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Abstract 

 Luminance is important in visual detection. A target with higher luminance is 

detected with reduced saccadic reaction times. However, little is known about how stimulus 

luminance affects the visual response in the posterior parietal cortex (PPC), and how 

luminance-related activity modulations are correlated with changes in reaction time. To 

address these issues, we recorded single-cell activity from visually responsive PPC neurons 

of monkeys required to make a saccade to an isolated target over five luminance levels. We 

found that as stimulus luminance increased, visual response strength increased, and 

response onset latency decreased. These luminance-related changes in activity were 

significantly correlated with changes in reaction time. Particularly, changes in response 

onset latency accounted for a substantial part of the observed changes in reaction time. 

However, the length of time from response onset to saccade onset was not constant but 

increased as luminance was reduced, suggesting the existence of other 

luminance-dependent processing in downstream and/or parallel pathways before saccade 

generation. Additionally, we failed to find strong covariance between response strength or 

latency and reaction time when the effect of luminance changes was removed. These results 

suggest that luminance-related changes in response strength and latency of PPC visual 

neurons may propagate to the saccade generation process, leading to substantial changes in 

reaction time. However, these response variables in the visual activity in PPC may 

contribute less directly to saccade generation itself during visual detection. 
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Introduction 

 Luminance is an important factor determining the detectability of visual stimuli. 

During detection of an isolated target with overt saccadic eye movements, saccadic reaction 

time generally decreases as the luminance of the target stimulus increases (e.g., Boch et al., 

1984; Hughes and Kelsey, 1984; Marino and Munoz, 2009). Neurophysiological studies of 

visual areas have shown that greater luminance and contrast increase the strength of 

neuronal activity and reduce response onset latency (e.g., Gawne et al., 1996; Gawne, 2000; 

Lee et al., 2007). 

 The posterior parietal cortex (PPC), including the lateral intraparietal area (LIP), 

receives projections from many visual areas and is reciprocally connected with sites crucial 

for saccade generation such as the frontal eye field (FEF) and the superior colliculus (SC) 

(Andersen et al., 1990; Schall et al., 1995; Paré and Wurtz, 1997; Lewis and Van Essen, 

2000; Ferraina et al., 2002). Many studies have shown that LIP plays important roles in 

various behavioral tasks requiring visuomotor transformations, such as target selection 

(Wardak et al., 2002; Ipata et al., 2006; Thomas and Paré, 2007, Balan et al., 2008; Ogawa 

and Komatsu, 2009), spatial attention (Gottlieb et al., 1998; Bisley and Goldberg, 2003) 

and motor planning (Snyder et al., 1997). Considering the anatomical and 

neurophysiological evidence, it is expected that luminance-related changes in the visual 

response of PPC neurons are associated with changes in saccadic reaction time. However, 

this possibility has not been systematically examined, although previous studies that 

examined this possibility in SC provided neuronal evidence supporting a link between SC 

visual response variables and saccadic reaction time (Bell et al., 2006; Marino et al., 2012). 
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 To address this issue, single-cell activity was recorded from the region regarded as 

LIP while monkeys performed a visual detection task in which an isolated stimulus with 

five luminance levels was presented as a saccade target. These luminance levels were 

selected so that saccadic reaction time varied over a wide range. We examined how 

stimulus luminance affected the visual response of PPC neurons and how these response 

modulations were related to luminance-associated changes in saccadic reaction time. To 

investigate potential neuronal codes in the visual response of PPC neurons that could 

correlate with saccadic reaction time, we evaluated response onset latency and response 

strength measured in two ways: (1) post-latency strength (response strength immediately 

after the visual response onset) and (2) peak strength. As expected, luminance-related 

changes in these response variables of the visual activity in PPC were significantly 

correlated with changes in saccadic reaction time. In particular, changes in response onset 

latency accounted for a substantial part of the observed changes in saccadic reaction time. 

However, our additional analyses revealed that those response variables might contribute 

less directly to saccade generation. Thus, the present results suggest that the initial visual 

activity of PPC neurons plays a role as an intermediate factor in saccade generation during 

visual detection. 
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Materials and Methods 

Animals and apparatus 

 Data were collected from two female macaque monkeys (Macaca fuscata; monkey 

Y: 4 years old, 5.0 kg; monkey S: 10 years old, 6.3 kg). Monkey Y was obtained from the 

National Bio-Resource Project (Aichi, Japan), and monkey S was from Nihon University 

(Tokyo, Japan). A plastic head holder and recording chambers were secured to the skull 

with dental acrylic resin (Unifast II, GC, Tokyo, Japan) and ceramic screws (Thomas 

Recording, Geissen, Germany). The recording chambers (22-mm inner diameter) were 

placed at stereotaxic coordinates (P0–4 and L18–21.5) above the intraparietal sulcus (IPS) 

with the assistance of magnetic resonance (MR) images acquired before surgery (see 

below). An eye coil was surgically implanted beneath the conjunctiva of one eye (Judge et 

al., 1980). The monkeys were allowed to recover for 2 weeks prior to training and 

recording. All procedures for animal care and experimental protocols were in accordance 

with the National Institutes of Health Guidelines for the Care and Use of Laboratory 

Animals (1996) and were approved by the Animal Care and Use Committee of Kyoto 

University. 

 The experiments were controlled by custom-made software on two Windows 

XP-based computers, which presented stimuli, recorded neural signals, and eye positions 

and controlled the task schedule. The software was developed using LabVIEW (National 

Instrument Japan, Tokyo, Japan) and C++ Builder (Borland Software Corporation, Scotts 

Valley, CA, USA). Visual stimuli were generated using a video-signal generator (ViSaGe; 

Cambridge Research Systems, Cambridge, UK) and presented on a video monitor with a 
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100-Hz refresh rate and 800 × 600 resolution (RDF223H; Mitsubishi, Tokyo, Japan). 

Stimuli were binocularly viewed from a distance of 42 cm in a dark room and subtended a 

visual angle of 51.5 × 40.0°. 

 Single neurons were recorded using an epoxylite-insulated tungsten electrode 

(Frederick Haer & Co, Bowdoinham, ME, USA) with an impedance >2 MΩ measured at 1 

kHz (model IMP-1, Bak Electronics, Germantown, MD, USA). Extracellular activity was 

amplified using a microelectrode AC amplifier (Model-1800; A-M Systems, Carlsborg, 

WA, USA) and stored on a computer equipped with a multichannel analog-to-digital board 

at a sampling rate of 50 kHz (PCI-6143, National Instrument Japan). Eye position was 

monitored and recorded using the scleral search-coil technique (Fuchs and Robinson, 1966) 

(eye-position detector DSC-2001, Datel, Tokyo, Japan). Precise spikes were discriminated 

off-line using a template-matching method to confirm the method. Eye-position signals 

were recorded at a sampling rate of 50 kHz and analyzed at 1 kHz resolution.  

 The recording site was determined using a guide tube and a set of plastic grids 

with holes spaced 1.0 mm apart and offset from each other by 0.5 mm. The guide tube (23 

gauge) was lowered above the dura matter surface, and the electrode penetrated the cortex 

through the dura using an oil hydraulic micromanipulator (MO-97A-S, Narishige, Tokyo, 

Japan). Under microscopic examination (OPMI-pico-i, Zeiss, Tokyo, Japan), a duratomy 

was performed using fine forceps (Dumont No. 5) and a 25-gauge needle with the tip bent 

at a right angle. Only a small region of the tissue just below the selected grid hole was 

removed to avoid breaking the electrode. The chamber was filled with agarose (3%, A9793; 

Sigma, St. Louis, MO, USA) to promote recording stability. After each recording session, 
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the dura matter surface was covered with anti-infective/anti-inflammatory ointment 

(Chlomy-P ointment, Daiichi-Sankyo, Tokyo, Japan). 

 

Behavioral paradigms 

Visual detection task. We analyzed the neural activity of 43 visually responsive PPC 

neurons obtained during this task. Each trial began with the onset of a fixation point (white 

circular spot, luminance = 66 cd/m2) at the center of a monitor screen (Fig. 1). The 

monkeys had to fixate on that spot within a window of ±1.2–1.6°. After sustained fixation 

for a 1,000-ms or a 1,500–2,000-ms period, a circular target stimulus (size = 2.24°2) 

appeared on a gray background. The target stimulus appeared with equal probability in the 

receptive field or in the location diametrically opposite the fixation spot. For each trial, the 

target luminance and position were selected in a quasi-random fashion. The monkeys were 

required to make a saccade to the target without an artificial delay (i.e., reaction-time task). 

When the computer detected a saccadic eye movement, the target and the fixation spot were 

immediately extinguished. If the monkey made a single saccade that landed inside a square 

target window surrounding the target (± 3.0 × 3.0°), another fixation point appeared at the 

target location. After fixation at this point for 600 ms, the monkey received a liquid reward 

(correct trial). If the gaze deviated from the fixation window before the target presentation, 

the trial was immediately aborted and the monkey did not receive a reward (aborted trial). 

In other situations, trials were considered erroneous and were grouped as follows: saccades 

landed outside the target window (saccade direction error); no saccade was made within a 
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1,200-ms interval after the target onset (no saccade error); and fixation broken during the 

secondary fixation after the saccade (post-saccade fixation error). 

The target stimulus was presented at five luminance levels (0.83, 0.90, 1.02, 2.47, 

and 20.6 cd/m2) for monkey Y and six luminance levels (0.80, 0.83, 0.90, 1.02, 2.47, and 

20.6 cd/m2) for monkey S on a background of uniform luminance (0.78 cd/m2). The 

luminance levels were determined in an effort to create substantial variation in saccadic 

reaction times in response to changes in luminance. Only data that were obtained from the 

five shared luminance levels (0.83–20.6 cd/m2) were used for analyses in the present study. 

They corresponded to 3.1%, 7.1%, 13.3%, 52.0%, and 92.7% contrast, calculated using the 

Michaelson formula, (LT – LB)/(LT + LB), where LT and LB are the stimulus and 

background luminance. Because the target luminance was always brighter than the 

background luminance, only visual stimuli with positive contrasts were presented in this 

study. For easy comparison of the present results with previous ones, target luminance 

levels were also indicated by contrast. The eccentricity of the target was fixed at the 8.5° 

periphery to minimize inter-neuron differences in task difficulty across recording sessions 

because luminance or contrast sensitivity declines with retinotopical eccentricity in 

monkeys (e.g., Kiorpes and Kiper, 1996; Bell et al., 2000; Marino and Munoz, 2009) and in 

humans (e.g., Robson and Graham, 1981; Pointer and Hess, 1989; Foley et al., 2007). 

Furthermore, a recent study reported interaction effects between stimulus luminance and 

eccentricity on saccadic reaction time (Marino and Munoz, 2009). 
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Memory-guided saccade task. We used the memory-guided saccade task to assess visual 

and delay activity and to estimate the receptive field of a cell under study (Hikosaka and 

Wurtz, 1983). While the monkeys fixated on a central fixation point (yellow circle/square 

or white square spot, luminance = 56 or 66 cd/m2), a single circular stimulus (luminance = 

10 cd/m2, size = 2.24°2) was flashed for 500–700 ms. After a delay (900–1,800 ms) the 

fixation point was removed, and the monkeys were required to make a saccade to the 

location of the previously flashed target. The other procedures for this task were similar to 

those for the visual detection task. 

 

Data collection 

 Single-cell activity was recorded by advancing an electrode into the lateral bank of 

IPS, as verified by structural magnetic resonance imaging (MRI) before the start of 

recordings. Once a neuron was isolated during recording sessions, we initially assessed the 

location of the receptive field in the memory-guided saccade task. An isolated stimulus was 

presented at one of six evenly separated directions on an imaginary circle (eccentricity = 

8.5°), because the target-location eccentricity was fixed at 8.5° in the periphery during the 

visual tasks, and because the preferred directions of LIP neurons are invariant regardless of 

the target eccentricity (Barash et al., 1991b). We determined the preferred direction by 

manually adjusting those six directions so that one direction evoked the strongest activity. 

After that, we conducted the visual detection task by presenting the target in either the 

preferred direction (within the receptive field) or the opposite direction (outside the 

receptive field). If the neuron remained well isolated after the recording in the visual 
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detection task, we recorded from the same neuron when the monkey performed the 

memory-guided saccade task. We were able to record neuronal activity from 35 of 43 cells 

studied. 

 Before starting the present experiment, we specified the IPS location based on 

response properties; the medial bank of IPS tends to exhibit activity related to 

somatosensory stimuli, whereas the lateral bank exhibits visual and saccade-related 

responses (Mountcastle et al., 1975; Barash et al., 1991b; Maimon and Assad, 2006). After 

specifying the IPS locus, we recorded neurons in the lateral bank of the IPS, from a region 

regarded as LIP, in which neurons exhibit robust, spatially tuned responses during the delay 

period of a memory-guided saccade task (Gnadt and Andersen, 1988; Barash et al., 1991a, 

b; Colby et al., 1996; Shadlen and Newsome, 2001). To ensure that our samples were in 

area LIP rather than area 7a, neurons recorded at a depth shallower than 3 mm from the 

dura surface were excluded from the present analysis (Andersen et al., 1990; Linden et al., 

1999; Gifford and Cohen, 2004). Neurons were typically recorded at >5-mm depth from the 

dura surface (88%), and the majority of our observed neurons (62.9%, see Results) 

exhibited significant modulations in delay-period activity (determined by whether activity 

150–650 ms after target offset differed significantly according to target location; 

Mann–Whitney U-test, p < 0.05; Lawrence et al., 2005). This fraction was comparable to 

that reported for LIP in previous studies (e.g., Barash et al., 1991a; Maimon and Assad, 

2006; Falkner et al., 2010). 

 To verify the recording positions, we acquired post-operative structural MR 

images for both monkeys on a 0.2 Tesla open whole-body scanner (Signa Profile; General 
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Electric, Milwaukee, WI, USA). The advantage of this low-magnetic field system is 

reduced distortion of the original cortical structures (Petersch et al., 2004). We used a 

three-dimensional spoiled, gradient-recalled (SPGR) pulse sequence with the following 

parameters: TR = 29 ms, TE = 8.3 ms, flip angle = 40°, field of view = 16 cm, 256 × 256 

matrix, 100 slices, voxel size = 0.63 × 0.63 × 1.0 mm). To improve the image 

signal-to-noise ratio, we aligned and averaged two or three acquisitions during 

post-processing. Figure 2 shows MR images from one monkey (monkey Y). We used five 

plastic hollow tubes filled with an 84–87% glycerin solution (Glycerin P, Kenei, Tokyo, 

Japan), which were visible in the MRI, to determine the plane and trajectory of the 

electrode penetrations (Fig. 2A). These tubes were embedded in a plastic base attached to 

the recording chamber so that one was the center and the remaining four were arranged in 

the x–y coordinate (8 mm apart from the center) of the recording grid (Fig. 2B). The 

penetration sites on the brain surface were reconstructed based on the coordinates 

determined by the positions of the reference tubes. Figure 2D shows the MR images that 

matched the plane of the recording penetrations. The zone of the recording sites (arrow 

heads), which was reconstructed from a combination of grid sites and recording depths, is 

superimposed on the MR images. Figure 2C shows a number of neurons recorded within 

each grid location, and Figure 2E shows coronal slices representing recording positions 

from the most anterior to the most posterior. Thus, our samples were presumably recorded 

from LIP based on the physiological properties of the recorded neurons and verification by 

the MR images. However, we did not histologically reconstruct the precise recording sites, 
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as the monkeys are still alive and are to be used for other studies. For this reason, we will 

use the term “PPC” to indicate the region from which we recorded.  

 

Data analysis 

 Only correct trials were analyzed. Spike density functions were constructed with 

1-kHz resolution by convolving spike trains with a Gaussian function (SD = 3 ms) 

(Richmond et al., 1987). Population average spike density functions were constructed by 

averaging the spike density functions from individual neurons for each luminance condition. 

Eye velocity was calculated by digitally distinguishing between eye-position signals. 

Saccades were detected using a computer algorithm that identified the initiation and 

termination of each saccade based on a velocity-threshold criterion. Change in eye velocity 

was recognized as a saccade if it was greater than the threshold of 120°/s for at least 10 ms. 

The initiation of a saccade was defined as the time at which the velocity increased to >30°/s, 

and the saccade offset was defined as the time at which the velocity fell to <30°/s. Saccadic 

reaction time in the visual detection task was defined as the interval from the appearance of 

the target to the initiation of the saccade. Saccade duration was defined as the time from the 

saccade onset to offset, and saccade endpoint error was defined as the distance between the 

saccade endpoint and the target position. We excluded the trials that had unusually short or 

long saccadic reaction times (more than 2 SDs above or below the mean saccadic reaction 

time for correct trials for each trial condition; on average, 5.5% of trials were discarded). 

 Visual responsiveness was determined using the following two criteria: (1) the 

activity at 50–150 ms after the target onset was significantly greater than the activity at 
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200-ms prior to the target onset during the memory-guided saccade task (two-tailed t-test, p 

< 0.01); and (2) the visual response onset preceded the mean time of saccade onset by at 

least 50 ms for all luminance conditions during the visual detection task. For eight of 43 

cells, neuronal data during the memory-guided saccade task were not stored. However, 

because visually responsive activity was confirmed by on-line observation when we 

determined the preferred target direction using the memory-guided saccade task, these cells 

were included in the data analysis. 

 To investigate potential neuronal codes that could be correlated with saccadic 

reaction time in the visual response of PPC neurons, we considered response onset latency 

and response strength, and examined the correlation between these response properties and 

saccadic reaction time. Response onset latency was determined using a Poisson distribution 

analysis (Maunsell and Gibson, 1992; Bisley et al., 2004; Price et al., 2006; Crowder et al., 

2009). The baseline activity in the 200 ms immediately prior to stimulus onset for all 

luminance conditions was fitted with a Poisson distribution. A threshold was then 

calculated based on a 99% cutoff from the fitted distribution (p < 0.01). Response onset 

latency was defined as the time point following the onset of the stimulus when the spike 

density function exceeded this threshold and stayed above the threshold for 5 ms. For seven 

out of 43 cells, because the response onset latency was undetermined at the 99% threshold 

level, it was calculated at the 95% threshold level (p < 0.05). 

 Two types of response strength were determined using the following two criteria. 

(1) Post-latency strength: mean strength during the 50-ms period immediately after visual 

response onset. This measurement quantified the strength of the initial visual response 
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irrespective of response onset latency (Gawne, 2000; Lee et al., 2010). It was unlikely that 

the effect of the saccade related activity substantially invaded the analyzed period because 

the response onset preceded the mean time of the saccade onset by more than 50 ms (mean 

= 98.0 ms, range 50.6–217.8 ms). (2) Peak strength: Peak activity was defined as activity 

occurring at the first time point at which the activity was maximum within the preceding 

and subsequent 10-ms periods after it exceeded 2 SDs from the mean baseline activity. To 

avoid erroneous detections due to minor activity fluctuations, we first detected the peak 

activity time by moving the time point in 1-ms steps on the spike density function 

constructed with a Gaussian function (SD = 10 ms). Then, for precise determination, we 

re-detected the peak activity time within the 5-ms interval of the previously detected 

peak-strength time using the spike density function constructed with a Gaussian function 

(SD = 3 ms). If such peak activity was not detected in the interval from the response onset 

to the saccade onset, the maximum firing rate within that period was used as the peak 

activity (n = 3, 1, 1, 1, and 6 at stimulus luminance of 20.6, 2.47, 1.02, 0.90, and 0.83 cd/m2, 

respectively). 

 To estimate the confidence intervals for response strength and response onset 

latency, we used a bootstrap analysis for each stimulus condition for each neuron (Efron 

and Tibshirani, 1993). To generate a new bootstrap sample, we randomly sampled, with 

repetition, trials from the original data set until the new set had the same number of trials as 

the original. The response strengths and response onset latencies were calculated in the 

same way as the actual data. This procedure was followed for 2,000 iterations, and then 

95% confidence intervals of the distributions were estimated. 
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Results 

Behavioral performance 

 In the visual detection task, the monkeys were required to detect a target and 

indicate the target’s appearance by shifting their gaze to the target location (Fig. 1A). 

Figure 1B shows the average number of correct performances obtained from 43 recording 

sessions. The result was calculated from both trials when the target appeared in the 

receptive field and those when it appeared outside the receptive field. The monkeys 

performed well, with >95% correct response trials at all five luminance levels. Across all 

luminance levels, the rate of erroneous trials was 2.4%. Erroneous trials could be classified 

into three types (see Materials and Methods): saccade direction error (53.5%), no saccade 

response within 1,200 ms after stimulus onset (4.9%), and post-saccade fixation error 

(41.6%). Figure 1C shows mean saccadic reaction times across recording sessions as a 

function of luminance. As the luminance increased, saccadic reaction time decreased. This 

was consistent with previous studies (Boch et al., 1984; Hughes and Kelsey, 1984; Doma 

and Hallett, 1988; Jaśkowski and Sobieralska, 2004; Marino and Munoz, 2009). When 

luminance increased from darkest (0.83 cd/m2) to brightest (20.6 cd/m2), mean reaction 

time decreased by 89 ms, suggesting that the range of luminance used in the present study 

was sufficient to modulate target detectability in the visual detection task.  

 The dependence of saccade dynamics on stimulus luminance is summarized in 

Table 1. As a trend, we found increased saccade peak velocity and amplitude as well as 

decreased saccade duration as stimulus luminance increased. Although these changes were 

significant (one-way repeated-measures analysis of variance [ANOVA], F4,168 = 132.8 for 
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peal velocity, F4,168 = 13.6 for amplitude, and F4,168 = 29.4 for duration, p < 0.001), the 

absolute magnitude of these changes was rather small (5.5% for peak velocity, 1.2% for 

amplitude, and 6.1% for duration). 

 

Visual responses to stimuli of differing luminance 

 We recorded the activity from 89 cells in the region regarded as LIP during the 

visual detection task. For 61 of those neurons, the data sets were large enough to enable 

analysis (≥20 trials for each of the stimulus conditions: five luminance levels × two target 

positions). Of these, 43 cells (21–125 trials, mean ± SD = 34 ± 15.1 trials; n = 31, monkey 

Y; n = 12, monkey S) fulfilled the criteria for visually responsive activity and were further 

analyzed in this study. Thirty-five of these cells were also examined in the memory-guided 

saccade task, and 22 (22/35 = 62.9%) had significant delay-period activity. Because the 

results were essentially the same when the data from neurons with and without delay-period 

activity were separately analyzed, we show the results of the analysis performed on the 

combined data from all neurons. 

Figure 3 shows spike density functions (mean ± SEM) from the five luminance 

levels of a PPC neuron. Each trace was calculated from 30–35 success trials. The initial 

visual activity exhibited clear elevations after stimulus onset. Squares indicate the times at 

which response onset latencies were assigned. As shown in the figure, response strength 

substantially varied associated with changes in stimulus luminance (middle panel in Fig. 

3B). To provide insight into how this neuron encoded changes in stimulus luminance by its 

response strength, we calculated trial-averaged post-latency strength (Fig. 4A) and peak 
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strength (Fig. 4B). As a general trend, this cell exhibited an increase in post-latency and 

peak strengths as stimulus luminance increased, although post-latency strength did not 

increase monotonically with the increase in luminance. Furthermore, changes in stimulus 

luminance also affected response onset latency (left panel in Fig. 3B). As shown in Fig. 4C, 

response onset latency clearly decreased in a monotonic fashion with the increase in 

luminance.  

  

Luminance dependence of population average responses 

 To determine whether the response profiles illustrated in the example neuron (Figs. 

3 and 4) were preserved in the population average response, the spike density functions 

obtained from 43 PPC neurons were averaged across all neurons (Fig. 5). As target 

luminance increased, in general, response strength increased (middle panel in Fig. 5) and 

response onset latency decreased (left panel in Fig. 5). The right panel of Fig. 5 shows the 

population responses aligned at the saccade onset. Shadlen and coworkers reported that 

when monkeys made gradual decision formation during a discrimination task, the activity 

of LIP neurons (they only examined neurons with delay-period activity in a memory-guided 

saccade task) tended to exceed a common threshold level prior to the generation of 

saccades (Roitman and Shadlen, 2002; Gold and Shadlen, 2007). However, our samples did 

not show a clear common activation level. The magnitude of pre-saccadic strength (the 

mean discharge rate measured 10–20 ms prior to the saccade onset) was significantly 

different across the different luminance levels (one-way repeated-measures ANOVA, F4,168 

= 4.96, p < 0. 001). This was true even when the neuronal population was restricted to the 
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neurons that had significant delay-period activity (n = 22; one-way repeated-measures 

ANOVA, F4,84 = 4.0, p < 0.01). 

 

Luminance-dependent changes in response strength and response onset latency 

 To illustrate how individual PPC neurons encoded changes in stimulus luminance 

in their response strength, we calculated post-latency and peak strengths at the five 

luminance levels for each neuron (Fig. 6A and B). Each response strength was normalized 

so that the mean value across the five luminance levels of each neuron was 1 so that data 

would not be more affected by neurons with greater response strength. There were 

significant increases across neurons in both normalized post-latency strength (Fig. 6A, 

Pearson correlation test, r = 0.48, p < 0.001, the degrees of freedom [df] = 213) and 

normalized peak strength (Fig. 6B, Pearson correlation test, r = 0.55, p < 0.001, df = 213) 

associated with the increase in stimulus luminance. However, at the individual neuron level, 

there were substantial fluctuations in the representation of luminance (gray circles and 

lines). Only in a few neurons, the increase in luminance was monotonically encoded by the 

increase in post-latency strength (14% = 6/43) and peak strength (14% = 6/43).  

 Figure 6C shows the relationship between response onset latency and stimulus 

luminance. There was a significant and strong correlation across neurons between response 

onset latency and luminance (gray line, r = -0.77, p < 0.001, df = 213). Mean response 

onset latencies were 63.9 ± 13.2 (mean ± SD), 70.9 ± 11.8, 88.3 ± 16.7, 95.9 ± 16.1, and 

122.6 ± 20.6 ms for target luminance of 20.6, 2.47, 1.02, 0.90, and 0.83 cd/m2, respectively. 

Thus, response onset latency monotonically decreased as stimulus luminance increased. In 
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contrast to response strength, many neurons (86% = 37/43) monotonically encoded 

stimulus luminance in their response onset latencies at the individual neuron level. These 

results indicate that the strength and the onset latency of visual response significantly 

changed in association with changes in stimulus luminance. Particularly, response onset 

latency was capable of representing stimulus luminance using a monotonic encoding 

strategy. 

 

Relationship between response strength/response onset latency and saccadic reaction 

time 

 We then examined the relationship between luminance-related modulations in the 

initial visual response of PPC neurons and changes in saccadic reaction time at the 

population level. Figure 7, A and B shows the relationship between normalized post-latency 

strength/peak strength and saccadic reaction time. The reduction in both normalized 

post-latency and peak strengths for 43 neurons was mildly correlated with the increase in 

saccadic reaction time (Fig. 7A, Pearson's correlation test, r = -0.42, p < 0.001, df = 213; 

Fig. 7B, r = -0.51, p < 0.001, df = 213). For individual neurons, the strength of the 

correlation (r) of normalized post-latency strength with saccadic reaction time ranged from 

-0.993 to 0.842 (median = -0.717, mean ± SD = -0.481 ± 0.571), and that of normalized 

peak strength ranged from -0.980 to 0.732 (median = -0.650, mean ± SD = -0.506 ± 0.502), 

indicating substantial variance in the relationships of both normalized post-latency and 

peak strengths with saccadic reaction times across neurons. 
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 Figure 7C shows the relationship between response onset latency and saccadic 

reaction time. Luminance-related changes in response onset latency for 43 neurons were 

more strongly correlated with changes in saccadic reaction time (Pearson’s correlation test, 

r = 0.76, p < 0.001, df = 213) than were changes in post-latency and peak strengths. Even at 

the individual neuron level, the correlation values were high for all neurons (range: 

0.850–0.999; median = 0.970, mean ± SD = 0.958 ± 0.04). Thus, strong correlations 

between response onset latency and saccadic reaction time were observed across neurons. 

However, despite such strong correlations, our results also showed that changes in response 

onset latency did not fully account for changes in saccadic reaction time. When stimulus 

luminance decreased from 20.6 to 0.83 cd/m2, saccadic reaction time of trials in which the 

target appeared in the receptive field was prolonged by 94.8 ms (from 148.8 to 243.6 ms) 

on average, but response onset latency lengthened by only 58.7 ms (from 63.9 to 122.6 ms), 

indicating that although luminance-related changes in response onset latency explained a 

substantial part (61.9% = 58.7/94.8) of the total change in saccadic reaction time, this 

explanation was not complete. To understand how stimulus luminance affected the length 

of time from visual response onset to saccade onset, we calculated the neuronal–saccade 

onset delay for each of the luminance levels (Fig. 8). The results showed that the delay time 

was not constant (one-way repeated-measures ANOVA, F4,168 = 43.9, p < 0.0001) but 

instead tended to gradually increase as stimulus luminance decreased. Such a systematic 

luminance dependency in the neuronal–saccade onset delay suggests that other 

luminance-dependent processes contribute to saccade generation and that the response 

onset latency of PPC neurons contributes less directly to saccade generation. 
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Covariation analysis of response onset latency and saccadic reaction time 

 As described above, it is unlikely that there is a rigid link between response onset 

latency and saccadic reaction time. To asses this in a more direct way, we conducted a 

covariation analysis that was similar to a method previously utilized (e.g., Thompson et al., 

1996; Sato et al., 2001; Ipata et al., 2006; Thomas and Paré, 2007). This analysis allowed us 

to examine the relationship between response strength/response onset latency and saccadic 

reaction time under the condition in which the effects of luminance changes were removed. 

We first examined the relationship between the variability in response strength (normalized 

post-latency and peak strength) and that in saccadic reaction time (Fig. 9A and B). For each 

neuron, trials under each luminance condition were divided into two equal-sized groups 

according to saccadic reaction time (short vs. long reaction-time groups), and mean 

normalized post-latency/peak strength was computed for both reaction-time groups. Figure 

9A shows the difference in mean normalized post-latency strength for the two reaction-time 

groups as a function of the difference in mean saccadic reaction times for the two groups. 

Each data point indicates one of the five luminance levels for each neuron. Six of the total 

data points (n = 215; 5 luminance levels × 43 neurons) were excluded from this analysis, 

because post-latency strength was not defined due to the undetection of response onset 

latency with a 95% cutoff from the Poisson distribution. The slope of a regression line, 

which was forced to pass through the origin, was not significantly different from zero 

(regression slope = -0.00052, p > 0.05, df = 207), indicating that there was no covariance 

between the two variables. Similar non-significant covariance was observed between 
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normalized peak strengths and saccadic reaction times (Fig. 9B; regression slope = 

-0.00061, p > 0.05, df = 213). Thus, the variability in measures of response strength in this 

study did not account for the variability in saccadic reaction times when the effects of 

luminance changes were removed. 

 Next, we examined the relationship between the variability in response onset 

latency and that in saccadic reaction times. Six data points were excluded from this analysis 

for the same reason described in Fig. 9A. In contrast to measures of response strength, there 

was a significant correlation between variability in response onset latencies and variability 

in saccadic reaction times (Fig. 9C; regression slope = 0.10, p < 0.01, df = 207). However, 

the slope of the regression line was very small. The deviation of data points in the 

bottom-right direction from a diagonal line (dashed line) indicated that changes in response 

onset latencies were smaller than those in saccadic reaction times. This result was 

consistent even when the analysis was conducted separately on the datasets for each 

luminance level (Fig. 9D). The slope of the regression line was positive for either 

luminance level, although the slope values were not significantly different from zero for all 

luminance levels (regression slopes = 0.028–0.15, p > 0.05, df = 38–41). Taken together, 

the results of the covariation analysis revealed that variability in no response property (i.e., 

post-latency strength, peak strength, response onset latency) was capable of accounting for 

a major part of the variability observed in saccadic reaction times.  
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Discussion 

 We found that the majority of visually responsive PPC neurons significantly 

changed their activity associated with changes in stimulus luminance. On average, 

luminance-related changes in response strength (post-latency and peak strength) and 

response onset latency were significantly correlated with changes in saccadic reaction time. 

In particular, response onset latency was strongly correlated with saccadic reaction time. 

However, the time from the response onset to the saccade onset was not constant but 

increased as luminance was reduced, suggesting that other luminance-dependent processing 

may lie downstream and/or in parallel circuits and contribute to the timing of saccade 

generation. Additionally, there was no strong correlation between the variability in 

response onset latency and the variability in reaction times when the effects of luminance 

changes were removed. Based on these findings, we will discuss the role of PPC in 

single-target detection and saccade generation during visual detection. 

 

Comparisons with previous studies of response onset latency 

 To our knowledge, there have been no systematic studies of the dependence of 

response onset latency on stimulus luminance in LIP. Neuronal activity was examined 

using one particular luminance level (e.g., Barash et al., 1991a; Bisley et al., 2004). 

Therefore, we selected a contrast level in our study that matched the stimulus contrast used 

in a previous study by Bisley et al. (2004) to make a comparison. They precisely 

determined response onset latency using a Poisson distribution analysis and showed that 

mean response onset latency for 41 LIP neurons was 49.5 ms (range: 42–76 ms) for a 
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stimulus with 55% contrast. In our case, mean response onset latency was 70.9 ms (range: 

55–106 ms) for a stimulus with 52% contrast. Although the distribution ranges substantially 

overlapped, the mean response latencies differed. One possible explanation is that this 

difference was due to the lower luminance of the target and background used in the present 

study as compared with those used in the previous study. 

 Schmolesky et al. (1998) gathered response onset latency data from many brain 

areas of anesthetized monkeys using a stimulus with 80% contrast. They showed that mean 

latencies (±SD) of neurons in areas associated with the dorsal stream of visual processing 

were rather uniform across areas: V3 (72 ± 8.6 ms), the middle temporal area (72 ± 

10.3 ms), the medial superior temporal area (74 ± 16.1 ms), and FEF (75 ± 13.0 ms), 

indicating that dorsal stream signals rapidly traverse to higher levels of the anatomical 

hierarchy. The response onset latency reported here (70.9 ± 11.8 ms for a stimulus with 

52% contrast) was comparable to that of those areas. In contrast, this latency was shorter 

when compared with those in areas associated with ventral pathways such as areas V4 (104 

± 23.4 ms) (Schmolesky et al., 1998) and TE (151 ± 50 ms) (Nakamura et al., 1994). 

Therefore, visual signals from ventral-stream areas (Andersen et al., 1990; Blatt et al., 

1990; Lewis and Van Essen, 2000) are unlikely to explain the response onset latency 

observed in our sample. Thus, the present result provides functional evidence supporting 

that the initial visual response of PPC neurons may be signaled through dorsal-stream areas 

that are connected with LIP (Andersen et al., 1990; Blatt et al., 1990; Lewis and Van Essen, 

2000). 
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A potential role of response onset latency in the formation of a saliency map 

 We found the robust monotonic dependence of response onset latency on stimulus 

luminance (Fig. 6). This monotonic coding may play a crucial role not only in visual 

detection but also in visual search. Theoretical models of attention (Koch and Ullman, 

1985; Wolfe, 1994; Itti and Koch, 2000) suggest that the brain has a single map that 

represents the stimulus-driven conspicuity of individual objects (salience map). It is 

generally accepted that a salience map is represented by a network spanning over multiple 

areas; LIP is one of those areas (Bisley and Goldberg, 2003; Ogawa and Komatsu, 2009; 

Arcizet et al., 2011). Visual salience is reflected by the activity level evoked by individual 

objects, and a winner-take-all competition mediated by lateral inhibitory organization on 

this map determines the location of the strongest activity as the location to be attended to 

(Koch and Ullman, 1985; Itti and Koch, 2000). In these models, salience is coded only by 

response strength. However, from a theoretical standpoint, response onset latency may also 

play an important role. Under winner-take-all competition, earlier onset activities have an 

advantage in developing their activities. Namely, visual signals evoked by high-luminance 

objects can more rapidly arrive at PPC and suppress other later-onset activities evoked by 

low-luminance objects. Thus, the observed monotonic coding of luminance with latency 

could be crucial for the formation of a salience map with lateral inhibitory interactions, 

which are actually found in LIP (Falkner et al., 2010). 

 

Link between visual activity and saccadic reaction time 
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 Bell et al. (2006) recorded neuronal activity from the SC intermediate-layers while 

monkeys performed a visual detection task using a target with varying luminance levels. 

They showed that the onset of visual responses was earlier and saccadic reaction time was 

shorter with the higher-luminance target. Furthermore, Marino et al. (2012) found that peak 

magnitude and onset latency of visual response of SC neurons were strongly correlated 

with saccadic reaction time, highlighting a link between the initial SC visual activity and 

saccadic reaction time. We similarly found that luminance-related changes in response 

strength (post-latency and peak strengths) and response onset latency were significantly 

correlated with changes in saccadic reaction time (Fig. 7). We speculate that these 

luminance-dependent response changes may propagate into the saccade generation circuit, 

leading to changes in saccadic reaction time. Perhaps our findings are not surprising. 

Because LIP and SC receive rich visual signals from many common visual areas (LIP: 

Andersen et al., 1990; Blatt et al., 1990; Lewis and Van Essen, 2000; SC: Fries, 1984; Lock 

et al., 2003) and because LIP and SC are densely interconnected (Paré and Wurtz, 1997; 

Clower et al., 2001; Wurtz et al., 2001; Ferraina et al., 2002), the luminance-related 

properties of the visual response could be similar between PPC and SC, and this may 

produce a significant correlation between the visual response and saccadic reaction time in 

both areas. 

 Because only one stimulus was presented as a target in the current experiment, 

PPC neurons were capable of specifying the target position after visual response onset. To 

generate a saccade to that target, PPC neurons have only to send the position information to 

the downstream saccade preparation and generation circuits. Therefore, it is expected that 
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the length of time between visual response onset and saccade onset would be constant. 

However, the actual length of time was not constant but instead gradually increased as 

stimulus luminance decreased (Fig. 8), suggesting the existence of other 

luminance-dependent processing that contributes to the saccade generation. The fact that 

darker stimuli (weaker sensory signals) required longer time to generate a saccade reminds 

us of the accumulation and threshold model that was proposed to explain the neuronal 

process involved in decision making (Roitman and Shadlen, 2002; Gold and Shadlen, 2007). 

However, we found no clear common threshold in the activity of our samples (Fig. 5). Thus, 

if such a process exists, it may lie downstream and/or in parallel pathways (i.e., other areas 

not examined in this study such as FEF/SC and other PPC neuronal populations). 

 Previous studies using a visual search task showed that the activity of LIP neurons 

is stronger when the target appears in the receptive field than when a distractor appears in 

the receptive field (Ipata et al., 2006; Thomas and Paré, 2007; Balan et al., 2008; Ogawa 

and Komatsu, 2009). More importantly, the variability in target discrimination time at 

which neurons significantly discriminate the target from distractors in their activity 

accounts for the variability in saccadic reaction times (Ipata et al., 2006; Thomas and Paré, 

2007), suggesting a link between LIP neuronal activity and saccade generation during 

visual search. A similar covariance with saccadic reaction time was found in FEF and SC 

(Sato et al., 2001; McPeek & Keller, 2002; Cohen et al., 2009; Shen et al., 2011). Although 

visual search and visual detection tasks differ in visual stimuli used and in task difficulty, 

both tasks ultimately demand that animals specify the target location and make a saccade to 

that location. As described before, because only one stimulus was presented as a target in 



28 
 

the visual detection task, PPC neurons may be capable of specifying the target position 

after the response onset. That is, the response onset time in a visual detection task may 

functionally correspond to the target discrimination time in a visual search task. However, 

we found only weak covariance between response onset latencies and saccadic reaction 

times (Fig. 9), suggesting that LIP differentially contributes to the generation of saccades in 

visual detection and visual search tasks. This view is supported by results of a previous 

inactivation study. Wardak et al. (2002) showed that muscimol-induced reversible 

inactivation of LIP had no effect on saccadic reaction time or the accuracy of saccades to a 

single target in either visually guided or memory-guided saccade tasks (but see Li et al., 

1999), whereas serious deficits were observed in a visual search task. Thus, our result was 

consistent with the previous result.  

 In conclusion, we found a significant correlation between luminance-related 

changes in response strength/response onset latency of PPC neurons and changes in 

saccadic reaction time. However, the results of our additional analyses suggest that these 

response variables of PPC activity may be intermediate-stage variables and contribute less 

directly to saccade generation itself during visual detection. 
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Figure Legends  

 

Figure 1. Experimental design and behavioral performance. 

A: Visual stimulation sequence employed during a reaction-time visual detection task. After 

fixation on a central spot (1,000 ms or 1,500–2,000 ms), a target stimulus with five 

luminance levels appeared at one of two peripheral locations. One was located in the 

receptive field of a recorded neuron, and the other was located diametrically opposite from 

the fixation point. Monkeys had to detect the target stimulus and make a saccade to it. The 

target stimulus and the fixation spot were removed when a saccade was detected on-line by 

a computer. If the saccade was performed correctly, another spot reappeared at the target 

location. The monkey received a liquid reward after fixating on that spot for 600 ms. ITI, 

inter-trial interval; SRT, saccadic reaction time. B, C: Mean correct performance (B) and 

mean saccadic reaction time (C) at five luminance levels collapsed across recording 

sessions. Data are plotted as a function of stimulus contrast as well as luminance. Error bars 

indicate SD across recording sessions. 

 

Figure 2. Magnetic resonance images of recording sites from one monkey. 

A: A three-dimensional view of the brain of one monkey. Five bright rods in the right 

hemisphere indicate hollow tubes filled with a glycerin solution, which were embedded in a 

plastic base attached to the recording chamber. These tubes served as position reference 

markers. The bright mass located at the foot of the tubes was an ointment with which a hole 

in the skull was filled to protect the dura matter surface. B: Penetration sites on the cortical 
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surface. Large circles indicate the sites defined by extensions from the reference tubes. The 

penetration sites where neurons were recorded (small circles) were reconstructed with the 

coordinate determined by the reference tubes. The black outline indicates the outline of the 

skull hole. C: The number of neurons recorded within each grid location. The thick gray 

line indicates the location of the intraparietal sulcus (IPS). D: Reconstruction of the 

recording zone in the planes that were sectioned parallel to the penetrations at two levels 

(line 1 and 2 in B). The arrowheads next to IPS represent the location boundaries from 

which neurons were recorded. E: Coronal slices representing recording positions from the 

most anterior to the most posterior. The A–P levels are indicated at the top of each image. 

CS, central sulcus; IPS, intraparietal sulcus. 

 

Figure 3. Activity of a PPC neuron during a visual detection task. 

A: The activity of a visually responsive neuron in response to five luminance levels. Solid 

and dashed curves in each panel indicate the spike density functions (mean ± SEM) 

observed when the target appeared in the receptive field and away from it, respectively. 

Traces were smoothed with a Gaussian function (SD = 3 ms) and are aligned at the time of 

stimulus presentation (left panel), response onset latency (middle panel), or saccade 

initiation (right panel). Rectangles, gray vertical lines, and numbers indicate the times (ms) 

at which response onsets were assigned. Circles indicate the peaks in activity. Raster plots 

(colored ticks) and saccadic reaction times (black ticks) for individual trials are shown 

above the spike density functions. The upper half indicates trials in which the target 

appeared in the receptive field, and the lower half indicates the trials in which the target 
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appeared away from the receptive field. The mean saccadic reaction time during each 

stimulus condition is indicated by a triangle with a number above it. B: The spike density 

functions obtained from the five luminance levels are superimposed and are shown for ease 

of comparison. Gray horizontal lines indicate the response onset latency threshold 

calculated using the Poisson distribution. 

 

Figure 4. Response strength and response onset latency at different luminance levels for the 

PPC neuron shown in Fig. 3.  

Post-latency strength calculated from the 50-ms activity after response onset (A), peak 

strength (B), and response onset latency (C) is illustrated as a function of stimulus 

luminance. Error bars indicate 95% confidence intervals. The stimulus contrast is indicated 

along the upper horizontal axis, and the stimulus luminance along the lower horizontal axis. 

 

Figure 5. Population average responses of PPC visual neurons. 

Population average spike density functions constructed by averaging the spike density 

functions across neurons (n = 43) for each luminance condition. The responses were 

computed for trials in which the target appeared in the receptive field. Traces in each panel 

are aligned at the time of stimulus presentation (left panel), response onset (middle panel), 

or saccade onset (right panel). Mean saccadic reaction times are indicated by triangles at 

the individual luminance level.  
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Figure 6. Population analyses of luminance-related changes in response strength and 

response onset latency. 

Post-latency strength (A), peak strength (B), and response onset latency (C) for all PPC 

neurons (n = 43) are illustrated as a function of stimulus luminance. Gray circles connected 

with a thin line represent response strengths or latencies obtained from each neuron. Black 

circles connected with a thick line and vertical bars indicate the mean ± SD. The gray line 

indicates the linear regression line. Post-latency strength and peak strength were normalized 

so that the mean value across the five luminance levels is 1 for each neuron. 

 

Figure 7. Relationship between response strength/response onset latency and saccadic 

reaction time. 

Saccadic reaction time is plotted as a function normalized post-latency strength (A), 

normalized peak strength (B), and response onset latency (C). Small symbols indicate 

values obtained from each neuron under each luminance condition. Different luminance 

conditions are indicated by different symbols. Large symbols connected with a thick line 

indicate the mean of all neurons (n = 43) for each luminance condition. Gray lines indicate 

the linear regression lines. 

 

Figure 8. Distribution of neuronal–saccade onset delay. 

Distributions of the length of time between the response onset and the saccade onset are 

shown separately for each stimulus luminance. Vertical dotted lines indicate mean values 

for each stimulus condition. SRT, saccadic reaction time. 
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Figure 9. Relationship between variability in initial visual response and variability in 

saccadic reaction time. 

A-C: Relationship of variability in saccadic reaction time with variability in normalized 

post-latency strength (A), in normalized peak strength (B), and in response onset latency 

(C). Individual plots indicate values obtained from each neuron under each luminance 

condition. Different luminance conditions are indicated by different symbols. C: The solid 

gray line indicates the regression line, which was forced to pass through the origin. Its slope 

was significantly greater than 0 (regression slope = 0.10, p < 0.01). The dotted oblique line 

is the line of unity. D: The slope values when the regression line was separately fitted to the 

data points for each luminance level. In all cases, the slope values were positive 

(0.028–0.15) but not significantly different from zero (regression slope, p > 0.05). 
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Table 1. Effect of target luminance on saccadic dynamics. 

The mean values for saccade peak velocity, duration, amplitude, and endpoint error 

collapsed across 43 recording sessions are shown for each stimulus luminance. The 

p-values (one-way repeated-measures ANOVA) are shown in the right-most column. 

Stimulus luminance (cd/m2)  

20.6 2.47 1.02 0.90 0.83

 

F statistics 

 

p 

Saccade peak velocity (degree/s) 

Saccade duration (ms) 

Saccade amplitude (degree) 

Saccade endpoint error (degree) 

420

37.3

8.13

0.68

418

37.5

8.14

0.60

409

38.4

8.09

0.61

400

39.2

8.04

0.64

397

39.6

8.03

0.69

F4,168 = 133 

F4,168 = 29.4 

F4,168 = 13.6 

F4,168 = 2.77 

< 0.001

< 0.001

< 0.001

< 0.05
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