<table>
<thead>
<tr>
<th>Title</th>
<th>Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ng, Chen Seng; Jogi, Michihiko; Yoo, Ji-Seung; Onomoto, Koji; Koike, Satoshi; Iwasaki, Takuya; Yoneyama, Mitsutoshi; Kato, Hiroki; Fujita, Takashi</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of virology (2013), 87(17): 9511-9522</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/178797</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013, American Society for Microbiology.; This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
EMCV Disrupts Stress Granules, the Critical Platform for Triggering Antiviral Innate Immune Responses

Chen Seng Ng1,2, Michihiko Jogi1,2,3, Ji-Seung Yoo1,2, Koji Onomoto1,2,3, Satoshi Koike4, Takuya Iwasaki4, Mitsutoshi Yoneyama1,2,3, Hiroki Kato1,2, Takashi Fujita1,2*

1Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.

2Laboratory of Molecular Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan.

3Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan

4Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan

*Corresponding author. Mailing address:

Takashi Fujita
Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto 606-8507, JAPAN.

Phone and Fax: (+81)-75-751-4031
E-mail: tfujita@virus.kyoto-u.ac.jp

Running title: Loss of stress granule impaired interferon signals.

Abstract word count: 244 words

Text word count: 4,198 words
In response to stress, cells induce ribonucleoprotein aggregates, termed stress granules (SGs). SGs are transient loci containing translation-stalled mRNA, which is eventually degraded or recycled for translation. Infection of some viruses including influenza A virus with a deletion of non-structural protein 1 (IAVΔNS1) induces SG-like protein aggregates. Previously, we showed that IAVΔNS1-induced SGs are required for efficient induction of type I interferon (IFN). Here, we investigated SG formation by different viruses using GFP-tagged Ras-GAP SH3 domain binding protein-1 (GFP-G3BP1) as an SG probe. HeLa cells stably expressing GFP-G3BP1 were infected with different viruses and GFP fluorescence was monitored live with time-lapse microscopy. SG formation by different viruses was classified into 4 different patterns: no SG formation, stable SG formation, transient SG formation and alternate SG formation. We focused on EMCV infection, which exhibited transient SG formation. We found that EMCV disrupts SGs by cleavage of G3BP1 at late stages of infection (>8 h) through a similar mechanism to that by poliovirus. Expression of a G3BP1 mutant, which is resistant to the cleavage, conferred persistent formation of SG as well as an enhanced induction of IFN and other cytokines at late stages of infection. Additionally, knockdown of endogenous G3BP1 blocked SG formation with attenuated induction of IFN and potentiated viral replication. Taken together, our findings suggest a critical role of SG as an antiviral platform and shed light on one of the mechanisms by which a virus interferes with host stress and subsequent antiviral responses.

Keywords: Encephalomyocarditis virus, melanoma differentiation-associated protein 5, stress-granules, G3BP1, interferon
INTRODUCTION

In eukaryotic cells, viral infections induce several responses. Cellular pathogen recognition receptors such as RIG-I-like receptors (RLRs), and Toll-like-receptors recognize specific pathogen-associated molecular patterns and activate the transcription of hundreds of genes including interferons (IFNs), inflammatory cytokines and antiviral proteins. Secreted IFNs, in turn, activate a secondary JAK-STAT signaling cascade, which culminate in the activation of various interferon stimulated genes (ISGs) (1,2). A representative ISG, protein kinase RNA-activated (PKR), acts as an antiviral protein by inducing the blockade of viral translation (3-5). PKR is also known to associate with cellular stress-responses. Virus infection results in the accumulation of double-stranded RNA (dsRNA), thereby activating PKR and phosphorylation of eukaryotic initiation factor 2α (eIF2α), leading to the formation of stress granules (SGs) (6,7). Several studies have reported about the interaction between viruses and SGs, especially the effects of specific type of viruses on the fate of SG formation and how viruses modulate stress granule assembly (8-11). Recently, we reported that RLR recruitment to SGs during SG formation is critical in RLR-mediated signaling and non-structural protein 1 of influenza A virus blocks RLR signaling by inhibiting SG and antiviral response (12). Accumulating evidence suggests that viruses have evolved strategies to prevent SG formation. These results suggest that virus-induced SGs potentially serve as platforms for antiviral activity, however, the underlying molecular mechanism still remains to be elucidated.

In the present study, we aim to delineate the physiological impact of stress granule formation and its viral modulation. We employed an EGFP-tagged stress granule marker, Ras-Gap-SH3 domain binding protein (G3BP1) to probe the subcellular distribution of virus-induced SGs (13,14). This system allows us to monitor SGs in an individual virus-infected cell. Infection with RNA and DNA viruses displayed three distinct patterns:
stable, transient and alternate formation of SG. We focused on encephalomyocarditis virus (EMCV), which exhibited transient formation of SGs. We show that EMCV disrupts SGs through G3BP1 cleavage. Furthermore, we found that EMCV-induced SGs are required for efficient activation of IFN and cytokine genes. We propose a new antiviral concept highlighting the potential cross-talk of virus-induced stress responses and activation of the IFN signaling cascade. This may provide a new insight in understanding the mechanism by which antiviral genes are regulated.
MATERIALS AND METHODS

Plasmid constructs. The stress granule marker constructs pEGFP-C1-G3BP1 (NM_005754) was a kind gift from Dr. Jamal Tazi (Institute de Génétique Moléculaire de Montpellier, France). pEGFP-C1-G3BP1 Q325E mutant construct was generated by site-directed mutagenesis through KOD-Plus-Mutagenesis kit (TOYOBO, Japan), using primers containing the desired mutation according to manufacturer’s instructions, and were completely sequenced by using ABI Prism DNA sequencer to verify the presence of mutation. This plasmid contained a single point amino acid substitution at position 325 (from glutamine to glutamate), which is resistant to cleavage by 3CPRO of Poliovirus (PolioV) (15).

Expression vectors for EMCV pF-leader and pF-3C protease were described previously (16).

Viruses. PolioV (Mahoney strain), vesicular stomatitis virus (VSV, Indiana strain), EMCV, adenoviruses (Type5), Sindbis virus (SINV) and Theiler’s murine encephalomyelitis virus (TMEV, GDVII strain) were prepared by infecting BHK cells at a multiplicity of infection (MOI) of 1. Cell culture medium was collected after confirming cytopathic effects following infection. Medium containing newly produced viruses was centrifuged at 1,500rpm for 5 min to pellet down the cell debris, supernatant containing viruses were collected and stored at -80°C. Viral titer was assessed by plaque assay on L929 cells as previously described (17).

NDV (Miyadera strain), Sendai virus (Cantell, SeV) and influenza A virus with a deletion of the NS1 gene (IAV\textDeltaNS1, strain A/Puerto Rico 8/34) (18,19) were propagated in the allantoic cavities of embryonated chicken eggs, then stocks were stored at -80°C.

Generation of stable HeLa cells and general cell culture conditions. Cell lines were maintained in Dulbecco’s Modified Eagle’s medium (DMEM) supplemented with 10%
heat-inactivated fetal bovine serum (Nacalai Tesque, Japan) and Penicillin-Streptomycin
(100U/mL and 100μg/mL respectively, Nacalai Tesque, Japan). To generate HeLa cells
stably expressing EGFP-G3BP1 wild type and Q325E mutant, pEGFP-C1-G3BP1 and
pEGFP-C1-G3BP1 Q325E mutant expression constructs was linearized by restriction enzyme
ApaL1 (Takara, Japan). The linearized plasmids were then transfected into HeLa cells using
FuGENE6 (Promega, USA) according to manufacturer’s recommendations. Transformants
were selected by including 1 mg/mL of G418 in the culture medium. Individual colonies
were isolated and characterized.

Live-cell imaging and immunofluorescence microscopy. For the live-cell imaging
analysis, HeLa cells stably expressing EGFP-G3BP1 (HeLa/G-G3BP) were seeded in 12-well
plate and incubated at 37°C. After 24 hours, cells were washed with DMEM medium (10%
fetal bovine serum and 1% Penicillin-Streptomycin) for several rounds. Cells were then
infected with various types of RNA and DNA viruses. After 1 hour infection, virus was
removed and replaced with 1.0 mL of DMEM imaging medium (4,500 mg/L D-glucose and
L-glutamine, 25mM HEPES buffer, no sodium pyruvate and phenol red, Invitrogen). Imaging
was immediately initiated every 10mins. Live cells were maintained on the microscope stage
at 37°C, with 5% carbon-dioxide in a humidity-controlled chamber. Images were mounted
using Biophotonics-ImageJ software. All imaging was performed by using a Leica CTR
6500.

For the immunofluorescence analysis, cells were seeded either in a 12-well plate or a
8-well chamber slide and incubated at 37°C. After 24 hours, cells were subjected to various
treatments such as plasmid transfection or virus infection. Cells were then rinsed in
phosphate-buffered saline (PBS) several times, fixed with 4% paraformaldehyde solution for
10 min at room temperature, washed with PBS for two additional rounds, permeabilized with
acetone:methanol (1:1) for one minute, and blocked with phosphate-buffered saline containing 0.1 % Tween-20 (PBST) solution containing bovine serum albumin (BSA, 5.0 mg/mL) for 1 hour at 4°C. Cells were then incubated with primary antibody, followed by fluorophores-conjugated secondary antibodies (Invitrogen) for one-hour at 4°C. Cells were washed with PBST extensively and mounted. All images were obtained by a Leica CTR 6500.

siRNA-directed gene silencing. The siRNA universal negative control and siRNA targeting stress granule marker-G3BP1 (50nM) and dsRNA protein kinase PKR were purchased from Invitrogen, and transfected using either Lipofectamine2000 (Invitrogen) or RNAiMax (Invitrogen) according to manufacturer’s recommendation. The sequence of siRNA: RIG-I, sense 5’-CGG AUU AGC GAC AAA UUU AUU-3’, antisense 5’-UAA AUU UGU CGC UAA UCC GUU-3’; PKR#1, sense 5’-UUU ACU UCA CGC UCC GCC UUC UCG U-3’, antisense 5’-ACG AGA AGG CGG AGCGUGAAGUA A -3’; PKR#2, sense 5’- AUG UCA GGA AGG UCA AAU GGU GGA AGG UCA UUC CUG ACA U-3’; G3BP1, sense 5’- UAA UUU CCC ACC ACU GUU AAU GCG C-3’, antisense 5’- GCGCAUUAAACAGUGGGUGGAAAUAUA-3’. After 48 hours post-transfection, cells were subjected to viral infection or other treatments. A specific antibody for G3BP1 (Santa Cruz) was used to monitor the knockdown efficiency.

RNA analysis. RNA was harvested from cells with TRIzol (Invitrogen) according to the manufacturer’s instructions. Contaminating DNA was then eliminated by using recombinant DNase I (Roche, 10 units/μL) according to the manufacturer’s protocol. Treated samples were purified by phenol-chloroform extraction. 500 ng of purified RNA was used as a template to synthesize cDNA using a High Capacity cDNA Reverse-Transcription kit
(Applied Biosystem) as specified by the manufacturer through the following cycles: 25°C for 10 seconds; 37°C for 2 hours; 85°C for 10 seconds. The concentration of cDNA was quantified by a spectrophotometer and the final concentration was adjusted to 1 μg/μL. cDNA samples were then either subjected to standard PCR or real-time quantitative-PCR analysis with specific probes from Taqman Gene Expression Assay (Applied Biosystem). Quantification of EMCV viral RNA was performed using SYBR master mix (Applied Biosystem) with specific primers targeting EMCV capsid coding region. Standard PCR was performed with cDNA samples together with a master mix containing 1X PCR buffer, 2.5mM of each dNTP’s, 0.2 units of ExTaq Polymerase and 1.0μM of both forward and reverse primers. PCR buffer, dNTPs and ExTaq Polymerases were purchased from Takara, Japan. Primers were all customized and purchased from Invitrogen. PCR was performed in 50 μL reaction mixture with initial annealing temperature at 56°C-60°C. PCR products were analyzed by agarose gel electrophoresis.

Western blotting. Cells were collected in ice-cold PBS by scraper. Cells were collected by centrifugation and lysed by NP-40 buffer (50mM Tris [pH8.0], 150mM NaCl, 1% [vol/vol] NP-40, 1 nM of Vanadate, 1 mM of Leupeptin and phenylmethanesulfonylefluoride), followed by centrifugation at 15,000rpm for 10 min and ultracentrifugation at 100,000rpm for 5min. The supernatant was mixed with an equal volume of 2X SDS buffer, boiled for 5 min, separated by SDS-PAGE (30μg/lane), and transferred to nitrocellulose membrane. The membranes were incubated in blocking buffer (PBS, 5% [wt/vol] dry milk powder) for 30min at room temperature, followed by incubation with primary antibody diluted in blocking buffer at 4°C overnight. Membranes were washed extensively with TBST (TBS, 0.1% Tween-20), followed by incubation with a conjugated-secondary antibody for 1 hour at room temperature. The proteins were visualized using alkaline-phosphatase buffer containing BCIP-NBT.
(Promega) color development substrate (100 mM Tris-HCl [pH9.0], 150 mM NaCl, 1 mM MgCl₂, 66 μL of NBT [50 mg/mL] and 33 μL of BCIP [50mg/mL]).

Antibodies. The antibodies used in this study include mouse monoclonal anti-GFP (1:1000, MBL); goat polyclonal anti-G3BP1 (1:500, Santa Cruz sc-70283); mouse monoclonal anti-G3BP1 (1:1000, Santa Cruz sc-365338); rabbit polyclonal anti-PKR (1:1000, Santa Cruz sc-709); rabbit polyclonal anti-TIA1/R (1:1000, Santa Cruz sc-48371); goat polyclonal anti-TIAR (1:1000, Santa Cruz sc-1749); rabbit polyclonal anti-HuR (1:1000, Santa Cruz sc-365816); Propidium iodide [PI] (1:2000 in PBST, Miltenyi Biotec). The RIG-I antibody were generated by immunizing a rabbit with a synthetic peptide corresponding to amino acid 793-807 of RIG-I and MDA5. Mouse monoclonal anti-PABP (1:1000, Abcam ab6125); rabbit monoclonal anti-actin (1:5000; BioLegend Poly6221); mouse anti-FLAG (1:1000, Sigma Aldrich) and rabbit monoclonal anti-phospho-PKR pT446 (1:1000, Epitomics Inc.). Anti-EMCV polyclonal antibody was obtained by immunizing a rabbit with purified EMCV virions. Anti-MDA5 polyclonal antibody was obtained by immunizing a rat with recombinant MDA5 (produced in insect cells) which was pre-activated with RNA ligands.

Quantification for the distribution pattern of virus-induced SG. SG formation was quantified visually by using eye-sight counting. The total number of cells displaying each unique distribution pattern in each location was recorded and the percentage for each pattern was calculated. As for the fixed cells, 10 pictures at different locations were taken randomly. Cells displaying SG foci were quantified manually. Graphs display the average percentage of replicates (at least 20 times).
RESULTS

Characterization of HeLa cells stably expressing SG marker, G3BP1. To monitor SGs in living cells, we generated HeLa/G-G3BP (Fig. 1). Constitutive aggregation of intrinsic SG components is reported to lead to a severe stall in protein synthesis and eventual apoptosis (14,20). All the HeLa/G-G3BP clones displayed uniform and high GFP expression and their growth rate was comparable to the parental cells (our unpublished observation). It has been well documented that G3BP1 accumulates in SG foci in response to arsenite treatment (oxidative stress) and virus infection (12,13). HeLa/G-G3BP clone 12 was treated with arsenite or infected with Newcastle disease virus (NDV) or Influenza A virus (IAV) with an NS1 deletion (IAVΔNS1), then the GFP localization was examined by confocal microscopy. As shown in Fig. 1A, speckle-like localization of GFP was induced by these stimuli. Other clones also exhibited similar speckle formation after arsenite treatment or NDV infection (Fig. 1B, C). We confirmed that other SG components, TIA-1, TIAR, HuR and eIF3 colocalized with the GFP speckles (unpublished observation). These results indicate that EGFP-G3BP1 acts as a suitable probe for virus-induced SGs. However, since transient overexpression of G3BP1 results in SG formation without external stress (13), we tested if the HeLa/G-G3BP clones would exhibit normal antiviral response. As shown in Fig. 1D, all clones exhibited comparable induction of IFN-β mRNA as parental cells. We chose clone 18 for further analyses.

G3BP1 exhibits three redistribution patterns after infection with both RNA and DNA viruses. To examine the dynamics of cytoplasmic SGs induced by viral infection, the cells were infected with different viruses as shown in Fig. 2 and monitored live for distribution of GFP fluorescence (representative results are shown in Movie S1-S9). Cells infected with SeV, IAV, VSV and TMEV did not show SG formation (8). Other viruses induced SGs, typically
forming a large number of small granules around 5 h post infection and gradually fusing to each other. SG formation was quantified (Fig. 2A-K) and classified into three predominant patterns: stable formation (Fig. 2L), transient formation (Fig. 2M), and alternating formation (Fig. 2N) within a single cell. NDV, IAVΔNS1 and Adenovirus 5 displayed a stable formation of SGs (Movie S1-S3). Whereas SINV, EMCV and PolioV induced foci at around 5 to 6 h post infection, however, the foci disappeared thereafter (transient formation) (Fig. 2D-2F; Movie S4-S6). Interestingly, adenovirus 5 with E1A deletion, exhibited multiple rounds of formation and disappearance of SGs (alternate formation) in the majority of cells (Fig. 2I; Movie S7). Similar oscillation of SGs in cells infected with HCV and treated with IFN was reported (21). Collectively, these live-cell imaging analyses demonstrated that viral infections trigger host stress responses, however different viruses induce distinct response patterns, presumably through specific underlying mechanisms. The observed SG formation patterns are unlikely due to G3BP1 overexpression because wt HeLa cells exhibited transient SG formation upon EMCV infection when endogenous G3BP1 was used as a marker (Fig. 2O).

EMCV infection results in the cleavage of G3BP1. We focused on the mechanism of transient formation of SGs by EMCV because PolioV has been reported to inhibit SG formation by cleavage of G3BP1 (15). We examined if EGFP-G3BP1 is cleaved by EMCV by Western blotting. EGFP-G3BP1 fusion protein is detected as a polypeptide of 96 kDa and EMCV infection resulted in the appearance of an 80 kDa GFP-containing protein at 6 h post infection and nearly complete cleavage of EGFP-G3BP1 reached near completion at 10 h post infection (Fig. 3A). Because the fusion protein contains an EGFP moiety at the N-terminus of G3BP, the cleavage of G3BP1 is likely to occur at the C-terminal region of G3BP1. We verified the cleavage site by using an antibody detecting the C-terminal epitope
of G3BP1 (Fig. S1A and B). Because the mapped cleavage site was close to that by PolioV and the cleavage by PolioV is prevented by amino acid substitution within G3BP1 (Q325E) (15), we therefore examined this mutant for cleavage by EMCV (Fig. 3B). We found that G3BP1 Q325E was resistant to cleavage by EMCV, suggesting a common cleavage mechanism. To examine whether the disruption of SG by EMCV is solely due to cleavage of G3BP1, we examined other SG components, PABP, TIA-1/R, HuR and PKR, which are also essential for SG formation. Fig. 3C shows that the levels of SG components with the exception of G3BP1 did not change upon EMCV infection and that G3BP1 cleavage coincided with the detection of EMCV proteins. Expression of EMCV 3C protease but not leader protein by transfection was sufficient to reproduce G3BP1 cleavage at Q325 (Fig. 3D), strongly suggesting that the cleavage is mediated by 3C protease. We next examined SG formation of HeLa/G-G3BPQ325E. In sharp contrast to the cells expressing wild type G3BP1 (Movie S6), HeLa/G-G3BPQ325E exhibited stable formation of SGs as judged by single cell imaging (Fig. 4A and B; Movie S8) and quantification (Fig. 4C). These results suggest that EMCV disrupts SGs by cleavage of G3BP1 through a similar mechanism as PolioV.

G3BP1 negatively regulates EMCV replication. To examine the impact of SG disruption on EMCV replication, we infected both HeLa/G-G3BP and HeLa/G-G3BPQ325E with EMCV and analyzed viral replication by RT-qPCR (Fig. 5A). EMCV RNA recovered from HeLa/G-G3BP was six fold higher compared with that of HeLa/G-G3BPQ325E. Similarly, a significantly lower viral yield was observed with cells expressing G3BP1 Q325E, suggesting that SG formation is critical for suppressing EMCV replication. To further confirm the involvement of G3BP1, we depleted endogenous G3BP1 by siRNA-mediated knockdown (Fig. 5B) and examined its effect on EMCV replication. G3BP1 knockdown caused increased
EMCV replication as judged by the approximate 5-fold augmentation of viral RNA and viral yield (Fig. 5B). These results suggest that G3BP1 is involved in the negative regulation of EMCV.

G3BP1 is critical for EMCV-induced interferon and cytokine gene activation. Based on the above findings, we next asked how G3BP1 exerts its antiviral role. The type I interferon system constitutes major innate antiviral responses, therefore we examined EMCV-induced IFN-β gene activation in HeLa/G-G3BP and HeLa/G-G3BPQ325E (Fig. 6). In HeLa/G-G3BP cells, IFN-β mRNA accumulated at 4 h post infection, followed by a gradual decrease. However, IFN-β mRNA levels persisted in HeLa/G-G3BPQ325E after 8 h post infection (Fig. 6B). In agreement with these results, the amount of IFN-β protein released into the culture medium at 24 h is significantly augmented by Q325E mutation (Fig. 6A). Similar enhancement of cytokine mRNA was observed for CXCL10, IL-6 and RANTES (Fig. 6C-E). We investigated gene activation at early time points between 0 to 4 h, and observed similar activation kinetics between HeLa/G-G3BP and HeLa/G-G3BPQ325E (Fig. 7), suggesting that the reduced gene activation of HeLa/G-G3BP is due to G3BP1 cleavage. Q325E mutation did not affect the IFN-β gene induction in the case of IAVΔNS1, which did not cause G3BP1 cleavage (Fig. 6F). Next, we examined the effects of depleting endogenous G3BP1 on cytokine gene activation. As expected, knockdown of endogenous G3BP1 attenuated IFN-β and other cytokine gene expression (Fig. 8A-D). These results strongly suggest that G3BP cleavage leads to attenuation of antiviral cytokine induction.

It has been well documented that MDA5 senses EMCV infection (22-25), and that virus- and oxidative stress-induced SGs recruit RIG-I, MDA5 and LGP2 (12). Therefore, we hypothesized that EMCV-induced SG regulates IFN-β gene activation by facilitating MDA5 activation. We examined MDA5 localization in EMCV-infected HeLa cells by
immunostaining. MDA5 displayed re-localization to speckle-like granules upon EMCV infection (Fig. 9A). The speckles also contain endogenous G3BP1 (Fig. 9A) and TIAR (Fig. 9B). Interestingly, PI, a dye that binds to dsDNA and dsRNA, stains cytoplasmic speckles found only in virus-infected cells and the dsRNA speckles are co-localized with G3BP1 and TIAR. These observations suggest that EMCV infection induces SGs, which recruit SG markers, MDA5 and EMCV dsRNA.

PKR is essential for SG-formation and IFN-induction in EMCV infection. Various types of viruses were shown to induce SG formation through PKR activation (26-28). We therefore examined whether EMCV induces SG formation in a PKR-dependent manner. Endogenous PKR expression was efficiently downregulated by siRNA (Fig. 10A). Under these conditions, SG formation by EMCV was decreased significantly (Fig. 10A). We next asked whether cleavage of G3BP1 results in PKR dephosphorylation. Immunoblot analyses showed that PKR was autophosphorylated at 4 h post infection, however at 12 h, when G3BP1 cleavage was nearly complete, PKR phosphorylation was undetectable (Fig. 10B, Lane 3), suggesting that G3BP1 cleavage resulted in PKR dephosphorylation. Finally, we examined whether the final outcome of the signaling, IFN-β gene expression, was dependent on PKR. In PKR knockdown cells, the induction of IFN-β mRNA by EMCV was significantly decreased compared to control cells (Fig. 10C). We further confirmed previous reports that IFN induction by PolyI:C or IAVΔNS1 infection was PKR dependent (12). From the data presented above, we concluded that loss of PKR impaired EMCV-induced SG formation, leading to a reduction of IFN-β gene activation.
DISCUSSION

Viral infection causes stress in host cells, resulting in SG formation. To date, both pro- and anti-viral roles have been described for virus-induced SGs (28-30) and this issue remains controversial.

In this study, we demonstrated that SGs are potentially involved in mediating virus-triggered IFN responses. It was reported that PolioV 3C protease cleaves G3BP1 at the residue of Q325, resulting in the disruption of SGs (15). The observation indicates that G3BP1 is not only a component of SGs but also its inactivation by cleavage causes the disruption of SGs. Here, we show that EMCV shares G3BP cleavage activity with identical specificity to PolioV 3C requiring intact Q325. Interestingly, Coxsackie virus also disrupts SG (31) by a similar mechanism (Fung et al unpublished observation), suggesting that this strategy is shared by some picornaviruses to evade immune responses. At the early phase of EMCV infection, cleavage of G3BP1 was not evident. However, at 4 hpi, cleavage was detectable, and at 10 h, cleavage reached completion, suggesting that the accumulation of 3C is necessary for the disruption. We observed that stable expression of G3BP1 Q325E blocked the disassembly of SGs as well as enhanced IFN-β production at a late phase of infection. Furthermore, knockdown experiments showed that G3BP1 is necessary for efficient activation of the IFN-β gene, particularly at the later stages of infection. Although it was reported that PolioV 3C cleaves RIG-I and MDA5 (32), and EMCV cleaves RIG-I (33), we did not observe these cleavages even under the conditions in which G3BP1 was cleaved by EMCV or PolioV (Fig. 11). Taken together, we conclude that G3BP1 is a physiological regulator of IFN-β gene induction through the formation of SGs, which recruits the RNA sensor MDA5. In addition, the persistent activation of the IFN-β gene at late time points is likely due to the increase of the local concentration of both MDA5 and its ligands within the condensed granules.
Collectively, the data presented above strongly suggest that 3C protease of EMCV acts as critical factor for evading host IFN production to ensure efficient replication. It was demonstrated that PKR plays a critical role in dsRNA- or IAVΔNS1-induced SG formation and subsequent IFN-β gene activation (12). Our observation that PKR is required for efficient IFN gene activation by EMCV, suggests that PKR is responsible for initiating the SG formation (Fig. 10).

Considering that the assembly of SGs is a part of antiviral response of the host, it is plausible that viruses evolve strategies to block it. Indeed, IAV, SeV and TMEV do not induce SG (Fig. 2) and it was reported that leader RNA, NS1 and leader protein are responsible for the inhibition, respectively (8,12,34). Although TMEV belongs to Picornaviridae, their mechanism of SG inhibition appeared to be distinct from those of EMCV and PolioV. TMEV and Mengovirus inhibit SG by the action of leader protein (8,31). We found that 3C but not the leader protein of EMCV inhibits SG formation (Fig. 12). It is tempting to speculate that leader of TMEV and Mengovirus inhibit IFN production (35,36) through the blockade of SG formation, where RLR and viral RNA efficiently interact, as one of the mechanisms. Interestingly, although the leader of EMCV did not affect SGs, it inhibits IFN gene activation (Fig. 12), suggesting that leaders of different cardioviruses are functionally equivalent (37,38), however through distinct mode of action. Therefore, these viruses encode multiple inhibitory proteins to efficiently manipulate host immune responses.

EMCV and SINV induced SG at early time points after infection but the SG formation was disrupted later. A similar phenomenon was reported for West Nile and Dengue viruses by monitoring TIA-1/R as a SG marker (29). In the case of EMCV and PolioV, G3BP1 cleavage by viral 3C protease is responsible for the disassembly of the SG. Therefore, active mechanisms for the disruption of SGs by SINV, West Nile and Dengue viruses have been suggested, although underlying mechanisms remain to be determined. In addition to transient
formation of SGs, some viruses exhibited alternating formation of SGs; SGs were formed at an early stage then disappeared and re-formed at a later stage. This alternating pattern is also dependent on the cell lines used (unpublished observation), suggesting that the pattern of SG formation is determined by a dynamic balance between host antiviral response and viral inhibitory mechanism (21). Such a host mechanism could be a therapeutic target to enhance host defense against viruses.

Here we provide evidence that EMCV-induced SGs are involved in regulating IFN-β gene expression. Thus, virus-induced SGs might play dual roles: (i) suppressing viral replication through an inhibition of viral protein synthesis, and (ii) serving as a platform to facilitate IFN-β production.

ACKNOWLEDGEMENTS

We thank Dr. Jamal Tazi for providing pEGFP-G3BP1, Dr. A.C. Palmenberg for expression vectors for EMCV leader and 3C proteins, Gabriel Fung (University of British Columbia) and Dr. Peter Gee (Kyoto University) for proofreading the manuscript. This research was supported by the following grants. The Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Innovative Areas “Infection competency” (No.24115004), Scientific Research “A”(23249023)), the Ministry of Health, Labor and Welfare of Japan, the Uehara Memorial Foundation, the Mochida Memorial Foundation for Medical and Pharmaceutical Research, the Takeda Science Foundation, the Naito Foundation, and Nippon Boehringer Ingelheim. N.C.S. is a recipient of Monbukagakusho fellowship from MEXT. All authors declare no conflict of interest.

granule formation through an interaction with Caprin-1 and facilitates viral

10. **Okonski KM and Samuel CE.** 2013. Stress granule formation induced by measles
virus is protein kinase PKR-dependent and impaired by RNA Adenosine deaminase

of stress granule (SG)-like structures in vesicular stomatitis virus-infected cells. J.

12. **Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, Sambhara S,
Kawaguchi A, Osari S, Nagata K, Matsumiya T, Namiki H, Yoneyama M and
Fujita T.** 2012. Critical role of an antiviral stress granule containing RIG-I and PKR

13. **Tourrière H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E and
Tazi J.** 2003. The RasGAP-associated endoribonuclease G3BP assembles stress

quantitative imaging of mammalian stress granules and processing bodies. Methods in
Enzymology 448:521-552.

15. **White JP, Cardenas AM, Marissen WE and Lloyd RE.** 2007. Inhibition of
cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host Microbe
15:295-305.

picornavirus protein interacts with Ran-GTPase and disrupts nucleocytoplasmic

Figure Legends

FIG 1. Characterization of HeLa/G-G3BP cells. (A) HeLa/G-G3BP1 clone 12 was mock treated or stimulated as indicated. Cells were fixed and examined for GFP fluorescence. Four independent HeLa/G-G3BP cell clones were stimulated by arsenite (B) or by infection with NDV (C) and % of GFP speckle positive cells was determined. (D) Parental HeLa cells and HeLa/G-G3BP1 clones were infected with NDV for 12 h and IFN-β gene expression was determined by RT-qPCR. (Error bars, ±S.D. of duplicates, N=2).

FIG 2. Three major forms of virus-induced stress granule distribution pattern in HeLa/G-G3BP cells infected with different viruses. HeLa/G-G3BP cells were infected with (A) NDV, (B) IAV, (C) IAV-NS1, (D) EMCV, (E) SINV, (F) PolioV, (G) SeV, (H) VSV, (I) adenovirus 5 with E1A deletion (Adeno5-E1A), (J) adenovirus 5 wild type (Adeno5WT) and (K) TMEV for 9~12 h and SG formation was monitored and quantified as described in materials and methods. (Error bars, ±S.D. of triplicates, n=3; N.D.-not detectable). **P<0.005, *P<0.05.** Representative cell images taken at the indicated time after infection, for stable (L, NDV), transient (M, SINV) and alternating (N, Adeno5-E1A) SG formation are shown. Wild type HeLa cells were mock infected or infected for 4 or 12 h and fixed to examine localization of endogenous G3BP1 by immunostaining (O).

FIG 3. EMCV infection results in the cleavage of G3BP1. (A) Immunoblotting showing the kinetics of G3BP1 cleavage in EMCV-infected HeLa/G-G3BP1 cells. (B) HeLa stably expressing FLAG-G3BP1Q325E was infected with EMCV and G3BP1Q325E protein level was monitored by immunoblotting. (C) Western blot analysis of HeLa/G-G3BP1 cells
infected with EMCV. Lysates were prepared at the indicated time points after infection and subjected to immunoblotting by the indicated antibodies. (D) HeLa cells were transiently transfected with empty vector or expression vector for leader or 3C and analyzed for endogenous G3BP1 by Western blotting (left). HeLa/G3BP1 and HeLa/G-G3BP1Q325E were transiently transfected with empty vector or expression vector for leader or 3C and analyzed by Western blotting using anti GFP (right).

FIG 4. HeLa/G-G3BPQ325E cells displayed stable formation of SG induced by EMCV infection. Both HeLa/G-G3BP1 (A) and HeLa/G-G3BP1Q325E (B) cells were infected with EMCV. GFP fluorescence image of these cells at every 40 min is shown. (C) Quantitative analysis of SG formation pattern of HeLa/G3BP1Q325E cells infected with EMCV. (Error bars, ±S.D. of triplicates, n=3; N.D.-not detectable). **P<0.005.

FIG 5. Cleavage or knockdown of G3BP1 results in enhanced EMCV replication. (A) HeLa/G-G3BP1 and HeLa/G-G3BP1Q325E cells were infected with EMCV. Total RNA was harvested at 12 h post infection and EMCV RNA was quantified by qPCR (upper). The culture supernatant was subjected to plaque titration (lower). (B) HeLa cells were either transfected with control siRNA or that targeted to G3BP1. After 48 h, G3BP1 was detected by Western blotting (upper left) or by staining using anti G3BP1 antibody (upper right). To investigate the effect of G3BP1 knockdown on viral replication, the cells were infected with EMCV for 12 h and total RNA was extracted and EMCV RNA was quantified by qPCR (bottom left). The culture supernatant was analyzed for viral titer (bottom right).
FIG 6. Inhibition of G3BP1 in EMCV-infected cells results in sustained cytokine/chemokine mRNA accumulation. HeLa/G-G3BP1 and HeLa/G-G3BP1Q325E cells were infected with EMCV. Culture supernatant was subjected to ELISA for IFN-β (A). Total RNA was harvested at the indicated time points. mRNAs for (B) IFN-β, (C) CXCL10, (D) IL-6 and (E) RANTES were determined by RT-qPCR. (F) Both HeLa/G-G3BP and HeLa/G-G3BPQ325E cells were infected with IAV-NS1 and IFN-β mRNA was quantified as above (left). The lysate of IAV-NS1-infected HeLa/G-G3BP1 cells were examined for cleavage of G3BP1 by Western blotting (right). Data depicted are the representative of two independent experiments (Error bars, ±S.D. of duplicates). **P<0.005, *P<0.05.

FIG 7. IFN production and cytokine gene activation in HeLa/G-G3BP and HeLa/G-G3BPQ325E cells at early phase. HeLa/G-G3BP1 and HeLa/G-G3BP1Q325E cells were mock-treated or infected with EMCV for indicated time. Total RNA was extracted and mRNA was quantified for IFN-β (A), CXCL10 (B), IL-6 (C) and RANTES (D) by RT-qPCR.

FIG 8. Knockdown of G3BP1 attenuates EMCV-induced cytokine/chemokine gene activation. HeLa cells were either transfected with control siRNA or that targeted to G3BP1. After 48 h of incubation, cells were infected with EMCV for 12 h and total RNA was collected as indicated. mRNAs for (A) IFN-β, (B) RANTES, (C) CXCL10 and (D) IL-6 were determined by RT-qPCR. Data are representative of two independent experiments. (Error bar, ±S.D. of duplicates, N=2). *P<0.05.
FIG 9. EMCV infection recruits MDA5 into SGs. HeLa cells were mock-treated or infected with EMCV (MOI: 10) and fixed. The cells were stained for MDA5, G3BP1 and PI (A) or MDA5, TIAR and PI (B).

FIG 10. Involvement of PKR in EMCV-induced SG and IFN-β gene activation. (A) Knockdown of PKR expression results in reduced SGs. HeLa cells transfected with siRNA targeting PKR for 48 h was examined for PKR expression by Western blotting (left). The cells were infected with EMCV for 6 h and stained for endogenous G3BP1 (middle). SG-containing cells were quantified (right). (B) HeLa cells infected with EMCV for 0, 4 and 12 h were analyzed for G3BP1, phospho-PKR, EMCV proteins and actin by immunoblotting. (C) HeLa cells transfected with siRNA targeting PKR for 48 h was mock treated or transfected with poly I:C or infected with IAVΔNS1 or with EMCV. After 12 h, IFN mRNA was quantified by RT-qPCR **P<0.005, *P<0.05.

FIG 11. RIG-I was not cleaved after EMCV or Poliov infection. (A) HeLa cells were either mock treated or infected with EMCV for indicated time. RIG-I was detected by Western blotting. (B) HeLa cells were mock treated or infected with Polio V for 9 h. G3BP1 (left) and RIG-I (right) were examined by Western blotting.

FIG 12. EMCV 3C, but not leader inhibits SG. (A) HeLa/G-G3BP1 and HeLa/G-G3BP1Q325E were transiently transfected with empty vector or expression vector for leader or 3C for 48 h. Cells were treated with 0.5 mM Sodium arsenite for 30min, fixed and stained for TIAR, a SG marker. (B) HeLa cells were transiently transfected with empty
vector or expression vector for leader or 3C (0μg, 2μg and 4μg) for 48 h. Cells were mock
treated or transfected with long polyI:C (2μg/μL) for 12 h. Total RNA was collected and
mRNA for IFN-β was determined using RT-qPCR. Data are representative of three
independent experiments. (Error bar, ±S.D. of duplicates, N=3).
FIG S1. Detection of C-terminal cleavage product of G3BP. HeLa/G-G3BP1 cells were either mock treated or infected with EMCV. (A) Cell lysate was prepared at 0, 8, 12 h post infection and analyzed by Western blotting using antibodies against C-terminal region of G3BP1 or b-actin. (B) Cleavage site within the domain structures of G3BP1.
Supplemental Movie Legends

Movie S1. Real-time imaging of stress-granule marker, G3BP1 after NDV infection. HeLa/G-G3BP cells were either mock-treated or infected with NDV. Live-cell imaging was initiated after 1 h post-infection with images captured every 10 min. Fluorescence images at indicated time after infection are shown.

Movie S2. Real-time imaging of stress-granule marker, G3BP1 after IAVΔNS1 infection. HeLa/G-G3BP cells were either mock-treated or infected with IAVΔNS1. Live-cell imaging was initiated after 1 h post-infection with images captured every 10 min. Fluorescence images at indicated time after infection are shown.

Movie S3. Real-time imaging of stress-granule marker, G3BP1 after Adeno5WT infection. HeLa/G-G3BP cells were either mock-treated or infected with Adeno5WT. Live-cell imaging was initiated after 1 h post-infection with images captured every 10 min. Fluorescence images at indicated time after infection are shown.

Movie S4. Real-time imaging of stress-granule marker, G3BP1 after SINV infection. HeLa/G-G3BP cells were either mock-treated or infected with SINV. Live-cell imaging was initiated after 1 h post-infection with images captured every 10 min. Fluorescence images at indicated time after infection are shown.

Movie S5. Real-time imaging of stress-granule marker, G3BP1 after PolioV infection. HeLa/G-G3BP cells were either mock-treated or infected with PolioV (MOI=1). Live-cell imaging was initiated after 1 h post-infection with images captured every 10 min. Fluorescence images at indicated time after infection are shown.

Movie S6. Real-time imaging of stress-granule marker, G3BP1 after EMCV infection. HeLa/G-G3BP cells were either mock-treated or infected with EMCV (MOI=10). Live-cell imaging was initiated after 1 h post-infection with images captured every 10 min. Fluorescence images at indicated time after infection are shown.
Supplemental Movie Legends

Movie S7. Real-time imaging of stress-granule marker, G3BP1 after Adeno5ΔE1A infection. HeLa/G-G3BP cells were either mock-treated or infected with Adeno5ΔE1A. Live-cell imaging was initiated after 1 h post-infection with images captured every 10 min. Fluorescence images at indicated time after infection are shown.

Movie S8. Real-time imaging of stress-granule marker, G3BPQ325E mutant stable cells after EMCV infection. HeLa/G-G3BPQ325E cells were either mock-treated or infected with EMCV (MOI=10). Live-cell imaging was initiated after 1 h post-infection with images captured every 10 min. Fluorescence images at indicated time after infection are shown.

Movie S9. Real-time imaging of stress-granule marker, G3BP1 after TMEV infection. HeLa/G-G3BP cells were either mock-treated or infected with TMEV (MOI=10). Live-cell imaging was initiated after 1 h post-infection with images captured every 10 min. Fluorescence images at indicated time after infection are shown.

FIG S1. Detection of C-terminal cleavage product of G3BP. HeLa/G-G3BP1 cells were either mock treated or infected with EMCV. (A) Cell lysate was prepared at 0, 8, 12 h post infection and analyzed by Western blotting using antibodies against C-terminal region of G3BP1 or b-actin. (B) Cleavage site within the domain structures of G3BP1.
FIG. 1

A

EGFP-G3BP1 DAPI MERGE

MOCK

NDV 9hrs

IAV∆NS1

9hrs

Arsenite

1hr

B

% of Speckles(+) cells

Mock Arsenite 1 hr

clone#12 clone#18 clone#39 clone#42

C

% of Speckles(+) cells

Mock NDV 9 hrs

clone#12 clone#18 clone#39 clone#42

D

IFN-β mRNA

Mock NDV 12hr

HeLa WT clone#12 clone#18 clone#39 clone#42
FIG. 3

A

<table>
<thead>
<tr>
<th>MW (kDa)</th>
<th>N.C.</th>
<th>Mock</th>
<th>EMCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lane: 1 2 3 4 5 6 7 8

IB: α-GFP

IB: α-actin

β-actin

EGFP-G3BP1 (~96kDa)

EGFP-G3BP1 cp (~80 kDa)

B

<table>
<thead>
<tr>
<th>MW (kDa)</th>
<th>N.C.</th>
<th>Mock</th>
<th>EMCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lane: 1 2 3 4 5 6 7 8

IB: α-FLAG

IB: α-actin

β-actin

C

<table>
<thead>
<tr>
<th>HeLa</th>
<th>G/G3BP1</th>
</tr>
</thead>
</table>

EMCV | 0 | 8 | 12 | p.h.i |

IB: α-GFP

IB: α-PABP

IB: α-TIA-1/R

IB: α-HuR

IB: α-PKR

IB: α-actin

1 2 3

PABP

TIA-1/R

HuR

PKR

β-actin

D

<table>
<thead>
<tr>
<th>HeLa</th>
<th>G/G3BP1WT/G3BP1Q325E</th>
</tr>
</thead>
</table>

EMCV | 0 | 8 | 12 | p.h.i |

IB: α-G3BP1

IB: α-EMCV

Endogenous G3BP1

G3BP1 cp

MW (kDa)

Lane: 1 2 3

HeLa WT pEmpty pLeader p3C EMCV

G/G3BP1WT/G3BP1Q325E

MW (kDa)

Lane: 1 2 3 4 5 6

IB: α-GFP

IB: α-actin

β-actin
FIG. 4

A

EGFP-G3BP1

240 min 260 min 300 min 360 min 420 min

480 min 500 min 540 min 580 min 620 min

660 min 700 min 740 min 780 min 820 min

B

EGFP-G3BP1 Q325E

240 min 260 min 300 min 360 min 420 min

480 min 500 min 540 min 580 min 620 min

660 min 700 min 740 min 780 min 820 min

C

Cells with Distinct SG Pattern (%)

EMCV

Stable formation

Transient formation

Alternate formation (n time)

No formation

HeLa EGFP-G3BP1 Q325E

N.D.
FIG. 6

A

IFN-β (IU/mL)

Mock
EMCV 24 h

B

HeLa
(EMCV)

Time after infection (hr)

HeLa
(EMCV)

IFN-β mRNA (Relative)

C

CXCL10 mRNA (Relative)

Time after infection (hr)

D

IL-6 mRNA (Relative)

Time after infection (hr)

E

RANTES mRNA (Relative)

Time after infection (hr)

F

IFN-β mRNA (Relative)

Time after infection (hr)

IB: α-GFP
IB: α-actin

MW (kDa)

IAVΔNS1

p.h.i

N.C.

16

97

45

EGFP-G3BP1

β-actin
FIG. 7

A

B

C

D

EMCV

IFN-β mRNA (Relative)

Time after infection (hr)

CXCL10 mRNA (Relative)

Time after infection (hr)

IL-6 mRNA (Relative)

Time after infection (hr)

RANTES mRNA (Relative)

Time after infection (hr)
FIG. 8

A

EMCV

IFN-β mRNA (Relative)

Time after infection (hr)

0 4 8 12 16

- - siG3BP1

- - siControl

B

EMCV

RANTES mRNA (Relative)

Time after infection (hr)

0 4 8 12 16

- - siG3BP1

- - siControl

C

EMCV

CXCL10 mRNA (Relative)

Time after infection (hr)

0 4 8 12 16

- - siG3BP1

- - siControl

D

EMCV

IL-6 mRNA (Relative)

Time after infection (hr)

0 4 8 12 16

- - siG3BP1

- - siControl
FIG. 9

A

<table>
<thead>
<tr>
<th>MDA5</th>
<th>G3BP1</th>
<th>PI</th>
<th>DAPI</th>
<th>MERGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOCK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMCV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>MDA5</th>
<th>TIAR</th>
<th>PI</th>
<th>DAPI</th>
<th>MERGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOCK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMCV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIG. 10

A

siControl
siPKR#1+#2
PKR
β-actin

G3BP1
DAPI
MERGE
Mock
EMCV

Mock
EMCV

siControl
siPKR#1+#2

SG+ Infected Cells (%)

Mock
EMCV

B

MW (kDa)
0 4 12 23

IB: α-G3BP1 (C-14)
Endogenous G3BP1

IB: α-phospho-PKR
G3BP1 cp

IB: α-EMCV proteins

IB: α-actin

β-actin

IB: α-EMCV (C-14)

IB: α-phospho-PKR

IB: α-EMCV proteins

IB: α-actin

β-actin

C

IFN-β mRNA (Relative)

Mock
EMCV

siControl
siPKR#1+#2

Mock
EMCV

PolI/C
IAV ΔNS1
EMCV

n.s.

**

*
FIG. 11

A

<table>
<thead>
<tr>
<th>HeLa</th>
<th>0</th>
<th>8</th>
<th>12</th>
<th>EMCV h.p.i</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB: α-RIG-I CTD</td>
<td>RIG-I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB: α-actin</td>
<td>β-actin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>MW (kDa)</th>
<th>HeLa</th>
<th>PolioV</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IB: α-G3BP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RIG-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lane</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
</table>

Note:
S-A: Mock with shRIG-I
S-B: Mock infection
S-C: PolioV 9 h