce the space Wi and the map A, : Wi — Wg
by using a property of shifted complexes. Likewise, if k = 0, by definition

Wi ~ \/ | K| « X1,
0#IC[m)
Then our aim is to construct a homotopy equivalence € : Z7 — Wj*, which is done by
induction on m as follows. Observe that the simplicial complex K is obtained as the union of
the cone of the link of the vertex m, say L', with the cone point m and the induced subcomplex
K’ = Kjj41,m-1], that is, K is obtained from a subcomplex with less vertices by adding a new
vertex. This is the direction of our induction. It is proved that Z7? is given as the pushout of

m—1
Prr pt 1xe

x1
-1 -1 -1
Znlx X, e 2l X, S 2 OX,,

where ¢ : X,,, = CX,, is the inclusion, and that W} is naturally homotopy equivalent to the
pushout of

_ , _ 1 _
mel g Xy e — WP X, S5 W x OX,.

Then, using these pushouts, the homotopy equivalences 6?,_1 and ET,_I are glued together to
produce the homotopy equivalence €}}. To do this, the naturality of 6}?71 with respect to pi i,
and )\TK"Zi, is necessary. Thus the induction must be proceeded by constructing €} as above
together with showing the naturality

m m  _ \m m
(2.1) €k O Pi,L = AK,L O €L
for which constructions and discussions are elaborated.

Remark 2.1. We actually introduce the space W in order to work only with strictly commu-
tative diagrams instead of homotopy commutative diagrams. Let us here explain the reason
why we restrict ourselves to work only with strictly commutative diagrams. Our reference for
homotopy pushouts is [M]. Suppose there is the following diagram of solid arrows.

A—— B
|
AN
C—Q \
\Q’\
v 4
D

If the inner square ABC() is a homotopy pushout and the outer face ABCD is homotopy
commutative, then there exists a dotted arrow w making the whole diagram commute up to
homotopy. But the problem is that (the homotopy class of) w depends on the commuting
homotopy of the outer face ABCD. If we would like to show the naturality of the form (2.1)
for w, its uniqueness is needed. To this end, all commuting homotopies are imposed to be
constant, i.e. we work only with strictly commutative diagrams. Otherwise, we must keep
track on all homotopies, including higher homotopies, which is impossible in general.
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3. LEMMAS ON PUSHOUTS

In this section, before getting onto the main subject, we collect technical lemmas on pushouts
which will be used below. Let us first consider the product of a pushout and a space. We will
use this lemma without mentioning in what follows.

Lemma 3.1. Suppose there is a pushout

AL

B
.|
c—,D.

Then the square
AxELILBXE

ngl Jhxl
kx1

CxFE—"““"DxFE

1s also a pushout.

Proof. Since spaces are compactly generated and weak Hausdorff as is remarked in the beginning
of the paper, the exponential law holds as

map(X x E,Y) = map(X, map(E,Y)),

i.e. the functor — x E is a left adjoint. Since left adjoint functors commute with colimits, the
proof is completed. O

The following two lemmas concern pushouts which are also homotopy pushouts. The first
one computes special such pushouts.

Lemma 3.2. Define () as a pushout

tx(1Vv1)

(3.1) Ax (BvVC) CAx (BVC)
J{lx(lv*) J{
Ax (BV D) Q,

where 1 : A — C'A is the inclusion. Then there is a homotopy equivalence
Q= BVX(AANC)V (Ax D)
which is natural with respect to A, B,C, D.

Proof. Embed the pushout
A—"5CA

A—5CA
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into (3.1). Taking the quotient of each corner, the resulting square

X (1v1

Ax (BVO)—"MY L oax (BvO)

llx(l\/*) J

Ax (BV D) Q/CA

is also a pushout since colimits commute with colimits, where X x Y denotes the half smash
product X x Y/X x x. Then since half smash products are distributive with respect to wedge
sums as X X (YVZ)= (X xY)V (X x Z), we get

Q/CA=(CAx B)VRV (Ax D),
where R is defined as the pushout

L1

Ax(C—FCAxC

|

x —— R.

One easily sees that R = 3(A A C) and then the projection
(3.2) Q/CA— BVEIANC)V (Ax D)

is a homotopy equivalence which is natural with respect to A, B, C, D.

Given neighborhoods of base points of B,C, D, one can define a neighborhood of C'A in
@ by restricting (3.1) to these neighborhoods. Moreover, if the neighborhoods of base points
in B,C, D satisfy the conditions for NDR pairs, then so does the above neighborhood of C'A
in () also. Then since B,C, D have non-degenerate base points, the inclusion CA — @ is
a cofibration, implying the projection @ — @Q/CA is a homotopy equivalence. The desired
homotopy equivalence is the composite of this projection and (3.2). O

The next lemma shows that one can produce a new homotopy equivalence by gluing together
homotopy equivalences along pushouts which are also homotopy pushouts. The result is classical
and well known so that the proof is skipped, see [Br].

Lemma 3.3. Suppose there is a commutative diagram

b e
Bl — BQ L Bg

wn which f, g are cofibrations and hy, ha, hg are homotopy equivalences. If A and B are pushouts
of the first and the second rows, then the canonical map A — B is also a homotopy equivalence.

4. THE SPACE Z}

In this section, we introduce the space Z} and consider two pushouts involving Z}? as is
mentioned in §2.
From now on, the following notation is fixed.
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e a collection of spaces {X;}icim)
e a simplicial complex K on the index set [k + 1, m].
e subcomplexes L D L' of K on the index sets [( +1,m] D [¢' + 1, m]

(Elements of [k] are sometimes called the ghost vertices of K.)
If we put (CX, X) = {(CX;, Xi) bickt1,m), the polyhedral product Zx(CX, X) can be defined

as above. Let us define the space Z3} as
where for I = {i; < -+ < i} C [m], X! denotes the product X;, X --- x X;,. In particular,
Zy = X[ and for k=0,
Zg = Zx(CX, X).
Let us denote the inclusion Zj" — Z by pi ;. Then it holds that

m _om m
Pr,.; = PK,L © PL.L/

where L' can be the empty set. If K, L are clear in the context, pf ; is abbreviated by p™.

Let us consider pushouts involving Zj?. We first set some notation. For a vertex v of K, let
linkg (v) and starg (v) denote the link and the star of v, respectively. The induced subcomplex
Kij+1,m]—v 1s also denoted by restg (v), following the notation of [GT].

Proposition 4.1. There are two pushouts

zmol o x  DXamel ooy apd X xR 00X x XL
link i (m) link i (m)
J{incl

lpmlxl J{incl J’DK’@
PR UK

m—1 incl m Zzm m
4) .
ZrestK(m) X Xm ZR K KUk

Proof. Observe that the pushout of simplicial complexes

(4.1) link g (m) —— starg (m)

J |

restg(m) —— K

induces a pushout of spaces

(4.2) Zrml o X, 2, zm

link i (m) star i (m)

J/pm—lxl J(an

m—1 incl m
2 estrc(m) X Xm —— 2§

Since every maximal simplex of starg(m) contains the vertex m, it holds that

Zm

star i

. m—1
m) = Z, )y X CXopy

link g (m

and that the inclusion Zﬁ;}l{ (m) X X,, — Zm

star i (m

) is identified with 1 x¢. Then the first pushout
is obtained.
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The second pushout is induced from the pushout of simplicial complexes

) —k

| ]

K— KUE.

5. TOPOLOGY OF SHIFTED COMPLEXES

Although combinatorial properties of shifted complexes have been studied extensively, their
topological properties is rarely found in literature. Then in this section, we record elemen-
tary topological properties of shifted complexes. Using these topological properties of shifted
complexes, the space W}? will be defined in the next section.

To help understand shifted complexes, let us first give some examples.

Example 5.1. Any skeleton of a simplex is shifted by any order on vertices.
Example 5.2. The square graph is not shifted by any order on vertices.

Example 5.3. In the above two examples, the shiftiness does not depend on the order of
vertices. However, by definition, the shiftiness depends on the order on vertices in general.
Consider two 1-dimensional simplicial complexes on [4] whose edge sets are

{{1,3},{1,4},{2,3},{2,4},{3,4}} and {{1,2},{1,3}{1,4},{2,3},{2,4}}.
These two simplicial complexes are isomorphic; a square with one diagonal edge. However, the
former is shifted but not the latter.

Let us consider a subcomplex of a shifted complex. Of course, not every subcomplex of a
shifted complex is a shifted complex. For example, the square graph is not shifted by any order
on vertices as in Example 5.2 and it is a subcomplex of the 3-simplex which is shifted by any
order on vertices. Notice that since every simplicial complex is a subcomplex of a simplex,
the above third example implies that there is a subcomplex of a shifted complex which is not
shifted by the induced order but is shifted by an alternative order. We are now interested in
subcomplexes of a shifted complex which are shifted by the induced order. We here give two
examples of such subcomplexes of a shifted complex.

Example 5.4. Any induced subcomplex of a shifted complex is shifted by the induced order.
In particular, if K is shifted, for any vertex v of K, restx(v) is shifted by the induced order.

Example 5.5. If K is shifted, stary(m) is shifted by the induced order. Then since linkx (m)
is an induced subcomplex of stary(m) and is included in resty(m), linkx(m) is a subcomplex
of restx (m) which is shifted by the induced order. Notice that if v < m, starg(v) may not be
shifted by the induced order.

Let us start to consider the topology of shifted complexes. We first look at the connected
components, by which the construction of the homotopy equivalence of Theorem 1.7 is divided
into two cases; the connected component of the maximum vertex m of K and the remaining
part.
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Proposition 5.6. If K is shifted and Kq is the connected component of the vertex m, then it
holds that for some ko € [k + 1,m],

V(Ky) = V(starg(m)) = [ko, m]

and that the remaining part K — Ky is discrete, where V (A) denotes the vertex set of a simplicial
complex A.

Proof. It Ky = {m}, the proposition is trivial. Suppose Ky # {m}. Let ky be the minimum
vertex of Ky. Then kj is adjacent to some vertex, say v, implying that v is adjacent to m since
v < m. This also implies that any w € [kg,m| is adjacent to m. Then the first assertion is
proved. Take any vertex u of K — Ky. If u is adjacent to some vertex, it is also adjacent to m
as above, a contradiction. Then w is isolated, implying the second assertion. 0

We next give a convenient description of the homotopy types of shifted complexes, which
enables us to work only with strictly commutative diagrams as is remarked in §2. Let us set
notation. Put

m(K) = {simplices of restx(m) which are maximal in K}
and
K = |K|/|starg (m)],

where m(K) is not a simplicial complex, just a collection of simplices. Notice that since
|starx (m)| is contractible, the projection |K| — K is a homotopy equivalence. Let ag ; denote
the map L — K induced from the inclusion L — K. It is clear that

(5.1) QK1) = QKL O QL.

Proposition 5.7. Suppose K, L are shifted. Then there is an identification
F _ \/ Sdima
cem(K)
through which the map ok g, is identified with a wedge of the identity map of \/ Gdima
cem(L)Nm(K)
and the constant map on the remaining summand.

Proof. For any simplex o of K, Oo is included in star g (m) by the definition of shifted complexes.
Then | K| — |starg(m)] is the disjoint union of the interior of maximal simplices of K which do
not contain the vertex m, completing the proof. 0

Let us give an alternative description of K which is convenient to construct K inductively
by the pushout corresponding to (4.1) as is seen in the proof of Proposition 6.1 below. Set

m(K)={ceKm—-1&€ocandoU(m—1) e m(K)},
my(K)={rem(K)|m—-1¢&r7}.
It will be useful in the proof of Proposition 6.1 below to write my(K) and my(K) by using
m(linkg (m)) and m(restx(m)): if we put mo(K) = m(linkg(m)) N m(restg(m)), we have

my(K) = m(linkg (m)) — mo(K) and my(K) = m(resty(m)) — mo(K).
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Proposition 5.8. Suppose K, L are shifted. Then there is an identification
K = \/ Esdima v/ \/ SdimT
UEmI(K) TEmQ(K)

through which the map a1, is identified with the restriction of Xoink (m),linky (m) Y Qrest s (m) rest 1, (m) -
Proof. By definition, we have
m(K) =my(K)U{ocU(m—1)|oc € m(K)}.
Then the proof is completed by Proposition 5.7. 0]
We close this section with an observation about the dimension of simplices in my(K).

Proposition 5.9. If K is connected, then dimo > 0 whenever o € my(K).

Proof. By Proposition 5.6, we have V(linkgx(m)) = V(restx(m)). Then if o € m(restx(m))
satisfies dim o = 0, o must belong to m(linkx (m)) also. This completes the proof. O

6. THE SPACE W}

In this section, we introduce the space W' and consider two pushouts involving W' which
correspond to those in Proposition 4.1. The map 67(7) is also introduced which will be used
to prove the naturality (2.1).

When K is shifted, define the space W} as

Wip=xMx \/ YK AX"
0AIC[k+1,m]
Then since K; ~ |K;|, if k = 0,
Wi~ \/ |Ki|l*X".
0£IC|m]
Let 9; denote the composite
1IxV

6.1) XixYAEYS X x (SAVEA) = (X; x TA)V (X; x BA) 2% 4 v (X, A SA)

which is a homotopy equivalence, where X x Y is the half smash product X x Y/X x x as
above and V is the comultiplication of ¥ A. We now define the map

(6.2) 7l k): XM x DA - xMx \/ TAAXT
JCk+1,0]
by applying 1 x d;omp, ..., 1 X dpy1 0Ty in turn, where 7 : X; XY — X; x Y is the projection.

When K, L are shifted, the map A% ; : W[" — Wi is defined as the composite

wp=xlx \/ SLAX T xW .\ ST AR

OAIC[l+1,m] 0;3[ C[K:rll,én]
- )

lxv(aKjquL[/\l)
\

X \/  SEgAXT=wp.
0#HC[k+1,m)
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The definition of A% ; is actually motivated by Lemma 3.2. Note, in particular, that the map
Ak ¢ is the composite
proj incl
Wyt = xml P2,y 20 yym,

It follows from (5.1) that

(63) %,L/ - )\TI?J/ e} )\?L/,
where L' can be the empty set.

Let us consider two pushouts involving W} corresponding to those in Proposition 4.1. Let
us first consider the left one in Proposition 4.1. When K is shifted, define Wz as the pushout

1xe m—
(64) WhnkK(m X Xm Wlink;lg(m) X CXm

b

m—1 SV
e
W restye (m) X Xm Wi,

where we often abbreviate A ; by A™ when K, L are clear in the context. If L is also shifted,

we also define 5\% LW, — Wy as the induced map from a commutative diagram

AT Ixl m—1 m—1
<7 >
WrestL(m X Xom WhnkL X Xom Wlmk X CX
J{)\mlxl l)\mlxl J(/\mlxl
m—1
m—1 A x1 m—1 1xe m—1
WrestK x Xm WhnkK(m) X Xm WhnkK(m) x CXm

By (6.3) and the universality of pushouts, if L’ is shifted, it holds that
%,L/ = X?,L © /_\?,Lw
where L' can be the empty set.

Proposition 6.1. Suppose K, L are connected and shifted. Then there is a homotopy equiva-
lence

oWy = wWp
satisfying @Rt o Nt = Ait o P

Proof. Note first that since K is connected, V (linkg(m)) = V(restx(m)) = [k + 1,m — 1] by
Proposition 5.6. Put

Wi(i)=\/ \/  =shimrax!
0AIClk+1,m—1] oem;(Krum)
for : = 0,1,2. Since linkg,, (m) = (linkg(m)); and restg, ,, (m) = (restg(m))r for § # I C

[k + 1, m — 1], there are identifications

WLy = XF s (Wie(0) v Wie(1)) and Wit = X s (Wie(0) v Wi (2)).

link g (m rest i (m
Through these identifications, one gets

m—1
rest g (m) linkgc (m) 1X[k] X (1WK(0) N *)
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by Proposition 5.7. Then Lemma 3.2 can be applied to the pushout (6.4) and hence a homotopy
equivalence

(6.5) G Wit S XW s (Wi (0) V(Wi (1) A Xon) V (Wic(2) % X))

is obtained, which is natural with respect to Wk (i) for i = 0,1, 2.
Since K is connected, it follows from Proposition 5.6 that Kp_,, is connected for any ) # I €
[k + 1,m — 1]. Then by Proposition 5.9, one has dim ¢ > 0 for any o € my(K ), implying
that X7 Wk (2) = Vosrcperrm-1] Voem(ry,) 507 AX " is a suspension. Using this suspension
parameter, one gets a homotopy equivalence
STWE(2) X Xy = STIWE(2) V (27T TWE(2) A X,p).

Hence one obtains a homotopy equivalence

XM o (Wi (0) VEWgk (1) A X)) V (Wi (2) ¥ X))
= X x (W (0) VE(Wr(1) A X,n) VWi (2) V (Wi (2) A X))

which we denote by 6;,.

By Proposition 5.7,

W) VIWg@2) = \/ SKAX!
P0AIC[k+1,m—1]
and by Proposition 5.8,
SWrk(WA X)) V(WA X)) =\ SKiom A XY™
PAIC[k+1,m—1]

Then it follows that
(6.6) Wi = XE s (Wi (0) VEWg (1) A Xp) VWi (2)V (Wk(2) A Xpn)).
Thus we define the homotopy equivalence as

PR = 0y, 0 P

Our remaining task is to show the naturality of ¢7¢. By definition, the map )\lka ) Jink, (m)
is described as the composite

74,k -~ ~
Wl = X0 (W (0) v (1) T X \/ (W(0) A X7 v (Wi (1) A X))
JClk+1,0)

P, X (Wie(0) v Wic(1)) = Wiy

1nkK (m)’

where 7((, k) is as in (6.2) and a; : \/ jcpy g We(2) A X7 — Wk(i) is given by the restriction

of (tinky (m)) 0., (tinkp (m)); for @ # I C [€41,m]. The same is true for A~ L . Then if

rest i (m),restr, (m)
we define the map

i X (W(0) vV EWL(L) A X)) V (WE(2) x X))
— XHE 5 (Wi (0) VEWr(1) A X)) V (Wk(2) x X))
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as the composite (1% (g VE(a1 A1)V (agx1)))on(f, k), then by the naturality of the homotopy
equivalence of Lemma 3.2, it holds that

% © S‘TI?,L = :LLTI?,L © &?
On the other hand, by Proposition 5.8, A ; is given as the composite (1 x (g V X(a1 A1)V

as V (g A 1)) om(¢, k). Since the suspension parameters used by d;, above and by J; in the
definition of uf% ; are distinct, they commute, implying

(6.7) O © WK L, = AR, © Oy
Thus, summarizing, we have obtained
@?OXW};,L:5%O$%OX%,L:5%°M%,LO§ET: L05/0¢ KLOSOL
which is the desired naturality. O

Let us next consider the pushout involving Wy corresponding to the right one in Proposition
4.1. When K is shifted, define WF, ;. as the pushout

(6.8) Xxml 2y xlk=1] 5 0 X, x X k1m]
l”xn,o J
When L is also shifted and ¢ = k, the map X’}}uk’ LUk - Wﬂlk — W}?uk is defined as the induced
map from a commutative diagram
AT .
wn B xeim] B xlk=1] o 0 x X L]
8 xbml Be y k1] s 0, x X RLm),

Then, analogously to 5\% ., above, if L' is also shifted and ¢’ = k, it holds that

im _Am im
KUk, L'Uk = )‘Kuk,Luk o )‘Luk,L’uk'
Proposition 6.2. If K, L are shifted and k = {, there is a homotopy equivalence
" . /\m ~ m
Crur - Wrue = Wik
satisfying Pk © Nk ok = Mok ok © Pluke- Moreover, the composite

PRk

Wit = WKuk — Wkuk
coincides with the map gy, ., where v is is the bottom arrow of (6.8).
Proof. Let us first define a homotopy equivalence 6; as the composite

(1xV)oV
E—

(A x X;) \/ZAxX)p“” PEL VAV EX; V(AN X,
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where V is the comultiplication. Using di, let us next define a homotopy equivalence
(6.9) 0m(i) : BX A X S\ ST L) A XY
OAIC[i+1,m]
where I denotes the maximum of I and the base point of the two points set Tuiis 1. Applying
Oms Om—1, - - -, 0ip2 to BX; A XUFL™lin turn, one gets a homotopy equivalence
X AXEEm S\ nx
PAIC[i41,m]
By identifying XX with $(I U4) A X, 6™ (4) is defined.
Applying Lemma 3.2, there is a natural homotopy equivalence
Oty Wit = XE o (0(Xp A XEH ) v (X /) SE A X)),
OAIC[k+1,m]
Consider the homotopy equivalence
Lx (6™ (k) Vo)« XU s (X A XEm v (o /) YK AXT))
OAIC[k+1,m)]
SXE e\ (SEAX)VSEV(Tuk) A X",
0AIC[k+1,m]
Since KV (.f U k) = K, the right hand side is identified with W}, and then we define the
homotopy equivalence as

Preun = (1 x (6™ (k) V 0r)) © Py
We next prove the naturality of ¢% .. By the naturality of ¢% .,
(Ix(1v(1x A%,L))) o QYL = PR © )‘%ukz,Luk'
On the other hand, it clearly holds that
(1 (0™ (k) V) o (1 x (1V (1 Ak 1)) = ARup po © (1 X (8™ (K) V 6k)).

Then, combining the above two equalities together with the definition of ¢} ., the naturality
of ¢ 1s proved.

The last assertion follows from the construction of ¢%, , and of the homotopy equivalence of
Lemma 3.2. Thus the proof is completed. O

Suppose K is shifted. Let us further investigate the pushout (6.8) by describing its right
arrow X*=1 x O X x Xk+tml W?uk which we denote by Vk. For i € [k+ 1,m — 1], define
the map 072(i) : X1 x OX; x X0HLml 5 yym ag

0% (i) = A& fi.m) © Plivm) © Vfit1,m]
which will be used to prove the naturality (2.1) in the next section, where [j, m] means the
discrete simplicial complex on the index set [j,m]. Define 07(m) also as the composite

m— proj incl m
X1 ox,, 224 xk 2% pym
We here list some properties of 07(i).

Proposition 6.3. If K, L are shifted, the map 07(i) has the following properties.
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(1) Fori € [k + Lm], 0200t = X2y,
(2) Fori e [+ 1,m], 0%(i) = Ng ;o 07'(7).
(3) The composite

X 0x x Xttm] 2y gpm - ZRuk ypm
coincides with 07 . (k).

Proof. (1) and (2) immediately follow from the definition of 67} (). (3) follows from the natu-
rality of ¢} in Proposition 6.2. 0

Let us consider another naturality of ¢%. When L is also shifted and & < ¢, the map

Vi poe - Wioe — W is defined as the induced map from a commutative diagram

m L [m] _incl, y-[e—1] [¢+1,m)]
4% X X x CXp x XIh

lA?¢ JA%ﬂ lHQM)

Wi Wi Wi
By Proposition 6.3 (2), if L, L’ are shifted and k < ¢ < ¢, then

(610) V;(n,L/ug/ - )\?71/ e} VEL’uZ"
Corollary 6.4. If K, L are shifted and k < {, then Vg 1\, = Ng 1,0 © PTL-

Proof. By Proposition 6.3 (3), we have v7},  , = ¢7,,- Then by (6.10), it holds that

m . \m m . \m ~m
Vi Lue = /\K,Lue OVrie e = )‘K,Luz C@rue

completing the proof. O

Let us next consider the relation of 07*(:) and the pushout (6.4). To this end, we give an
explicit description of §7(i). Put

S™(i,j)=XU"x \/  sIui)a X"
P#IC[i4-1,m]
JClj,i—1]
for j < i € [m], where I is the maximum of I and the base point of the two points set I LI i
is I as in the proof of Proposition 6.2. Notice that S™(i, j) is a wedge summand of W[’;.fm] and
that the restriction of A, .. . to 8™(i, j) factors through S™(é,j) C Wi, for j > j'. Let

d™(i,j) be the composite
X1 0X; x xltm) 2O yli1) oy x; A x Bty 220, omi gy s, ),

where the last arrow is the restriction of A7}, . Fori € [k+1,m —1], put 72 (i) : S™(4, k +
1) — Wi to be the restriction of A%, . By the definition of 672(i) and the construction of
the homotopy equivalence of Lemma 3.2, one sees that

O (i) =71 (i) o 0™ (i, k + 1)

for i € [k 4+ 1,m — 1]. Let us now state the relation of §72(i) and the pushout (6.4).
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Proposition 6.5. If K is connected and shifted, for i € [k + 1, m — 1], the composite

X1 Oox, x xHtm=1 o x DDA slic] oo oy xlittm=1) o x

m—1

ereitK(m)( ) om L‘DK

Wm1 X Xpn 5 Wi 25w

rest i (m)

coincides with 03 (i), where k; : CX; — CX; pinches the upper half of CX; and p is the bottom

arrow of (6.1).

Proof. By the construction of the homotopy equivalence of Lemma 3.2, if K4+ 1 =m — 1, then
the proposition holds for 67} (k + 1). Suppose k+1 < m — 1 and take k + 1 < i < m. For
Jj =1,2,3, let Wg(j) be as in the proof of Proposition 6.1. By Proposition 5.6 and 5.7, 772(7)
factors through X x\/, SKAX! C Wi, where I runs over all non-empty subsets of [k+1, m]
such that K is discrete. Then it follows from Proposition 5.9 and (6.6) that there is a map

f:8™ (i, k+1) — XM x Wg(0) such that the composite
(6.11) S™(ik+1) 2% 81 b+ 1) L X x Wi (0) 25w
is equal to 7j2(i). Moreover, the map f also satisfies that the composite

S ik + 1) b XH s Wwie(0) 2wt

rest K

coincides with Trest

Lemma 3.2, the restriction of @ oy to XM x W (0) x X,, is given as the composite
X % Wi (0) x X, 2% X Wi (0) 25w,

Then we get a commutative diagram

1 .
TrZLStK(m) (i) x1

S (i k4 1) % Xy 25 X X Wi (0) x X LWLk X

rest K

lproj Jproj lsoKou

Sk 4+ 1) — P S k1) Ty X W (0) — W
On the other hand, by the definition of 0™ (i, k + 1), there is also a commutative diagram

m—1 i, .
XU O, x Xl o x,, Tk S™ i k4 1) x X,y

Tlxnixlxl J{proj

. . 6™ (1, . TOj i
X1 5 0X; x Xlirtm=1l 5 X, O g gy 1) P, gmeii g 41),

Therefore, by combining the above two commutative diagrams, the proof is completed.

1( )(z) By the construction of ¢% and of the homotopy equivalence of

O
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7. PROOF OF THEOREM 1.7

The aim of this section is to prove:
Theorem 7.1. If K, L are shifted, there is a homotopy equivalence
o Zm S W
satisfying € o Pt = Ngg.p o€}
Let us first prove Theorem 1.7 and Corollary 1.8 by assuming Theorem 7.1 holds.

Proof of Theorem 1.7. As is noted above, if k£ =0,

Zp = 2Zx(CX,X) and Wg~ \/ |K|*K"
0#IC[m]

Therefore the proof is completed by Theorem 7.1. O

Proof of Corollary 1.8. Buchstaber and Panov proved in [BP] that Zx(D? S") is a deformation
retract of Zx(R? R? — (). Their proof can be easily generalized to arbitrary r > 1, implying

Zg(R"R" —0) ~ Z(D",S™h).
Therefore the proof of Corollary 1.8 is completed by Proposition 5.7 and Theorem 1.7. OJ

We now give a proof of Theorem 7.1.

Proof of Theorem 7.1. By induction on m, we construct the homotopy equivalence €} satistfying
€ o pR = Nip o€ together with the equality 0% (i) = i o p,; for i € [k + 1,m], where
PR X 0X; x XE+Lbml s Zm denotes the inclusion. We abbreviate €52 by €™ when K is
clear in the context.

For m = 1, K must be the one point set 1 or the empty set (). We put eql) to be the identity
map of X; and €] to be the constant map, where W] = . Then it follows that e;op1 g = A goe;.
By definition, #{(1) is the constant map, implying 61(1) = €} o py ;.

Suppose the desired homotopy equivalence € has been constructed for any simplicial complex
A on the index set [a,b] with b < m. Let us first construct the homotopy equivalence €7
satisfying € o pi g = Az g o €5 by considering the following two cases: Let Ky be the connected
component of the vertex m. We first construct e by Construction 1 and then next € by
Construction 2 and the induction on k.

Let k¢ : Z¢ — Zi be the restriction of k1 X -+ X Ky 1 [Ticp OXi = [Ligpn € Xi to 22,
where k; : CX; — CX; pinches the upper half of C'X; as in the previous section. Then one has

(7.1) KK © PR, = PK,L © KL -

Construction 1 : K is connected.
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By the induction hypothesis, there is a commutative diagram

pmfl x1

m—1 m—1 1xe m—1
ZrestK(m) X Xm ZlinkK(m) X Xm ZlinkK(m) X CXm

J{em_lxl lem_lxl lem_lxl

pmIx1 1xe

m—1 , m—1
) X Xy WlinkK(m) X Xin WlinK(m) X CXm

Wmfl

resti (m

By Proposition 4.1 and Lemma 3.3, this commutative diagram induces a homotopy equivalence
en  Z — Wy between pushouts, and then we put

= PR o e o K
where ¢ is as in Proposition 6.1. In order to make the equality for 672(¢) hold, the map s} is
inserted. By construction, €7 o Pro = )‘71?70 o €'

Construction 2 : K Uk from K.
By Proposition 4.1 and Lemma 3.3, the map €7, : 277 . — W}, between pushouts induced
from the following commutative diagram is a homotopy equivalence.

m
PK.0

Zn Xlm X x 0X), x XLl

E%
)\m

wip S Xl POG X k-1 0, x X kL)

] Ixex1

Then we define
m _am Am
€Exuk — PKUE © €KLE

which satisfies €, 0 P, g = AKLpo © € by construction, where ¢, ;. is as in Proposition 6.2

Let us next show the naturality of €} by considering the following three cases, in between the
equality for 672(7) is also shown. These three cases are used as: Let Ky and L be the connected
component of K and L, respectively. First, the naturality for the pair Ky D Lg is proved by
Naturality 1. Next, the naturality for K D L is proved by Naturality 2 and the induction on
k, and then, finally, the naturality for K O L is proved by Naturality 3 and the induction on
¢. Therefore the proof of Theorem 7.1 is completed by proving the following.

Naturality 1 : K D L where K, L are connected.
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By the induction hypothesis, there is a commutative diagram

pmix1 1x¢

m—1 m—1 m—1
X _— X
ZrostL(m) X Xm ZhnkL(m) X Xm ZhnkL(m) x CXm
e e e
Wil x X My X Xy — Wil xOX
. R — .
restz, (m) m linky, (m) m linky, (m) m
pm71><]. lpmlxl lpmlxl
m—1
m—1 P L m—1 Ixu m—1
ZrestK(m) X Xom ZlinkK(m) X Xom ZlinkK(m) X OXm
y:l Am—ly1 lel Am—1xq %:l Am—ly1

Am—lxl 1x¢

m—1 m—1 m—1
WrestK(m) X Xm — WlinkK(m) X Xm - WlinkK (m) X CXm

It is clear from Proposition 4.1 that the pushout of the back face is the map p ; : Z7" — Z.
By the definition of )\”;7 1, the pushout of the front face is the map 5\% LW, — WTIZ By the
definition of €' and €} in Construction 1, the pushouts of the top and the bottom faces are
the maps € : Z* — W, and &2 : 2% — Wy, respectively. Then the above commutative
diagram yields a commutative square

Ay
JP%’”,L P’K",L
Thus by the definition of €}, (7.1) and Proposition 6.1, we obtain

m m o =m —-m m m _ =m -m m m
EKOPKRL —PKOCEKORKOPKRL =P OCE€xOCPKRLCOKRL

= PR OAR L o oK = A\ 0@ 0 & o K] = A o .

Naturality 2 : KUk D K.
By Proposition 4.1 and 6.2, there is a commutative diagram

PR Uk, K
m ’ m
ZK ZKI_Jk:

m 2Mm
leK J{eKuk

m v JAm
W —— Wg L
where v is as in Proposition 6.2. Then by the definition of €} , and Proposition 6.2,
m m _ . m ~m m —_ ,m m o __ m m
€xuk © PRUk,K = PRUE © €KLk © PRUk Kk — PRUE OV C € = )‘Kuk,K O€k-
. _—
Equality for 07 (7).

Before proceeding to the last case, let us prove the equality 07 (i) = €} o pg ;. Let Ky be the
connected component of the vertex m. If i is a vertex of Ky and ¢ < m, then by Proposition
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6.3, the naturality of p%, and Naturality 2, it holds that

m ~m __m m ~m . \m m Am
€x CPKr; = €K O PR Ko © PKy,i — )‘K,KO O €K, © PKy,it

It also holds that

ETI?O S /571?0@ = 95%0 0 gzn(o oK o /5?}02 definition of 5%0
= Dy O €Ry © PRy © (1 x k; x1) (7.1)
= @k, O €k, O PO (ﬁ?;s_tio myi X 1o (1 xk;x1) naturality of p
= Py © 10 (€egire, ) © Prestge, (mys X 1) 0 (1 k5 x 1) definition of &,
= P, O 1O (GIZS;;O my (1) x 1) o (1 x Kk x 1) induction hypothesis
= 0%, (4) Proposition 6.5

where p : Z:ZS;;O (m) X Xm — Z§, denotes the inclusion and y is as in Proposition 6.5. Therefore

O2(3) = Nty © 03 (1) = Nty © €ty © s = €12 0
for i € [k +1,m — 1]. If i = m, the equality is obvious. If ¢ € [k + 1,m] but not in Ky, the
equality follows from Proposition 6.3 and Naturality 2.

Naturality 3: K D LU/ for k < L.
By the equality for §72(i) proved above, there is a commutative diagram

Lo

Zm xlml PO X1 o, x X eHLm)
er
\ Am \ \
wi a xlml PO T X1 oX, x XL
PE.L PR lﬁ}?’i
ZK 2K 2K
* AR L = Nt = 0
wi win we.

Since the map Z7},, — Zj¢ induced from the back face is py r, , by Proposition 4.1, the above
diagram implies
€x © pTI?,LuE = V}?,Lue 0 €7y

and then by Corollary 6.4, the naturality is obtained as

m m _.m m __ \m ~m Am __\m m
€x CPr,Lue = Vi, oue © €oue = >‘K,Lu£ CPreCerue = )‘K,Lué O €L

0
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