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2 

 

Researches related with the application of functional lipids such as 1 

polyunsaturated fatty acids (PUFAs) have been conducted in various fields with a 2 

view to health and dietary requirements.   Novel rich sources other than known 3 

natural sources such as plant seeds and fish oils are required for increasing 4 

demands of PUFAs.  The filamentous fungus Mortierella alpina 1S-4 produces 5 

triacylglycerols rich in arachidonic acid, i.e., ones reaching 20 g/l in concentration 6 

and containing 30-70% arachidonic acid as total fatty acids.  Various mutants 7 

derived from M. alpina 1S-4 have led to the production of oils containing various 8 

PUFAs.  Molecular breeding of M. alpina strains by means of manipulation of the 9 

genes involved in PUFA biosynthesis facilitates improvement of PUFA productivity 10 

and elucidation of the functions of their enzymes.  This review describes practical 11 

PUFA production through mutant breeding, functional analyses of the genes of the 12 

enzymes involved in PUFA biosynthesis, and recent advances in unique PUFA 13 

production through molecular breeding. 14 

 15 
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Polyunsaturated fatty acids (PUFAs) contain more than one double bond, and some 1 

20-carbon (C20) PUFAs play important roles not only as structural components of 2 

membrane phospholipids but also as precursors of eicosanoids, signaling molecules 3 

including prostaglandins, thromboxanes, and leukotrienes, that are essential for all 4 

mammals.  Especially, arachidonic acid (AA; 20:4n-6), a representative n-6 PUFA, is 5 

the most abundant C20 PUFA in humans, and not only exhibits various regulation 6 

effects and physiological activities but also plays important roles in infant nutrition (1,2).  7 

Eicosapentaenoic acid (EPA; 20:5n-3), a representative n-3 PUFA, is beneficial in the 8 

treatment of cardiovascular diseases (3), and decreases platelet aggregation and blood 9 

pressure (4).  The distinct functions of the two families make the ratio in the diet of n-6 10 

and n-3 PUFAs important in inflammatory responses and cardiovascular health.  The 11 

most readily available lipid sources relatively rich in C20 PUFAs, none of which are 12 

found in plants, are fish oils, animal tissues, and algal cells.  Transgenic plants with 13 

some exogenous desaturase genes have been reported to produce n-3 and n-6 PUFAs (5).  14 

However, these transgenic sources are unsuitable for practical purposes from the 15 

viewpoint of genetically modified organisms.  The term "Single Cell Oils" is used for 16 

unique oils produced by microorganisms that compete with plant-seed oils and fish oils 17 

(6).  Some yeasts and molds are known as microorganisms that accumulate high levels 18 

of triacylglycerols.  A lipid content in excess of 40% (w/w) is not exceptional, and 19 

values of 70% and even 80% have been reported (7).  Single Cell Oils having different 20 

fatty acid compositions from plant-seed oils and fish oils are valuable for human life.   21 

On screening of the microorganisms accumulating C20 PUFAs, a filamentous fungus, 22 

Mortierella alpina 1S-4, was isolated as a suitable source for the AA production; it was 23 

able to produce EPA through the n-3 PUFA biosynthetic pathway, while AA through the 24 
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n-6 PUFA biosynthetic pathway (8-10).  In this strain, most PUFAs are present in 1 

triacylglycerols as storage oils, while some are present in phospholipids as structural 2 

components of membranes. 3 

Although success in this area over the last 25 years has generated much interest in the 4 

development of microbial fermentation processes, manipulation of the lipid 5 

compositions of microorganisms requires new biotechnological strategies to obtain high 6 

yields of the desired PUFAs.  This article reviews recent progress in the breeding of 7 

commercially important arachidonic acid-producing M. alpina strains, particularly 8 

approaches to creating desaturase and elongase mutants with unique pathways for PUFA 9 

biosynthesis involving conventional chemical mutagenesis and modern molecular 10 

genetics. 11 

 12 

VARIOUS KINDS OF PUFAs IN M. alpina 1S-4 13 

 14 

Isolation of mutants producing PUFAs through different biosynthetic pathways  15 

Various mutants defective in desaturase (9, 12, 6, 5 and 3) or elongase 16 

(MALCE1) activities, or with enhanced desaturase activities (6 and 5) have been 17 

derived from M. alpina 1S-4 by treating the parental spores with 18 

N-methyl-N’-nitro-N-nitrosoguanidine (11).  In addition, a 19 

diacylglycerol-accumulating mutant and several lipid-excretive ones have been obtained 20 

by the same method.  They are valuable not only as producers of useful PUFAs (novel 21 

or already existing) but also for providing valuable information on PUFA biosynthesis 22 

in this fungus (12).  The main features of these mutants are summarized in Table 1. 23 

9 Desaturase-defective mutants accumulate stearic acid (18:0) as the main fatty acid 24 
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(up to 40%) in the mycelial oil (13).  12 Desaturase-defective mutants accumulate 1 

high levels of n-9 PUFAs, such as Mead acid (MA; 20:3n-9) that are not detected in the 2 

wild strain because of a complete deficiency of 12 desaturation (Fig. 1A).  One of 3 

these mutants, JT-180, yields a large amount of MA (2.6 g /L, 49% in oil) on 4 

commercial production due to its enhanced 5 and 6 desaturase activities, not 5 

including n-6 and n-3 PUFAs (14). Double mutants defective in both 12 and 5 6 

desaturase activities accumulate n-9 eicosadienoic acid (20:2n-9) as a final product of 7 

n-9 PUFAs in large quantities (15). 6 Desaturase-defective mutants accumulate 8 

linoleic acid (18:2n-6) as the main fatty acid (up to 32%) in the mycelial oil (16).  9 

These mutants are characterized by the accumulation of n-6 eicosadienoic acid 10 

(20:2n-6) and nonmethylene-interrupted n-6 eicosatrienoic acid (20:3n-65) 11 

synthesized from linoleic acid, as shown in Fig. 1B.   5 Desaturase-defective mutants 12 

exhibit a high dihomo--linolenic acid (DGLA; 20:3n-6) level (4.1 g/L, 42% in oil) and 13 

a reduced concentration (<1%) of AA (17).  One of these mutants, S14, is used for the 14 

commercial production of DGLA. 3 Desaturase-defective mutants are unable to 15 

synthesize n-3 PUFAs at temperatures below 20°C (18), although the wild strain 16 

accumulates n-3 PUFAs such as EPA below that temperature.  Therefore, these 17 

3-desaturase defective mutants are superior to the wild strain for lipid production with 18 

a relatively high content of AA.  The fatty acid profile of elongase (EL1 for the 19 

conversion of palmitic acid, 16:0, to 18:0)-defective mutants is characterized by high 20 

levels of 16:0 and palmitoleic acid (16:1n-7), with small amounts of various kinds of 21 

n-7 and n-4 PUFAs, as shown in Fig. 1c, which are not detected in the wild strain.  The 22 

total content of these PUFAs in the oil reaches about 30%.  In a similar manner, n-1 23 

PUFAs can be produced from n-1 hexadecenoic acid (16:1n-1) or 1-hexadecene added 24 
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to the medium (see Fig. 1C).  Triacylglycerols produced by M. alpina 1S-4 account for 1 

90% of the total lipids, whereas diacylglycerol-accumulating mutant KY1 derived from 2 

the wild strain accumulates 30% diacylglycerols in the total lipids.  Lipid-excretive 3 

mutant V6 shows the same lipid productivity and fatty acid composition as the wild 4 

strain, and excretes 10-40% of the total lipids into the medium during submerged 5 

cultivation.  Many lipid particles containing triacylglycerols are observed on the 6 

surface of V6 mycelia cultivated on a solid medium.  V6 is assumed to excrete 7 

accumulated lipids out of its mycelia due to its insufficient cell wall structure caused by 8 

mutations in the metabolic pathways for cell wall synthesis.   9 

 10 

Characterization of enzyme genes involved in PUFA biosynthetic pathways  The 11 

genes encoding the fatty acid desaturases and elongases involved in C20 PUFA 12 

biosynthesis in M. alpina 1S-4 and its mutant strains were characterized, as described 13 

below.  These nucleotide sequence information revealed mutation sites of the enzymes 14 

in the representative mutants as described above (see Table 1). 15 

The three 9 desaturase homologues (designated as 9-1, 9-2, and 9) in M. alpina 16 

1S-4 has a cytochrome b5-like domain linked to its carboxyl terminus, as also seen for 17 

the yeast 9 desaturase (19).  Mortierella 9-1 exhibits 45% and 34% amino acid 18 

sequence similarity with those of Saccharomyces cerevisiae and rat, suggesting that the 19 

Mortierella 9-1 is a membrane-bound protein using acyl-CoA as substrates.  Both 20 

9-1 and 9-2 desaturate 18:0 to oleic acid (18:1n-9), whereas 9 desaturates a very 21 

long saturated fatty acid (26:0) to the corresponding monounsaturated fatty acid 22 

(26:1n-9) (20).  Although the 9-2 gene is not transcribed in the wild strain, the 9-2 23 

gene is transcribed and its derivative enzyme exhibits 9 desaturation activities in 9 24 
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desaturation-defective mutants which have a mutation site in its 9-1 gene.  1 

Mortierella 5 and 6 desaturases have a cytochrome b5-like domain linked to its 2 

N-terminus.  The two 6 desaturase homologues (designated as 6-1 and 6-2) are in 3 

the wild strain, in which the 6-1 gene is transcribed much more highly (2- to17-fold) 4 

than the 6-2 one (21).  Mortierella 12 and 3 genes lacking a region encoding a 5 

cytochrome b5-like domain were cloned and characterized by means of heterologous 6 

gene expression systems.  The gene expression analysis in yeast revealed that 7 

Mortierella 3 desaturase converts n-6 PUFAs to n-3 PUFAs with carbon 18 and 20 8 

chain lengths, especially Mortierella 3 desaturase could effectively convert AA into 9 

EPA (22). 10 

M. alpina 1S-4 possesses 4 kinds of genes encoding fatty acid elongases (MALCE1, 11 

MALCE2, GLELO, and MAELO) involved in long chain saturated fatty acid or PUFA 12 

biosynthetic pathways.  MALCE1 and MALCE2 belong to 9 elongases which 13 

efficiently perform elongation of 16:1n-7, 18:2n-6, and 18:3n-3.  Furthermore, 14 

MALCE1 plays an important role in the elongation of 16:0 to 18:0 in M. alpina 1S-4 15 

(23).  GLELO is a 6 elongase which plays a critical role in the elongation of both 16 

C18 n-3 and C18 n-6 PUFAs to the corresponding C20 PUFAs (24).  The enzyme 17 

encoded by the maelo gene was demonstrated to be involved in the biosynthesis of 18 

saturated fatty acids (20:0, 22:0, and24:0) in M. alpina 1S-4 (25). 19 

 20 

GENETIC MANIPULATION OF M. alpina STRAINS FOR PUFA 21 

PRODUCTION 22 

 23 

Development of a transformation system for M. alpina strains  A transformation 24 
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system for M. alpina 1S-4 has been developed with M. alpina uracil auxotrophs and a 1 

complementary gene as selective marker (26).  M. alpina uracil auxotrophs were 2 

isolated by spontaneous mutation on a solid medium containing 5-fluoroorotic acid, of 3 

which 0.5 mg/ml inhibited the growth of the wild strain completely, with the addition of 4 

a little uracil.  The uracil auxotrophs were proved each to have a point mutation in the 5 

ura5 gene encoding orotidine-5’-monophospate decarboxylase.  These uracil 6 

auxotrophs, used in the transformation as hosts, were confirmed to exhibit the same 7 

lipid productivity, AA productivity, growth speed, and spore formation capacity as the 8 

wild strain. 9 

Transformation with spores of M. alpina 1S-4 and a vector containing the M. alpina 10 

1S-4 ura5 gene as a marker has been performed through microprojectile bombardment 11 

(27), while other methods frequently used for transformation, such as ones involving 12 

protoplasting, lithium acetate, and electroporation, did not give satisfactory results, 13 

because of the difficulty of effective protoplast formation by the use of general and 14 

commercial lytic enzymes, such as chitinase, chitosanase, and glucanase, for cell walls.  15 

Transformants were obtained at a transformation frequency of 0.4 transformants/μg of 16 

vector DNA.  Southern blot analysis revealed that most of the integrated plasmids in 17 

the stable transformants were present as several copies at ribosomal DNA (rDNA) 18 

positions and/or random positions in the chromosomal DNA. 19 

An Agrobacterium tumefaciens-mediated transformation system for M. alpina 1S-4 20 

has been developed (28), in which the ura5 gene is used as a selectable marker under 21 

the control of the homologous histone H4.1 promoter in the transfer-DNA region.  The 22 

frequency of transformation reached more than 400 transformants/10
8
 spores.  23 

Southern blot analysis revealed that most of the integrated transfer-DNA appeared as a 24 
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single copy at a random position in the chromosomal DNA.   1 

M. alpina 1S-4 exhibits resistance to various antibiotics used in the transformation 2 

systems of filamentous fungi.  A high concentration (20 mg/ml) of Zeocin completely 3 

inhibited the germination of M. alpina 1S-4 spores, and decreased the rate of growth of 4 

fungal filaments to some extent.  M. alpina 1S-4 showed Zeocin resistance with 5 

integration of the Zeocin-resistance gene at the rDNA locus of the genomic DNA (29).  6 

On the other hand, the fungicide carboxin (100 g/ml) was found to inhibit the hyphal 7 

growth and spore germination of M. alpina 1S-4 completely (30).  The sdhB gene 8 

encodes the iron-sulfur (Ip) subunit of the succinate dehydrogenase (SDH, EC 1.3.99.1) 9 

complex.  The mutated sdhB (CBXB) gene, which leads to an amino acid substitution 10 

(H243L, a highly conserved histidine residue within the third cysteine-rich cluster of 11 

SDHB being replaced by a leucine residue), conferred carboxin resistance.  The 12 

transformants obtained with the homologous CBXB gene from M. alpina 1S-4 as a 13 

selective marker exhibited carboxin resistance.  The sdhC gene encoding a subunit of 14 

the SDH complex was also isolated from M. alpina 1S-4.  The sdhC gene has been 15 

reported to act as a selectable marker instead of the sdhB gene (31).  In the same 16 

manner, a mutated sdhC (CBXC) gene was constructed to encode a modified SdhC with 17 

an amino acid substitution (H83K and T86I, highly conserved histidine and threonine 18 

residues within a putative SDH quinine-binding site of SDHC being replaced by lysine 19 

and isoleucine ones respectively).  Transformants obtained with a CBXC plasmid 20 

exhibited carboxin resistance, too.  These genes for Zeocin and carboxin resistance are 21 

thus useful as selective markers in the transformation not only of the parental strain, M. 22 

alpina 1S-4, but also of its mutants.   23 

 24 
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PUFA production through molecular breeding of M. alpina  A practical 1 

transformation system for M. alpina 1S-4 allows overexpression and RNA interference 2 

(RNAi) of the genes involved in PUFA biosynthesis for improvement of the production 3 

of various PUFAs.  The valuable Mortierella mutants derived by chemical mutagenesis 4 

were directly transformed with drug resistance markers, or their uracil auxotrophs were 5 

transformed with the ura5 marker.  Molecular breeding of M. alpina 1S-4 and its 6 

mutants led to unique fatty acid profiles and high productivities of valuable PUFAs, as 7 

summarized in Table 2. 8 

Mutant JT-180 exhibits no activities of 12 desaturase and enhanced 5 and 6 9 

desaturase activities.  On overexpression of the endogenous 12 gene in JT-180, it 10 

accumulated a higher amount of AA (2.0 g/l/7 d, 39% of total fatty acids), instead of 11 

MA, due to both enhanced 5 and 6 desaturation as compared to the case of the wild 12 

strain (1.2 g/l/7 d, 21%).   13 

Expression of the gene encoding GLELO, which has been suggested to be the 14 

limiting step in AA biosynthesis (32), was successfully performed in M. alpina 1S-4 15 

(33).  The resulting transformants yielded more AA (3.6 g/l/10 days, 28%) than the 16 

wild strain (1.9 g/l/10 days, 19%).  In addition, overexpression of the endogenous 17 

malce1 gene in M. alpina 1S-4 also led to faster and higher AA accumulation (0.76 g/l/6 18 

d, 34%) than in the wild strain 1S-4 (0.68 g/l/6 d, 28%).  Overexpression of both 19 

malce1 and glelo genes had significant effects on AA production by M. alpina 1S-4.   20 

The 5 and 6 (Pav5 and Ost6) desaturases from microalgae Pavlova salina and 21 

Ostreococcus lucimarinus, respectively, have desaturation activities for acyl-CoA forms 22 

of substrates.  On the other hand, the 5 and 6 desaturases from M. alpina make 23 

phospholipids their substrates.  By gene expression of these microalgal desaturases 24 



11 

 

with different substrate specificities for fatty acid derivatives in M. alpina, higher 1 

contents of PUFAs might be obtained through molecular breeding.  Overexpression of 2 

the Pav5 gene in the wild strain led to a high rate of AA and a quite low rate of DGLA 3 

in the total fatty acids, compared with AA and DGLA rates in the wild strain.  As the 4 

same manner, overexpression of the Ost6 gene in the wild strain led to a total higher 5 

rate of 18:3n-6, DGLA and AA in the total fatty acid than that in the wild strain 6 

Overexpression of the endogenous 3 gene in the wild strain and S14 (5 7 

desaturation-defective mutant) led to higher production of EPA (0.8 g/l, 30%) as shown 8 

in Fig. 2 and 20:4n-3 (1.8 g/l, 35%), which usually comprise about 10% of the total 9 

fatty acids in the wild strain and S14 cultivated at low temperatures (<20°C).  10 

Molecular breeding of 3 gene-overexpressing transformants gave only high 11 

productivities of these n-3 C20 PUFAs.  Overexpression of both the elongase PavElO 12 

(involved in the conversion of C20 to C22 PUFAs in marine microalga Pavlova sp.) and 13 

3 genes in the wild strain led to the formation of C22 PUFAs, n-6 docosatetraenoic 14 

acid (22:4n-6) and n-3 docosapentaenoic acid (22:5n-3). 15 

 RNAi method with double strand RNA was applied to silencing gene expression in 16 

M. alpina 1S-4 (34).  12 Gene-silenced strains accumulated n-9 octadecadienoic acid 17 

(18:2n-9), 20:2n-9, and MA, which are not detected in either the control strain or 18 

wild-type strain 1S-4.  The fatty acid composition of these transformants was similar 19 

to that of 12 desaturation-defective mutants previously identified.  Thus RNAi can be 20 

used to alter the types and relative amounts of fatty acids produced by commercial 21 

strains of this fungus as a simple method of silencing gene expression. 22 

The RNAi of the 12 gene in MALCE1 activity-defective mutant M1 led to an 23 

accumulation of n-7 PUFAs and a decrease in n-4 PUFAs.  This indicates that n-4 24 



12 

 

PUFAs are biosynthesized from n-7 PUFAs by 12 desaturation.  In addition, the M1 1 

transformant obtained on RNAi of the maelo gene accumulated n-4/n-7 PUFAs with a 2 

decrease in n-6 PUFAs, which suggests that MAELO is involved in the elongation not 3 

only of long chain saturated fatty acids such as 20:0 and 22:0 but also of 16:0.  Such 4 

molecular breeding of M. alpina strains should facilitate improvement of PUFA 5 

productivity and elucidation of the functions of the enzymes involved in PUFA 6 

biosynthesis. 7 

 8 

CONCLUSION 9 

 10 

The studies described above summarize our results related to PUFA production by 11 

oleaginous fungus M. alpina 1S-4 and the elucidation of fungal lipogenesis involved in 12 

PUFA biosynthesis.  M. alpina 1S-4 and derivative mutants are potential sources of 13 

triacylglycerols rich in various PUFAs, including n-1, n-3, n-4, n-6, n-7, and n-9 PUFAs.  14 

It is possible to control the fatty acid profiles of fungal mutants and to regulate the flow 15 

of glucose or exogenous fatty acids to obtain a desired PUFA.  The recent study on M. 16 

alpina and its mutants have been focused on molecular engineering of the enzyme genes 17 

involved in PUFA biosynthesis and pioneered the improvement of PUFA productivity.  18 

The breeding of mutants and transgenic strains may make it possible to produce desired 19 

PUFAs effectively.  Further development of an efficient gene expression system for 20 

unique heterologous genes involved in such processes as lipid synthesis, PUFA 21 

synthesis, and lipid conversion, and construction of a homologous gene disruption 22 

system for M. alpina 1S-4 will enable elaboration of metabolic engineering for the 23 

production of various lipids with industrial interests. 24 
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Figure legends 1 

 2 

FIG. 1.  Pathways for the Biosynthesis of PUFAs in M. alpina 1S-4 and its Mutants.  3 

The n-3, n-6, and n-9 PUFAs are derived from 18:1n-9 (A), the 4 

nonmethylene-interrupted PUFAs are detected in 6 desaturase-defective mutants (B), 5 

and the n-1, n-4, and n-7 PUFAs are derived from 16:1n-7 (C).  Black arrows show the 6 

AA biosynthetic pathway in the parental strain, M. alpina 1S-4.  AA, arachidonic acid; 7 

N, N desaturase; DGLA, dihomo--linolenic acid; EL, fatty acid elongase; EPA, 8 

eicosapentaenoic acid; MA, Mead acid; 3, 3 desaturase. 9 

 10 

FIG. 2.  Conversion of n-6 PUFAs to n-3 PUFAs by 3 desaturase from M. alpina 11 

1S-4 (A) and chromatograms of fatty acid methyl esters prepared from fungal cells.  12 

The strains were cultivated at 12˚C for 11 days. 13 
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TABLE 1.  Lipid productivities of Mortierella alpina 1S-4 mutants 1 

 2 

Deficient Mutation Parent Mutant   Accumulation Reference 3 

Enzyme site strain 4 

9   G265D 1S-4 T4   18:0 (40%) 13 5 

12   P166L 1S-4, Mut48b, JT-180   MA (2.6 g /L, 49% of total fatty acids) 14 6 

  and M209-7b  Enhanced activities of 5 and 6 desaturases  7 

12 and 5   P166L in (12) 1S-4 and Mut48b M226-9   20:2n-9 (2.2 g/L, 37%) 15 8 

 and W301Stop (5)  9 

6   Incorrect splicing 1S-4 Mut49   20:3n-6(5) (0.48 g/L, 7%) 16 10 

5   Incorrect splicing 1S-4 S14     DGLA (4.1 g/L, 42%) and AA content ( <1%) 17 11 

3   W232Stop 1S-4 Y11   AA (1.5 g/L, 45%) without n-3 PUFAs 18 12 

EL1   H154Y andT185I 1S-4 M1   16:0 (30%), 16:1n-7 (8%),  − 13 

    and n-4/n-7 PUFAs (30%) 14 

N.D. a   − 1S-4 KY1   Diacylglycerol (30% of total lipids) − 15 

N.D.   − 1S-4 V6   Lipid excretion (10-40% of total lipids) − 16 

aN.D., not determined. 17 

bMutants derived from M. alpina 1S-4. 18 

 19 



TABLE 2.  Molecular Breeding of M. alpina 1S-4 and Its Mutants for PUFA Production 

 

Accumulated PUFA Hosta Target geneb Methodc Note 

     

AA JT-180 12 OE Higher AA production in JT-180 (2.0 g/l/7 days, 39% of total fatty acids) than wild 

strain 1S-4 (1.2 g/l/7 days, 21%) 

AA 1S-4 malce1 OE Higher accumulation of AA in a transformant (0.76 g/l/6 days, 34%) than wild strain 

1S-4 (0.68 g/l/6 days, 28%) 

AA 1S-4 glelo OE Higher AA production in a transformant (3.6 g/l/10 days, 28%) than wild strain 1S-4  

(1.9 g/l/10 days, 19%) 

AA 1S-4 Pav5 OE A higher rate of AA (40%) and a lower rate of DGLA (1%) in a transformant than 

rates of AA (35%) and DGLA (4%) in wild strain 1S-4 

AA 1S-4 Ost6 OE A higher rate of AA (44%) in a transformant than (35%) that in wild strain 1S-4 

EPA 1S-4 3 OE High EPA production (0.8 g/l/11 days, 30%) 

20:4n-3 S14 3 OE High 20:4n-3 production (1.8 g/l/11 days, 35%) 

22:4n-6, 22:5n-3 1S-4 PavELO, 3 OE Detection of small amounts of 22:4n-6 and 22:5n-3 in wild strain 1S-4 

MA 1S-4 12 Ri Accumulation of n-9 PUFAs 

20:3n-6(5), 20:2n-6 1S-4 6 Ri Accumulation of 20:3n-6(5) and 20:2n-6 

16:0, 16:1n-7 1S-4 malce1 Ri Accumulation of 16:0 and 16:1n-7 

n-4/n-7 PUFA M1 maelo Ri Accumulation of n-4/n-7 PUFAs and decrease of n-6 PUFAs 

n-7 PUFA M1 12 Ri Accumulation of n-7 PUFAs and decrease of n-4 PUFAs  

18:0, PUFA 1S-4 maelo Ri No accumulation of 22:0 and 24:0, and small increases in 18:0 and the following n-6 

PUFAs 

     

aJT-180, 12 desaturase activity-defective mutant (see TABLE 1); M1, EL1 elongase activity-defective mutant; S14, 5 desaturase activity-defective mutant. 

bThe genes, except for Pav5, Ost6, and PavELO, were all derived from M. alpina 1S-4.  

cOE, overexpression; Ri, RNAi. 
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