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ABSTRACT

Motivation: Metabolic pathways are complex systems of chemical

reactions taking place in every living cell to degrade substrates and

synthesize molecules needed for life. Modeling the robustness of

these networks with respect to the dysfunction of one or several re-

actions is important to understand the basic principles of biological

network organization, and to identify new drug targets. While several

approaches have been proposed for that purpose, they are compu-

tationally too intensive to analyze large networks, and do not properly

handle reversible reactions.

Results: We propose a new model—the flux balance impact degree—

to model the robustness of large metabolic networks with respect to

gene knock-out. We formulate the computation of the impact of one or

several reaction blocking as linear programs, and propose efficient

strategies to solve them. We show that the proposed method better

predicts the phenotypic impact of single gene deletions on Escherichia

coli than existing methods.
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1 INTRODUCTION

Metabolic pathways are complex systems of biochemical reac-

tions taking place in every living cell to degrade substrates and

synthesize molecules needed for life. Any metabolic dysfunction

may lead to the impossibility to degrade or produce crucial mol-

ecules for the organism, potentially inducing disease or death.

Yet cells seem to be able to maintain their normal functions

despite many perturbations, such as the gene knock-out or

DNA mutations perturbing the functions of proteins, while

being sensitive to some specific attacks (Jeong et al., 2001).

Understanding and modeling the organizational principles

underlying the robustness of metabolic networks with respect

to gene perturbations is important not only to shed light on

basic principles of life, but also to identify weaknesses that

may lead to new drug targets to kill pathogens or cancer cells

(Behre et al., 2008).

Conceptually, a metabolic network can be considered as a

network consisting of metabolites and enzyme (gene)-catalyzed

reactions that bridge these metabolites to transformation pro-
cesses. A gene perturbation, such as knock-out or DNA muta-

tion, can inhibit one or several reactions in a metabolic system.
The impact of this perturbation on the cell phenotype can vary

widely, ranging from no effect to cell death, depending on how

many other reactions and crucial metabolites are impacted in
cascade.
Several approaches have been proposed to model and predict

the phenotypic impact of inhibiting one or several genes through

metabolic network perturbation. Flux balance analysis (FBA) is
a constraint-based mathematical model, which uses the stoichi-

ometry of a given metabolic network along with a biologically
relevant objective function to identify optimal reaction flux dis-

tributions (Raman and Chandra, 2009; Varma and Palsson,

1994). It can be used to predict the effect of inhibiting one or
several reactions by assessing how the objective function changes

after the perturbation (Edwards and Palsson, 2000b). A related
approach proposed by Segre et al. (2002) is the method of mini-

mization of metabolic adjustment (MOMA), which predicts the

flux vectors of gene knock-out mutants by imposing the con-
straint that mutants operate by minimizing their metabolic ad-

justment with respect to the wildtype. Flux variability analysis
(FVA) assesses the range of possible fluxes for each reaction

when the system runs near optimality, and has been used to

evaluate the consequences of metabolic perturbation (Shlomi
et al., 2009); however, FVA has not been used, to our knowledge,

to predict metabolic gene essentiality. A limitation of FBA,
MOMA and FVA is the difficulty to define a relevant objective

function: for example, the objective function to predict cell

growth typically involves a linear combination of more than
100 metabolites (Raman and Chandra, 2009).

Other approaches model the effect of gene knock-out using the
concept of elementary modes (EMs), which are minimal sets of

reactions that can operate at the steady state, such that all irre-
versible reactions involved are used in the appropriate direction

(Schuster and Hilgetag, 1994; Schuster et al., 2000). Figure 1

shows, for example, the EMs of a simple network. With elemen-
tary mode analysis (EMA), Stelling et al. (2002) proposed that

the viability of a mutant carrying mutation in a single gene can
be predicted by the number of EMs that do not require the gene,

a concept that has been generalized to define a notion of network

robustness (Behre et al., 2008; Wilhelm et al., 2004). EM-based
methods, however, suffer from computational cost. Although

several tools exist to compute EMs of middle-size networks*To whom correspondence should be addressed.
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(Klamt et al., 2007; Trinh et al., 2009), they do not scale to large

networks because the number of EMs grows exponentially with

the network size (Acuna et al., 2009; Haus et al., 2008; Klamt

and Stelling, 2002). Acuna et al. (2009) proved that counting the

number of EMs is # P-complete, and although Haus et al. (2008)

proposed an efficient method for computing EMs, it is still not

polynomial.

Alternatively, Klamt and Gilles (2004) proposed a model of

minimal cut set (MCS) as a minimal set of reactions in metabolic

networks whose disturbances cause dysfunction. However, their

computation of the MCSs is based on EMs, which becomes in-

feasible to analyze large-scale metabolic networks. A method

based on a dual framework was recently proposed by

Ballerstein et al. (2012), which can determine MCSs without

calculating the EMs; the formulation is, however, also not scal-

able for large networks. Finally, different from many other

approaches, the concept of synthetic accessibility (SA), proposed

by Wunderlich and Mirny (2006), predicts the viability of mutant

strains from the network topology, without knowledge of stoi-

chiometry or biomass growth, but with specification of medium

inputs and biomass outputs.

An alternative route to model the impact of a perturbation on

a metabolic network is to start from a dynamic model of metab-

olism and assess how the model is impacted when a reaction is

inhibited. Boolean models, in particular, are popular to describe

and analyze large-scale metabolic networks (Handorf et al., 2008;

Sridhar et al., 2008; Tamura et al., 2010). Concepts of damage

(Lemke et al., 2004; Smart et al., 2008) and topological impact

degree (Jiang et al., 2009) were extensively studied in recent

years, where Lemke et al. (2004); Smart et al. (2008) and Jiang

et al. (2009) define the impact of a reaction as the number of

reactions inactivated by an iterative procedure, mimicking a cas-

cade of failures. Tamura et al. (2011) borrowed the concept of

topological impact degree of Jiang et al. (2009) and extended it to

deal with cycles in metabolic networks. However, these methods

can not properly handle reversible reactions.
In this study, we propose a new model to assess the impact of

gene perturbations on a metabolic network, together with effi-

cient algorithms to compute it of large-scale networks. The

model, which we call flux balance impact degree (FBID), builds

on the concept of steady-state fluxes and variability of FBA and

FVA. The FBID of a perturbation is defined as the number of

reactions that become inactive in all steady states after perturb-

ation. We show that the FBID can be computed either by enu-

merating all EMs of the metabolic network, or by solving a series

of linear programs, the later scaling much better to large net-

works. In contrast to techniques like FBA, FVA and MOMA,

the new FBID does not require the definition of a specific ob-

jective function to model growth. Experiments on the Escherichia

colimetabolic network show that FBID is competitive with exist-

ing approaches. It is computationally efficient even for global

metabolic networks, where it outperforms existing approaches

in terms of prediction accuracy.

2 METHODS

2.1 Flux balance impact degree

We represent a metabolic network by its m� n stoichiometric matrix S,

where m is the number of metabolites and n is the number of reactions in

the network. The activity of the network is represented by a flux vector

x 2 R
n, which contains all internal and exchange reactions in the net-

work. A metabolic network for which mass balance constraints are satis-

fied is assumed to be in steady state, meaning that the flux vector satisfies

the following:

S � x ¼ 0 ð1Þ

In addition, flux vectors must satisfy additional constraints of the form

a � x � b, where a, b 2 R
n are lower/upper limits for the fluxes in the

network, to account to various constraints in the system. In particular, we

can use them to encode the reversibility or irreversibility of reactions by

setting the value of lower limits a 2 R
n to be –1 for reversible reactions

and 0 for irreversible ones, while the upper limits b are set to 1. This

ensures that fluxes are bounded by [–1, 1] for reversible reactions, and by

[0,1] for irreversible ones.

The metabolic networks we consider are usually under-determined be-

cause there are usually more reactions than metabolites (n4m). The set of

admissible steady-state fluxes of the network is then the convex polytope:

A ¼ fx 2 R
n
jS � x ¼ 0 and a � x � bg ð2Þ

Note that we assume that all reactions can be activated at steady state,

meaning that for each reaction i 2 ½1, n� there exists a flux vector x in A

that satisfies xi 6¼ 0. If this is not the case, we just remove the corres-

ponding reactions from the network.

The perturbations we consider lead to gene knock-out, either by drug

action or through DNA mutations. In our formalism, we represent a

perturbation as a subset R � ½1, n� of reactions inhibited by the perturb-

ation. Inhibiting one or several reactions reduces their fluxes to zero in

Fig. 1. The EMs of an example network, where A, B, C, D and E (cycles)

are given as internal metabolites that need to fulfill a steady-state,

while Aext, Bext and Eext (squares) are given as external metabolites

that need not be balanced in this scheme. Double-headed arrows labeled

as r1 and b2 represent reversible reactions. Unfilled arrows labeled as

r2, r3, r4, b1, b3 and b4 represent irreversible reactions. EMs of this ex-

ample are given in the table, where each row represents an EM in which

value 0 means that the corresponding reactions are not included in this

EM (See also a metatool format of this example in Supplementary

Materials, which can be directly used for open software.)
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any steady state, and therefore reduces the set of admissible steady-state

fluxes (2) to the reduced feasible set:

AR ¼ fx 2 R
n
jS � x ¼ 0, a � x � b and xi ¼ 0,8i 2 Rg ð3Þ

We can now formally define a new notion of FBID of a perturbation, as

the number of reactions that are inhibited in any steady-state following

the perturbation:

DEFINITION 1. A reaction j 2 ½1, n� is impacted by a perturbationR � ½1, n�

if xj ¼ 0 holds for all x 2 AR. The FBID of R is the number of reactions

impacted by R.

We note that, by definition, all reactions in R are impacted by R, and

therefore the FBID ofR is at least as large as the cardinality ofR itself. It

can be strictly larger when other reactions, not directly in R, are directly

or indirectly affected by the knock-out ofR. For example, in the network

represented on Figure 1, let R ¼ fr4g. We see that reactions r2 and b3
affected by the knock-out of R, and therefore the FBID of fr4g is 3, the

total number of inhibited reactions.

2.2 EM-based computation

In this section, we show how to compute the FBID of any perturbationR

from the enumeration of the EMs of the network. Following Schuster

et al. (2000), we recall that an EM is a minimal set of reactions that allows

a metabolic network to function in a steady state, i.e. a minimal set of

reactions ei � ½1, n� such that there exists a flux vector ei 2 A satisfying

the condition eiðkÞ ¼ 0 if and only if k =2 ei, where eiðkÞ denotes the flux

value of reaction k in the flux vector ei. Interestingly, the set E of all EMs

of a metabolic network forms a basis of admissible steady state fluxes

(Schuster et al., 2002).

We now propose an algorithm to compute the FBID of a perturbation

R from the list E of EMs of a metabolic network:

(1) Compute the set of EMs E of the given metabolic network.

(2) For a perturbationR � ½1, n�, select the subset of EMs from E that

do not contain reactions in R, that is:

ER ¼ fei 2 E : ei \R ¼ ;g ð4Þ

(3) The set of reactions IR impacted by R is computed as the set of

reactions that are not contained in any EMs of ER:

IR ¼ ½1, n�n
[

ei2ER

ei : ð5Þ

We now prove that this algorithm is correct, in the sense that the set

IR it outputs in (5) is precisely the set of reactions impacted by R in the

sense of Definition 1. Let us first consider a reaction i 2 ½1, n� that is not

in IR. From (5) there exists an EM e 2 ER such that i 2 e. The flux

vector e corresponding to e is by definition admissible and has zero

flux on the perturbed reactions by (4). It therefore belongs to AR, and

because it has a non-zero flux on reaction i, this reaction is not impacted

by R according to Definition 1. This shows that all impacted reactions

are in IR. Conversely, let us consider a reaction i that is not impacted by

R in the sense of Definition 1. This means that there exists a flux x 2 AR
such that xðiÞ 6¼ 0. However, by Lemma 1 of Schuster et al. (2002), as

xðjÞ ¼ 0 for j 2 R it can be decomposed as a linear combinations of EMs

that have themselves zero flux on R, meaning that it can be decomposed

as a linear combination of EMs in ER. Because xðiÞ 6¼ 0, there must be at

least an EM in ER with non-zero flux in i, meaning that i =2IR. This

shows that all reactions in IR are impacted, which concludes the proof.

To run this algorithm, we need to first compute all EMs of a network,

which is a computational demanding task (Gagneur and Klamt, 2004).

Although computation of all EMs of a given metabolic network may

demand a high computation cost, this operation needs to be performed

only once. The rest of the computation (steps 2 and 3) can be done fast.

We use the example given in Figure 1 to elucidate the step 2 and 3.

Suppose perturbation R ¼ fr2, b1g is given. Following the step 2, ER is

the subset with only one mode EM2 because EM1, EM4 and EM5 con-

tain reaction b1 and EM1 and EM3 contain both r2. Then we only refer to

ER to compute the impacted reaction set as step 3. In this example, the

impacted reactions are fr1, r2, r4, b1, b3g and the FBID of R is 5.

2.3 Linear programming–based computation

Because the reduced feasible setAR is defined in (3) by linear constraints,

we propose an alternative algorithm to the EM-based approach based on

linear programming (LP) to compute the FBID of a perturbation. Given

a perturbation R � ½1, n� and a reaction i 2 ½1, n�nR, we consider the

following optimization problems to decide whether reaction i is impacted

by R:

max xi min xi
subject to S � x ¼ 0 subject to S � x ¼ 0

xj ¼ 0,8j 2 R xj ¼ 0,8j 2 R

a � x � b a � x � b

In other words, we perform FVA following each gene knock-out.

However, contrary to classical use of FVA (Shlomi et al., 2009), we are

just interested here in assessing whether the solutions to both optimiza-

tion problems are 0 or not. Indeed, it is easy to see that reaction i is

impacted by perturbation R according to Definition 1 if and only if the

solutions of both problems are equal to 0 because this means that in

the feasible set of both problems, which is exactly AR, xi is constrained

to be 0.

In practice, to compute the FBID of a perturbation R containing K

reactions, one should solve a total of 2ðn� KÞ LP, corresponding to two

problems for each reaction i 2 ½1, n�nR. Because each LP can be solved in

polynomial time, we obtain a polynomial time algorithm to compute the

impact of all perturbations containing a bounded number of reactions. In

addition, as all LP are related to each other, significant speed-up can be

obtained by using warm restart, as implemented in the fastFVA software

(Gudmundsson and Thiele, 2010). Further speed-up is also possible by

solving batches of LP in parallel on a distributed computing environment.

2.4 Implementation

We used both fastFVA (Gudmundsson and Thiele, 2010) and ILOG

CPLEX (version 11.2) (http://www.ilog.com/products/cplex) to solve

the LP instances of the LP-based method, and CellNetAnalyzer which

is a free software running under MATLAB to compute the EMs of a

network (Klamt et al., 2007). All computations were performed on a

PC with a Xeon CPU 3.33GHz and 10GB RAM running under the

LINUX OS.

3 DATA

3.1 The E.coli metabolic networks

We use three versions of the E.coli metabolic network, as sum-

marized in Table 1. The central network is from the KEGG

database (Kanehisa and Goto, 2000; Kanehisa et al., 2012),

and iJE660 and iJO1366 are from the BiGG database

(Orth et al., 2011; Schellenberger et al., 2010), stored as

METATOOL and SBML formats, respectively. iJO1366 is the

latest version of E.coli network, while we keep the older iJE660

in our experiments to allow comparison with previous work

(Edwards and Palsson, 2000a,b; Reed et al., 2003).

We should notice that these networks are obtained as closed

systems, and thus, additional information like sources and
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biomass synthetics is needed to make these systems open

(Edwards and Palsson, 2000a; Reed et al., 2003; Wunderlich

and Mirny, 2006). Sources provide compounds to be consumed,

while biomass synthetics are compounds exhausted by the net-

works. In the implementation, we use two types of sources, de-

tailed in the Supplementary Materials. The first source represents

a minimal medium consisting mainly of energy source, carbon

dioxide and oxygen. The other source is a rich environment,

which covers the minimal medium together with 20 amino

acids, biotin, thiamin and riboflavin, etc. The E.coli output bio-

mass is given also in the Supplementary Materials.

3.2 Phenotypic data

To compare our in silico impact predictions with experimental

data, we consider five datasets used in previous studies to assess

the phenotypic consequences of gene knock-out.
The first dataset, collected from literature by Edwards and

Palsson (2000a), measures the growth capability of 79 gene de-

letion mutants, among which 41 are essential, 36 are non-essen-

tial and 2 have been observed as either essential or non-essential.

Following Wunderlich and Mirny (2006), we consider the pre-

dictions of any method on the later 2 genes as always correct to

compute the accuracy of the prediction, while we remove them to

compute receiver operating characteristic (ROC) curves.

The second dataset (insertional mutants), collected by

Badarinarayana et al. (2001) and further used by Wunderlich

and Mirny (2006), gives the growth rate of 481 mutants obtained

by knock-out of single genes, among which 222 with450% de-

crease in growth rate are considered essential. While all genes are

available in the iJE660 network, only 461 (including 218 essen-

tials) are present in the iJO1366 network.
The third dataset is the combination of the first two ones.

Although they contain genes in common, we follow Wunderlich

and Mirny (2006) and consider them all different because they

are part of different networks specific to each dataset.
The fourth dataset, collected by Gerdes et al. (2003) and fur-

ther used by Wunderlich and Mirny (2006), evaluates the gene

variability of 598 mutants, among which 120 are considered es-

sential. While all genes are available in the iJE660 network, only

571 (including 117 essentials) are present in the iJO1366 network.

The fifth dataset is the KEIO collection, collected by Baba

et al. (2006), which partitions 4288 mutants into 317 (including

14 newly added by Yamamoto et al., 2009) essential and 3971

nonessential genes. Among them, 81 (respectively 144) essential

and 554 (respectively 1222) nonessential genes are present in the

iJE660 (respectively iJO1366) model.
Because these experimental datasets are under different condi-

tions, we used different input sources and output biomass in the

networks for the different datasets, as listed in Supplementary
Files. In short, for the mutants collected from literature, the

minimal medium set is used to reconstruct four distinct net-
works, each of which includes only one of the energy sources.
For the insertional mutants, we reconstruct the network by

adding the minimal medium input with all energy sources. We
use the rich source set when analyzing the Gerdes dataset and

KEIO collection. As for outputs, all analyses with iJE660 share
the same biomass output (Supplementary Table S3), while for

iJO1366, we use the core growth biomass proposed by Orth et al.
(2011).

4 RESULTS

For each of the three E.coli metabolic networks listed in Table 1,
we computed the FBID of each single gene deletion. Note that
because a gene can catalyze several reactions, the perturbation

set R associated to a gene deletion is the set of reactions cata-
lyzed by the gene. We first assess the computational performance

of the approach, before assessing the ability of FBID to predict
phenotypes and compare it with state-of-the-art methods.

4.1 Computation time

We proposed two algorithms to compute the FBID of a perturb-

ation: one approach based on enumerating EM (Section 2.2),
and one approach based on an LP formulation (Section 2.3).

Table 2 shows the total computation time to perform the experi-
ment on each network. For the LP-based approach, this is the

total time to solve all LP with fastFVA; for the EM-based
method, this is the time to compute the EMs of each network

once with CellNetAnalyzer, and then output the list of impacted
reactions for each gene deletion.
We see that the EM-based method is fast for a small network

but not efficient for large ones; in fact, CellNetAnalyzer did not
manage to compute the EMs of both large networks within a

week. This is coherent with the exponential complexity of the
method. On the other hand, although many LP instances need to

be solved for the LP-based method, we see that its polynomial
complexity allows it to better scale to large networks. fastFVA

(Gudmundsson and Thiele, 2010) manages to finish all compu-
tations on the largest network with 2251 reactions within �3h,

and is roughly two orders of magnitude faster than a naive im-
plementation solving all LP instances independently from each

other with CPLEX (see Supplementary Information).
Based on these observations, in what follows we only run the

LP-based implementation with fastFVA to compute the FBIDs
corresponding to the different genes and networks investigated

for phenotypic prediction. The total computation times for both
E.coli global metabolic networks (iJE660 and iJO1366) are sum-
marized in the Supplementary Materials.

4.2 Phenotypic prediction

The FBIDs computed on each network vary significantly be-

tween different genes. For example, Figure 2 shows the distribu-
tion of FBIDs for the 1366 genes of the KEIO collection dataset

estimated on the iJO1366 model. While480% of all genes have
an FBID smaller than 10, it increases to 540 for the msbA

(b0914) gene, a bacterial lipid flippase whose knock-out blocks

Table 1. The E.coli network with different versions

Versions # Reactions # Metabolites # Genes

Central network 63 59 85

iJE660 627 438 660

iJO1366 2251 1136 1366
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ATP synthesis by oxidative phosphorylation, or 448 for acpP

(b1094), a acyl carrier protein that catalyzes polyketide biosyn-

thesis of holo-ACPS; unsurprisingly, both are essential genes.
To assess more quantitatively how predictive the FBID is for

gene essentiality, we systematically compared the FBID corres-

ponding to each gene deletion with the corresponding experimen-

tal phenotypic data, for both versions of the large E.coli

metabolic network (iJE660 and iJO1366). In each experimental

data, the genes are separated in two classes corresponding to

genes with a large or small phenotypic impact. By thresholding

the FBID to some level, we can predict that genes with an FBID

above the threshold should have large phenotypic impact, while

those below the threshold should not. Figure 3 shows the ROC

curve for each dataset and each network, corresponding to the

sensitivity plotted as a function of 1-specificity when we vary the

FBID threshold. In addition, we show on Table 3 the area under

the ROC curve (AUC) and the accuracy reached in each case,

when the FBID threshold is set for each phenotypic dataset to

maximize the accuracy as in Wunderlich and Mirny (2006).
We can see that phenotype prediction for the iJE660 and

iJO1366 E.coli networks are overall similar, with an advantage

for the former on all phenotype datasets. The performance on

the first dataset (collected from literature) is rather disappoint-

ing. This can be explained, to some extent, by the fact that we

had to modify the network by using the minimal inputs together

with distinct carbon sources, which resulted in many metabolites

and reactions being always inactive at steady state. The perform-

ance on the insertional mutants dataset is also not good and may

also be due in part to the particular context of using minimal

inputs. For the Gerdes dataset and KEIO collection, FBID per-

forms pretty well on both networks, reaching an AUC of 0.66

and 0.78 for iJE660 and 0.6 and 0.72 for iJO1366, respectively.
To compare the performance of FBID with existing

approaches, we first focus on the iJE660 E.coli network that

was used by Wunderlich and Mirny (2006) to compare SA

(Wunderlich and Mirny, 2006), FBA (Edwards and Palsson,

2000b), MOMA (Segre et al., 2002) and EMA (Stelling et al.,

2002). Results are summarized in Table 4, where we directly

report the accuracies provided by Wunderlich and Mirny

(2006) for existing methods.
On the mutants collected from literature, our approach based

on FBID is clearly worse than SA, FBA and EMA, which reach

high accuracy (90% for EMA). This can be explained, to some

extent, because this collection includes genes that only catalyze

the central metabolism (Edwards and Palsson, 2000a) where al-

ternative paths are numerous when we block a single gene.

Therefore, although changes in optimal fluxes captured by

FBA, or decrease in number of EMs captured by EMA, correlate

(a) (b)

Fig. 3. ROC curves for phenotype prediction from the FBID on various datasets, using both the iJE660 metabolic network (left) and the larger iJO1366

network (right)

Fig. 2. FBID distribution for the 1366 genes of the KEIO collection

dataset computed on the iJO1366 metabolic network

Table 2. Computational time for FBID computation

Versions Computational time (s)

LP-based EM-based

Central network 8 4

iJE660 252 4 7 days

iJO1366 10 234 4 7 days
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well with growth rate, our approach meets difficulties in finding

important fluctuations in the number of reactions that become

completely inhibited when a gene is deleted. On the insertional

mutant dataset, all methods reach a similar level of accuracy,

with a slight advantage for SA and MOMA over FBA and

FBID. On the larger Gerdes dataset, FBID and FBA reach the

same level, and clearly outperform SA.

To further investigate the performance of FBID on large net-

works, we compare it with FBA on the largest iJO1366 network

for the prediction of gene essentiality as defined in the KEIO

collection. Figure 4 shows the ROC and precision-recall curves

of both methods. We see that FBID (AUC¼ 0.72, accur-

acy¼ 93%) outperforms FBA (AUC¼ 0.68, accuracy¼ 89%)

on this experiment, confirming the potential of FBID on large

networks.
As shown on Figure 5, the predictions of FBID and FBA are

correlated: genes with a large FBID (on the right) often have a

small FBA score (near the bottom), corresponding to two no-

tions of essentiality. However, the correlation is not perfect, and

we observe, for example, a number of non-essential genes with a

small FBA score and a small FBID (near the bottom left); in that

case, the FBID is a better indicator of essentiality. Another ad-

vantage of FBID over FBA is the fact that FBA has difficulties

to make a difference between the genes predicted to be essential.

For example, 109 genes out of 1322 have a minimum FBA score

of 0, corresponding to a complete blockage of fluxes; however,

only 48 of them (44%) are truly essential. This means that FBA

can not predict essentiality with444% precision, as can be seen

on the precision-recall curve (Fig. 4). On the contrary, FBID is

better able to rank the genes with large scores, and can reach

much higher precision than FBA near the top of the list. This is

particularly relevant for applications where we want to predict a

few essential genes with high precision. More details about FBA

and FBID essentiality prediction can be found in the

Supplementary Information.

5 DISCUSSION

We have proposed FBID, a new definition of impact degree,

which can not only efficiently deal with the reversible reactions

in metabolic networks but also have the state conditions being

taken into account. To compute the FBID against perturbations,

we proposed two algorithms, an LP-based method and an EM-

based algorithm. The advantage of the LP-based method is that

it can solve all LP instances individually, can strongly benefit

Fig. 4. ROC curve (left) and precision-recall curve (right) for phenotype prediction with FBID and FBA on the Keio dataset using the iJO1366 network

Table 4. Comparison of the accuracy of FBID with different methods

using the iJE660 network

Experimental data Method

FBID

(%)

SA

(%)

FBA

(%)

MOMA

(%)

EMA

(%)

Collected from literature 68 71 86 — 90

Insertional mutants 57 60 58 59 —

Combined dataset 59 62 62 — —

Gerdes dataset 82 74 82 — —

Table 3. Performance of FBID on gene essentiality prediction, using both

iJE660 and iJO1366

Experimental data AUC Accuracy

iJE660 iJO1366 iJE660 (%) iJO1366 (%)

Collected from literature 0.57 0.49 68 63

Insertional mutants 0.55 0.50 57 52

Combined dataset 0.57 0.49 59 54

Gerdes dataset 0.66 0.60 82 83

KEIO collection 0.78 0.72 89 93
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from warm restart techniques and is amenable to parallelization.

Contrary to other LP-based formalisms like FBA, FVA or

MOMA, it does not depend on a subjective definition of a rele-

vant objective function. Although computational cost of the LP-

based method grows with the network size and the number of

perturbations to be tested, the overall time complexity is still

bounded polynomially. If we are interested in only a few candi-

date perturbations, then only the corresponding LP need to be

solved. The EM-based method, on the other hand, can compute

the FBID of specific perturbations fast for middle-scale net-

works. The main computational advantage of this approach is

that the computation of EMs needs to be performed only once,

no matter how many perturbation we want to test—including

perturbations involving several reactions. This advantage

vanishes for large-scale metabolic networks, however, because

of the exponential complexity of computing EMs and the lack

of efficient algorithms for that purpose.
We carried out computational experiments by using E.coli

metabolic networks. The results on computational time for cal-

culating the FBID of different sized networks show that the LP-

based method implemented with fastFVA is efficient, while the

EM-based method did not return any result for large networks

owing to the difficulty of computing the EMs. In terms of pheno-

type prediction, we obtained poor results when we tested meta-

bolic networks with a minimal source input because many

metabolic paths are always closed in this case. Comparison of

the performance of phenotype prediction with some existing

methods indicates that the FBID performs as well as other

models or even better, particularly on large networks.

The interpretation we give of the FBID in terms of EMs

makes an interesting link with existing EM-based methods that

measure how many EMs disappear when we inhibit a reaction

(Behre et al., 2008; Wilhelm et al., 2004). In our case, we also

enumerate the list of EMs that remain once the reaction is in-

hibited, but instead of focusing on the number of EMs remaining,

we focus instead on the number of reactions that can still be

activated in the remaining EMs. Although the number of EMs

in a network has been used as a measure of flexibility and as an

estimate of fault-tolerance (Stelling et al., 2002), we propose here

that the amount of reactions inactivated in cascade may be a

better indicator of gene essentiality. Of course, the number of

reactions inactivated is itself a crude measure, and investigating

variants such as weighting reactions by their ‘importance’ before

counting them may be interesting future work.
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