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Besides the familiar D-branes, string theory contains a vast number of other non-pertur-

bative objects. While a complete classification is lacking, many of these objects are related

to each other through various dualities. Codimension two objects play a special role, because

their charges are no longer additive but are instead expressed in terms of holonomies of scalar

fields, which is given by an element of the relevant duality group. In this paper we present

a detailed exposition of these “exotic” objects, the charges they carry, and their connection

to non-geometric compactifications. Despite the name “exotic branes,” these objects are in

fact ubiquitous in string theory, as they can automatically appear when describing bound

states of conventional branes, and as such may be of particular importance in describing the

microscopic degrees of freedom of black holes.



Contents

1 Introduction 2

2 Exotic branes and their higher dimensional origin 5

2.1 Exotic states in three dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Duality rules for exotic branes . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 10D/11D origin of exotic states . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Codimension-2 objects in various dimensions . . . . . . . . . . . . . . . . . . . 11

2.5 Exotic branes, F-theory, and U-branes . . . . . . . . . . . . . . . . . . . . . . 12

3 Aspects of exotic branes 14

3.1 Charge as monodromy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Monodromies and charge conservation . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Charge conservation and Page charge . . . . . . . . . . . . . . . . . . . 18

3.2.2 Monodromies and Page charge . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Number of charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Supergravity description of exotic states 26

4.1 An example: the supergravity solution for 52
2 . . . . . . . . . . . . . . . . . . . 26

4.2 Supersymmetry analysis of 52
2 solution . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Metrics for other exotic branes . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Supertube effect and exotic branes 39

5.1 Exotic supertube effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Supergravity solution for an exotic supertube . . . . . . . . . . . . . . . . . . 43

5.3 Non-geometric microstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Circular case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Near-ring analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Exotic solutions versus “all supersymmetric solutions” . . . . . . . . . . . . . 53

6 Toward “truly non-geometric” configurations 54

7 Exotic branes and black holes 60

8 Discussion and future directions 65

A Conventions 68

A.1 Duality rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1



B 10D lift of 8D T-duality on spinors 70

B.1 Relation between 10D and 8D spinors . . . . . . . . . . . . . . . . . . . . . . . 70

B.2 10D lift of 8D T-duality action on spinors . . . . . . . . . . . . . . . . . . . . 71

C Derivation of (5.26), (5.27) 72

D Page charge for D-branes 73

D.1 Supergravity equations without sources . . . . . . . . . . . . . . . . . . . . . . 74

D.2 Inclusion of sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

D.2.1 D-brane sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D.2.2 NS5-brane source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1 Introduction

String theory includes various extended objects as collective excitations, such as D-branes.

The U -duality symmetry [1] which maps these objects into one another has played a pivotal

role in the development of string theory and provided crucial insights into its non-perturbative

behavior. When string/M-theory is compactified to lower dimensions, the U -duality group

gets enhanced, relating objects that were not related in higher dimensions. For example, when

M-theory is compactified on T k, the lower (d = 11 − k) dimensional theory has an Ek(k)(R)

symmetry as the U -duality group, at the level of classical supergravity. This continuous

Ek(k)(R) symmetry is believed to be broken to a discrete Ek(k)(Z) symmetry in the quantum

theory [1].

As the torus dimension k increases, the number of gauge fields in the lower (d = 11− k)

dimensional theory increases, and so does that of associated charged particles. The spectrum

of these charged particles represent the orbit of the U -duality group. For d ≥ 4, the 11-

dimensional origin of such charged particles is easily understood; they are ordinary branes

partially wrapped on T k. For d ≤ 3, however, the lower dimensional theories contain particles,

called exotic states, whose higher-dimensional origin is less obvious [2–6]. In Type II language,

most of them have tension proportional to g−3
s or g−4

s , clearly indicating that they cannot be

explained in terms of ordinary branes whose tension can at most be ∼ g−2
s .

For example, in Type II superstring compactified on T 2, consider an NS5-brane extending

along six of the eight remaining non-compact directions, not wrapping the internal T 2 (Table

1). It is well-known that, if we perform a T -duality along one of the T 2 directions, we obtain

a Kaluza–Klein (KK) monopole. However, it is much less known that, if we T -dualize further

along the remaining direction of the T 2, we obtain a codimension-2 exotic state called 52
2; see

Table 1. As was noted in [7] and will be reviewed later, the 52
2 solution is a non-geometric
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1 2 3 4 5 6 7 8 9
NS5 · · © © © © © · ·

↓ T89

52
2 · · © © © © © } }

Table 1: Two transverse T -duality transformations on an NS5-brane produce an
exotic 52

2-brane. “ · ” (“© ”) indicates that the brane is localized (extended) in
that direction. The mass of the 52

2 is proportional to the squared radii of the
directions with “} ”.

background1 known as a T -fold [10]; namely, as we go around it, the internal T 2 is non-trivially

fibered and does not come back to itself, but rather to a T -dual version. Other exotic states

can be obtained by further application of U -duality transformations on this 52
2. They have

non-trivial U -duality monodromies around them, i.e., the spacetime is glued together around

them by U -duality twists, and they are hence non-geometric U -folds [10]. These exotic states

can be thought of as codimension-2 branes and we will call them exotic branes.

Being dual to the standard branes such as D-branes, exotic branes are as essential ingredi-

ents of string theory as standard branes are, and are worth studying on its own. In particular,

the fact that their charge is characterized by the non-trivial monodromy around them is a

novel and peculiar feature and is expected to lead to interesting structures; this was indeed

the case with F-theory 7-branes, of which exotic branes can be thought of as generalizations.

For example, the monodromic structure of F-theory 7-branes were crucial for realizing gauge

theories with exceptional gauge groups [11–16]. Furthermore, the non-geometric nature of

the monodromy is of much interest in view of the recent developments in the double field the-

ory [17–19] (for reviews, see [20,21]) and generalizations thereof [22–26], which is a framework

to incorporate stringy non-geometric nature of spacetime.

One might think that such codimension-2 objects are problematic due to logarithmic

divergences [27]; generally, codimension-2 objects will backreact on the spacetime very badly

and destroy the asymptotics. Also, exotic branes were found in three dimensions whereas

our universe is four dimensional. Based on these, one might conclude that exotic branes are

irrelevant as long as we are concerned with physics of ordinary branes in realistic spacetimes.

However, these are naive and incorrect because of the supertube effect [28]—the spontaneous

polarization phenomenon that occurs when we bring a particular combination of charges

together. Let us briefly recall what this phenomenon is. A basic example of the supertube

effect is

D0 + F1(1)→ d2(1ψ) + p(ψ), (1.1)

1For reviews on non-geometric backgrounds, see [8, 9].
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in which D0-branes and fundamental strings along x1 spontaneously polarize into a D2-

brane extending along x1 and an arbitrary closed curve in the transverse eight directions

parametrized by ψ. On the D2-brane worldvolume, there is also a density of momentum

charge along ψ. Note that the D2 charge did not exist in the original configuration. However,

this does not violate charge conservation, because the D2 is along a closed curve and there

is no net D2 charge but only a D2 dipole charge. We wrote the lowercase “d2” on the right

hand side of (1.1) to clarify that the D2 is a dipole. Similarly, the momentum density p(ψ)

does not give a net momentum but only angular momentum. The microscopic entropy of

the D0-F1 system can be recovered by counting the possible ψ curves that the system can

polarize into [29,30].

What does this have to do with exotic branes? The point is that, the phenomenon (1.1)

implies that ordinary branes can polarize into exotic branes. Namely, by taking U -duality of

the process (1.1), one can show that, even if we start with a configuration only of ordinary

branes, the supertube effect can produce exotic charges, as was first noted in [7] and will be

discussed in detail later. Because the exotic charges thus produced are dipole charges, there

is no net exotic charge at infinity. So, there is no problem with charge conservation or of log

divergences. This means that, even in asymptotically flat spacetime in d ≥ 4 dimensions, if

we consider a system involving various ordinary branes, exotic branes are spontaneously gen-

erated by the supertube effect generically and become crucial for understanding the physics.

So, exotic branes are ubiquitous and must play an important role for generic physics of string

theory. Exotic branes are not exotic at all!

One particularly interesting situation in view of this is the black hole, which is typically

constructed in string theory as a bound state of multiple (ordinary) branes. Because the

component branes can polarize into exotic branes by the supertube effect, exotic branes are

expected to be of great relevance for our understanding of black hole physics in string the-

ory. More concretely, it was argued in [7, 31] that the microstates of black holes involve

codimension-2 (exotic) branes along arbitrary surfaces, dubbed superstrata. This is an inter-

esting possibility especially in view of the fuzzball conjecture [32–36], which claims that the

microstates of black holes are made of fuzzballs, a mess of stringy sources extending over the

naive horizon scale. Superstrata, if they exist, may be giving a concrete realization of some

or all of the fuzzballs.

In summary, exotic branes are basic ingredients of string theory which can appear in var-

ious situations and relevant for diverse aspects of string theory. The purpose of the current

paper is to introduce this fascinating subject and to start exploring it, by studying basic prop-

erties of exotic branes and examining their implications for black hole physics as a particular

example. One main take-home message is that non-geometric exotic branes are not the excep-

tion but the rule; they are simply inevitable, if we are to consider generic situations in string
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theory. This is exactly analogous to the state of affairs in flux compactification, for which

it has become clear by now that the conventional geometric compactification with fluxes is

a very tiny (probably measure zero) portion of all generic compactifications in string theory,

and the generic compactifications involve non-geometric internal space (see, e.g., [8]). Because

string theory goes beyond the standard notion of geometry, non-geometries and exotic branes

are expected to be generically present in the theory.

The plan of the rest of the paper is as follows. In section 2, we review how exotic branes

arise in the context of three dimensional supergravity and then discuss their higher dimen-

sional origin. We summarize the duality relations among different exotic branes, and also

discuss exotic branes in d > 3 dimensions. Section 3 involves analyses of some aspects of

exotic branes, such as how to define their charge by monodromies. In particular, we discuss

the apparent non-conservation of brane charge when it is moved around an exotic brane.

The resolution lies in choosing the appropriate notion of charge, i.e., Page charge, which

is shown to be conserved in all cases we study. Section 4 discusses how exotic branes are

described within supergravity, taking the 52
2-brane as the main example. We demonstrate

that, around the 52
2-brane, a torus direction undergoes a T -duality and hence the solution

represents a non-geometric spacetime. In this section, we will consider infinitely long straight

exotic branes. This is not well-defined as a stand-alone object and should be thought of as

an effective description near the brane core. Better defined solutions are discussed in section

5. There, we discuss the exotic supertube effect in which two stacks of D4-branes polarize

into a 52
2-brane along a closed curve. These solutions can be regarded as non-geometric mi-

crostates of the D4-D4 system. In section 6, we discuss in what sense exotic brane solutions

are non-geometric and how non-geometric we can make them. In section 7, we discuss the

implications of exotic branes and the supertube effect for black hole microphysics. Section 8

is devoted to a discussion on the results and possible future directions. Appendices A, B, and

C discuss conventions and some detailed calculations used in the main text. Appendix D is

an extended discussion on the notions of charge in string theory. It is known [37] that there

are multiple different notions of charge in string theory and one has to be careful to use the

appropriate one depending on the purpose. We clarify the notion of brane charge and Page

charge for D-branes in the presence of NS5-brane source.

2 Exotic branes and their higher dimensional origin

2.1 Exotic states in three dimensions

Since exotic states (or branes) were first discovered in three dimensions as a consequence of

the U -duality of string theory [2–6], it is perhaps the most appropriate to start our discussion

by reviewing how they arise in three dimensional supergravity.
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Type IIA P (7), F1 (7), D0 (1), D2 (21), D4 (35), D6 (7),
NS5 (21), KKM (42), 52

2 (21), 07
3 (1), 25

3 (21),

42
3 (35), 61

3 (7), 0
(1,6)
4 (7), 16

4 (7)
Type IIB P (7), F1 (7), D1 (7), D3 (35), D5 (21), D7 (1),

NS5 (21), KKM (42) , 52
2 (21), 16

3 (7), 34
3 (35),

52
3 (21), 73 (1), 0

(1,6)
4 (7), 16

4 (7)
M-theory P (8), M2 (28), M5 (56), KKM (56),

53 (56), 26 (28), 0(1,7) (8)

Table 2: The 240 point particle states in 3D N = 16 supergravity and their brane interpreta-
tions in string theory and M-theory. Their multiplicities are displayed in boldface numbers.
These multiplicities can be interpreted as those of SL(7) representations for Type IIA/B and
those of SL(8) representations for M-theory. For the notation for exotic branes, see the text.

If we compactify M-theory on T 8 or Type IIA/B string theory on T 7 down to three

dimensions, we obtain maximally supersymmetric (N = 16) supergravity with E8(8)(R) as

the U -duality group [38]. This theory has 128 scalars parametrizing the moduli space M =

SO(16)\E8(8)(R)/E8(8)(Z). In three dimensions, gauge fields (1-forms) can be Hodge dualized

into scalars,2 and the moduli space M and the E8(8)(R) symmetry are manifest only after

such dualization. The classical E8(8)(R) symmetry is broken to the discrete subgroup E8(8)(Z)

in string theory [1], which is generated by S- and T -dualities along the internal torus.

For example, let us consider Type IIB and take a D7-brane wrapped on the T 7. From the

3D viewpoint, this is a point particle with mass

MD7(3456789) =
R3R4 · · ·R9

gsl8s
, (2.1)

where R3, R4, . . . , R9 are the radii of the T 7 and ls =
√
α′ is the string length. If we act on

this point particle with U -duality transformations, we obtain an orbit of the U -duality group,

called the “particle multiplet” [6]. The mass of the other states in the multiplet can be easily

found by repeatedly applying the T - and S-duality transformation rules,

Ty : Ry →
l2s
Ry

, gs →
ls
Ry

gs; S : gs →
1

gs
, ls → g1/2

s ls, (2.2)

to the original mass (2.1). Here, y is the direction along which we take T -duality. From the

expression for the mass, we can identify what the state corresponds to in 10 dimensions.

If we follow this procedure, we find 240 possible states in total, including various states of

ordinary branes partially wrapped on T 7, as well as some peculiar states whose mass formula

2This is a statement in the ungauged theory; in the gauged theory in which (a subgroup) of the U -duality
is promoted to a local symmetry, we have both scalars and 1-forms at the same time and the 1-forms cannot
Hodge dualized into scalars. [39, 40]
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cannot be interpreted in terms of any of ordinary branes [2–6]. The latter states are called

exotic states . In Table 2, we listed all the 240 states in the particle multiplet, including the

exotic ones. The notation used in the table for ordinary states is standard; e.g., P denotes

a gravitational wave and KKM denotes a Kaluza–Klein (KK) monopole. For exotic branes,

on the other hand, we follow [6] and denote them by how their mass M depends on the radii

of the internal torus. For Type IIA/B exotic states, the mass M of a brane denoted by bcn

depends linearly on b radii and quadratically on c radii. For b
(d,c)
n , M also depends cubically

on d radii. Moreover, M is proportional to g−ns . In equations,

bcn-brane : M =
Ri1 · · ·Rib (Rj1 · · ·Rjc)

2

gns l
b+2c+1
s

,

b
(d,c)
n -brane : M =

Ri1 · · ·Rib (Rj1 · · ·Rjc)
2(Rk1 · · ·Rkd)3

gns l
b+2c+3d+1
s

.

(2.3)

For example, the mass of 52
2 mentioned in the introduction is M = R3 · · ·R7(R8R9)2/g2

s l
10
s .

We often display how the brane “wraps” the internal T 7 as 52
2(34567, 89). In M-theory, we

use a similar notation except that we do not have the subscript n.

For illustration, let us work out the T -duality between NS5 and 52
2 displayed in Table 1.

The NS5-brane in Type II theory wrapped on x3,...,7 has mass

MNS5(34567) =
R3 · · ·R7

g2
s l

6
s

. (2.4)

If we T -dualize this configuration along x8 using (2.2), the mass turns into that of a KK

monopole as

MNS5(34567)
T8−→ R3 · · ·R7

(gsls/R8)2l6s
=

(R3 · · ·R7)R2
8

g2
s l

8
s

= MKKM(34567,8). (2.5)

Further T -duality along x9 gives a 52
2-brane as

MKKM(34567,8)
T9−→ (R3 · · ·R7)R2

8

(gsls/R9)2l8s
=

(R3 · · ·R7)(R8R9)2

g2
s l

10
s

= M522(34567,89). (2.6)

Similarly, one can readily work out other states in the multiplet.

2.2 Duality rules for exotic branes

Using the procedure explained above, it is straightforward to find how the exotic branes

map into one another under T - and S-dualities, as well as under M-theory lift. Such duality

rules have already appeared explicitly and implicitly in various papers including [2–6,41–45],

although notations may be different . In this subsection, we give a summary of such duality

rules, for the convenience of the reader and for future reference in the current paper.
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In order to display the duality rules, it is convenient to introduce another notation for

exotic branes:3

bcn = (abc)n, a = 9− b− c, (2.7)

b(d,c)
n = (abcd)n, a = 9− b− c− d. (2.8)

Namely, a (abcd)n-brane has mass which is independent of a spatial directions, linearly de-

pendent on b radii, quadratically dependent on c radii, cubicly dependent on d radii, and so

on. We omit entries after the last non-vanishing entry. In this notation, NS5 = 52 = (45)2,

the Type II KK monopole is 51
2 = (351)2, and 0

(1,6)
4 = (2061)4. We use a similar notation for

the states in M-theory, except that we do not have a subscript; for example, M2 = (82) and

the M-theory KK monopole is (361). Also notice that when wrapping an (abcd)n-brane on a

p-torus, there are ( p
b c d ) ways to do so.

In this notation, the ordinary and exotic branes that belong to the particle multiplet in

three dimensions are, in the Type IIA picture,

g0
s : P, F1 = 10 = (81)0

g−1
s : D0 = 01 = (90)1, D2 = 21 = (12)1, D4 = 41 = (54)1, D6 = 61 = (36)1

g−2
s : NS5 = 52 = (45)2, KKM = 51

2 = (351)2, 52
2 = (252)2

g−3
s : 07

3 = (207)3, 25
3 = (225)3, 43

3 = (243)3, 61
3 = (261)3

g−4
s : 0

(1,6)
4 = (2061)4, 16

4 = (216)4

(2.9)

where we classified the states according to how their mass depends on gs. In the Type IIB

picture, we have

g0
s : P, F1 = 10 = (81)0

g−1
s : D1 = 11 = (81)1, D3 = 31 = (63)1, D5 = 51 = (45)1, D7 = 71 = (27)1

g−2
s : NS5 = 52 = (45)2, KKM = 51

2 = (351)2, 52
2 = (252)2

g−3
s : 16

3 = (216)3, 34
3 = (234)3, 52

3 = (252)3, 73 = (27)3

g−4
s : 0

(1,6)
4 = (2061)4, 16

4 = (216)4

(2.10)

In M-theory, we have

P, M2 = 2 = (82), M5 = 5 = (55), KKM = 61 = (361),

53 = (253), 26 = (226), 0(1,7) = (2071).
(2.11)

In order to specify the direction acted by T -duality, we put an underscore at the corre-

sponding position. For example, the T -duality relation in (2.5) can be written as

(45)2 → (351)2. (2.12)

With this notation, the T -duality relations among various exotic branes are as in Table 3.
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T : IIA → IIB
NS5 = 52 = (45)2 → (351)2 = 51

2 = KKM
(45)2 → (45)2 = 52 = NS5

KKM = 51
2 = (351)2 → (252)2 = 52

2

(351)2 → (351)2 = 51
2 = KKM

(351)2 → (45)2 = 52 = NS5

52
2 = (252)2 → (252)2 = 52

2

(252)2 → (351)2 = 51
2 = KKM

07
3 = (207)3 → (216)3 = 16

3

25
3 = (225)3 → (216)3 = 16

3

(225)3 → (234)3 = 34
3

43
3 = (243)3 → (234)3 = 34

3

(243)3 → (252)3 = 52
3

61
3 = (261)3 → (252)3 = 52

3

(261)3 → (27)3 = 73

0
(1,6)
4 = (2061)4 → (2061)4 = 0

(1,6)
4

(2061)4 → (216)4 = 16
4

16
4 = (216)4 → (2061)4 = 0

(1,6)
4

(216)4 → (216)4 = 16
4

T : IIB → IIA
NS5 = 52 = (45)2 → (351)2 = 51

2 = KKM
(45)2 → (45)2 = 52 = NS5

KKM = 51
2 = (351)2 → (252)2 = 52

2

(351)2 → (351)2 = 51
2 = KKM

(351)2 → (45)2 = 52 = NS5

52
2 = (252)2 → (252)2 = 52

2

(252)2 → (351)2 = 51
2 = KKM

16
3 = (216)3 → (207)3 = 07

3

(216)3 → (225)3 = 25
3

34
3 = (234)3 → (225)3 = 25

3

(234)3 → (243)3 = 43
3

52
3 = (252)3 → (243)3 = 43

3

(252)3 → (261)3 = 61
3

73 = (27)3 → (261)3 = 61
3

0
(1,6)
4 = (2061)4 → (2061)4 = 0

(1,6)
4

(2061)4 → (216)4 = 16
4

16
4 = (216)4 → (2061)4 = 0

(1,6)
4

(216)4 → (216)4 = 16
4

Table 3: The T -duality relations among exotic branes in Type IIA/B. The underscore specifies
the direction along which T -duality is taken.

S : IIB ↔ IIB
52

2 = (252)2 ↔ 52
3 = (252)3

73 = (27)3 ↔ D7 = 71 = (27)1

16
3 = (216)3 ↔ 16

4 = (216)4

34
3 = (234)3, 0

(1,6)
4 = (2061)4 : self-dual

Table 4: The S-duality relations among exotic branes in Type IIB.

9



M → IIA
KKM = 61 = (361) → (261)3 = 61

3

(361) → (351)2 = 51
2 = KKM

(361) → (36)1 = D6
53 = (253) → (243)3 = 43

3

(253) → (252)2 = 52
2

26 = (226) → (216)4 = 16
4

(226) → (225)3 = 25
3

0(1,7) = (2071) → (2061)4 = 0
(1,6)
4

(2071) → (207)3 = 07
3

Table 5: The rule for the reduction of exotic branes from M-theory to Type IIA. The
underscore specifies the direction of the dimensional reduction.

We also list the S-duality relations in Table 4.

The relation between M-theory exotic branes and their type IIA reduction can be read off

from the mass formula using the standard relation between 10D and 11D quantities,

ls = R
−1/2
10 l

3/2
11 , gs = R

3/2
10 l

−3/2
11 , (2.13)

where R10 is the radius of the 11th direction and l11 is the 11D Planck length. We list the

relation in Table 5. We displayed the direction of the M-theory circle by an underscore.

2.3 10D/11D origin of exotic states

The fact that most of the exotic states have mass proportional to g−3
s or g−4

s clearly indicates

that they cannot be interpreted in terms of ordinary branes, whose mass is proportional to

g−2
s at most. Here, we argue that the exotic states are interpreted in higher dimensions as

non-geometric backgrounds, or U -folds [46, 10]. This connection between exotic branes and

non-geometric U -folds was pointed out first in [7].

The argument [7] is simple. As an example, consider a D7-brane wrapped on T 7, which is

magnetically coupled to the RR 0-form C(0) (we display the rank of a differential form as a

superscript in parentheses). From the 3D point of view, the D7-brane is a point particle and,

as we go around it, the 3D scalar φ = C(0) jumps as φ → φ + 1. This discontinuous “jump”

(or multi-valuedness) of the scalar φ is allowed because it is a part of the SL(2,Z) symmetry

of Type IIB string theory, which is a discrete gauge symmetry. In 3D, this symmetry of

shifting φ by 1 gets combined with other dualities such as T -dualities to form the U -duality

group G(Z) = E8(8)(Z), and the scalar φ gets combined with other scalars into a matrix M

parametrizing the moduli space M = SO(16)\E8(8)(R)/E8(8)(Z). Therefore, the φ → φ + 1

3This notation is identical to the ones introduced in [44], except that we flip the sign of the subscript n
relative to theirs.
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monodromy around the D7-brane is only one of all possible U -duality monodromies we can

have in 3D, and we should consider all possible 3D particles with U -duality monodromies

conjugate to the monodromy of the D7-brane. In fact, we can even consider 3D particles with

E8(8)(Z) monodromies which are not conjugate to the monodromy of the D7-brane. Exotic

states are objects with such general U -duality monodromies. Note that, being general, exotic

states are the rule, not the exception.

Now let us consider such a 3D particle with a general U -duality monodromy and lift

it to 10D/11D, where it becomes a codimension-2 object (namely, it becomes a 7-brane

in 10D and a 8-brane in 11D). Because the 3D scalars lift to the internal components of

higher-dimensional fields, such as metric, B-field and RR potentials, the 3D particle with a

scalar monodromy around it lifts to a codimension-2 object with a non-trivial monodromy

for these higher-dimensional fields. In particular, this means that, as one goes around the

object, the metric does not generally come back to itself but only to a U -dual version; the

geometry is multi-valued. Namely, exotic states lift to exotic branes which are non-geometric

backgrounds, or “U -folds” [10]. We emphasize that such non-geometric spacetime is the rule,

not the exception, for codimension-2 branes in string theory.

Being U -dual to ordinary branes, exotic branes are dynamical objects which can move,

wiggle, etc., unlike orientifolds which are fixed hyperplanes in spacetime. It is also worth

noting that, at this point, it is only the higher-dimensional metric that has non-trivial mon-

odromy around an exotic brane whereas the Einstein metric in 3D is single-valued; from the

3D point of view, it is only scalars that have non-trivial monodromy. We will discuss the

possibility of having non-geometric spacetime in lower dimensions later.

Note that there are two types of U -fold; in the first one, U -duality is non-trivially fibered

over a non-contractible circle in the internal manifold (see, e.g., [47–49,8]) while, in the second

one, U -duality is non-trivially fibered over a contractible circle (see, e.g., [46,50]). The exotic

branes discussed in the current paper are of the second type. The relation between the two

types of U -fold is similar to that between a geometry with branes wrapped on a non-trivial

cycle and the geometry in which a geometric transition has occurred and the branes have

turned into fluxes. It would be interesting to study this similarity further.

2.4 Codimension-2 objects in various dimensions

As is clear from the above discussion, the non-geometric U -fold structure is intrinsic to

codimension-2 exotic branes and we do not have to go to three dimensions to find them.

Here we discuss the codimension-2 branes that appear when we compactify M-theory on T k

or Type II string theory on T k−1 down to d = 11− k = 3, . . . , 10 dimensions.

As k increases, the U -duality group (Cremmer–Julia groups) G(R) of the low (d) dimen-

sional theory becomes larger as listed in Table 6. In string theory, G(R) is believed to be
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broken to the discrete subgroup G(Z). The scalar moduli space is M = H(R)\G(R)/G(Z)

where H(R) is the maximal compact subgroup of G(R), which is also listed in Table 6. The

duality group G(R) is the isometry group of this scalar moduli space M.

d G(R) G(Z) H dimG rankG dimH dim. of
orbit

10A R+ 1 1 1 1 0 —
10B SL(2,R) SL(2,Z) SO(2) 3 1 1 2

9 SL(2,R)× R+ SL(2,R)× Z2 SO(2) 4 2 1 2
8 SL(3,R)× SL(2,R) SL(3,Z)× SL(2,Z) SO(3)× SO(2) 8 + 3 2 + 1 3 + 1 4 + 2
7 SL(5,R) SL(5,Z) SO(5) 24 4 10 8
6 SO(5, 5,R) SO(5, 5,Z) SO(5)× SO(5) 45 5 20 14
5 E6(6) E6(6)(Z) USp(8) 78 6 36 22
4 E7(7) E7(7)(Z) SU(8) 133 7 63 34
3 E8(8) E8(8)(Z) SO(16) 248 8 120 58

Table 6: The U -duality groups in various dimensions. G(R) is the classical U -duality group
while G(Z) is the quantum one. H is the maximal compact subgroup of G(R). In the last
column, we listed the dimension of the conjugation orbit of half-supersymmetric branes; see
section 3.3.

Just as we did in section 2.1, it is straightforward to find the multiplet of codimension-2

objects, as listed in Table 7. The total multiplicity is always given by dimG− rankG. This is

because one can associate with each state in the multiplet a root vector of the Lie algebra g of

the Lie group G, and T - and S-dualities are Weyl reflections of the root lattice [6]. Because

the group G for toroidal compactifications always has roots of equal length (i.e., it is simply-

laced), any of the dimG root vectors can be Weyl-reflected into each other, except for the

rankG zero vectors corresponding to the Cartan subalgebra. Therefore, the number of states

in the U -duality orbit of the ordinary supersymmetric brane is dimG− rankG. It is perhaps

worth emphasizing once more that this multiplet is what one obtains by acting with simple

S- and T -dualities only, and not by the most general U -duality. In [43,44], it was shown that

it is this multiplet of (dimG− rankG) branes that can couple to spacetime potential fields by

gauge-invariant and U -duality invariant Wess–Zumino coupling in a supersymmetric manner.

The list of codimension-2 objects such as the one in Table 7 has appeared in the literature

in some way or other [2–6,43,44]. However, the content of the multiplets in terms of various

exotic branes was not explicitly written down and we believe that it is useful to present it

here.

2.5 Exotic branes, F-theory, and U-branes

In the above, we argued that exotic branes are nothing but codimension-2 objects with non-

trivial U -duality monodromies around them. This is exactly the idea of F-theory [51], which

is about considering a configuration with non-trivial monodromies for the axio-dilaton τ =
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d M IIA IIB

10 — — 2: D7 (1), 73 (1)
9 2: KKM (2) 2: D6 (1), 61

3 (1) 2: D7 (1), 73 (1)

8 6: KKM (6) 6:
D6 (2), KKM (2),
61

3 (2)
6:

D7 (1), D5 (1),
NS5 (1), 73 (1), 52

2 (1),
52

3 (1)
2: M5 (1), 53 (1) 2: NS5 (1), 52

2 (1) 2: KKM (2)

7 20:
M5 (4),
KKM (12),
53 (4)

20:
D4 (1), D6 (3),
NS5 (3), KKM (6),
61

3 (3), 43
3 (1), 52

2 (3)
20:

D5 (3), NS5 (3),
D7 (1), 73 (1),
KKM (6), 52

2 (3), 52
3 (3)

6 40:
M5 (10),
KKM (20),
53 (10)

40:
D6 (4), D4 (4), 61

3 (4),
43

3 (4), KKM (12),
NS5 (6), 52

2 (6)
40:

D7 (1), 73 (1), D5 (6),
NS5 (6), D3 (1), 52

3 (6),
52

2 (6), 34
3 (1),

KKM (12)

5 72:

M5 (20),
M2 (1),
KKM (30),
53 (20), 26 (1)

72:

D6 (5), D4 (10),
D2 (1), 61

3 (5), 43
3 (10),

25
3 (1), KKM (20),

NS5 (10), 52
2 (10)

72:

D7 (1), 73 (1), D5 (10),
NS5 (10), D3 (5),
52

3 (10), 52
2 (10), 34

3 (5),
KKM (20)

4 126:

M5 (35),
M2 (7),
KKM (42),
53 (35), 26 (7)

126:

D6 (6), D4 (20),
D2 (6), 61

3 (6), 43
3 (20),

25
3 (6), KKM (30),

NS5 (15), 52
2 (15),

F1 (1), 16
4 (1)

126:

D7 (1), 73 (1), D5 (15),
NS5 (15), D3 (15),
D1 (1), F1 (1), 52

3 (15),
52

2 (15), 34
3 (15), 16

3 (1),
16

4 (1), KKM (30)

Table 7: U -duality multiplets of codimension-2 objects in toroidal compactifications and their
brane interpretations in M-theory and string theory. The total multiplicities are written in
slanted font in front in each cell. The multiplicity for each brane is written in boldface
numbers in the parentheses. The latter multiplicities can be interpreted as those of SL(8)
representations for M-theory and those of SL(7) representations for Type IIA/B. For D = 3,
see Table 2.
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C(0) + ie−Φ under the SL(2,Z) duality group of 10D Type IIB string, and interpreting the

configuration as a 12-dimensional geometry obtained by fibering a T 2 with the modulus τ

over the original 10D space. Indeed, the two states appearing in the d = 10 row of Table 7

are nothing but the standard (p, q) 7-branes of F-theory.

It was only natural to generalize this F-theory construction by compactifying to lower

dimensions where the U -duality gets enhanced to a group G(Z) listed in Table 6. This

is what was done in Ref. [52]. Specifically, one takes an SL(n,Z) subgroup of G(Z) and

interprets it as the large diffeomorphism group of a torus T n whose moduli are embedded in

the scalar moduli space M = H\G(R)/G(Z).4 Then, one considers a non-trivial fibration

of the T n over the non-compact directions. For example, Ref. [52] studied the d = 8 case

with G = SL(3) × SL(2), which they call “S-theory”, and constructed some T 3 fibrations

whose total space turned out to be Calabi-Yau 3-folds. More general configurations with

non-trivial U -duality monodromies were studied in [52–56], and the U -duality generalizations

of the original F-theory 7-brane are dubbed “U -branes.”

Therefore, (some of) the codimension-2 branes listed in Table 7 have already been known

in the context of F-theory. However, their relation to exotic states [2–6] as well as their non-

geometric interpretation was not appreciated until [7] and it is that connection that we are

making here. As we will see below, the identification of non-geometric U -folds (or U -branes)

as branes helps us understand the supertube effect involving non-geometric monodromies and

leads to interesting possible applications in string theory.

3 Aspects of exotic branes

3.1 Charge as monodromy

As we discussed in the previous section, the charge of a codimension-2 brane is classified by

the U -duality monodromy around it. A U -duality monodromy is an element in the discrete

group G(Z). This is a generalization of the notion of ordinary charge, which lives in the

lattice Zn with some n. Henceforth, we will often use the words “charge” and “monodromy”

interchangeably.

Let us make it more precise what we mean by charges of codimension-2 branes defined

by the monodromies around them. A brane with monodromy q means the following. As we

travel along a path γ encircling the brane, the moduli matrix M ∈ H\G(R)/G(Z) undergoes

the monodromy transformation

M →Mq, q ∈ G(Z). (3.1)

Actually, in order to define the monodromy of a configuration unambiguously, one needs to fix

4Note that this is geometrizing only a part of the full duality group G(Z) and the full moduli space M.
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(a) (b)

Figure 1: To define the monodromy of a configuration unambiguously, one needs
to fix a base point (shown as “×”) with the value of the moduli there, M , and
give monodromies of M with respect to the basis of paths which start and end on
the base point. (a): an example configuration with a base point and two paths
γ1 and γ2 going around charges with monodromies M → Mq1 and M → Mq2,
respectively. (b): a path going around both charges corresponds to monodromy
Mq1 →Mq1 · q−1

1 q2q1. See text for more detail.

a “base point” with the value of the moduli value there, M , and always measure monodromies

with respect to that point. Namely, the path γ always starts and ends at the base point. Also

note that the monodromy (3.1) is when the value of the moduli is M at the base point and,

if we instead start with a different value of the moduli M̃ = MU at the base point, where U

is some G(Z) matrix, then the monodromy along the same path γ is given instead by

M̃ → M̃ q̃, q̃ = U−1qU. (3.2)

If we know the monodromies for a basis of 1-cycles, it is possible to determine the mon-

odromy along any paths. For example, in Fig. 1(a), we have a configuration with two charges

with individual monodromies q1 and q2 along paths γ1 and γ2, respectively. Let us consider

going around both charges at the same time as shown in Fig. 1(b). By homotopically deform-

ing the path as shown, we see that this path is the composition of γ1 and γ2, which we denote

by γ2γ1. As we move along γ1, we get the monodromy M → Mq1 by definition. When we

further go along γ2, we are starting with the moduli M̃ = Mq1. Therefore, using (3.2), the

moduli now transform as Mq1 → Mq1 · q−1
1 q2q1. Namely, the monodromy for going around

both q1, q2 at the same time is M →Mq1 · q−1
1 q2q1 = Mq−1

1 (q1q2)q1 = Mq2q1.

To define monodromy charge unambiguously, it is important to fix once and for all the

paths along which to measure monodromy, not just the base point. For example, in the

present configuration, γ1 is not the only path that includes the base point and goes around

q1. In Fig. 2(a), we presented one other example denoted by γ′1. The monodromy along γ′1

can be easily computed to be M → Mq2q1q
−1
2 , by noting that path γ′1 is equal to γ2γ1γ

−1
2

as shown in Fig. 2(b). In general, homotopically different paths that encircle the same brane

give different monodromy charges that are related to each other by conjugation.

There is an related subtlety when we move one charge around another. Let us consider
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(a) Two paths going around q1. (b) Path γ′1 is equal to γ2γ1γ
−1
2 .

(c) Interchanging charges will change paths.

Figure 2: The monodromy charge depends on the choice of paths with respect to
which to measure the monodromy. See text for detail.

moving charge q1 around charge q2 counterclockwise, as shown in Fig. 2(c). Before the move,

we have path γ1 with monodromy M → Mq1 and path γ′1 with monodromy M → Mq2q1q
−1
2

(see the left panel of the Figure). After the move, the system looks as if it went back to

the original configuration, with the original γ′1 changed into a “new γ1” (the right panel).

However, because monodromy living in the discrete space G(Z) cannot change under contin-

uous deformation of the path, the monodromy associated with this new “new γ1” is given

by M → Mq2q1q
−1
2 , not the original M → Mq1. So, every time we move a charge around

another, it looks as if the charge measured by path γ1 jumps. This is happening because we

are choosing different paths to measure the charge and, if we stick to the original path by

following its continuous deformation, the monodromy charge remains the same. This point is

important in understanding charge conservation in the presence of exotic branes, as we will

see in the next subsection.

Let us ask a question of what charges exist in a fixed U -duality frame. Let us start from

the situation given in (3.1), where a brane with monodromy q exists. Furthermore, let us

assume that we can arrange codimension-2 branes so that the moduli M at infinity tends to

a constant value, without a non-trivial monodromy. We can achieve this by having multiple

codimension-2 branes with canceling monodromies or curling up branes as we will discuss

in section 5. After dualization, one has a brane with monodromy q̃ as in (3.2) and, at the

same time, the value of the moduli at infinity have changed to M̃ . Now, let us change the

moduli at infinity adiabatically back to the original value M . If the brane configuration is

supersymmetric, we expect that the brane with monodromy q̃ survives the adiabatic process,
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provided that there is no wall of marginal stability. So, a brane with charge q̃ should exist even

for the original value of the moduli M . Namely, if a brane with monodromy q exists, branes

with monodromies q̃ = U−1qU , U ∈ G(Z) should also exist. One caveat, however, is that this

does not mean that we can generate all charges that exist in the theory by conjugation; there

can be many conjugacy classes in the group G(Z) and we cannot generate charges in different

conjugacy classes. Also, there can be non-supersymmetric configurations for which the above

argument of adiabatically changing moduli does not apply.

Note that the above argument is not a very strong one. First, in a situation where we

cannot make the moduli to tend to a constant value at infinity, the conjugated charges do not

have to exist. For example, if there is a single charged particle q in 3D, then the moduli has

the monodromy M → Mq even at infinity and the above argument does not apply. Also, if

a wall of marginal stability exists, the above argument can fail.

As a simple example, consider a D7-brane in Type IIB superstring. Around it, there is a

non-trivial monodromy of the SL(2,Z) duality given by

T =

(
1 1
0 1

)
. (3.3)

Let us conjugate this with a general SL(2,Z) matrix

U =

(
s r
q p

)
, sp− rq = 1. (3.4)

The conjugated charge is

T̃ = U−1TU =

(
1 + pq p2

−q2 1− pq

)
, (3.5)

which is the monodromy of the standard (p, q) 7-brane. So, if the assumptions we made above

are true, there should also exist (p, q) 7-branes with p, q coprime. If we further assume the

existence of a bound state of N 7-branes with monodromy

TN =

(
1 N
0 1

)
. (3.6)

for all N ∈ Z, then there should exist 7-branes the monodromy

T̃N = U−1TNU =

(
1 +Npq Np2

−Nq2 1−Npq

)
. (3.7)

Note that the monodromy matrix thus obtained has always tr(T̃N) = 2. Because trace

(partly) characterizes the conjugacy classes of SL(2,Z), we cannot reach objects whose mon-

odromy matrices have trace different from 2 by starting from a (p, q) 7-brane (for classification

of SL(2,Z) conjugacy classes, see [14,15]). It is not clear whether in string theory there exist

7-branes whose monodromy is not in the trace-2 conjugacy class. Note that, although the
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orientifold 7-plane in Type IIB superstring has a monodromy which is not in the trace-2

class, in F-theory it is represented by a bound state of (p, q) 7-branes, each of which is in

the trace-2 class [57, 58]. However, it is known that supersymmetric 7-brane solutions with

general conjugacy classes (“Q7-branes”) do exist at the level of classical supergravity [59–61].

The meaning of such solutions in string theory is not clear.

3.2 Monodromies and charge conservation

In the presence of an exotic brane with a non-trivial U -duality monodromy, moving a second

brane around it will U -dualize the second brane into a different brane. Therefore, it appears

that the associated brane charge is not conserved in the presence of an exotic brane. Here we

demonstrate, based on explicit examples, that this is not the case and charges are actually

conserved even in such situations, if we use the appropriate notion of charge.

More precisely, the question is the following. An exotic brane is a codimension-2 brane

in d dimensions and there is a non-trivial monodromy of d dimensional scalars around it.

Now, introduce a second object which is charged under some gauge field in d dimensions. It

sometimes happens that moving the second object around the codimension-2 exotic brane

apparently induces a new charge. We would like to understand how this phenomenon is

consistent with charge conservation.5

3.2.1 Charge conservation and Page charge

To start the discussion with, let us consider a D7-brane along ψ456789 directions. Here,

we take 456789 to be compact directions with period 2πls. ψ can be either a compactified

direction or the direction along a contractible circle in non-compact R3
123. The first case

is simpler but the transverse spacetime directions will not be asymptotically flat R2 once

backreaction is taken into account, as will be discussed in section 4. In the second case, the

transverse spacetime remains asymptotically flat R3 even if backreacted, as will be studied

in section 5. See Figure 3 for a schematic description of the configurations. In the second

case, the D7-brane can either be a static configuration supported by something (e.g. by a

supertube effect, as will be studied in section 5) or just an instantaneous configuration which

will collapse eventually. In either case, the D7-brane is a codimension-2 object already in

d = 10 dimensions and, around it, there is a non-trivial SL(2,Z) monodromy described by

the matrix q = ( 1 1
0 1 ). So, the scalar τ = C(0) + ie−Φ has the monodromy τ → τ + 1.

Now, add to this configuration an NS5-brane along 56789 directions and consider moving

it around the D7-brane. The NS5-brane is magnetically charged under the gauge field B(2).

Because AT = (C(2), B(2))T is a doublet under SL(2,Z) transforming as A→ qA, C(2) changes

5A recent discussion on the apparent non-conservation of brane charges in a configuration with exotic
branes can be found in [45].
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Figure 3: A D7-brane along ψ456789 directions, with ψ being (a) a compactified
direction and (b) a direction along a contractible circle.

Figure 4: Moving an NS5-brane around a D7-brane appears to produce D5-branes.

as C(2) → C(2) + B(2) as we go around the D7. Because the integral of dC(2) measures D5-

brane charge, this means that moving an NS5 around a D7 produces D5-branes; see Figure

4. Let us write this as

D7(ψ456789) : NS5(56789)→ NS5(56789) + D5(56789). (3.8)

Another way to see that C(0) induces D5-brane charge on the NS5-brane is as follows. By

the Wess–Zumino term in the D-brane worldvolume action, non-vanishing B
(2)
89 6= 0 induces

D3(567) charge on the D5(56789) worldvolume. The S-dual of this statement is that C
(2)
89

induces D3(567) on NS5(56789). Further by T89, we see that C(0) induces D5(56789) on

NS5(56789).

By taking S, T89, S, and then T567 dualities of (3.8), we see that moving a D0 around a

52
2 produces D2-brane charge:

52
2(ψ4567; 89) : D0

?→ D0 + D2(89), (3.9)

where the D0 is smeared along 456789 directions and the D2(89) is smeared along 4567

directions. We have put a question mark in (3.9) because we will later question this process.

Further by taking T89 of (3.9), we see that moving a D2 around an NS5 produces D0

charge:

NS5(ψ4567) : D2(89)→ D2(89) + D0, (3.10)
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where, again, branes are smeared along transverse directions within the compact 456789

directions. The NS5(ψ4567)-brane can be thought of as a codimension-2 object in 8D if we

compactify the 10D theory on T 2
89.

Let us study the above processes (3.8)–(3.10), in which brane charges do not appear to be

conserved, and examine in what sense they can actually be conserved.

We begin with (3.10) as the easiest situation to study, although the NS5(ψ4567) is not

an exotic brane. Because the 89 directions are compactified, from the viewpoint of the

non-compact directions (123 or 1234, depending on the situations (a), (b) of Fig. 3), the

NS5(ψ4567) is a codimension-2 object. The charge of the NS5(ψ4567)-brane is measured by

QNS5 =
1

2π(2πls)2

∫
φ89

H(3) =
1

2π
[B

(2)
89 ]φ=2π

φ=0 ≡
1

2π
∆B

(2)
89 , (3.11)

where φ is an angular direction encircling the NS5-brane in the non-compact space (see Figure

4). This means that B
(2)
89 increases by ∆B

(2)
89 = 2πQNS5 as we go around the NS5. Now, the

D2-brane Wess–Zumino coupling

SD2,WZ =
1

(2π)2l3s

∫
(C(3) −B(2) ∧ C(1)) (3.12)

implies that moving a D2(89) around the NS5 will induce D0-charge

∆QD0,bs =
1

(2πls)2

∫
∆B(2) = ∆B

(2)
89 = 2πQNS5. (3.13)

The superscript “bs” will be explained below. In (3.12), we assumed that the Chan–Paton

(Born–Infeld) gauge field strength F (2) in the D-brane worldvolume vanishes. Therefore, it

appears that D0 charge QD0,bs is not conserved and increases by (3.13) every time we move

the D2 around the NS5.

However, recall that, as discussed in [37], there are multiple notions of charge and we

should be careful about what charge we are talking about. Brane source charge is gauge-

invariant but not conserved, whereas Page charge is conserved and gauge-invariant under

small gauge transformation. Page charge changes under global gauge transformation, but

global gauge transformation changes the state of the system and charge does not have to

remain the same under it in the first place. Moreover, it is Page charge that is quantized

and appears in the asymptotic super-Poincaré algebra as central charge [37]. So, if we want

to discuss charge conservation, it is Page charge that we should consider, not brane source

charge. We discuss brane source and Page charges in Appendix D. Here, we only use the

results for the expression of brane source and Page charges from there and refer the reader to

the appendix for details.

D-brane source current is obtained simply by varying the D-brane action (3.12) with

respect to RR potential C, as discussed in Appendix D. Therefore, D-brane source charge
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includes the D-brane charge induced by the spacetime B(2) field, and QD0,bs in (3.13) is brane

source charge; that is why the superscript “bs”. On the other hand, D-brane Page charge

is obtained from brane source charge precisely by subtracting the charge induced by B(2).

Therefore, for Page charge, (3.13) is modified to

∆QD0,Page = 0. (3.14)

Namely, even if we move D2 around NS5, no Page D0 charge is induced and it is actually

conserved.

Now let us turn to the process (3.8). Although the D7-brane has codimension 2, it is not

quite exotic in that the monodromy around it does not involve metric; it is just an additive

shift of C(0). The analysis of this process is similar to that of (3.10). Namely, although it

appears that D5-brane charge is induced on the NS5-brane by spacetime RR potentials C,

as discussed in Appendix D, D5-brane Page charge is defined by subtracting such induced

charge. Therefore, in this case, there is no D5-brane charge induced, i.e.,

∆QD5,Page = 0. (3.15)

Even if we move NS5 around D7, no Page D5 charge is induced and charge is conserved.

Finally, let us consider the process (3.9) in which the exotic brane 52
2 is involved. First

of all, we immediately notice that D2-charge being induced on a D0 is strange, because the

D0-brane Wess–Zumino term

SD0,WZ =
1

ls

∫
C(1) (3.16)

does not involve C(3) and there is no way to induce D2 charge on a D0.6 The mistake we made

is the following. The D0-brane charge on the right hand side of (3.10), which we confirmed is

induced, is brane source charge. Actually, brane source charge do not transform covariantly

under duality transformations, and therefore the existence of induced D0-brane source charge

in the duality frame (3.10) does not imply that D2-brane source charge is induced in the

duality frame (3.8) as we naively presumed. Therefore, in order to study the charge in (3.8),

we need instead a notion of charge that transforms covariantly under duality.

It turns out to that the charge that transformscovariantly under duality is Page charge.

This can be seen as follows. Let us focus on the T -duality transformation that we performed

in going between (3.9) and (3.10). If we compactify the 10D theory on T 2
89 down to 8D, we

have T -duality group SO(2, 2,Z) = SL(2,Z)τ × SL(2,Z)ρ. Here, τ, ρ are 8D moduli scalars

defined by

ρ = B
(2)
89 + i det1/2Gab, Gab =

ρ2

τ2

(
1 τ1

τ1 |τ |2
)
, a, b = 8, 9 (3.17)

6Note that we are considering a single D0-brane and the commutator couplings [62] which are present for
multiple branes and are responsible for Myers’ effect do not exist here.
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and transform in the standard way under respective SL(2,Z) factors; namely,

ρ→ ρ′ =
aρ+ b

cρ+ d
,

(
a b
c d

)
∈ SL(2,Z)ρ , (3.18)

and likewise for τ and SL(2,Z)τ . As we will study in detail in section 4, NS5(ψ4567) and

52
2(ψ4567, 89) can be both thought of as codimension-2 branes in 8D with non-trivial mon-

odromies for the scalar ρ, but no such details are necessary for the current discussion. The

T -duality transformation that we performed in going between (3.9) and (3.10) belongs to

SL(2,Z)ρ [63]. Upon reducing to 8D, the D0 and D2(89)-branes both become 0-branes, and

the 10D RR potentials Cµ and C89µ (µ = 0, . . . , 7) that they couple to reduce to 8D 1-forms,

Cαµ (α = 1, 2), which form a doublet under SL(2,Z)ρ [6, 64]. Ref. [64] showed that the

covariant field Cαµ in 8D is related to Cµ and C89µ by

C1,µ = Cµ, C2,µ = C89µ −B89Cµ. (3.19)

If we define charge currents covariant under the T -duality group by variation of the action

with respect to Cαµ, then, using the relation

δ

δC1,µ

=
δ

δCµ
+B89

δ

δC89µ

,
δ

δC2µ

=
δ

δC89µ

, (3.20)

we can show that the charges associated with Cµα are related to the brane source charges as

Qα=1 = QD0,bs +B89Q
D2(89),bs, Qα=2 = QD2(89),bs, (3.21)

where the volume of T 2
89 is (2πls)

2. Qα=1 is D0-brane source charge minus the one induced by

the B-field on the D2-brane worldvolume. This is nothing but Page charge for the D0-brane.

So, Page charge covariantly transforms under T -duality transformation. In the duality

frame (3.10), we have shown that D0 Page charge is conserved. By T -dualizing to the present

duality frame (3.9), this automatically implies that D2 Page charge is conserved. The apparent

non-conservation of D2-brane charge in (3.10) was simply because we were looking at a wrong

notion of charge inappropriate to discuss duality transformation and charge conservation.

This argument is valid for any systems which are related to the above configuration by

T -duality. Namely, as long as one measures Page charge, charges are always conserved. Brane

source charge, on the other hand, is not conserved, but that does not contradict with charge

conservation. We expect that this holds true generally, not just in the examples we considered.

Namely, even in the presence of exotic scalar monodromies, brane Page charges are always

unambiguously defined and conserved.

It would be interesting to show this in full generality in a more systematic way. In partic-

ular, it would be desirable to generalize the result of Ref. [64] to U -duality transformations.

Because Page charge is the central charge that appears in the asymptotic algebra and trans-

form covariantly under U -duality, this would amount to finding explicit expressions for Page

charges that transform covariantly under U -duality.
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Figure 5: Defining Page charges in the presence of exotic branes with non-trivial
monodromies requires that we fix a base point P (denoted “×”) along with the
values of moduli M and form fields (B,C) there, and measure the charge with
respect to them. Continuously deforming the cycle to measure charge does not
change the charge. However, there can be multiple, non-equivalent cycles

3.2.2 Monodromies and Page charge

We thus showed that, as long as we use Page charge to define charge, there is no induced

charge even when one moves a charge around an exotic brane, around which there is non-

trivial U -monodromy. We also argued that, because Page charges transform covariantly under

U -duality, the conservation of Page charge must hold in any frames.

But there is an apparent tension here. On one hand, we said that Page charge remain the

same even when we go around an exotic brane around which there is U -duality monodromy.

On the other hand, we said that Page charges transform covariantly under U -duality. How

can the two statements be consistent with each other?

The resolution is closely related to the subtlety in defining monodromy charges that we

discussed in section 3.1. As we discussed there, unambiguously defining monodromies requires

that we fix a base point and the value of moduli at that point, once and for all, and that we

measure monodromy with respect to them. A similar consideration is needed when defining

Page charge. Page charge involves an integral of form fields around certain cycles that enclose

the object in question. However, in the presence of exotic branes, those form fields themselves

are also not globally well-defined. To define all quantities consistently, we need to choose a

base point P plus a choice of moduli and form fields at P . One can then follow the moduli

and form fields continuously along any path that does not intersect the exotic brane. Namely,

Page charge should properly be defined as the integral over a cycle that contains the point

P , where the form fields and moduli take the given values M and (B,C) respectively, and

such that moduli and form fields are continuous everywhere along the cycle. The cycle is not

allowed to intersect the exotic brane.

In Fig. 5(a), we described a situation where we measure Page charge of a brane sitting
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near the base point P by integrating a form field through a cycle γ that encloses the brane

and goes through P . If we move the brane and at the same time continuously deform γ so

that it always goes through P and does not intersect the exotic brane, Page charge does not

change as we have explicitly demonstrated in section 3.2.2 above. We described this process

in Fig. 5(b).

With this definition of Page charge, it is still not unique, as there can be different topo-

logical types of cycles which one can use to compute it. Because cycles are not allowed to

intersect the exotic brane, not all cycles can be continuously deformed. But cycles that can

be continuously deformed into one another will give rise to the same Page charge. This should

be the case since Page charge is quantized. If we take a path that encircles the exotic brane

and comes back to the original base point P , the fields will undergo a monodromy and be

mapped into a U -dual version of themselves. Thus, different topological types of charges will

give rise to different Page charges that are related to each other through U -dualities.

In Fig. 5(c), we described a situation where we have moved the brane once around the

exotic brane and brought it back near the base point P . Besides cycle γ that now has a “tail”

going around the exotic brane, there is another cycle γ′ that goes through P and encloses

the brane but does not go around the exotic brane. If we use γ to measure Page charge, we

get the same answer as the one measured in Fig. 5(a). On the other hand, if we use γ′ to

measure Page charge, we get the U -dual version. There is no contradiction here because the

two cycles γ and γ′ cannot be deformed into each other without intersecting the exotic brane;

they measure physically different charges.

Now the puzzle raised at the beginning of this section 3.2.2 is resolved. When we said

in section 3.2.1 that Page charge is conserved, we meant that the Page charge measured by

cycle γ is unchanged even if we move the brane around the exotic brane along with the cycle

that encloses it. This is what we must do physically, because when we talk about charge

conservation we should adopt one notion of charge and stick to it as we continuously change

the configuration. On the other hand, the fact that Page charges transform covariantly under

U -duality is not related to such continuous deformation, and there is no contradiction here.7

3.3 Number of charges

As we discussed above, the charge of a codimension-2 brane is characterized by the monodromy

around it. Since the monodromy matrix q is an element of the discrete non-Abelian “lattice”

G(Z), it does not really make sense to ask how many different charges there are, in contrast to

the case of an ordinary charge lattice Zn where one can say that there are n different charges.

7This U -duality transformation is in some sense similar to going between charges defined by γ and γ′,
but not quite. Here the difference between γ and γ′ is related to the monodromy charge of the exotic brane
present in the configuration, but the U -duality transformation in section 3.2.1 has nothing to do with the
exotic brane present in the configuration.
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However, to get a qualitative idea, we can replace G(Z) by the continuous group G(R) and

study the dimension of the (now continuous) space of possible charges. This is expected to

be the dimension of the space of charges that we see in the classical limit where the charges

are large.

There are multiple notions that one can mean by the number of charges. In toroidal

compactifications, we have a scalar moduli space of the form M = H(R)\G(R)/G(Z) whose

isometry group is G(R). Since G(R) has

m ≡ dimG (3.22)

generators, there are m associated conserved Noether currents in the theory. In this sense,

the number of charges that are in principle possible to occur in the theory is m. In the 3D

theory, we have G = E8(8) and m = 248.

If one could introduce a dual (d−2)-form gauge field for each of these m currents, it would

seem like there are m different codimension-2 branes with different charges. However, as is

manifest in Table 2 for d = 3 and in Tables 6 and 7 for d > 3, there are only

h ≡ dimG− rankG < m (3.23)

branes that can be obtained by U -dualizing standard half-supersymmetric branes such as D7-

branes. For example, in the d = 3 case, h = 240 (< m = 248), and these are the point particle

states listed in Table 2. This discrepancy between m and h is understood as follows [65–67].

Although there are m gauge fields, only h of them couple to 1/2-BPS branes. More precisely,

if one tries to construct a U -duality and gauge invariant Wess–Zumino coupling of a possible

brane to the gauge fields, it is possible to do so preserving half of supersymmetry only for h

gauge fields out of m, and these h branes are in the U -duality orbit of the standard 1/2-BPS

branes. In this sense, h is the number of fundamental 1/2-BPS codimension-2 branes allowed

in string theory. At the time of writing, it is not understood whether there exist states in

string theory that couple to the remaining m−h gauge fields. For counting of 1/2-BPS branes

based on an E11 group theoretical argument, see [43].

Yet another other notion that one may associate with the number of charges is the di-

mension of the U -duality orbit of a brane. A general analysis on the dimension of the orbits

of BPS configurations in string theory was done in [68] for codimension > 2 branes. For

codimension-2 branes, such an analysis was done [7] and later by [67] along the line of [68].

Here, we repeat the analysis of [7], including some details omitted there. Let us start from

a given charge q ∈ G(R). Using Q ∈ g(R), where g(R) is the Lie algebra of G(R), we can

write q as q = eQ. In particular, if we consider 1/2 BPS objects such as D7-branes, the

matrix is nilpotent, Q2 = 0, and hence q = 1 + Q. Now, generate a new charge by conju-

gation by U = eεt ≈ 1 + εt where t ∈ g(R) and ε is infinitesimal. The new charge matrix is
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q̃ = U−1qU ≈ q + ε [Q, t]. So, the number of different charges is given by dim g minus the

dimension of the stabilizer subspace {[Q, t] = 0 | t ∈ g(R)}.8 This is given as follows. First,

we find an sl(2) subalgebra in which Q is the raising operator. Then, decompose the adjoint

representation of g(R) into sl(2) representations as

adj =
d⊕

k=1

(2jk + 1) (3.24)

where d is the number of representations appearing in the decomposition. Since Q acts

effectively on all states in each sl(2) representation except for the highest spin state, we find

that the dimension of the orbit, b, is

b = dim g − d. (3.25)

In the 3D case where G = E8(8), the adjoint representation decomposes as 248 = 3 + 56 ·
2 + 133 · 1, and therefore b = 248 − (1 + 56 + 133) = 58. This number agrees with the one

obtained in [67] by a slightly different argument. In the last column of Table 6, we listed the

values of b in various dimensions.

4 Supergravity description of exotic states

In this section, we study supergravity solutions corresponding to exotic branes. In higher

dimensions, they correspond to infinitely long defects in spacetime, around which there are

non-geometric monodromies. These solutions are not new, but our focus will be on their

exotic non-geometric aspects.

4.1 An example: the supergravity solution for 52
2

To demonstrate that exotic branes are non-geometric objects, let us compute the supergravity

solutions for them and analyze the structure. Using the duality rules shown in Tables 3–5, it

is straightforward to start with any known standard brane backgrounds, act by supergravity

duality transformation on them, and obtain the background for exotic branes. Here, as an

example, let us compute the metric for 52
2 by T -dualizing the KK monopole metric transverse

to its worldvolume (cf. (2.6)). A simplified version of the following analysis was given in [7].

The metric for KK monopoles wrapped on compact 345679 directions, with x9 being the

special circle (namely, they are 51
2(34567, 9)), placed at x = xp in the transverse space R3

128,

is

ds2 = dx2
034567 +Hdx2

128 +H−1(dx9 + ω)2, e2Φ = 1,

H = 1 +
∑
p

Hp, Hp =
R9

2|x− xp|
,

(4.1)

8This is the same procedure followed in [68,67]
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where the 1-from ω satisfies

dω = ∗3dH (4.2)

and R9 is the radius of the x9 direction. Also, dx2
034567 = −(dx0)2 + (dx3)2 + · · ·+ (dx7)2 and

dx2
128 = (dx1)2 + (dx2)2 + (dx8)2. The labeling of the coordinates is slightly perverse for later

convenience. This solution preserves half of supersymmetry. In order to be able to T -dualize

along a transverse direction, let us compactify x8, which is the same as arraying centers at

intervals of 2πR̃8 along x8. So,

H = 1 +
∑
n∈Z

R9

2
√
r2 + (x3 − 2πR̃8n)2

≈ 1 + σ log
Λ +
√
r2 + Λ2

r
, σ ≡ R9

2πR̃8

, (4.3)

where we took a cylindrical coordinate system

ds2
128 = dr2 + r2dθ2 + (dx8)2. (4.4)

We approximated the sum in (4.4) by an integral and introduced a cutoff Λ to make it con-

vergent. The approximation is valid for r � R̃8. Such computations of arraying centers were

done in [69,3]. We could have done the summation exactly [70] but the above approximation

is sufficient for our purposes. H in (4.3) diverges as we send Λ→∞, but this can be formally

shifted away by introducing a “renormalization scale” µ and writing

H(r) = h0 + σ log
µ

r
(4.5)

where h0 is a “bare” quantity which diverges in the Λ → ∞ limit. When H is given by

(4.5), eq. (4.1) gives ω = −σθ dx8. The log divergence of H implies that such an infinitely

long codimension-2 object is ill-defined as a stand-alone object. In physically sensible config-

urations, this must be regularized either by taking a suitable superposition of codimension-2

objects [27] or, as we will do later, by considering instead a configuration which is of higher

codimension at long distance. So, the present analysis should be regarded as for illustration

purposes only.

Now let us take T -duality along x8. By the standard Buscher rule, we obtain the metric

and other fields for 52
2(34567, 89):

ds2
10,str = H (dr2 + r2dθ2) +HK−1dx2

89 + dx2
034567,

e2Φ = HK−1, B(2) = −K−1θσdx8 ∧ dx9, B(6) = −H−1Kdx0 ∧ dx3 ∧ · · · dx7,

K ≡ H2 + σ2θ2. (4.6)

In terms of the radii in this frame,

σ =
R8R9

2πα′
. (4.7)
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Such metric of exotic branes has been written down in the literature in various papers; some

early work includes [3,71] and more recent papers include [42–44]. However, it does not appear

to have been discussed in the context of U -folds. Although we arrived at the 52
2 solution by

arraying (smearing) KK monopoles and T -dualizing it, which one might find uncomfortable

with, we could have obtained it without arraying by taking a different route, e.g., by starting

with a D7-brane metric and dualizing it [42, 45]. We will derive the same solution (actually

its generalizations) again in section 4.2 more directly in supergravity without using duality.

As can be seen from (4.6), as we go around the 52
2-brane at r = 0 by changing θ = 0 to

2π, the size of the 8-9 torus does not come back to itself:

θ = 0 : G88 = G99 = H−1,

θ = 2π : G88 = G99 =
H

H2 + (2πσ)2
.

(4.8)

Therefore, indeed, the exotic 52
2-brane has a non-geometric spacetime around it. This non-

geometric spacetime can be understood as a T -fold as follows. If we package the 8-9 part of

the metric and B-field in a 4× 4 matrix [72]

M =

(
G−1 G−1B
−BG−1 G−BG−1B

)
(4.9)

then the SO(2, 2) T -duality transformation matrix Ω satisfying

ΩtηΩ = η, η =

(
0 12

12 0

)
, (4.10)

acts on M as

M →M ′ = ΩtMΩ. (4.11)

It is easy to see that the matrix

Ω =

(
12 0

2πσ 12

)
(4.12)

relates the θ = 0, 2π configurations in (4.8). Namely, 52
2 is a non-geometric T -fold with the

monodromy Ω.

Another way to represent the monodromy is in terms of the SO(2, 2,Z) = SL(2,Z)τ ×
SL(2,Z)ρ mentioned in section 3.2.1. Let us introduce moduli τ, ρ defined in (3.17) and take

a complex coordinate z = reiθ. From (4.6), we can read off

ρ =
iH − σθ

K
=

i

h0 + σ ln(µ/z)
, τ = i. (4.13)

So, as we go around 52
2 (z → ze2πi), it is not ρ but ρ′ = −1/ρ that undergoes a simple shift:

ρ′ → ρ′ + 2πσ. (4.14)
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(If ρ underwent a shift ρ→ ρ+ 1 as z → ze2πi instead, the configuration would be simply an

NS5(56789)-brane.) In terms of the original ρ, we have

ρ→ aρ+ b

cρ+ d
,

(
a b
c d

)
=

(
1 0
−2πσ 1

)
. (4.15)

Let us study the behavior of the 52
2 metric in the string frame, (4.6), near r = 0. Near

r = 0, the functions in (4.6) behave as

H ∼ σ ln(µ/r), K ∼ [σ ln(µ/r)]2, (4.16)

where we absorbed the constant h0 into µ. Therefore, the r → 0 behavior of the metric is

ds2
10,str ∼ [σ ln(µ/r)](dr2 + r2dθ2) + [σ ln(µ/r)]−1dx2

89 + dx2
034567. (4.17)

Let us introduce a new coordinate ρ by

dρ =
√
σ ln(µ/r) dr, ρ =

√
πσµ

2

[
1− erf

(√
log(µ/r)

)]
+
√
σ log(µ/r) r, (4.18)

where

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (4.19)

For r ∼ 0, ρ ∼ 0, the relation between r and ρ is simply

ρ ∼
√
σ log(µ/r) r (4.20)

and therefore the metric (4.17) becomes

ds2
10,str ∼ dρ2 + ρ2dθ2 +

r2

ρ2
dx2

89 + dx2
034567. (4.21)

One sees that the linearly wrapped directions x3,...,7 remain finite while the quadratically

wrapped directions x8,9 shrink at the position of the brane, ρ = 0 (r = 0). On the other hand,

the metric along the transverse directions (ρ, θ) are actually flat near the brane.

Similarly, it is easy to show that the Einstein metric in 3D,

ds2
3,Ein = −dt2 +Hdx2

12, (4.22)

is also flat at r = 0 and there is no conical deficit there. This means that the mass of the

brane is not localized at r = 0 but is spread over the space. We can compute the mass

of this configuration (4.22) by the following ad hoc procedure, even though the mass of a

codimension-2 object is not strictly well-defined. Let γij be the spatial metric for constant t

slices and Gµν the Einstein tensor. We find that
√
γ G0

0 = 1
2
∂2
i logH. So, the energy is

M = − 1

8πG3

∫
d2x
√
γ G0

0 = − 1

16πG3

∫
dS · ∇ logH. (4.23)
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If we use (4.5) and assume that H(r =∞) = 1, then

M =
1

16πG3

[
2πσ

H(r)

]∣∣∣∣
r→∞

=
R3 · · ·R7(R8R9)2

gsl9s
, (4.24)

as expected of a 52
2(34567, 89). Here, we used 16πG3 = g2

s l
8
s/R3 · · ·R9. Although the 52

2

changes the asymptotics, setting H(r = ∞) = 1 effectively puts it in an asymptotically flat

space and allows us to compute its mass.

Because the 52
2 background (4.6) has non-vanishing NSNS B-field, it is natural to ask if it

carries F1 and/or NS5 charges. First, it does not carry F1 charge, because H(7) = dB(6) has

no purely spatial component. On the other hand, since H(3) = dB(2) has non-vanishing spatial

components, it appears that there is non-vanishing NS5(34567)-brane charge in this solution.

However, as one can easily derive from (4.6), H(3) is not single valued as θ → θ+2π. Therefore,

it does not make sense to integrate the flux H(3) around the 52
2 to measure the NS5 charge;

the integral is not well-defined and its value changes as one goes around the 52
2. This state

of matter can be understood by noting that the pair of charges (NS5(34567), 52
2(34567,89))

can be U -dualized to (D7(3456789), 73(3456789)) in Type IIB. Because 73 is S-dual of D7,

the axio-dilaton τ = C(0) + ie−Φ behaves around 73 as τ(r, θ) = −2πi/ log z where z = reiθ.

Therefore, around a 73-brane, the RR 0-form is given by C(0) = −2πθ/[(log r)2 + θ2]. One

can define the 1-from flux G(1) = dC(0) and try to define the D7-brane charge by the integral∮
G(1) = [C(0)]θ+2π

θ , but this is nonsensical because this integral depends on θ. The only

sensible way to define the charge of (p, q) 7-brane is via the monodromy matrix (3.5). Similarly,

the only sensible way to define the (NS5,52
2) charge is by the monodromy matrix, which in

the current situation is (4.12) and implies that there is no NS5 charge. We will discuss the

explicit monodromy matrices of NS5 and 52
2 in section 4.2.

Because only NSNS fields are excited in the solution (4.6), the 52
2-brane exists in all

string theories, including Type I and heterotic strings. Moreover, the tension of the 52
2-

brane is proportional to g−2
s , just like that of the NS5-brane and KK monopole. Therefore,

the solution (4.6) must represent a legitimate configuration of string theory and give an

approximate description of the physics, much as the supergravity solutions of the NS5 and

KK monopole do (again, with the caveat that it cannot exist as a stand-alone object). What

is interesting about this 52
2 background is that, because the involved duality monodromy is

the perturbative T -duality, it should allow a string theory description in terms of a worldsheet

sigma model. It would very interesting to find such a sigma model description. In particular,

to derive the 52
2 metric by T -duality, we used the Buscher rule, which is a valid prescription

only at the supergravity level. In string theory, the T -duality rule can be corrected by stringy

effects and it would be interesting to examine such effects for 52
2 using sigma model. In the

case of T -duality between NS5 and KKM, it was a non-trivial matter how the position of the

NS5-brane along the direction of T -duality is encoded in the T -dual KKM background by
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worldsheet instanton effects [73–75] (see also [76–78]). Exactly the same issue arises in the 52
2

background also and it would be interesting to understand it better.

The 52
2-brane is the only exotic brane with mass proportional to g−2

s and all other ex-

otic branes in (2.9) and (2.10) have mass proportional to g−3
s or g−4

s . For example, formal

applications of duality transformations on (4.6) give the following 43
3(3456, 789)-brane metric:

ds2
str = H1/2K1/2(dr2 + r2dθ2) +H−1/2K1/2dx2

03456 +H1/2K−1/2dx2
789. (4.25)

H and K are the same ones as given in (4.5) and (4.6), except that now

σ =
NR7R8R9

2πgsl3s
. (4.26)

Just as we did in (4.24), we can formally show that mass of this object is

M =
NR3 · · ·R6(R7R8R9)2

g3
s l

11
s

. (4.27)

One may think that such exotic branes with mass ∼ g−3
s , g−4

s have too large backreaction for

supergravity solutions to give a meaningful description. However, that is too quick. One can

show that the 43
3 solution (4.25) has no conical deficit at r = 0, just as for 52

2. This means

that there is no localized energy at r = 0 but, as is clear from the computation leading to

(4.24), the energy of an exotic brane is delocalized and spread in the surrounding space over

a large distance. What we mean by the mass of the exotic brane being proportional to g−3
s or

g−4
s is that, if we took metrics such as (4.6) and (4.25) at face value and integrated the energy

density distributed over long distances up to r = ∞, then the total would be proportional

to g−3
s or g−4

s , enough to destroy the spacetime picture. This means that the metric of a

stand-alone exotic brane such as (4.6) and (4.25) should be thought of as an approximation

near r = 0 and must be replaced at some large r by some other solution so that the total

energy stored in space is at most ∼ g−2
s . This is precisely what one does in F-theory [51],

where one considers a configuration of 24 (p, q) 7-branes to stop the space from extending to

r =∞. Instead, the transverse space terminates at a finite distance and becomes a compact

S2. Note that a (p, q) 7-brane is nothing but a bound state of D7-branes and 73-branes with

mass ∼ g−3
s . Nevertheless, the configuration has finite energy because the space is now finite;

actually, the size of the transverse S2 is a modulus and can be arbitrarily large. This clearly

shows that it is too quick to regard exotic branes with nominal tension ∼ g−3
s , g−4

s as physically

irrelevant. To examine the physics of such heavy exotic branes, one possibility is to extend

the framework of the original F-theory to geometrize the moduli space of the U -duality group

and study the geometry of the extended spacetime, i.e. the moduli space fibered over the

physical spacetime. As mentioned in section 2.5, this direction has been already undertaken

in [52] followed by a spur of activity [53–56,79]. It would be desirable to revisit this with the

improved understanding of exotic branes provided in the current paper.
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Even if the problem of the superficial mass being proportional to g−3
s , g−4

s can be evaded,

it should be noted that, as exemplified by the (p, q) 7-branes of F-theory, the monodromy of

exotic branes involve U -duality and therefore the string coupling cannot generally be made

small at all points in spacetime. In such cases, we should regard the supergravity solution

as a qualitative guide for the physics at best. However, for protected BPS quantities, they

should probably give precise predictions.

4.2 Supersymmetry analysis of 52
2 solution

Being dual to the KKM solution which preserves half of supersymmetry, the exotic 52
2 solution

(4.6) should also preserve half of supersymmetry. It is an instructive exercise to see how

this works. Because of the non-trivial duality monodromy, the Killing spinor is not single-

valued around an exotic brane. Supersymmetry analyses of non-geometric solutions have

already appeared in the literature; our purpose here is to only illustrate how supersymmetry

is compatible with exotic U -duality monodromies. For example, an essentially identical but

somewhat less general analysis of the supersymmetry of the 52
2-brane solution was done in [42].

Ref. [46] provides a supersymmetry analysis of this system in a more general setup but from

a different perspective from ours.

In Type IIA/B supergravity with purely NS background fields, the supersymmetry trans-

formation for dilatino λ and gravitino ΨM is, respectively [80,81],

δλ =

[
1

2
/∂Φ− 1

4
/Hσ3

]
ε, δΨM =

[
∇M −

1

8
ΓNPHMNPσ

3

]
ε. (4.28)

Here, the supersymmetry transformation parameter ε = ( ε1ε2 ) is a doublet of Majorana–Weyl

spinors ε1,2 with appropriate chirality (see Appendix B). The Pauli matrices such as σ3 in

(4.28) acts on the doublet index. For our convention, see Appendix A.

Although the 52
2 solution we obtained by dualizing a known solution is (4.6), it is instructive

to study the supersymmetry of the following more general configuration:

ds2
10 = f 2ηµνdx

µdxν + g2δijdx
idxj + h2δabdx

adxb, H(3) = Hidx
i ∧ dx8 ∧ dx9,

µ, ν = 0, 3, 4, 5, 6, 7, i, j = 1, 2, a, b = 8, 9.
(4.29)

We assume that f, g, h,Hi and Φ are functions of xi. If we take the vielbein to be

eµ̂ν = fδµν , eı̂j = gδij, eâb = hδab , (4.30)

then the non-vanishing components of the spin connection are

ωµν̂ı̂ = g−1ηµν∂if, ωab̂ı̂ = g−1δab∂ih, ωi̂k̂ = g−1(δij∂kg − δik∂jg). (4.31)
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For this configuration, the supersymmetry variation (4.28) becomes

δλ =

[
1

2
Γi∂iΦ−

1

4
HiΓ

i89σ3

]
ε, δΨµ =

[
1

2
ηµνf∂ifΓνi

]
ε,

δΨa =

[
1

2
h∂ihΓai − 1

4
εabHiΓ

biσ3

]
ε, δΨi =

[
∂i +

1

2
εijg∂jg Γ12 − 1

4
HiΓ

89σ3

]
ε. (4.32)

We assumed that ε depends only on xi. εij and εab are antisymmetric symbols with ε12 =

ε34 = 1. For the configuration (4.29) to be supersymmetric, there should exist ε for which all

of (4.32) vanish. First, in order that δΨµ = 0, we see that ∂if = 0 for all i and therefore we

can take f = 1 by an appropriate rescaling of xµ.

Next, let us look at the condition δλ = 0, which can be written as

Γı̂[2h2∂iΦ−HiΓ
8̂9̂σ3]ε = 0. (4.33)

It is not difficult to see that this can be rewritten as a projection condition

(1 + P )ε = 0, P 2 = 1, (4.34)

if Φ and h are related by

Hi = ±2εijh
2∂jΦ. (4.35)

The matrix P is given explicitly as

P = ±Γ1̂2̂8̂9̂σ3. (4.36)

Since trP = 1, the condition (4.34) annihilates exactly one half of the components of ε.

Because we want a 1/2-BPS configuration, the remaining conditions δΨa = 0, δΨi = 0

must give no additional constraint on the spinor ε. The δΨa = 0 condition can be easily seen

to reduce to the same condition (4.34) if we set

h−1∂ih = ∂iΦ, therefore eΦ = h. (4.37)

Finally, for the δΨi condition (4.32) to give no additional constraint on ε, we must set

ε = exp
[
t(xi) Γ1̂2̂

]
ε0, (4.38)

where ε0 is a constant spinor satisfying

(1 + P )ε0 = 0, (4.39)

so that (4.32) becomes

δΨi = Γ1̂2̂

[(
∂it+

1

2
εij∂j log g

)
+

1

4
h−2HiΓ

1̂2̂8̂9̂σ3

]
ε. (4.40)
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For this to give the same condition as (4.34), it should be that

∂it+
1

2
εij∂j log g = ±1

4
h−2Hi =

1

4
εij∂j log h, (4.41)

where in the last equality we used (4.35), (4.37). Therefore,

∂it =
1

2
εij∂j log

h

g
. (4.42)

Let us introduce complex coordinates by

z = x1 ± ix2, z = x1 ∓ ix2, (4.43)

where the signs are chosen to make the later results simple. In terms of z, z, (4.42) can be

written as

∂̄(t± ir) = 0, r ≡ 1

2
log

h

g
. (4.44)

The solution to this is

t± ir = ∓ i
2
ϕ(z), namely t = ±ϕ2

2
, r = −ϕ1

2
, (4.45)

where ϕ = ϕ1 + iϕ2 is a holomorphic function of z. The factor ∓i/2 on the right hand side

was inserted to make the later results simple.

The above solution satisfies all field equations provided that h satisfies

∂∂̄h2(z, z) = 0. (4.46)

Namely, h2 is a real harmonic function and can be written as

h2(z, z) =
ρ(z)− ρ(z)

2i
= ρ2, (4.47)

where ρ(z) is a holomorphic function of z and ρ = ρ1 + iρ2. From (4.45), this means that

g2 = e2ϕ1ρ2.

Substituting the above results into (4.29), the configuration that locally preserves half of

supersymmetry is

ds2
10 = ηµνdx

µdxν + ρ2e
2ϕ1dzdz + ρ2(dxa)2, e2Φ = ρ2,

B(2) = ρ1 dx
8 ∧ dx9, B(6) =

1

ρ2

dt ∧ dx3 ∧ · · · ∧ dx7,

ε = exp
(
±ϕ2

2
Γ8̂9̂σ3

)
ε0, (1 + P )ε0 = 0,

(4.48)

where ρ = ρ(z), ϕ = ϕ(z) are holomorphic functions, and we used (4.34) for the expression for

ε. However, in order for this configuration to be globally well-defined and supersymmetric,
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we must impose further conditions. To see this, it is convenient to compactify the 10D theory

on T 2
89 to 8D N = 2 supergravity [82]. The 8D metric in the Einstein frame is

ds2
8,Ein = ηµνdx

µdxν + ρ2e
2ϕ1dzdz. (4.49)

8D N = 2 supergravity has U -duality group SL(3,Z) × SL(2,Z), which contains the T -

duality subgroup SO(2, 2,Z) = SL(2,Z)τ × SL(2,Z)ρ. Associated with this subgroup are

moduli parametrizing (SO(2) × SO(2))\SO(2, 2,R)/SO(2, 2,Z) = Mτ ×Mρ, where M =

SO(2)\SL(2,R)/SL(2,Z). The first factor Mτ corresponds to the complex structure τ of

the torus T 2
89, which has been defined in (3.17) and is fixed to τ = i in (4.48) in the present

case. The second factor Mρ corresponds to B89 and the volume of T 2
89, and is parametrized

by the complex field ρ defined in (3.17). This is the same as the ρ introduced above. The

10D supersymmetry transformation parameter ε = ( ε1ε2 ) reduces to a pair of 8D Weyl spinors

ηA, A = 1, 2. Under a duality transformation, ηA will also transform as we will discuss below.

If there is a codimension-2 exotic brane at z = z0 on the z-plane then, as we move around

it on the z-plane, there is a non-trivial duality monodromy q ∈ G(Z). Here we are focusing

on the SL(2,Z)ρ subgroup and hence q ∈ SL(2,Z)ρ. Let us consider a brane at z = z0 with

the following monodromy

q =

(
a b
c d

)
∈ SL(2,Z)ρ, a, b, c, d ∈ Z, ad− bc = 1. (4.50)

As we go around z = z0, all fields must jump according to this transformation (4.50). First,

the modulus ρ(z) should have the monodromy

ρ→ aρ+ b

cρ+ d
. (4.51)

The 8D spinors ηA must have a monodromy corresponding to the same (4.50). Depending on

whether we have compactified 10D type IIA or type IIB, the transformation rule of the 8D

spinors ηA under (4.50) is different [82] and given by

ηA →

e
i
2

arg(cρ+d)ηA (type IIA),

[e
i
2

arg(cρ+d)σ3
]A
B ηB (type IIB).

(4.52)

By examining how the 10D spinor ε reduces to the 8D spinor ηA, one can show that this

corresponds to the following monodromy for the 10D spinor ε,

ε→ exp

[
±1

2
Γ8̂9̂σ3 arg(cρ+ d)

]
ε , (4.53)

where the ± signs correspond to type IIA/IIB. For more detail about (4.52) and (4.53),

see Appendix B. By comparing (4.53) with (4.48), we see that ϕ2 must have the following

monodromy:

ϕ2 → ϕ2 + arg(cρ+ d). (4.54)
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Note that the ± signs in (4.48) are now understood to apply for type IIA/IIB.

There is another condition: the 8D Einstein frame metric (4.49) must be invariant under

the duality (4.50). This means that ϕ1 must have the following monodromy:

ϕ1 → ϕ1 + log |cρ+ d|. (4.55)

Combining (4.54) and (4.55), we see that ϕ must have the following monodromy:

ϕ→ ϕ+ log(cρ+ d), or eϕ → (cρ+ d)eϕ. (4.56)

To summarize, for the solution (4.48) to be globally well-defined and supersymmetric,

the holomorphic functions ρ(z), ϕ(z) must satisfy the monodromy conditions (4.51), (4.56)

around a brane with charge (4.50).

The 52
2 solution (4.6) corresponds to the following particular choice

ρ(z) =
i

σ log µ
z

, eϕ(z) = σ log
µ

z
(4.57)

where we absorbed the constant h0 into µ. At z = 0, there is the following monodromy:

q522
=

(
1 0
−2πσ 1

)
, (4.58)

which already appeared in (4.15). It is easy to show that ρ, ϕ in (4.57) do have the monodromy

(4.51), (4.56) as z → ze2πi. On the other hand, the NS5(34567)-brane solution smeared along

x8,9 is

ds2
10,str = ηµνdx

µdxν +Hdzdz +H(dxa)2, e2Φ = H,

B(2) = σ′θ dx8 ∧ dx9, H = σ′ log
µ′

r
, σ′ =

N ′α′

2πR8R9

,
(4.59)

where µ′ is a constant and N ′ is the number of NS5-branes. From this, we read off

ρ(z) = iσ′ log
µ′

z
, eϕ(z) = 1. (4.60)

This corresponds to the monodromy

qNS5 =

(
1 2πσ′

0 1

)
. (4.61)

Comparing the monodromy matrices (4.58) and (4.61) with that of (p, q) 7-branes (3.7), we

see that the monodromy matrix q
522

is the same as that of (1, 0)- or D7-brane while qNS5 is the

same as that of (0, 1)- or 73-branes, although q
522
, qNS5 are about the SL(2,Z)ρ T -duality while

(3.7) is about the SL(2,Z) S-duality of type IIB superstring. In fact, by a chain of dualities

(S, T89 and then S), 52
2 and NS5 are mapped into 73 and D7, respectively. So, just as one can
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consider configurations of various (p, q) 7-branes in type IIB, we can consider configurations

of branes with general SL(2,Z)ρ monodromies.

In more general configurations with multiple branes on the z-plane, the holomorphic func-

tion ρ(z) is determined by the monodromies (charges) of the branes. On the other hand, to

determine ϕ(z), the monodromy condition (4.56) is not enough and we need to specify the

boundary condition at infinity, which should be chosen based on the physical situation under

consideration. This is always the case for codimension-2 branes, which is not well-defined as

a stand-alone object. For example, the same undetermined function appears in the context of

F-theory [51] (see also [27]) and one determines it requiring that the transverse space should

close smoothly to S2. For explicit examples of and a detailed discussion on how to determine

ϕ in the context of (p, q) 7-branes in type IIB, see [60]. We will see later another example

where this freedom is fixed by the boundary condition at infinity.

An essentially identical analysis of the supersymmetry of the 52
2-brane solution was done

in [42], although they did not make ϕ(z) arbitrary.9 They also discussed supersymmetry

of other exotic branes,10 which are all related to U -duality to 52
2, and have explicitly written

down the supersymmetry projector for each of them. The monodromy condition on the Killing

spinors for these solutions must work just the same way as for the (NS5,52
2) solution above,

although we do not try to check it here. Ref. [46] gave a more general supersymmetry analysis

of the system allowing both τ and ρ to vary but our discussion above is more focused on the

monodromic structure of the solution.

4.3 Metrics for other exotic branes

It is straightforward to derive the metric for other exotic branes appearing in Table 2. As

discussed above, they must give approximate descriptions of exotic branes near its core. In

the previous subsection, we discussed the metric of 52
2, a unique exotic brane in string theory

with tension ∼ g−2
s . Here, as examples, let us discuss exotic branes in M-theory in some

details. Again, such exotic metrics have been written down [3, 42–44], but we discuss them

from a different perspective.

We represent the x10 direction by “A”.

9The solution (4.48) reduces to the one in [42] if we set

ρ = −H−1, eϕ = H. (4.62)

in their notation. The 522-brane here is called the S52-brane there.
10The relation between their notation and ours is: Dp7−p = p7−p3 , S52 = 522, F16 = 164, W6 = 0

(1,6)
4 ;

M26 = 26, M53 = 53, WM7 = 0(1,7).
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53(34567, 89A)

The metric and form fields in 11D are given by

ds2
11 = H2/3K1/3(dr2 + r2dθ2) +H−1/3K1/3dx2

034567 +H2/3K−2/3dx2
89A

A(3) = −K−1θσ dx8 ∧ dx9 ∧ dxA, σ =
NR8R9RA

2πl311

,

A(6) = −H−1K dt ∧ dx3 ∧ · · · ∧ dx7

F (4) = dA(3) = −σK−2

[
2σθH

dr

r
+ (H2 − σ2θ2)dθ

]
∧ dx8 ∧ dx9 ∧ dxA

F (7) = ∗F (4) = σH−2

[
2σθHdθ − (H2 − σ2θ2)

dr

r

]
∧ dt ∧ dx3 ∧ · · · ∧ dx7

(4.63)

Here, H and K are the same ones as given in (4.5) and (4.6), except that σ is now as given

above.

Just as we discussed before in the case of 52
2, one cannot measure the M5(34567)-charge

based on the integral of F (4). The pair of charges (M5(34567), 53(34567,89A)) is U -dual to

(D7(3456789), 73(3456789)), for which one cannot use the integral of form fields to define

charge. Again, one should instead look at the monodromy to define charges.

The behavior of the metric (4.63) for r → 0 is

ds2
11 ∼ [σ ln(1/r)]4/3(dr2 + r2dθ2) + [σ ln(1/r)]1/3dx2

034567 + [σ ln(1/r)]−1/3dx89A. (4.64)

As r → 0, the quadratically wrapped directions x8,9,A shrink to zero while the linearly wrapped

directions x0,3,...,7 blow up. This is in contrast with ordinary branes (M2- and M5-branes)

which shrink the wrapped directions. One can show that the (r, θ) part of the metric is flat

at r = 0, just as we did around (4.18)–(4.21).

The Ricci scalar is

R =
1

6r2H8/3K1/3
∼ 1

σ4/3r2[log(µ/r)]10/3
(r ∼ 0), (4.65)

which blows up as r → 0. The value of r where the Ricci scalar becomes of the Planck scale

is estimated as

R ∼ l−2
11 =⇒ r ∼ σ−2/3l11 ∼ N−2/3l11, (4.66)

where we assumed that R8, R9, RA ∼ l11. Therefore, by making N large, we can make the

supergravity description valid down to very small value of r.

26(34, 56789A)

The metric and form fields are

ds2
11 = H1/3K2/3(dr2 + r2dθ2) +H−2/3K2/3dx2

034 +H1/3K−1/3dx2
56789A (4.67)

A(3) = −H−1K dt ∧ dx3 ∧ dx4, σ =
NR5 · · ·RA

2πl611

(4.68)
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For this solution, one cannot measure the M2(34) charge based on the integral of F (7). As r →
0, the linearly wrapped directions x3,4 blow up, while the quadratically wrapped directions

x5,6,...,A shrink. The (r, θ) part of the metric is flat at r = 0. The behavior of the Ricci scalar

is qualitatively similar to that for 53 and, if N is large, supergravity description is good down

to small r.

0(1,7)( , 3456789,A)

The metric and form fields are

ds2
11 = K(dr2 + r2dθ2)−H−1Kdt2 + dx2

3456789 +HK−1(dxA −KH−1dt)2 (4.69)

A(3) = 0, σ =
NR3 · · ·R9R

2
A

2πl911

(4.70)

For this solution, one cannot measure the P(A) charge (momentum along xA) based on gAµ.

As r → 0, the linearly wrapped direction t = x0 blows up, quadratically wrapped directions

x3,4,...,9 remain finite, while the cubically wrapped direction xA shrinks. The (r, θ) part of the

metric is flat at r = 0. This solution is purely metrical and the Ricci flat.

Although we presented supergravity solutions with one stack of exotic branes in the above,

it is straightforward to work out exotic solutions with more than one stack by dualizing known

solutions. For example, if we start from the D1(5)+D5(56789) system, take S, T34-dualities

and lift it to 11 dimensions, one can obtain the solution for M2(34)+53(56789, 34A). In

the next section, we will consider more complicated solutions involving exotic and standard

charges at the same time.

5 Supertube effect and exotic branes

5.1 Exotic supertube effects

As we discussed in the introduction, the supertube effect [28] is a spontaneous polarization

phenomenon that occurs when a particular combination of brane charges are put together.

For example, as we saw in (1.1), if D0s and F1(1)s are put together, they polarize, or “puff

up,” into a D2(1ψ)-brane along a closed but arbitrary curve ψ. It is important that this D2-

brane represents a genuine bound state of the system, not just a non-interacting superposition

of D0s and F1s. Although the D2-brane did not exist in the original configuration, it does

not violate charge conservation because D2 is only a dipole and there is no net D2 charge.

By taking duals of the original supertube effect (1.1), one can derive other possible polar-

39



ization phenomena. For example,

F1(1) + P(1)→ f1(ψ) + p(ψ), (5.1)

D1(1) + D5(12345)→ kkm(2345ψ, 1) + p(ψ), (5.2)

M2(12) + M2(34)→ m5(1234ψ) + p(ψ). (5.3)

The first one (5.1) is the so-called F-P system or the Dabholkar–Harvey system [83]. This

is perhaps the duality frame in which it is easiest to understand why the spontaneous po-

larization occurs in the first place. If one takes an F1 string along x1 and add momentum

along the same direction, then the F1 should oscillate in the transverse direction, because

the F1 worldvolume does not have longitudinal oscillation modes. That is why the system

puffs up in the transverse directions. The second one (5.2) is the so-called D1-D5 system and

the puffed-up configuration of the KKM is nothing but the Lunin–Mathur geometries [84,85]

that played an essential role in Mathur’s conjecture [32–36] The last one (5.3) was the basic

process for the construction of supersymmetric black rings [86–89].

In the above, we considered polarization processes involving only ordinary branes. How-

ever, it is easy to find ones with exotic branes. For example, by T -dualizing (5.2) along 236

directions and relabeling coordinates, we obtain

D4(6789) + D4(4589)→ 52
2(4567ψ, 89) + p(ψ). (5.4)

The configuration on the left can be thought of as a pointlike configuration in asymptotically

flat 4D spacetime, which puffs up into an extended configuration of an exotic dipole charge

along a curve ψ in R3
123 on the right hand side. Such exotic dipole charges do not change the

asymptotics of spacetime. Note that the original configuration of D4-branes is part of the

standard D0-D4 configuration used for the black hole microstate counting in 4D [90]. So, to

understand the physics of such black holes, it is unavoidable to consider exotic charges.

If we want more exotic mass by the supertube effect, we can for example apply T6 and S

dualities to (5.4) to get an object with mass ∼ g−3
s :

D3(789) + NS5(45689)→ 52
3(4567ψ, 89) + p(ψ). (5.5)

If we further perform T4567 and S, we get a g−4
s object:

D5(45689) + KKM(45689, 7)→ 16
4(ψ, 456789) + p(ψ). (5.6)

As one can guess from the above examples, the general rule for the tension of the product

brane can be written schematically as

g−as + g−bs → g−(a+b)
s . (5.7)
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Also, the radius of the puffed up configuration depends on gs as

R ∼ g
a+b
2

s . (5.8)

The relations (5.7), (5.8) can be derived as follows. For example, take the FP system (5.1),

where the two original charges have M1 = MF1(1) ∼ R1/α
′, M2 = MP (1) ∼ 1/R1, where R1 is

the radius of the x1 direction. The tension of the product brane, F1(ψ), is T ∼ 1/α′, while

the size of the puffed up configuration is R ∼ α′1/2 [91]. If we go to a duality frame where the

same charges are expressed as M1 ∼ g̃−as , M2 ∼ g̃−bs , with g̃s the string coupling in the new

frame, then the original α′, R1 are expressed as α′ ∼ g̃a+b
s , R1 ∼ g̃bs. So, the tension in the new

frame in terms of g̃s is T ∼ 1/α′ ∼ g̃−a−bs and the size of the system is R ∼ α′1/2 ∼ g̃
(a+b)/2
s .

The cautious reader should have noticed that the mass of an object with tension T ∼ g−a−bs

extending along a distance R ∼ g
(a+b)/2
s does not reproduce the mass of the original object,

M1 + M2 ∼ g−as + g−bs . This is because, in the puffed-up configuration, it is not precisely an

object with tension T ∼ g−a−bs that is extending along ψ. Instead, it is the combination of the

puffed-up charge and the original charges before puffing up. For example, in the F-P frame, it

is the fundamental string that wraps the x1 and ψ directions simultaneously and is moving in

the transverse direction (see e.g. the appendix of [31] for a more detailed explanation). One can

show that, in the general duality frame, the tension of this combined object is schematically

T ′ ∼ g
−3a/2−b/2
s + g

−a/2−3b/2
s , which reproduces the original mass T ′R ∼ g−as + g−bs .

In (1.1), the ψ direction of the puffed-up D2-brane can be an arbitrary curve in the eight

transverse directions x2, . . . , x9. Generically, the ψ curve is non-trivial in all eight directions.

If one dualizes such generic configurations just as we did above, the puffed-up branes will have

extra dipole charges dissolved in the worldvolume. For example, the more generic puffing-

up of the D1-D5 system (5.2) can be derived as follows. Consider compactifying the 12345

directions. From (1.1), following puffing-up is possible:

D0 + F1(1) →

d2(1ψ) + p(ψ)
d2(12) + p(2)
d2(13) + p(3)
d2(14) + p(4)
d2(15) + p(5)

. (5.9)

This diagram is understood as follows. The first line on the right means that, after puffing

up, we have a dipole D2-brane which extends along x1 as well as an arbitrary closed curve

ψ in the non-compact 6789 directions. As we move along ψ, the D2-brane can also move in

the internal x2 direction, which amounts to having local d2(12) charge; this is the meaning of

the second line. Similarly, the remaining lines mean that the D2-brane can move in the 345

directions. As one circumnavigates the closed ψ, the D2-brane must not have a net winding

number along any of the 2345 directions, because the original configuration did not have

any D2 charge. All this is a complicated way to say that the D0-F1 system puffs up into
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an arbitrary curve in the transverse 23456789 directions, without having net winding number

along the compact 12345 directions. From the viewpoint of the non-compact 06789 directions,

we have a 1-brane along ψ, with four different kinds of charge density varying along ψ.

The advantage of the above way of writing the puffing-up pattern is that it is easier to

take duality transformations. If we T -dualize (5.9) in the 234 directions, we obtain

D3(234) + F1(1) →

d5(1234ψ) + p(ψ)
d3(134) + f1(2)
d3(124) + f1(3)
d3(123) + f1(4)
d5(12345) + p(5)

. (5.10)

By further applying S and then T15, we obtain the general puffing-up pattern of the D1-D5

system as follows:

D5(12345) + D1(5) →

kkm(1234ψ, 5) + p(ψ)
d3(345) + d3(125)
d3(245) + d3(135)
d3(235) + d3(145)
ns5(12345) + f1(5)

. (5.11)

This diagram is understood as follows: the general configuration is a KKM along the ψ

curve as displayed in the first line on the right, with four other dipole charges listed in the

subsequent four lines dissolved in the worldvolume of the KKM as fluxes. These fluxes are

in addition to the ones that induce the original charges on the left. Note that, in order to

account for the microscopic degeneracy of the 2-charge D1-D5 system, it is crucial to have

8 arbitrary functions worth of possible configurations. Therefore, not only the 4 functions

associated with the ψ curve but also 4 dissolved dipole charges are important for reproducing

the correct microscopic entropy, including the numerical factor.11 In the original Lunin–

Mathur geometries [84, 85], these four extra dipole charges are turned off, which were later

included in [93].

Similarly, the more general puffing-up of the M2-M2 system (5.3) is

M2(12) + M2(34) →
m5(1234ψ) + p(ψ)
m2(13) + m2(24)
m2(14) + m2(23)

, (5.12)

where the 1234 directions are compact and ψ is an arbitrary curve in the non-compact 56789A

directions. The general configuration is an M5 along the ψ curve in the first line on the right,

with two other dipole charges dissolved in its worldvolume as written in the last two lines.

11This is as far as bosonic degrees of freedom are concerned; in order to reproduce the degeneracy including
fermionic ones, one should consider fermionic excitations in addition to these bosonic ones. See [92] for an
related attempt.
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Finally, the exotic puffing-up (5.4) should more generally be

D4(6789) + D4(4589) →

52
2(4567ψ, 89) + p(ψ)

kkm(45678, 9) + f1(8)
kkm(45679, 8) + f1(9)
d2(89) + d6(456789)
d4(4789) + d4(5689)
d4(5789) + d4(4689)

, (5.13)

where the 456789 directions are compact and ψ is an arbitrary curve in the non-compact 123

directions. The general configuration is a 52
2 brane along the ψ curve in the first line on the

right, with five other dipole charges dissolved in its worldvolume as written in the subsequent

five lines.

It would be interesting to study a description of such supertubes in terms of the world-

volume action of the highest dimensional brane. Some analysis of the worldvolume action of

codimension-2 branes can be found in [41,67].

5.2 Supergravity solution for an exotic supertube

To demonstrate the idea of exotic branes spontaneously generated via the supertube effect

out of standard branes, let us study the supergravity solution corresponding to the puff-up

(5.4) where the 52
2-brane dipole charge is produced from two stacks of D4-branes (we do not

consider the more general case (5.13)). A simplified version of the following discussion has

appeared in [7].

As we saw above, the desired exotic supertube (5.4) can be obtained by dualizing standard

(non-exotic) supertubes. As the initial configuration, let us take the F-P system (5.1). More

precisely, Consider Type IIB superstring in Rt×R3×S1× T 5, and denote the coordinates of

Rt,R3, S1, and T 5 by t, x = xi = (x1, x2, x3), x4, and z = (x5, . . . , x9), respectively. Let the

radius of S1 be R4. In this setup, wind an F1 string N1 times along S1 and put N2 units of

momentum along S1. This system undergoes the supertube transition

F1(4) + P(4)→ f1(ψ) + p(ψ), (5.14)

where ψ is a curve in the non-compact R3.

After such puffing up, the corresponding backreacted solution in supergravity is [94,91]

ds2
str = f−1

1

[
−(dt− A)2 + (dx4 − A)2 + (f2 − 1)(dt− dx4)2

]
+ dx2 + dz2,

e2Φ = f−1
1 , B(2) = −(f−1

1 − 1)dt ∧ dx4 + f−1
1 (dt− dx4) ∧ A,

(5.15)

where A =
∑3

i=1 Aidx
i. The functions f1, f2 and 1-form A are functions of the transverse
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coordinates x defined by

f1 = 1 +
Q1

L

∫ L

0

dv

|x− F(v)|
, f2 = 1 +

Q1

L

∫ L

0

|Ḟ(v)|2

|x− F(v)|
dv,

Ai = −Q1

L

∫ L

0

Ḟi(v)dv

|x− F(v)|
,

(5.16)

where L ≡ 2πwR4 and ˙ = ∂v. The function F(v) = (F1(v), F2(v), F3(v)) is an arbitrary

function parametrizing the curve along which the puffed-up F1 is extended (the right hand

side of (5.14)); we call F(v) the profile function. Because the curve is closed, it is periodic:

F(0) = F(L). We also define

Q2 =
Q1

L

∫ L

0

|Ḟ(v)|2dv. (5.17)

The functions (5.16) would logarithmically diverge if the profile extended over an infinite

distance. However, because the profile is a finite closed curve, these functions are finite, except

on the profile, x = F(v). Near the profile, these functions diverge as

f1 ∼
2Q1

L|Ḟ|
log

(
L1

ρ

)
, f2 ∼

2Q1|Ḟ|
L

log

(
L2

ρ

)
, A ∼ −2Q1Ḟξ

L|Ḟ|
log

(
LA

ρ

)
dξ, (5.18)

where ρ→ 0 is the distance from the profile, ξ is the coordinate along the profile, and |Ḟ|, Ḟξ
are evaluated at the point that we are zooming in onto. L1, L2, LA are some distance scales

of the order of the size of the profile, whose precise values depend on the detail of the profile.

The functions defined in (5.16) satisfy �f1,2 = �Ai =
∑3

i=1 ∂iAi = 0 away from the profile

x = F(v), where � =
∑3

i=1 ∂
2
i . This means that

d∗3dfI = d∗3dA = 0, I = 1, 2, (5.19)

where ∗3 is the Hodge star for the flat R3. So, we can define a scalar γ and 1-forms β1,2 by

dγ = ∗3dA, dβI = ∗3dfI , (5.20)

which will be used below.

By the following duality chain,
F1(4)
P (4)
f1(ψ)
p(ψ)

 S−→


D1(4)
P (4)
d1(ψ)
p(ψ)

 T4567−−−→


D3(567)
F1(4)

d5(ψ4567)
p(ψ)

 S−→


D3(567)
D1(4)

ns5(ψ4567)
p(ψ)


T5−→


D2(67)
D2(45)

ns5(ψ4567)
p(ψ)

 T8−→


D3(678)
D3(458)

kk(ψ4567; 8)
p(ψ)

 T9−→


D4(6789)
D4(4589)

52
2(ψ4567; 89)

p(ψ)

 , (5.21)
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we can dualize the above F-P solution to the desired exotic supertube, (5.4). After a long

but straightforward computation, we arrive at the following field configuration describing the

D4(6789) + D4(4589)→ 52
2(4567ψ, 89) + p(ψ) supertube in Type IIA superstring:12

ds2 = − 1√
f1f2

d̃t
2

+
√
f1f2 dx

2
123 +

√
f1

f2

dx2
45 +

√
f2

f1

dx2
67 +

√
f1f2

f1f2 + γ2
dx2

89

B(2) =
γ

f1f2 + γ2
dx8 ∧ dx9, e2Φ =

√
f1f2

f1f2 + γ2

C(3) = −γρ+ σ, C(5) =
f1f2ρ+ γσ

f1f2 + γ2
∧ dx8 ∧ dx9, C(1) = C(7) = 0,

(5.22)

where we defined

ρ = (f−1
2 d̃t− dt) ∧ dx4 ∧ dx5 + (f−1

1 d̃t− dt) ∧ dx6 ∧ dx7

σ = (β1 − γ dt) ∧ dx4 ∧ dx5 + (β2 − γ dt) ∧ dx6 ∧ dx7,

d̃t = dt− A.

(5.23)

Gauge-invariant field strengths are

G(4) ≡ dC(3) −H(3) ∧ C(1) = −dγ ∧ ρ− γ dρ+ dσ

=
[(
−f−1

2 dγ + f−2
2 γ df2

)
∧ d̃t+ f−1

2 γ dA+ dβ1

]
∧ dx4 ∧ dx5 + (1↔ 2, 45↔ 67) (5.24)

G(6) = dC(5) −H(3) ∧ C(3)

=
1

f1f2 + γ2

[
−f−1

1 f2df1 ∧ d̃t− f2dA+ γdβ2 − γf−1
1 dγ ∧ d̃t

]
∧ dx6 . . . dx9

+ (1↔ 2, 45↔ 67), (5.25)

which satisfy ∗10G4 = G6.

It is easy to see that this solution indeed has a non-geometric T -fold structure, as should

be the case for a solution with the exotic 52
2 dipole charge, as follows. From the definition

(5.16) of γ, βI , we can derive∫
c

dγ =

∫
c

∗3dA =
4πnQ1

L
, (5.26)∫

Σ

dβI =

∫
Σ

∗3dfI = −4πQI , I = 1, 2, (5.27)

where c is a closed curve which links with the curve with linking number n, while Σ is a

2-dimensional surface that encloses the entire curve (see Figure 6). See Appendix C for

derivation. Eq. (5.26) means that, as we go once along c, γ undergoes an additive shift,

γ → γ +
4πnQ1

L
. (5.28)

12The duality rules we used are summarized in Appendix A.1.
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Figure 6: The 52
2 supertube along the curve x = F(v), and curve c linked with it.

As is clear from the x8, x9 part of the metric (5.22), this means that, as we travel along c, the

radii of the internal torus T 2
89 do not come back to the original value. This is exactly what

we observed in the straight 52
2 solution (4.6). Of course, this solution is more complicated

with non-vanishing RR potentials C(3), C(5) because 52
2 also carries D4 charges dissolved in

its worldvolume. The T -duality monodromy acts on these RR fields as well.

If we move around in the spacetime without going through the curve, then γ, βI are single-

valued and we do not see the non-geometric structure. Also, as is clear from the definition

(5.16), the harmonic functions behave as fI → 1, A→ 0 as |x| → ∞. Namely, the spacetime is

asymptotically flat. Therefore, this solution (5.22) has all the advertised features; it describes

a puffed-up configuration of D4-branes with non-geometric exotic dipole charge which, being

along a closed curve, does not destroy the asymptotic structure of spacetime.

The solution (5.22) has non-vanishing RR fields C(3), C(5). Let us check that it has the

expected charges. As we discussed in section 3.2 and Appendix D, there are multiple notions

of charge and we must use Page charge when we want to discuss charge conservation. First,

let us compute the D4 charges that we started with in the polarization process (5.4). If S2 is

a 2-sphere that encloses the entire curve in R3, the D4(4589) Page charge is measured by

QPage
D4(4589) =

∫
S2×T 2

67

(G(4) −B(2) ∧G(2)) =

∫
S2×T 2

67

dC(3) =

∫
S2

d(γf−1
1 A+ β2). (5.29)

Actually, for D4, Page charge or brane source charge does not make a difference because

G(2) = 0. The first term in the last expression of (5.29) vanishes, since S2 encloses the entire

curve without going through it and therefore γ, f1, A are all single-valued. The second term

gives Q2 by (5.27). One can similarly compute the D4(6789) charge to obtain Q1. So, the D4

charges are given by QI , as expected.

Because C(5) is non-vanishing, one might think that this solution (5.22) carries non-

vanishing D2 charges as well. However, if we look at D2 Page charges, we can show that
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they vanish as they should. For example, D2(45) Page charge is

QPage
D2(45) =

∫
S2×T 2

6789

(G6 −B2 ∧G4) =

∫
S2×T 2

6789

d(C5 −B2 ∧ C3)

=

∫
S2×T 2

6789

d(−f−1
1 A ∧ dx6 . . . dx9) =

∫
S2

d(−f−1
1 A) = 0, (5.30)

because f1, A are single valued on S2 enclosing the entire curve. Therefore, there is no D2

charge, as expected. One can similarly see that the only monopole charges that the solution

(5.22) carries are the D4-brane charges on the left of (5.4).

It is instructive to see what happens to these charges if we “go through” the curve.

As discussed in section 3.2.2, this process corresponds to U -dualizing the notion of charge

according to the U -duality monodromy of the exotic brane. In this process, the quantities

γ, βI undergo additive shifts as described by (5.26), (5.27). However, we can see that D4

and D2 charges computed in (5.29) and (5.30) remain unchanged, because γ, f1,2, A are still

single-valued on S2 and because (5.27) is still true. This is understood in the language we used

in section 3.2 as follows. If we compactify the 10D theory on T 2
89 to 8D, we have T -duality

group SO(2, 2,Z) = SL(2,Z)τ ×SL(2,Z)ρ, with moduli τ, ρ defined in (3.17) transforming in

the respective SL(2,Z) factors. The 52
2-brane has the T -duality monodromy (4.15) acting on

ρ. In 8D, D2-branes not wrapping 89 and D4-branes wrapping 89 both become 2-branes, and

the 10D RR potentials Cµνρ and C89µνρ (µ, ν, ρ = 0, . . . , 7) that they couple to, respectively,

reduce to 8D 3-forms Cαµνρ (α = 1, 2) which transform covariantly under SL(2,Z)ρ as a

doublet. The precise relation is [64]

C1,µνρ = Cµνρ, C2,µνρ = C89µνρ −B89Cµνρ. (5.31)

Just as we discussed in section 3.2, this means that Cαµνρ couple to

Qα=1 = QD2,bs +B89Q
D4,bs, Qα=2 = QD4,bs, (5.32)

where QD2,bs and QD4,bs mean the brane source charge for D2(ij) and D4(ij89), respectively,

with i, j = 1, . . . , 7. The covariant charges Qα are nothing but Page charges. Under the

SL(2,Z)ρ duality monodromy around the 52
2 given in (4.15), Qα transform as(

Q1

Q2

)
→
(
Q′1
Q′2
)

=

(
1 0
−2πσ 1

)(
Q1

Q2

)
=

(
Q1

−2πσQ1 +Q2

)
. (5.33)

Because we originally had non-vanishing D4 charges but vanishing D2 charges, Q1 = 0 and

Q2 6= 0. So, even after the duality transformation (5.33), we have Q′1 = 0,Q′2 = Q2. Namely,

D2 and D4 Page charges remain unchanged even if we go through the 52
2 ring.

Because S1 × T 5 is compact, the solution (5.22) can be thought of as a solution of 4D

supergravity, where D4-branes are point particles which have puffed up into a one-dimensional
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object, 52
2. The 4D metric in the Einstein frame is

ds2
4 = − 1√

f1f2

d̃t
2

+
√
f1f2 dx

2
123. (5.34)

The 4D Einstein metric is single-valued. In the 4D viewpoint, the monodromy of the 52
2-brane

appears as the monodromy of scalar moduli.

5.3 Non-geometric microstates

The 2-charge system, which is nothing but the system of two stacks of branes that appear on

the left side of the puffing-up relation (1.1), (5.1)–(5.4), is known to have large microscopic

degeneracy. Using weak coupling descriptions, the microscopic entropy of the system can be

computed as

Smicro = 2
√

2π
√
N1N2, (5.35)

where N1, N2 are the numbers of the two branes, in the large N1,2 limit. The strong coupling,

i.e. gravity, description of the system is given by backreacted solutions of supergravity that

represent the right hand side of the puffing-up relation (1.1), (5.1)–(5.4). In different duality

frames, the supergravity solutions come in different guises. In particular, in the D1-D5 duality

frame (5.2), the puffed-up supergravity solutions, the so-called Lunin–Mathur geometries, are

configurations of Kaluza–Klein monopole with flux and are completely regular [84, 85]. By

quantizing these solutions, one can reproduce the correct order of the microscopic entropy

(5.35) [95]. Therefore, the Lunin–Mathur geometries give a genuine description of the mi-

crostates in supergravity, and are now called microstate geometries or geometric microstates.

In the D4-D4 system (5.4), on the other hand, we have shown that the puffed-up config-

urations are non-geometric solutions (5.22). They are parametrized by the profile function

F(v) just as the Lunin–Mathur geometries are, and represent string theory configurations pro-

duced by back-reaction of the 52
2-brane. Therefore, they are on complete equal footing with the

Lunin–Mathur geometries and can accordingly equally well be viewed as a strongly-coupled

description of the microstates. Namely, they are non-geometric microstates or microstate

non-geometries. Note that 52
2 has tension ∼ g−2

s , just like KKM, unlike other exotic branes

with tension ∼ g−3
s which makes a gravity description more questionable. Although the 52

2

has singularity at the core, it must be regarded as an acceptable singularity in string theory,

as the singularities of D-branes are. It is nothing more than an accident that the microstates

are regular in the D1-D5 frame.

In [96], Sen claimed that, in a fixed duality frame, in the classical limit (i.e., gs → 0 with

fixed α′), only either one of the following two possibilities must be true: (a) there only exists

a small black hole solution representing the whole ensemble, or (b) there are regular gravity

solutions representing individual microstates. Whether this claim is true or not remains highly
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controversial at the time of writing [97]. Note however that, according to Sen, the D4-D4

system is a duality frame in which there is no small black hole solution. In [96], based on

a scaling argument, he argued that in the D1-D5 system there should be no classical small

black hole solution. Since the D1-D5 system is related to the D4-D4 system by T -duality,

which is perturbative and does not modify the classical limit, there must be no small black

hole solution in the latter frame either. Therefore, if the claim of [96] is true, the D4-D4

system belongs to case (b) and there should be gravity microstates. The fact that we found

the non-geometric microstates (5.22) seems to be in accord with this claim. However, note

that Ref. [96] actually makes a stronger claim that there the gravity solution in case (b) must

be smooth. The fact the metric of (5.22) is not smooth, may mean that the claim of Ref. [96]

must be reconsidered in the case of non-geometric solutions; the non-geometric microstates

(5.22) offer an important touchstone for the validity of the claim of [96].

5.4 Circular case

When the profile function represents a circular ring, the D4+D4→ 52
2 supertube solution

(5.22) can be written down more explicitly. Let us take the profile to be

F1(v) + iF2(v) = Reiωv, F3(v) = 0, ω =
2πn

L
, (5.36)

where n ∈ Z corresponds to the number of times the 52
2 worldvolume winds around the circle

of radius R. Let us introduce the (y, ψ, x) coordinate system,

dx2
123 = (dx1)2 + (dx2)2 + (dx3)2 =

R2

(x− y)2

[
dy2

y2 − 1
+ (y2 − 1)dψ2 +

dx2

1− x2

]
, (5.37)

−∞ < y ≤ −1, 0 ≤ ψ < 2π, −1 ≤ x ≤ 1, (5.38)

which is a 3D version of the coordinate system used for black rings [87]. y is roughly a radial

coordinate which goes to −∞ near the ring and −1 near infinity (and on the axis of the ring;

see Figure 1 of [98]). x is an angular variable around the ring while ψ is an angular variable

along the ring. The explicit relations between (x1, x2, x3) and (y, ψ, x) are

x1 =

√
y2 − 1

x− y
R cosψ, x2 =

√
y2 − 1

x− y
R sinψ, x3 = ±

√
1− x2

x− y
R. (5.39)

As the ± sign in (5.39) indicates, we need two patches of (y, ψ, x) spaces to cover R3. Or, we

can use the (y, ψ, φ) coordinates with

x1 =

√
y2 − 1

cosφ− y
R cosψ, x2 =

√
y2 − 1

cosφ− y
R sinψ, x3 =

sinφ

cosφ− y
R. (5.40)

and

x = cosφ, 0 ≤ φ ≤ 2π. (5.41)
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With this range (5.41), the (y, ψ, φ) coordinates cover the entire R3. The inverse relation of

(5.39) is

x = −x2 −R2

Σ
, y = −x2 +R2

Σ
, Σ2 = (x2 +R2)2 − 4R2x2

3. (5.42)

In this (y, ψ, x) coordinate system, the functions fI , A can be computed explicitly as

fI = 1 +
QI

R

√
x− y
−2y

2F1

(
1

4
,
3

4
; 1; ζ2

)
= 1 +

2QI

πR

√
x− y
−2y

K( 2ζ
ζ−1

)
√

1− ζ
,

A = −qR
2

y2 − 1

(x− y)1/2(−2y)3/2 2F1

(
3

4
,
5

4
; 2; ζ2

)
dψ

= −qR
8
ζ2

√
−2y

x− y 2F1

(
3

4
,
5

4
; 2; ζ2

)
dψ,

(5.43)

where I = 1, 2; 2F1(α, β; γ; z) is the hypergeometric function and

Q2 = Q1R
2ω2, q ≡ Q1ω =

2πnQ1

L
, ζ ≡

√
1− 1

y2
. (5.44)

Furthermore, the equations (5.20) can be solved to give

γ = − q
√
u+ 1

4
√

2u3/2

{
(1− u) F

(φ
2

∣∣∣ 2

u+ 1

)
2F1

(
3

4
,
5

4
; 2; ζ2

)
+ uE

(φ
2

∣∣∣ 2

u+ 1

)[
3 2F1

(
3

4
,
1

4
; 2; ζ2

)
+ 2F1

(
3

4
,
5

4
; 2; ζ2

)]}
(5.45)

= −
q cosh ν

2

4 cosh3/2 ν

{
(1− u) F

(φ
2

∣∣∣ 1

sinh2 ν
2

)
2F1

(
3

4
,
5

4
; 2; tanh2 ν

)
+ uE

(φ
2

∣∣∣ 1

sinh2 ν
2

)[
3 2F1

(
3

4
,
1

4
; 2; tanh2 ν

)
+ 2F1

(
3

4
,
5

4
; 2; tanh2 ν

)]}
,

(5.46)

(βI)u = (βI)φ = 0, (5.47)

(βI)ψ =
QI

π cosh ν
2

{
−eν/2 E(2e−ν sinh ν) F

(φ
2

∣∣∣ 1

cosh2 ν
2

)
+ e−ν/2K(2e−ν sinh ν)

[
−(cosh ν + 1) E

(φ
2

∣∣∣ 1

cosh2 ν
2

)
+ cosh ν F

(φ
2

∣∣∣ 1

cosh2 ν
2

)]}
+

√
2QI e

−ν/2 sinφ

π
√

cosh ν + cosφ
K(2e−ν sinh ν) (5.48)

where

u = −y = cosh ν, ζ =
√

1− u−2 = tanh ν. (5.49)

In the above formulae, F(z|m) and E(z|m) are the elliptic integral of the first and second

kind, respectively, and K(m) and E(m) are the complete elliptic integral of the first and

50



Figure 7: 2-surface Σ with toric topology, enclosing the circular 52
2 ring. Its

boundaries ∂Σ1,2 are both directed along ψ.

second kind, respectively, defined by

E(z|m) =

∫ z

0

dt√
1−m sin2 t

, F(z|m) =

∫ z

0

√
1−m sin2 t dt (5.50)

E(m) = E
(π

2

∣∣∣m) , K(m) = F
(π

2

∣∣∣m) . (5.51)

By using the property of the elliptic integrals,

E(z + π|m) = 2E(m) + E(z|m), F(z + π|m) = 2K(m) + F(z|m). (5.52)

One can show that, as one goes through the ring, i.e. as φ → φ + 2π, the quantities γ, βI

undergo the following additive shifts:

γ → γ − 2q, (βI)ψ → (βI)ψ − 2QI . (5.53)

We can easily see that the first relation is consistent13 with (5.26), by looking at (5.44). On

the other hand, the second relation is consistent with (5.27), as follows. As the surface Σ,

take a torus that encloses the ring. Although the torus has no boundaries, make ones by

cutting it along its length (namely, along ψ). This way, one creates two boundaries ∂Σ1 and

∂Σ2 such that ∂Σ1 − ∂Σ2 = 0, both going in the ψ direction; see Figure 7. Then (5.27) can

be understood as saying ∫
∂Σ1

βI −
∫
∂Σ2

βI =

∫
dψ∆(βI)ψ = 4πQI , (5.54)

which is consistent with (5.53). In the near-ring region y → −∞ (or equivalently, ν →∞ or

u→∞), one can show

γ ≈ −qφ
π
, βψ ≈ −

Qφ

π
, (5.55)

from which the additive shifts (5.53) are easy to see.

13Up to a sign that depends on the convention.
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5.5 Near-ring analysis

Let us study the near-ring region of the circular exotic supertube above. For a general profile,

(5.18) was all we could say about the near-supertube behavior, but in this circular case we

can be more explicit.

Let us define (r, θ, ξ) coordinates by

(x1)2 + (x2)2 = (R + r cos θ)2 − r2, x3 = r sin θ, ψ =
ξ

R
. (5.56)

In the near-ring region R � r, |x3|, these coordinates give a cylindrical coordinate system;

namely, the R3
123 part of the metric is

ds2
123 ≈ dr2 + r2dθ2 + dξ2. (5.57)

In the near-ring region, the harmonic functions (5.43) reduce to

fI ≈ 1 +
QI√
2R

2F1

(
1

4
,
3

4
; 1; 1− r2

R2

)
, A ≈ − qR

4
√

2
2F1

(
3

4
,
5

4
; 2; 1− r2

R2

)
dψ. (5.58)

Expanding the hypergeometric functions, we get

fI ≈ 1 +
QI

πR
log

(
8R

r

)
, A ≈ − q

π
log

(
8e2R

r

)
dξ, (5.59)

from which we can explicitly see the asymptotic behavior (5.18). Also, in these coordinates,

γ = − q
π
θ, βI = −QI

πR
θ dξ. (5.60)

In this near-ring region, the supertube can be regarded as straight. The metric becomes

ds2 ≈ −d̃t
2

+
√
f1f2 dzdz +

√
f1f2

f1f2 + γ2
[(dx8)2 + (dx9)2] + . . . , z = reiθ. (5.61)

Let us compare14 this with the straight 52
2 metric given by (4.48):

ds2 = −dt2 + ρ2e
2ϕ1dzdz + ρ2[(dx3)2 + (dx4)2] + . . . , (5.62)

By matching the corresponding metric components as√
f1f2 ↔ ρ2e

2ϕ1 ,

√
f1f2

f1f2 + γ2
↔ ρ2, (5.63)

using the asymptotic behavior (5.59), (5.60), we see that

ρ(z) ∼ i
√
Q1Q2

πR
log L

z

, eϕ(z) ∼
√
Q1Q2

πR
log

L

z
, (5.64)

14In (5.61), we have d̃t = dt−A instead of dt in (5.62). This is because the former represents a supertube
solution with momentum flowing along the worldvolume, which does not exist in the latter.
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where L = O(R). As we discussed in section 4.2, the function eϕ(z) represents the freedom

associated with the boundary condition at infinity, which makes the spacetime well-defined

there. In the present case, we can say that the functional form of eϕ(z) in (5.64) was determined

so that the geometry is asymptotically flat. We see that (5.64) has the same form as for the

naive, infinite stand-alone straight 52
2 solution (4.57). This functional form is also the same as

the F-theory case [27, 51, 60], in which one takes eϕ(z) ∝ η(ρ)−2z−N/12 so that the transverse

space has conical deficit angle πN/12. Here, η(ρ) is the Dedekind eta function and N is the

number of 7-branes at z = 0. We do not have a full understanding of why they all agree, but

it is probably related to the fact that the boundary condition in all the cases is such that the

energy of the codimension-2 brane does not spread all the way to infinity.

5.6 Exotic solutions versus “all supersymmetric solutions”

Based on [99], it was shown in [100] that, all supersymmetric solutions in d = 5,N = 1

supergravity with vector multiplets in the timelike class can be written as15

ds2
5 = −f 2(dt+ ω)2 + f−1ds2(M4), (5.65)

where M4 is an arbitrary four-dimensional hyper-Kähler manifold and, and f and ω are a

scalar and a 1-form on M4, respectively. The timelike class means that the Killing vector

constructed from the bilinear of the Killing spinor is timelike.

It is interesting to see whether our exotic supertube solution fits in this framework or not.

The solution (5.22) describing the exotic D4(4589) + D4(4567)→ 52
2(ψ6789, 45) supertube is

not appropriate for this for the following reason. In order to put this in the framework of

d = 5 supergravity, we first lift this to M5(4589A) + M5(4567A)→ 53(ψ6789, 45A), where A

denotes the 11th direction, and compactify it on 456789. However, this solution belongs to

the null class, not the timelike one, because the naive M5-M5 solution is in the null class and

the Killing spinors of the two configurations must agree asymptotically.16

So, we should go to a different duality frame where the solution is timelike and involves ex-

otic charge. By T -dualizing (5.22) along 67, we obtain D6(456789)+D2(89)→ 52
2(ψ4567, 89),

which is an exotic supertube. By further lifting it to 11 dimensions, we get an exotic super-

tube in M-theory, KKM(456789,A) + M2(89) → 53(ψ4567, 89A). This must belong to the

timelike class, because the naive KKM+M2 solution does. The 11D metric and 3-form for

15In [100], they also assume that the vector-multiplet scalars live in a symmetric space, which is applicable
to the current situation. This condition was relaxed in [101].

16It is interesting to see whether or not this solution fits within the null class supersymmetric solutions
classified in [101].
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this exotic supertube solution are

ds2
11 = −f−2/3

1 F−2/3
[
dt+ f−1

2 γ(dxA + β2)− FA
]2

+ f
1/3
1 f2F

1/3dx2
123

+ f
1/3
1 f−1

2 F 1/3(dxA − f−1
1 γA+ β2)2 + f

1/3
1 F 1/3dx2

4567 + f
−2/3
1 F−2/3dx2

89,

A3 =

[
f2d̃t+ γ(dxA + β2)

f1f2 + γ2
− dt

]
∧ dx8 ∧ dx9,

(5.66)

where

F ≡ 1 +
γ2

f1f2

. (5.67)

To put this in the form of d = 5 supergravity, we compactify it on 456789 and keep the 0123A

part. The 5D metric is

ds2
5 = −f 2

[
dt+ f−1

2 γ(dxA + β2)− FA
]2

+ f−1ds2
4, (5.68)

where

ds2
4 = f−1

2 (dxA − f−1
1 γA+ β2)2 + f2dx

2
123, f = f

−1/3
1 F−1/3. (5.69)

The metric (5.68) appears to be of the general form (5.65). However, it is easy to see that

the 4D base metric (5.69) is not hyper-Kähler; the Ricci tensor does not vanish due to the

f−1
1 γA term.

This suggests that, because exotic supertubes describe non-geometric spacetimes in which

fields have non-trivial monodromies, the existing classification of “all supersymmetric solu-

tions” does not apply to them. It would be very interesting to nail down what assumptions

in the existing analysis should be relaxed and generalize the classification of supersymmetric

configurations to incorporate exotic solutions.

6 Toward “truly non-geometric” configurations

One could say that the exotic solutions we have discussed so far are not truly non-geometric,

in the sense that there are duality frames where they are geometric, and that the Einstein

metric in the lower (non-compact) dimensions is single-valued. In this section, we discuss the

existence of exotic solutions for which

(i) spacetime is non-geometric, i.e., the metric is multi-valued, in any duality frames,

(ii) even the Einstein metric in the lower (non-compact) dimensions is multi-valued.

The non-geometric solutions satisfying condition (i) have been known (see, e.g., [46,102–104]).

Here we discuss it using the model related to the one in previous sections. Furthermore, using

the same model, we argue for the existence of solutions satisfying the stronger condition (ii).

54



For this purpose, let us consider the following simple model. We compactify 10D string

on T 2×T 5, where the T 5 metric is flat and there is no form fields along it. So, the 10D string

frame metric can be written as

ds2
10,str = ds2

5 +
9∑

a=5

(dxa)2, ds2
5 = e2ΦG−1ds2

3,Ein + ds2
T 2 , (6.1)

where Φ is the 10D dilaton. Moreover, ds2
3,Ein is the Einstein metric in non-compact 3D and

ds2
T 2 is the metric on T 2, given by

ds2
3,Ein = gµνdx

µdxν , µ, ν = 0, 1, 2,

ds2
T 2 = Gij(dx

i + Aiµdx
µ)(dxj + Ajνdx

ν), G = detGij, i, j = 3, 4,
(6.2)

where gµν , Gij, A
i
µ depend only on xµ. If we write the internal T 2 fields as

ds2
T 2 =

ρ2

τ2

|dx3 + τdx4|2, Gij =
ρ2

τ2

(
1 τ1

τ1 |τ |2
)
, τ = τ1 + iτ2,

ρ = B34 + iG1/2 = ρ1 + iρ2,

(6.3)

then the 3D action is

S3D =

∫
d3x
√
−g
(
Rg − 4(∇φ)2 − |∇τ |

2

2τ 2
2

− |∇ρ|
2

2ρ2
2

)
, φ ≡ Φ− 1

4
logG. (6.4)

The equations of motion for φ and τ are

∇2φ = 0, ∇µ

(
∇µτ1

τ 2
2

)
= 0, ∇µ

(
∇µτ2

τ 2
2

)
+
|∇τ |2

τ 3
2

= 0. (6.5)

The ρ equations of motion are obtained from the τ equations by setting τ → ρ. In addition,

gµν should satisfy the 3D Einstein equation

Rµν −
1

2
gµνR = Tµν ,

Tµν = 4
(
∂µφ∂νφ−

1

2
gµν |∂φ|2

)
+

1

4τ 2
2

(
∂µτ∂ντ + ∂ντ∂µτ − gµν |∂τ |2

)
+ (τ → ρ).

(6.6)

This theory describes 3D gravity coupled to two scalars τ, ρ, and has duality group

SL(2,Z)×SL(2,Z)×Z2
2. The SL(2,Z)×SL(2,Z) factor acts on τ, ρ in an obvious way. The

first Z2 exchanges τ ↔ ρ while the second Z2 sends (τ, ρ)→ (−τ ,−ρ) [63]. This is the theory

studied in [27] in relation to cosmic strings and in [46] further in the context of non-geometric

compactifications. A particular solution of this is given by

ds2
3,Ein = −dt2 + eUdzdz, z = x1 + ix2, (6.7)

φ = 0, τ = τ(z), ρ = ρ(z), eU = τ2ρ2|f(z)|2, (6.8)
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where τ(z), ρ(z), f(z) are arbitrary holomorphic functions subject to the condition that eU is

single valued. If τ(z) has an SL(2,Z) monodromy around a point on the z-plane, say z = α,

there is a codimension-2 brane (which we call a τ -brane) at z = α and the internal T 2 is

non-trivially fibered around it. However, the total 5D spacetime is still geometric because T 2

is glued with the same T 2 via a basis change. On the other hand, if ρ(z) has an SL(2,Z)

monodromy around z = α (which we call a ρ-brane), this generally means that the 5D

spacetime is non-geometric, because the metric components and B-field are mixed into each

other as we go around z = α.

Not all ρ-brane branes are non-geometric; the ρ-brane around which ρ simply shifts as

ρ → ρ + 1 is geometric. Therefore, if there is a single non-geometric ρ-brane, we can always

do an SL(2,Z) duality transformation to make it geometric. However, this is not possible if

there are multiple ρ-branes with different monodromies at different points, because we cannot

dualize all non-geometric ρ-branes into geometric ones at the same time. One could use

the Z2 duality τ ↔ ρ to transform non-geometric ρ-branes into τ -branes which are always

geometric, but if there exist multiple τ -branes and ρ-branes at the same time,17 such Z2

duality transformation cannot reduce the solution geometric. The other Z2 symmetry does

not help either. Therefore, such solutions are concrete examples that are non-geometric in

the sense of (i).

Now let us move on to the second issue (ii), whether we can have a configuration that is

non-geometric even in lower dimensions. Here, we would like to use the same model (6.2) to

argue that there are configurations which are (initially) asymptotically flat R1,3 and whose

four -dimensional metric has non-trivial monodromies.

To begin with, let us take flat R1,3 × S1 with metric

ds2
5 = −dt2 + dx2 + dξ2 + dη2 + dy2, t, x, ξ, η ∈ R, y ∼= y + 2π. (6.9)

This is a 4D spacetime (times a compact S1), but let us do an angular compactification of

R1,3 by going to polar coordinates (r, θ) for the (ξ, η) plane as

ξ = r cos θ, η = r sin θ; r ≥ 0, θ ∼= θ + 2π,

ds2
5 = −dt2 + dx2 + dr2 + r2dθ2 + dy2,

(6.10)

and compactifying on the angle θ. Namely, we regard y, θ as the T 2 coordinates of the 5D→3D

compactification (6.1), (6.2), by taking x3 = y, x4 = θ. Then the “3D” fields (6.3), (6.4) are,

ds2
3,Ein = r2(−dt2 + dx2 + dr2), τ = ρ = ir, φ = −1

2
log r, (6.11)

where we set the 10D dilaton Φ = 0 so that the flat spacetime (6.9) is trivially a solution.

This is a perverse way to write non-compact R1,3 times compact S1 as a T 2 fibration over

17For examples of solutions both with τ -branes and ρ-branes, see [46]
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Figure 8: A point on the upper half z-plane around which there is non-trivial
monodromy for ρ (left) corresponds to a circular exotic brane extended in the θ
direction in R3 (right).

R1,2, although there is nothing wrong with it. The 4D Einstein frame metric is simply R1,3:

ds2
4,Ein =

e2φ

√
τ2ρ2

ds2
3,Ein +

√
τ2ρ2

e2φ
(dx4)2 = −dt2 + dx2 + dr2 + r2dθ2. (6.12)

In this setup, a configuration that is non-geometric in the non-compact 4D spacetime is

one that has non-trivial monodromy of ρ over the 3D base and asymptotes to (6.11) as r →∞.

Furthermore, the fields should behave as (6.11) also as r → 0, in order for the point r = 0 to

represent a smooth point in spacetime. See Figure 8 for a schematic explanation.

It is difficult to find an actual solution that satisfies the equations of motion (6.5), (6.6)

and has such non-geometric monodromy for ρ. Here, let us content ourselves by writing down

a static configuration which has such non-geometric monodromy but does not satisfy the

equations of motion. One can certainly use such a configuration as an initial condition to

find a time-dependent solution of the equations of motion. Therefore, the existence of such a

configuration is evidence for a non-geometric solution in low dimensions.

To find such a non-geometric configuration, let us fix the 3D metric to be simply (6.11),

which we write as

ds2
3,Ein = (Im z)2(−dt2 + dzdz), z ≡ x+ ir, Im z ≥ 0. (6.13)

On this fixed base metric, let us consider 3D fields τ(z, z), ρ(z, z) which do not necessarily

satisfy the equations of motion. Assume that, at z = α (Imα > 0), the field ρ undergoes an

SL(2,Z) monodromy

ρ → ρ′ =
aρ+ b

cρ+ d
, a, b, c, d ∈ Z, ad− bc = 1. (6.14)

This corresponds to having a circular exotic brane in the spatial R3 at z = α; see Figure

8. Because Im z = r = 0 is a special point (the origin of the polar coordinates), the fields

ρ, τ should behave in a particular way near r = 0 for the 5D geometry to be regular there.

However, in the presence of a ρ-monodromy, even if we start from a metric for which r = 0 is

a regular point, after we go around the exotic brane, we may end up with a metric for which
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r = 0 is singular. Because this is physically unacceptable, let us require that the 5D metric

be regular even if we go around the brane and come back near r = 0. Then, we ask what

constraint this requirement imposes on the possible monodromy M = ( a bc d ).

Let us assume that there is a brane at z = α with Im z > 0, and that the behavior of ρ

near r = 0 is still given by (6.11). Namely,

ρ1 = O(r), ρ2 = r +O(r2) (r → 0). (6.15)

We take this ρ because we know that this gives a regular 5D geometry. Now consider starting

from the small r region where (6.15) is valid, moving away from r = 0, going around z = α,

and coming back to the small r region again. After this process, the ρ gets transformed into

ρ′1 =
ac|ρ|2 + (ad+ bc)ρ1 + bd

|cρ+ d|2
=
bd+ acr2

d2 + c2r2
, (6.16)

ρ′2 =
ρ2

|cρ+ d|2
=

r

d2 + c2r2
. (6.17)

For simplicity, we assume that φ, τ are unchanged and has no monodromy: φ = −(1/2) log r,

τ ′ = ir. As r → 0, we want the volume of the torus ρ′2 to vanish just as ρ2 did. So, let us set

d2 = 1. If we require also that the B-field B′34 = ρ′2 vanish at r = 0, we need b = 0. Then the

condition ad− bc = 1 says that

M =

(
1 0
c 1

)
, c ∈ Z, (6.18)

where we took d = +1 since the overall sign of M does not matter. For this monodromy

matrix (6.18), the transformed ρ is

ρ′1 =
cr2

1 + c2r2
, ρ′2 =

r

1 + c2r2
. (6.19)

The transformed 5D fields are, from (6.2),

ds′25 = −dt2 + dx2 + dr2 +
r2dθ2 + dy2

1 + c2r2
, B′yθ =

acr2

1 + c2r2
(r → 0). (6.20)

The 4D Einstein metric is, using the middle expression in (6.12),

ds′24,Ein =
√

1 + c2r2(−dt2 + dx2 + dr2) +
r2

√
1 + c2r2

dθ2. (6.21)

This geometry is indeed regular at r = 0, both in 4D and 5D. So, in this configuration, we

started from a regular, asymptotically flat 4D geometry (times a compact S1) and, even after

going through an exotic monodromy (which mixes the internal S1, the angular direction θ,

and the B-field through these two directions), we still have a regular geometry. Note that, the

transformed Einstein metric (6.21) is not just different from the original form (6.12) but has
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an asymptotics totally different from the one we started from. By going through an exotic

brane, one ends up with a totally different universe!

We still have to find an explicit field configuration ρ(z, z) which does have the monodromy

(6.18) at z = α. A naive first try is

ρ(z, z) =
1

2
z−z + c

2πi
ln(z − α)

, (6.22)

which indeed behaves near r = Im z → 0 as

ρ(z, z) ∼ ir (r ∼ 0) (6.23)

and has the desired monodromy around z = α:

ρ→ ρ′ =
ρ

1 + cρ
. (6.24)

However, at large r, this ρ goes like

ρ(z, z) ∼ 1
c

2πi
ln(z − α)

(r →∞) (6.25)

instead of ρ(z, z) → ir, which is necessary to have the correct original asymptotics (even

before going through the exotic brane). So, (6.22) is too simple.

This problem can be circumvented by considering a configuration with branes and anti-

branes at the same time. For example, take

ρ(z, z) =
1

2
z−z + c

2πi
ln (z−α)(z−β)

(z−γ)(z−δ)

, α + β − γ − δ = 0. (6.26)

Namely, we placed branes at z = α, γ and anti-branes at z = β, δ. As long as we keep away

from the centers, this has the desired asymptotics,

ρ(z, z) =

{
ir +O(1) r →∞,
ir +O(r2) r → 0,

(6.27)

so that the original geometry is regular at r = 0 and is asymptotically flat R1,3 × S1, as

desired.

If we go around one of the branes (but not all of them), ρ changes into

ρ→ ρ′ =
1

2
z−z + c+ c

2πi
ln (z−α)(z−β)

(z−γ)(z−δ)

. (6.28)

The r → 0,∞ behavior is now

ρ(z, z) =


1
c

+ i
c2r

+O(r−2) r →∞,

ir +O(r2) r → 0.
(6.29)
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This is exactly the same as (6.20), as it should be.

Note that, the position of the branes and anti-branes, α, β, γ and δ, does not have to

be in the r > 0 region. So, for example, we can have only one real brane at z = α with

Imα > 0, and all others can be some kind of “image” branes with Im β, Im γ, Im δ < 0 which

are necessary to make the asymptotics right. This is just like the method of image charges in

electromagnetism.

So, there certainly is a configuration of exotic branes leading to non-geometric structure

in the Einstein metric for the lower, non-compact dimensions. We found a configuration of

circular exotic branes (with anti-branes and/or image charges) in asymptotically flat R3,1×S1.

As long as we keep away from the exotic brane, the spacetime remains asymptotically flat but,

if we go through the brane, we go to a different spacetime with different asymptotics. This

configuration does not satisfy the equation of motion and therefore is not an actual solution of

the theory. However, it certainly gives evidence for the existence of spacetimes with property

(ii) at the beginning of this section. It would be very interesting to find an actual solution of

string theory with property (ii).

7 Exotic branes and black holes

The supertube effect is a phenomenon in which some particular combination of branes, when

put together, produces a new type of brane. One notable situation in string theory where

multiple branes are put together is the black hole. In this section, we discuss the supertube

effect in the context of black holes. In particular, we argue that, via a multi-stage supertube

effect, or “double bubbling”, exotic branes play an important role in black hole physics.

So far we discussed the supertube effect in which two types of brane are put together,

producing one new type of brane. However, we can put together three types of brane. As

an example, take the 3-charge M2 system [89] which is a well studied configuration in the

context of 5D black hole microstate counting [105]. In this case, the puffing up is known to

occur as

M2(56)
M2(78)
M2(9A)

→
M5(ψ789A)
M5(ψ569A)
M5(ψ5678)

, (7.1)

where “A” denotes the x10 direction. Namely, the puffing up occurs pairwise, producing three

daughter branes which extend along an arbitrary curve parametrized by ψ in R4
1234. The

black ring solution [98,88,89] is the manifestation of this puffing up actually occurring.

Actually, the daughter charges on the right of (7.1) include combinations of charges which
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can pairwise puff up again, in principle. Such a second puffing-up would be:

M2(56)
M2(78)
M2(9A)

→
M5(ψ789A)
M5(ψ569A)
M5(ψ5678)

→
53(φ789A, ψ56)
53(φ569A, ψ78)
53(φ5678, ψ9A)

→ · · · (7.2)

Namely, the system can polarize into exotic 53 branes extended along a surface parametrized

by ψ, φ in R4
1234. This is the multi-stage supertube effect whose possibility was first pointed out

by the current authors in [7]. In [31], a supersymmetry argument was given in strong support

for such multi-stage supertube effect being indeed possible. The conjectured supersymmetric

object along an arbitrary surface was dubbed superstratum in [31].

Furthermore, as the dots in (7.2) indicate, the “granddaughter” 53-branes again form

a combination that can combine to produce still more charges. Therefore, it appears that

this puffing-up process can in principle continue indefinitely, producing all kinds of exotic

charges appearing in Table 2.18 If this is the case, then the final state will be a complicated

configuration of exotic superstrata. Conversely, it is also possible that this process happens

only a finite number of times for some dynamical reason. For example, whether supertubes

provide a good (i.e. weakly coupled) description of bound states depends on the string

coupling and on the other parameters of the theory, so presumably a similar statement is

valid for more complicated types of transitions. Either way, it would be very interesting to

investigate such processes can indeed happen or not.

Another well-known example is the D0-D4-D4-D4 system, which has been intensively

studied in the context of 4D black hole microstate counting [90], and involves four stacks of

branes: D0, D4(6789), D4(4589), D4(4567). If we bring these four stacks together, each pair

is expected to puff up into a new brane stack:

D0
D4(6789)
D4(4589)
D4(4567)

→
NS5(6789ψ)
NS5(4589ψ)
NS5(4567ψ)

52
2(6789, 45ψ)

52
2(4589, 67ψ)

52
2(4567, 89ψ)

(7.3)

Interestingly, exotic branes make their appearance even at the first stage of puffing up in this

system. The D4 + D4 → 52
2 supertube we studied in section 5 in detail is only a part of

this process. Therefore, a gravity description of black hole physics in this frame inevitably

involves exotic branes. It would be interesting to find a solution corresponding to the right

hand side of (7.3). Also in this case, the daughter branes on the right form a combination

that can combine and produce new branes. Again, the final state would be exotic superstrata

along complicated surfaces.

In the 2-charge system [84], the microscopic entropy comes from the Higgs branch of the

worldvolume theory associated with the intersection of two stacks of branes. In gravity, the

18This process can in principle produce objects with a codimension less than two. However, their relevance
to black hole physics is more speculative and therefore we focus on codimension-2 branes in this paper.
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same entropy is explained by the degrees of freedom coming from the fluctuations of the one-

dimensional geometric object which is the result of puffing up the intersection [95]. In the

3-charge system, the triple intersection of three stacks of branes leads to a more complicated

Higgs branch and larger microscopic entropy. It is conceivable that the fluctuations of the

above 2-dimensional exotic superstratum that naturally appears, with its larger number of

degrees of freedom, account for the entropy of the 3-charge system. It would hence be very

interesting to construct non-geometric solutions involving such exotic charges to see if they can

really reproduce the expected entropy. The fact that the 3-charge supergravity microstates

constructed thus far (see e.g. [106,107]) do not seem enough to account for the entropy of the

3-charge black hole [107] may be related to the non-geometric nature of exotic branes that

have been overlooked.

In the explicitly known examples of microstate geometries for large supersymmetric black

holes (see e.g. [106,108,107]) such exotic charges do not appear, and it has been argued that

purely geometric microstates alone cannot account for their entropy [107]. It would be very

interesting to study and classify microstate geometries involving exotic dipole charges, to see

whether they can provide the missing microstate geometries, and study their implications for

black hole physics and the fuzzball conjecture [32].19

The multi-stage supertube effect, if it does occur, is special to systems with 3 or more

branes. Because the daughter charge of a supertube effect are not such that can combine with

the parent charges to produce a new charge, one needs more than two daughter charges to

produce a granddaughter. This requires more than three parent charges to begin with. It is

a curious coincidence that one needs at least three stacks of branes to have a black hole with

finite horizon in string theory.

Also, it makes sense to construct black hole microstates using codimension-2 objects,

because they cannot be “fattened”. Namely, supergravity solutions representing branes with

codimension three or larger can always be made non-extremal with a finite horizon, but there

is no non-extremal supergravity solution for codimension-2 branes. This is easy to see. The

metric produced by black Dp-branes is [111], by setting q ≡ 7− p,

ds2
10,str = H−1/2(−Kdt2 + dx2

1 + · · ·+ dx2
p) +H1/2(K−1dr2 + r2dΩ2

q+1),

H = h0 + ζ
(r0

r

)q
, K = 1−

(rH
r

)q
, (7.4)

rq0 = cqgsNl
q
s, cq = (2

√
π)q−2 Γ

(q
2

)
, ζ =

√
1 +

[
1

2

(
rH
r0

)q]2

− 1

2

(
rH
r0

)q
,

where N is the number of Dp-branes, and rH is the position of the horizon. The constant h0

19However, note that more recent work [109, 110] shows that almost all entropy of 4D black holes comes
from “pure-Higgs states” which have no angular momentum. Because configurations of branes along arbitrary
surface are expected to carry non-vanishing angular momentum in general, it seems non-trivial to reproduce
the degeneracy of such pure-Higgs states.
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can be set to one by rescaling of coordinates, but we leave it arbitrary. We only displayed the

metric, but other fields are also excited. In the extremal limit, rH → 0, ζ → 1, K → 1. If we

further take the limit p→ 7 (q → 0),

H = h0 + cqgsN

(
ls
r

)q
q→0−−→ gsN

2πq
+ h0 +

gsN

2π
log

ls
r

+O(q). (7.5)

Although the first term on the right is divergent as q → 0, it can be made finite by absorbing

it into h0. This way we can obtain the metric for extremal D7-branes. Let us ask if we can

turn on non-extremality rH > 0 keeping fields finite. If we set rqH = a(q)ρqH , where a(q) is

some function of q,

K
q→0−−→ 1− a(q)− a(q)q log

(ρH
r

)
. (7.6)

In order to have a horizon, we need to keep the log so that K = 0 has a solution. This means

that we need to take a(q) ∼ q−1 but this will make K diverge as q → 0. Therefore, there does

not exist a non-extremal D7-brane solution. One may wonder if one can find codimension-2

black holes in the blackfold approach [112, 113]. However, this approach is applicable only

when there are two widely separated scales in the problem (thickness and curvature of the

horizon), which is not the case for codimension-2 objects. Therefore, it is also consistent with

non-existence of codimension-2 black holes. The fact that there is no “fat” codimension-2

object is good because, if a microstate solution could be made non-extremal, or fattened,

then we would need some other objects to explain its Bekenstein–Hawking entropy!

Although generic superstrata are expected to be exotic and thus non-geometric, there can

be special cases in which superstrata are completely geometric. Such geometric superstrata

might not be sufficient for the ultimate goal of reproducing black hole entropy, they are very

interesting in their own right and should also help us understand non-geometric superstrata.

Geometric superstrata should be describable within usual supergravity. For recent progress

toward constructing such geometric superstrata in the context of 6D supergravity, see [114,

115].

In Eq. (5.8), we showed that the BPS bound state of two kinds of brane with mass g−as and

g−bs is a supertube, which is made of a brane with tension T ∼ g
−(a+b)
s and which is spreading

over distance R ∼ g
(a+b)/2
s . Then it is tempting to conjecture that the BPS bound state of

three kinds of brane with mass g−as , g−bs , g−cs is a superstratum with tension T ∼ g
−(a+b+c)
s ,

typically spreading over distance R ∼ g
(a+b+c)/2
s , and that the bound state of four kinds of

brane with mass g−as , g−bs , g−cs , g−ds is a superstratum with tension g
−(a+b+c+d)
s spreading over

distance R ∼ g
(a+b+c+d)/2
s . Based on this, we can make an interesting observation, as follows.

Let us further assume that non-supersymmetric black holes are also made of polarized branes

spreading over distance R ∼ g
(a+b+c)/2
s or R ∼ g

(a+b+c+d)/2
s , and require that this R reproduce
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the horizon radius of the Schwarzschild black hole in D dimensions,

rH ∼ (GD)
1

D−3 ∼ (gs)
2

D−3 , (7.7)

where GD ∼ g2
s is the D-dimensional Newton constant. The relation (7.7) gives, for example,

D = 6 : rH ∼ g2/3
s , D = 5 : rH ∼ gs, D = 4 : rH ∼ g2

s , (7.8)

which is to be equal to R ∼ g
(a+b+c)/2
s or R ∼ g

(a+b+c+d)/2
s . Because the mass of branes always

come in integral powers of 1/gs, it is impossible to have R ∼ rH in D = 6. On the other

hand, for D = 4, 5, it is possible to have brane charges satisfying R ∼ rH . For example,

D1-D5-P system in D = 5 : (a, b, c) = (1, 1, 0), T ∼ g−2
s , R ∼ gs, (7.9)

D0-D4-D4-D4 system in D = 4 : (a, b, c, d) = (1, 1, 1, 1), T ∼ g−4
s , R ∼ g2

s . (7.10)

The first line (7.9) suggests that the microstates of the D1-D5-P black hole are described by

polarized branes with tension T ∼ g−2
s . In [114, 115], it was argued that the microstates of

the supersymmetric D1-D5-P black hole include geometric superstrata made of wiggly D1-D5

branes puffed up into wiggly KK monopoles, which have tension ∼ g−2
s . The above seems

to give support to such geometric superstrata actually being the typical microstates of this

system. On the other hand, (7.10) suggests that the microstates of the 4D black hole involves

very exotic objects with tension g−4
s and its description in terms of (multi-valued) metric in

10D is physically more questionable, if not totally nonsensical. One either has to go to 11D

or use the metric only as a qualitative guide. The above discussion is very crude and not

intended to be a rigorous argument, equating the size of the supersymmetric superstrata and

the horizon radius of the Schwarzschild black hole. However, we deem this as an interesting

and suggestive observation.

If a black hole microstate is made of some kind of supertube/superstratum of exotic

branes, one can imagine an object freely falling into it. The exotic supertube has some duality

monodromy around it. Therefore, when the object goes into the microstate, it is expected to

generically go through the exotic superstratum and undergo a duality transformation. After

exploring the complicated structure of the superstratum, the object will eventually come

back out (after a long time which goes to infinity in the classical limit GN → 0). For an

observer sitting at infinity, it appears that the object is no longer the same entity but has

turned into a U -dual version. On the other hand, from the point of view of the object, it

appears that it has returned to a different world—the U -dual version of the original world

it started from. Of course, these two pictures are consistent because they are only different

(dual) descriptions of the same physics. This is reminiscent of the still controversial black hole

complementarity [116,117] which claims that the two pictures of an object fallen into a black

hole, in one of which the object gets returned in the form of Hawking radiation and in the
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other of which the object crosses the horizon unscathed, are two different descriptions of the

same physics. Here we only point out this amusing similarity and leave further investigations

for future research.

In this paper, we have been arguing that exotic branes are generic objects, and hence that,

if we consider generic situations in string theory, they will inevitably show up. If we think

this way, it is natural that black holes must involve exotic branes. Very near the horizon of

a black hole, large redshift allows us to have excitations with very large proper energy, even

non-perturbative ones, at very low energy cost as measured at infinity. So, near the horizon,

all kinds of objects in string theory can be pair created and therefore exotic branes—the

generic objects—will be the main ingredients floating around near the horizon. Namely, it

seems natural that black holes are made of non-geometric exotic branes. This argument is

valid even for non-supersymmetric black holes, including Schwarzschild.

8 Discussion and future directions

Exotic branes are essential ingredients of string theory whose significance has been long un-

appreciated. In the current paper, we only initiated the exploration of this terra incognita

by studying basic aspects of exotic branes, such as their monodromic nature, supergravity

solutions, and their implications for black hole physics. Being fundamental elements in string

theory, exotic branes are expected to connect various areas in string theory and further in-

vestigation should reveal its intriguing physics.

In this last section, we would like to discuss some of possible directions for future research

related to exotic branes, which we particularly find interesting.

Non-abelian anyons. Being codimension-2 objects and carrying non-abelian monodromy

charge, exotic branes have all the features to be identified with non-abelian anyons. Abelian

anyons are particles in 2+1 dimensions whose wavefunction gets multiplied by eiθ under

exchange of two particles, with general θ ∈ R (bosons correspond to θ = 0 and fermions

to θ = π). Non-abelian anyons are generalizations for which exchange of particles induces

multiplication by non-commutative matrices of the wavefunction. Non-abelian anyons have

attracted considerable attention recently in the context of topological quantum computers

[118] and it would be interesting to study exotic branes as non-abelian anyons in this light.

It is possible, though highly speculative, that exotic branes are of some use for problems in

quantum computation.

Spacetimes with exotic monodromies. In a sense, exotic branes are generalizations of F-

theory (p, q) 7-branes [27, 51]. The idea of F-theory as non-trivial fibrations of SL(2,Z)

monodromy allowed us to study non-perturbative aspects of type IIB string theory and led

to various applications, such as realization of gauge theories with exceptional gauge groups
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[11–16] and string theory realizations of phenomenological models [119,120]. It is interesting to

generalize the F-theory construction of fibering duality groups to more general monodromies

realized by exotic branes. This direction was already pursued in [52–56, 79] and recently

there has been recurring interest in this subject. One particularly interesting setting is type

IIB superstring compactified on K3, whose low energy description is given by d = 6,N = 4b

supergravity. This theory has SO(5,m) duality group withm = 21,20 and there must be exotic

branes with SO(5,m) monodromies around them. It is interesting to explicitly construct

solutions with SO(5,m) monodromies in this supergravity theory. Recently, Refs. [121, 122]

studied supersymmetric solutions in this 6D theory preserving AdS2 × S2 symmetry and

found interesting solutions with SO(5,m) monodromies. Their solutions correspond to self-

dual strings ending on 3-branes, whose 10D lift is the D1-D5 system (or the dual thereof)

ending on a D7-brane (or a dual thereof), giving 2D CFT with boundaries. As one goes

around the D7-brane, one undergoes SO(5,m) duality transformation and the CFT becomes

dualized as well. Therefore, this gives an interesting setup in which one can study properties

of exotic branes in terms of CFT, and vice versa. Another recent paper [123] is a more direct

generalization of F-theory configurations with SL(2,Z) monodromies to SO(5,m). They

assumed R1,3 isometry and the resulting solutions include fibrations of a genus-2 Riemann

surface over P1, instead of torus fibrations over P1 as in F-theory. It would be interesting

to study the properties of such monodromic spacetimes and also to construct more general

solutions. In particular, this will help us understand what kind of monodromies are possible

in string theory, along the line of [60].

A particularly interesting case to study is the classification of all supersymmetric solutions

of N = 16 supergravity in three dimensions [38]. Preliminary work [124] shows that these all

need to be of the form Riemann surface × time, but the analysis of allowed Riemann surfaces

with punctures and prescribed holonomies appears to be very complicated. We hope to report

more on this in the future.

Doubled geometry, double field theory and non-geometric compactification. The spacetime

around exotic branes involves U -duality monodromy and is non-geometric. The simplest

case of U -folds is the T -fold, in which spacetime is non-geometrically glued together by T -

duality. T -duality is a perturbative duality in string perturbation theory and worldsheet

techniques are expected to be useful for analyzing exotic brane of T -fold type, i.e. the 52
2-

brane. Doubled geometry [10, 125–128] is a worldsheet formalism which allows for studies of

T -folds by doubling the worldsheet fields in the compact torus directions. This formalism

is expected to be useful to study the properties of 52
2-branes, such as worldsheet instanton

effects on the T -duality among NS5-branes, KKM backgrounds, and 52
2-branes [73–75].

Double field theory (DFT) [20,21] and its U -duality generalizations [22–26] are frameworks

20Type IIB superstring compactified on T 4 can be truncated to N = 4b supergravity with m = 5, and can
be studied in this framework as well.
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in which the usual coordinates xi and dual coordinates x̃i are on the same footing and provide

a natural setting in which to study non-geometric exotic branes. It would be interesting to

study how exotic branes are described in this new framework and study if it allows to study

aspects of exotic branes otherwise difficult to study. The current formulation of DFT requires

that we impose the so-called strong constraint [18, 19] on the xi, x̃i dependence of fields (see

however [17]). This constraint allows the fields to depend only on xi, x̃i, or their duals [18]. As

a result, the allowed configurations are ordinary geometric spacetimes locally, with possible

duality identifications globally. This class of configuration can locally be studied by the

ordinary supergravity and the machinery of DFT is not really needed. For a more complete

treatment of exotic branes within DFT, it is necessary that the framework is developed further

so that we can relax the strong constraint.

However, more recently, it was shown [129–132] (see also [9,133,134]) that one can gener-

alize DFT in a way such that its non-geometric Scherk–Schwarz compactification reproduces

the constraint equations in the low dimensional theory expected for non-geometric compactifi-

cations. It would be interesting to see if DFT can be used to see if there is a relation between

the non-geometric internal manifolds appearing in the context of non-geometric compacti-

fications and the non-geometric spacetime produced by exotic branes. The relation would

be similar to the geometric transition relating the geometry with wrapped branes and the

one in which the branes have disappeared and been replaced by fluxes. In other interesting

recent work [135], a Matrix Theory [136] description of non-geometric compactifications was

discussed. It would be interesting to study how exotic branes can be described within Matrix

Theory and its T -dual cousins. In particular, it is interesting to see how the non-geometric

nature of spacetime is encoded in matrix configurations.

Instanton corrections. It is well-known [137] that brane instantons induce higher curvature

corrections to the low energy effective action. Such correction terms can be determined by

requiring U -duality symmetry, supersymmetry, and physical conditions on the boundary of

the moduli space [138]. They are in general proportional to the Eisenstein series which are

eigenfunctions of the Laplace operators on the moduli space, and provide valuable information

about non-perturbative physics of string theory. Being codimension-2 objects, exotic brane

instantons are expected to contribute to those correction terms in D ≤ 2 dimensions, where

the U -duality groups are conjectured to be the infinite Kac–Moody groups E9, E10, E11. It

is interesting to examine how exotic brane instantons are encoded in low energy effective

action in D ≤ 2. Recent work on non-perturbative higher curvature corrections in D ≤ 2

includes [139].

Exotic branes and E11. It has been argued [44] that exotic branes are directly related to

the “mixed symmetry fields” in 11 dimensions predicted by E11 symmetry, which has been

claimed to underlie M-theory [140]. At this point, this is little more than numerology, but
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it is certainly interesting to pursue this direction to better understand the mysterious E11

symmetry. Recent papers discussing the exotic branes in the context of E11 include [141,142].

In section 3.2, we took some explicit examples and demonstrated that charges are con-

served in the presence of non-trivial monodromies of exotic branes, if we use the appropriate

definition of charge. It would be interesting to show this for general cases in a more system-

atic formulation. This basically means to find the expression for Page charge that transforms

covariantly under U -duality. In section 6, we argued that there exist configurations that are

non-geometric even in lower dimensions. However, we could construct only off-shell configu-

rations, not solutions that satisfy the equation of motion. It is desirable to show that actual

solutions exist which are non-geometric in lower dimensions.
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A Conventions

When necessary, we display the rank of a p-form as a superscript as ω(p). When we explicitly

write the components of a p-from ω(p), we often omit the superscript; for example,

ω(p) =
1

p!
ωi1...ipdx

i1 ∧ · · · ∧ dxip . (A.1)

We define the Hodge dual of a p-form ω(p) in d dimensions as

(∗ω)i1···id−p
=

1

p!
εi1···id−p

j1···jpωj1···jp , (A.2)

where

ε01···(d−1) = −
√
−g, ε01···(d−1) = +

1√
−g

. (A.3)

This means that

∗(dxj1 ∧ · · · ∧ dxjp) =
1

(d− p)!
εi1···id−p

j1···jpdxi1 ∧ · · · ∧ dxid−p . (A.4)
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Note that

εi1...ipj1...jd−pεi1...ipk1...kd−p
= −p! (d− p)! δ[j1

k1
· · · δjd−p]

kd−p
. (A.5)

The minus sign comes from the Lorentzian signature. Also note that, on a p-form, ∗2 =

(−1)p(d−p)+1, where +1 comes from the Lorentzian signature.

With this convention, we have

dxi1 ∧ · · · ∧ dxid = εi1···id
√
−g ddx. (A.6)

For p-forms ω, η,

∗ω ∧ η = ∗η ∧ ω = − 1

p!
ωi1···ipη

i1···ip√−g ddx (A.7)

= (−1)p(d−p)ω ∧ ∗η = (−1)p(d−p)η ∧ ∗ω (A.8)

The Γ matrices satisfy

{ΓÂ,ΓB̂} = 2ηÂB̂, ηÂB̂ = diag(−+ + · · ·+), (A.9)

where hatted index such as Â, B̂ denote the local Lorentz frame indices. The Γ matrices

with spacetime indices are defined by ΓM = eM
Â

ΓÂ where eM
Â

is the vielbein. We also define

ΓMN...P ≡ Γ[MΓN · · ·ΓP ], where antisymmetrization is taken with weight one; for example,

ΓMN ≡ 1
2
(ΓMΓN − ΓNΓM). For a p-form A(p) = 1

p!
A

(p)
M1...Mp

dxM1 ∧ · · · ∧ dxMp , we define

/A(p) ≡ 1

p!
ΓM1...MpAM1...Mp . (A.10)

The covariant derivative of a spinor ε is defined by

∇Mε = ∂Mε+
1

4
ωMÂB̂ΓÂB̂ε, (A.11)

where ωMÂB̂ is the spin connection.

A.1 Duality rules

Let us first consider T -duality [143]. Let the 10D metric in string frame in type IIA be

ds2
IIA = g(9)

µν dx
µdxν + e2σ(d̃x9)2, d̃x9 = dx9 + v1, (A.12)

where as picked x9 as special direction, and µ, ν = 0, . . . , 8. Let the NSNS B-field be

B2 = b2 + b1 ∧ d̃x9, (A.13)
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and define the 9D dilaton by

ϕ9 = Φ− 1

2
σ (A.14)

where Φ is the 10D dilaton. Performing a T -duality along x9, the metric, B-field, dilaton in

type IIB are given by

ds2
IIB = g′(9)

µν dx
µdxν + e2σ(d̂x9)2, d̂x9 = dx9 + v′1, (A.15)

B′2 = b′2 + b′1 ∧ d̂x9, ϕ′9 = Φ′ − 1

2
σ′ (A.16)

with

g′(9)
µν = g(9)

µν , v′1 = −b1, b′1 = −v1, b′2 = b2 + b1 ∧ v1, σ′ = −σ, ϕ′ = ϕ.

(A.17)

For the RR potentials, if decompose them in type IIA as

Codd = codd + ceven ∧ d̃x9, (A.18)

the type IIB ones are given by

C ′even = ceven + codd ∧ d̃x9. (A.19)

Here, Codd, C
′
even are formal sums of RR potentials with various rank, as defined in (D.14),

(D.28).

The S-duality transformation rules are

ds′210,str = e−Φds2
10,str, Φ′ = −Φ, B′2 = C2, C ′2 = −B2, C̃ ′4 = C̃4, (A.20)

where C̃4 = C4 − 1
2
B2 ∧ C2.

The relation between the M-theory fields and type IIA ones is

ds2
11 = e−

2
3

Φds2
10,str + e

4
3

Φ(dxA + C1)2, A3 = C3 +B2 ∧ dxA, (A.21)

where xA is the eleventh direction.

B 10D lift of 8D T-duality on spinors

B.1 Relation between 10D and 8D spinors

If we denote the 8D Gamma matrices by γµ̂, µ = 0, . . . , 7, which are 16 × 16 matrices, the

10D Gamma matrices ΓM̂ , M = 0, . . . , 9, which are 32× 32 matrices, can be written as

Γµ̂ = γµ̂ ⊗ (−τ 3), µ = 0, . . . , 7,

Γ8̂ = 1l⊗ τ 1, Γ9̂ = 1l⊗ τ 2,
(B.1)
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where τ i are the Pauli matrices. Here we are following the convention of [144]. The 8D

chirality matrix γ9 ≡ −iγ 0̂ · · · γ 7̂ is related to the 10D one by

Γ11 = γ9 ⊗ τ 3. (B.2)

A 8D Majorana spinor ζ8 is defined by

ζ∗8 = B8ζ8, B8 = γ 3̂γ 5̂γ 7̂, (B.3)

while a 10D Majorana spinor ζ10 is defined by

ζ∗10 = B10ζ10, B10 = Γ3̂Γ5̂Γ7̂Γ9̂ = B8 ⊗ iτ 1. (B.4)

One can take B8, B10 to satisfy

B∗8 = −B8, B∗10 = B10. (B.5)

Using the above, it is easy to show that a 10D Majorana–Weyl spinor ζ10± with positive

(negative) chirality can be decomposed as

ζ10± = ζ8± ⊗ ( 1
0 ) + iB8ζ

∗
8± ⊗ ( 0

1 ) (B.6)

where ζ8± is a 8D Weyl spinor with positive (negative) chirality. Note that a 10D Majorana–

Weyl spinor and a 8D Weyl spinor have the same number of independent (16 real) components.

Or, equivalently,

ζ10± = iB8(ζ ′8∓)∗ ⊗ ( 1
0 ) + ζ ′8∓ ⊗ ( 0

1 ). (B.7)

where ζ ′8± is a 8D Weyl spinor with positive (negative) chirality.

B.2 10D lift of 8D T-duality action on spinors

In section 4.2, we discussed how the 8D spinor ηA transforms under the 8D duality transfor-

mation q ∈ SL(2,Z)ρ, and how the transformation law can be rewritten in terms of the 10D

spinor ε as in (4.53). Here, we derive this relation.

The 10D N = 2 supergravity has two gravitinos and their supersymmetry transformation

law is parametrized by two 10D Majorana–Weyl spinors ε1, ε2, whose chirality depends on

whether we are considering type IIA or type IIB supergravity as follows:

IIA : Γ11ε1 = +ε1, Γ11ε2 = −ε2
IIB : Γ11ε1 = −ε1, Γ11ε2 = −ε2.

(B.8)

When compactified on a 2-torus T 2
89, this theory reduces to 8D N = 2 supergravity whose

supersymmetry transformation law is parametrized by two 8D spinors ηA, A = 1, 2, both
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of which are positive chirality Weyl spinors (γ9ηA = +ηA). This theory has U -duality group

SL(3)U×SL(2)U whose maximal compact subgroup is theR-symmetry group SU(2)R×U(1)R.

If one performs an SL(3)U × SL(2)U duality transformation, ηA transforms under SU(2)R ×
U(1)R in the 2 1

2
representation as one can see from Table 16 of [82]. As usual [145,146], this

is induced by the compensating gauge transformation.

The 8D T -duality group SO(2, 2) = SL(2)τ × SL(2)ρ is a subgroup of the 8D U -duality

group SL(3)U × SL(2)U . The relation between the two is [6]

IIA : SL(2)τ ⊂ SL(3)U , SL(2)ρ = SL(2)U ,

IIB : SL(2)τ = SL(2)U , SL(2)ρ ⊂ SL(3)U .
(B.9)

This means that, if we do an SL(2)ρ transformation

q =

(
a b
c d

)
∈ SL(2)ρ, ad− bc = 1, (B.10)

the 8D spinor ηA, being in 2 1
2

of SU(2)R × U(1)R ⊂ SL(3)U × SL(2)U , transforms as

ηA →

e
i
2

arg(cρ+d)ηA (IIA),

[e
i
2

arg(cρ+d)σ3
]A
B ηB (IIB),

(B.11)

which is (4.52).

We would like to rewrite (B.11) in terms of the 10D spinor ε = ( ε1ε2 ). Considering the

chirality of ε1,2, ηA and using (B.6),(B.7), the reduction rules are

IIA : ε1 = η1 ⊗ ( 1
0 ) + iB8η

∗
1 ⊗ ( 0

1 ), ε2 = η2 ⊗ ( 0
1 ) + iB8η

∗
2 ⊗ ( 1

0 ) (B.12)

IIB : ε1 = η1 ⊗ ( 0
1 ) + iB8η

∗
1 ⊗ ( 1

0 ), ε2 = η2 ⊗ ( 0
1 ) + iB8η

∗
2 ⊗ ( 1

0 ) (B.13)

Using this, it is easy to see that the transformation law (B.11) can be written as

ε1 → e±
i
2
τ3 arg(cρ+d)ε1, ε2 → e∓

i
2
τ3 arg(cρ+d)ε2, (B.14)

where the ±,∓ signs are for IIA/IIB. In terms of the doublet ε = ( ε1ε2 ), this is

ε→ e±
i
2
τ3σ3 arg(cρ+d)ε = e±

1
2

Γ8̂9̂σ3 arg(cρ+d)ε, (B.15)

where in the last equality we used (B.1). This equation was used in (4.53).

C Derivation of (5.26), (5.27)

From (5.20), ∫
Σ

dβI =

∫
Σ

∗3dfI =

∫
B3

d∗3dfI , (C.1)
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where B3 is a 3-manifold such that ∂B3 = Σ. Here,

d∗3df1 =
Q1

L

∫ L

0

dv d∗3d

(
1

|x− F(v)|

)
= −4πQ1

L

∫ L

0

dv δ(3)(x− F(v))d3x, (C.2)

where d3x = dx1 ∧ dx2 ∧ dx3. Thus we arrive at (5.27) for I = 1 as follows:∫
Σ

dβ1 = −4πQ1

L

∫ L

0

dv

∫
B3

d3x δ(3)(x− F(v)) = −4πQ1

L

∫ L

0

dv = −4πQ1, (C.3)

where in the second equality we used the fact that the entire profile is insideB3. The derivation

for I = 2 is similar.

On the other hand,∫
c

dγ =

∫
c

∗3dA = −Q1

L

∫ L

0

dv

∫
c

∗3d

(
Ḟi(v)dxi

|x− F(v)|

)
= −Q1

L
εijk

∫ L

0

dv

∫
c

Ḟi(x− F )jdx
k

|x− F(v)|3
.

(C.4)

Because d2γ = 0, this integral is invariant under homotopic deformation of c. So, let us

take it to be a very small circle going around a point on the profile. Near that point, take a

coordinate system so that

F1(v) = F2(v) = 0, F3(v) = fv, x1 + ix2 = reiθ. (C.5)

Because the integrand of (C.4) is ∼ |x3|−2, the only contribution comes near that point, and∫
c

dγ =
nfQ1

L

∫ L

0

dv

∫
r2dθ

[r2 + (x3 − fv)2]3/2
=

4πnQ1

L
, (C.6)

where n is the number of times the profile is going through the point. This is (5.26).

D Page charge for D-branes21

In the presence of Chern–Simons terms or modified Bianchi identities,22 it is possible for gauge

fields to carry charge and consequently there are more than one possible notions of charge

one can naturally define [37]. Brane source charge is gauge-invariant and localized but not

conserved or quantized. Maxwell charge is gauge-invariant and conserved but not localized

or quantized. Page charge is conserved, localized, and quantized but is gauge-invariant only

up to small gauge transformation; it will change under large gauge transformation.

In supergravity that is the low energy description of superstring theory, such Chern–Simons

terms are present and we must use an appropriate notion of charge depending on the physical

purpose of the analysis. Here we study different notions of D-brane charge in string theory.

21We thank S. Hirano and D. Marolf for helpful discussions on this subject.
22Here we are restricting to Abelian gauge fields.
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We first recall the equations of motion of type IIA and IIB supergravity without sources.

Then, we introduce D-brane sources that appear on the right hand side of the supergravity

equations of motion and study how to define brane source charge and Page charge for D-

branes. The result for D-brane Page charge is used in the main text where we are interested

in charge conservation in exotic backgrounds.

The Page charge for D-branes was studied in [37] in the absence of NS5-branes. A partial

analysis of D-brane Page charge in the presence of NS5-branes was done in [147] (see also

[148]) based on explicit examples but no complete analysis has appeared in the literature;

in particular, it was not clear how to define conserved Page charge in the presence of both

D-branes and NS5-branes. We fill this gap and describe how to define Page charge in the

presence of both types of brane, although we consider only the Wess–Zumino terms and not

the DBI term. We expect that this result has a wide range of possible application.

In this Appendix, we will display the rank of a form as a subscript; for example, Cp+1 is

a (p + 1)-form. We will often omit the exterior product symbol ∧ to avoid clutter. For our

convention for differential forms and the Hodge star ∗, see Appendix A.

D.1 Supergravity equations without sources

10D type IIA

The bosonic part of the action for 10D IIA supergravity is

2κ2
10S

IIA =

∫
d10x
√
−g
[
e−2Φ

(
R + 4(∂Φ)2 − 1

2 · 3!
HµνρH

µνρ

)
− 1

2 · 2
GµνG

µν − 1

2 · 4
GµνρσG

µνρσ

]
− 1

2

∫
B2 ∧ dC3 ∧ dC3

=

∫ [
e−2Φ

(
−∗R− 4 ∗dΦ ∧ dΦ +

1

2
∗H3 ∧H3

)
+

1

2
∗G2 ∧G2 +

1

2
∗G4 ∧G4 −

1

2
B2 ∧ dC3 ∧ dC3

]
, (D.1)

where

2κ2
10 ≡ (2π)7l8s , H3 ≡ dB2, G2 ≡ dC1, G4 ≡ dC3 −H3 ∧ C1. (D.2)

The bosonic equations of motion derived from this action and Bianchi identities for form fields

can be written as

dH3 = 0, d(∗e−2ΦH3) = −G2 ∧ ∗G4 +
1

2
G4 ∧G4 (D.3a)

dG2 = 0, d ∗G2 = −H3 ∧ ∗G4 (D.3b)

dG4 = H3 ∧G2, d ∗G4 = H3 ∧G4. (D.3c)
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If we define G6, G8 by

G6 = + ∗G4, G8 = − ∗G2, G4 = − ∗G6, G2 = + ∗G8, (D.4)

or more concisely by [149]

∗Gp = (−1)p(p−1)/2G10−p = (−1)b
p
2
cG10−p,

Gp = (−1)p(p+1)/2+1 ∗G10−p = (−1)b
p
2
c+p+1 ∗G10−p

(D.5)

where bkc (the floor function) is the largest integer less than or equal to k, then the equations

(D.3b), (D.3c) can be written uniformly as

dGp −H3 ∧Gp−2 = 0, p = 2, 4, 6, 8. (D.6)

Some useful formulas involving bkc are, for n ∈ Z,

(−1)b
n
2
c = (−1)b

−n+1
2
c = (−1)n(n−1)/2, (−1)b−

n
2
c = (−1)b

n+1
2
c = (−1)b

n
2
c+n,

(−1)b
n−1
2
c = (−1)b

n
2
c+n+1, (−1)b

−n−1
2
c = (−1)b

n
2
c+1. (D.7)

If we define the formal sum

Geven =
∑
p: even

Gp (D.8)

then the equations of motion (D.6) can be written collectively as [149]

dGeven −H3 ∧Geven = 0. (D.9)

and the relation (D.5) translates into the “anti-self-duality” of Geven,

∗Geven + T Geven = 0. (D.10)

Here, transpose T is defined by [143]

T dxi1 ∧ · · · ∧ dxip = dxip ∧ · · · ∧ dxi1 . (D.11)

In other words, on a p-form, T = (−1)p(p−1)/2 = (−1)b
p
2
c. The equation of motion for B2 can

be written as

dH7 = −G2 ∧G6 +
1

2
G4 ∧G4 =

1

2

∑
n

(−1)nG2n ∧G8−2n =
1

2
(Geven ∧ T Geven)8,

H7 ≡ e−2Φ∗H3,

(D.12)

where ()8 means the 8-form part.

The H3 equation (D.3a) says that we can write H3 in terms of the potential B2 as

H3 = dB2. (D.13)
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The Geven equation (D.9) means that we can write it in terms of the potential Codd as

Geven = dCodd −H3 ∧ Codd. (D.14)

where Codd =
∑

p: oddCp. The field strengths H3 and Geven are invariant under the gauge

transformation

δB2 = dζ1, δCodd = dλeven −H3 ∧ λeven, (D.15)

where ζ1 is a 1-form while λeven is a sum of even forms, λeven =
∑

p: even λp.

Likewise, the H7 equation (D.12) can be solved by

H7 = dB6 +
1

2
(−G2C5 +G4C3 −G6C1) = dB6 +

1

2

∑
n

(−1)nG2nC7−2n

= dB6 +
1

2
(T Geven ∧ Codd)7. (D.16)

This is invariant under the gauge transformation

δB6 = dζ5 +
1

2
(G2λ4 −G4λ2 +G6λ0) = dζ5 +

1

2

∑
n

(−1)n−1G2nλ6−2n

= dζ5 −
1

2
(T Geven ∧ λeven)6. (D.17)

10D type IIB

In type IIB supergravity in 10D, the bosonic equations of motion and Bianchi identities for

the forms can be written as

dH3 = 0, d(e−2Φ ∗H3) = G1 ∧ ∗G3 +G3 ∧ ∗G5, (D.18)

dG1 = 0, d ∗G1 = −H3 ∧ ∗G3, (D.19)

dG3 = H3 ∧G1, d ∗G3 = −H3 ∧ ∗G5, (D.20)

dG5 = H3 ∧G3, ∗G5 = G5 (D.21)

If we define G7, G9 by

G7 = − ∗G3, G9 = + ∗G1, G3 = − ∗G7, G1 = + ∗G9, (D.22)

or more concisely by (D.5), then the form equations of motion can be written as

dGp = H3 ∧Gp−2. (D.23)

If we define the formal sum

Godd =
∑
p: odd

Gp (D.24)
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then the equation of motion is simply

Godd = H3 ∧Godd. (D.25)

and Godd satisfies “self-duality”

∗Godd − T Godd = 0. (D.26)

The equation of motion for B2 is

dH7 = −G1 ∧G7 +G3 ∧G5 =
1

2

∑
n

(−1)n+1G2n+1 ∧G7−2n =
1

2
(Godd ∧ T Godd)8,

H7 = ∗e−2ΦH3. (D.27)

The equations of motion (D.25) mean that we can write the field strengths in terms of

potentials as

Godd = dCeven −H3 ∧ Ceven, Ceven =
∑
p: even

Cp. (D.28)

On the other hand, the H7 equation (D.27) can be solved by

H7 = dB6 +
1

2
(G1C6 −G3C4 +G5C2 −G7C0) = dB6 +

1

2

∑
n

(−1)nG2n+1C6−2n

= dB6 +
1

2
(T Godd ∧ Ceven)7. (D.29)

We have the gauge symmetry

δB2 = dζ1, δCeven = dλodd −H3 ∧ λodd, λodd =
∑
p: odd

λp, (D.30)

under which the field strengths Godd, H3 are invariant. Also, it is easy to show that H7 is

invariant under

δB6 = dζ5 +
1

2
(G1λ5 −G3λ3 +G5λ1) = dζ5 +

1

2

∑
p

(−1)nG2n+1λ5−2n

= dζ5 +
1

2
(T Godd ∧ λodd)6. (D.31)

D.2 Inclusion of sources

In the above, we considered equations of motion of type IIA/IIB supergravity in 10D without

charge source. Now, let us introduce D-brane sources and study how the equations of motion

get modified. By looking at the structure of the equations, we will define conserved Page

charge for D-branes.
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D.2.1 D-brane sources

First, let us begin with the case without NS5-brane source and hence dH3 = 0. However,

B2, H3 can be non-vanishing. Here we consider both type IIA/B at the same time and

represent Codd and Ceven both by C. Similarly, G = Geven/odd and λ = λeven/odd.

Since the Dp-brane is electrically coupled to Cp+1, the D-brane action includes
∫
p+1

C,

where
∫
p+1

denotes the integral over the (p + 1)-dimensional worldvolume of the Dp-brane.

However, this minimal coupling
∫
p+1

C is not invariant under the C gauge transformation

δC = dλ−H3λ. (D.32)

Therefore, the minimal coupling is not sufficient and should be modified to the well-known

Wess–Zumino (WZ) action
∫
p+1

e−B2C, which is invariant under (D.32) because its variation

is a total derivative:

δ(e−B2C) = e−B2(dλ−H3λ) = d(e−B2λ). (D.33)

This is not the end of the story; in order to make the WZ term invariant also under the

B2 gauge transformation

δB2 = dζ1, (D.34)

we should have a worldvolume 1-form gauge field V1 with the transformation rule

δV1 = − 1

2πα′
ζ1, (D.35)

so that

2πα′F2 ≡ B2 + 2πα′F2 ≡ B2 + 2πα′dV1 (D.36)

is invariant. This is how we find the WZ action for a Dp-brane to be

SDp
WZ =

1

(2π)plp+1
s

∫
p+1

e−2πα′F2C =
1

(2π)plp+1
s

∫
10

e−2πα′F2 C δDp
9−p, (D.37)

where
∫

10
denotes the integral over the entire 10-dimensional spacetime. δDp

9−p is a (9−p)-form

whose support is a delta function along the brane worldvolume and whose form components

are transverse to the brane worldvolume. More precisely, δDp
9−p satisfies, for any (p + 1)-form

ωp+1, ∫
p+1

ωp+1 =

∫
10

ωp+1 ∧ δDp
9−p. (D.38)

In other words, δDp is the Poincaré dual of brane worldvolume. For example, if a Dp-

brane is extending along x0, . . . , xp and sitting at xp+1 = · · · = x9 = 0, then δDp
9−p =
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±δ(xp+1) · · · δ(x9) dxp+1 ∧ · · · ∧ dx9, where the ± signs correspond to two possible orienta-

tions of the brane. If the D-brane has no endpoint, then dδDp
9−p = 0. When there are multiple

D-branes, the WZ action for the total D-brane system is

SD
WZ =

∑
p: even/odd

1

(2π)plp+1
s

∫
10

e−2πα′F2 C δDp
9−p, (D.39)

where p is even (odd) for type IIA (IIB). We will write such a sum just as
∑

p henceforth;

whether p is even or odd must be clear from the summand. For later convenience, let us write

(D.39) as

2κ2
10 S

D
WZ =

∫
10

e−2πα′F2 C δD, δD ≡
∑
p

(2πls)
7−pδDp

9−p. (D.40)

Henceforth, we assume that the D-branes do not have endpoints and therefore

dδDp
9−p = dδD = 0. (D.41)

Generalization to the case with endpoints is straightforward but we do not consider it for

simplicity of the discussion.

How do the C equations of motion, (D.9) and (D.25), change in the presence of the D-

brane source (D.40)? Because (D.39) involves not only Cp<4 but also their duals Cp>4, which

are not independent degrees of freedom,23 care must be taken when deriving the equations of

motion for C. However, it is known that one can derive the correct equations of motion by

taking the following “democratic” action [64,149]

2κ2
10 S

bulk,RR =
1

4

∑
p

∫
10

∗Gp+2 ∧Gp+2 =
1

4

∫
10

∗G ∧G, (D.42)

where summation is over all p; namely, p = 0, 2, 4, 6 for type IIA and p = −1, 1, 3, 5, 7 for type

IIB. Here, Gp+2 are defined by Gp+2 = dCp+1 − H3Cp−1. We treat all Cp+1’s independent

when deriving the equation of motion, and then impose the duality condition (D.5) afterward.

Explicitly, the variation of the action (D.42) with respect to Cp+1 is

2κ2
10 δS

bulk,RR =
1

2

∑
p

∫
10

∗Gp+2 ∧ (dδCp+1 −H3 ∧ δCp−1)

=
1

2

∑
p

(−1)p+1

∫
10

(d∗Gp+2 +H3 ∧ ∗Gp+4) ∧ δCp+1, (D.43)

On the other hand, the variation of the WZ action (D.40) is

2κ2
10 δS

D
WZ =

1

2

∑
p

∫
10

e−2πα′F2 δCp+1 δ
D =

1

2

∑
p

(−1)p+1

∫
10

e−2πα′F2 δD δCp+1. (D.44)

23For type IIB, C4 has self-dual field strength and only a half of its components, up to gauge transformation,
are independent degrees of freedom.
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Note that, in the democratic formulation, one must divide the interaction (D.40) by two to

get the correct result [150, 151]. Namely, we obtained the variation (D.44) by varying 1/2 of

(D.40). Also, the (−1)p+1 sign in the last expression came from commuting δCp+1 and δD

through. Combining the two,24 the C equation of motion in the presence of D-brane sources

is found to be

d∗Gp+2 +H3 ∧ ∗Gp+4 + e−2πα′F2 δD = 0. (D.45)

By using the duality relation (D.5), we arrive at

dG8−p −H3G6−p = (−1)b
p
2
c(e−2πα′F2δD

)
9−p ≡ ∗j

Dp,bs
p+1 . (D.46)

This equation defines the brane source current (p + 1)-form jDp,bs
p+1 , which is clearly gauge

invariant because the left hand side is. It is also localized at the position of the D-brane. By

summing over p, we can write (D.46) more concisely as

dG−H3G = e+2πα′F2δD = ∗jD,bs, (D.47)

where we defined

δD ≡
∑
p

(−1)b
p
2
c(2πls)

7−pδDp
9−p = T δD, jD,bs ≡

∑
p

jDp,bs
p+1 . (D.48)

The sign in front of F2 flipped in going from (D.46) to (D.47) because of the following

manipulations:∑
p

(−1)b
p
2
c(e−2πα′F2δD)9−p =

∑
p,n

(−1)b
p
2
c (−2πα′F2)n

n!
(2πls)

7−p−2nδ
D(p+ 2n)
9−p−2n

=
∑
q,n

(−1)b
q
2
c−n (−2πα′F2)n

n!
(2πls)

7−qδDq
9−q (q = p+ 2n)

=
∑
q,n

(−1)b
q
2
c (2πα

′F2)n

n!
(2πls)

7−qδDq
9−q = e2πα′F2δD. (D.49)

If we insert the definition G = dC −H3C into (D.47), we obtain

d(dC −H3C)−H3(dC −H3C) = d2C = ∗jD,bs, (D.50)

where we used dH3 = 0. This is just right, because the violation of the Bianchi identity

d2C = 0 is directly related to the existence of brane sources coupled to C. So, it is appropriate

to call the quantity jD,bs brane source current. Explicitly written, the expression for Dp-brane

24Note that the DBI action for D-branes does not contribute to the C equation of motion.
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source current ∗jDp,bs
p+1 is

∗jD0,bs
1 = (2πls)

7

[
δD0

9 −
F2

2π
δD2

7 +
1

2

(
F2

2π

)2

δD4
5 −

1

3!

(
F2

2π

)3

δD6
3

]
,

∗jD2,bs
3 = (2πls)

5

[
−δD2

7 +
F2

2π
δD4

5 −
1

2

(
F2

2π

)2

δD6
3

]
, . . .

(D.51)

Namely, we have the standard expression of the combination 2πα′F2 = B2 + 2πα′F2 inducing

lower D-brane charges on D-brane worldvolume.

However, a problem with the brane source current jD,bs is that it is not conserved; by

taking exterior derivative of (D.47), we obtain

d ∗jD,bs = d2G+ dH3G−H3 ∗jD,bs 6= 0. (D.52)

The first term, which superficially vanishes, does not necessarily vanish in the presence of

singular sources. The second term vanishes if there is no NS5-brane. The last term is non-

vanishing in general.

If we can rewrite the H3G on the left hand side of (D.47) in terms of a total derivative

d(...), one can define a current that is conserved. Such conserved current is called Page

current [152,37]. There are two ways to do that; namely, (D.47) can be rewritten as

d(e−B2G) = e−B2e2πα′F2δD = e2πα′F2δD, (D.53)

d(G+H3 ∧ C) = e2πα′F2δD = eB2+2πα′F2δD. (D.54)

In deriving the second one we used that dH3 = 0 in the absence of NS5 source. Therefore, one

may think that there are two possible ways to define conserved Page current jD,Page, using the

two expressions on the right hand side, because the left hand side is written as d(...) which

apparently vanishes by acting by d, implying that the Page current is conserved, d∗jD,Page = 0.

However, this is too quick because C,G are singular at the point of the source and they are

not necessarily annihilated by d2. Actually, it is clear, from the explicit expression on the

right hand side, that (D.53) is annihilated by d but (D.54) is not. Namely,

d(e2πα′F2δD) = 0, d(eB2+2πα′F2δD) = H3 e
B2+2πα′F2δD 6= 0, (D.55)

where we used dδD = 0 because of (D.41). Therefore, the correct choice is (D.53); the

conserved Page current jD,Page is

d(e−B2G) = e2πα′F2δD ≡ ∗jD,Page, d ∗jD,Page = 0. (D.56)

Because the current jD,Page is conserved, we can define the conserved Page charge for Dp-brane

contained in a (9− p)-volume V 9−p by

QDp,Page ≡ 1

(2πls)7−p

∫
V 9−p

∗jD,Page =
1

(2πls)7−p

∫
S8−p

e−B2G, (D.57)
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where S8−p = ∂V 9−p is an (8− p)-surface.

By comparing (D.56) with (D.47), we see that the Page current ∗jD,Page is obtained by sub-

tracting from the D-brane source current ∗jD,bs the D-brane charges induced by the spacetime

field B2. Namely, Page current ∗jD,Page is induced only by the D-brane worldvolume field F2.

The explicit expression for ∗jDp,Page
p+1 is obtained from the one for ∗jDp,bs

p+1 , (D.51), by replacing

F2 by F2.

D.2.2 NS5-brane source

Up until now, we assumed that there is no NS5-brane source and therefore dH3 = 0. Now let

us consider NS5-brane source so that dH3 6= 0.

Note that it appears that the RR C fields on NS5 worldvolume induce D-brane charges.

This can be motivated by dualities as follows. For example, (B2)12 on D5(12345) induces

D3(345). The S-dual of this statement is that (C2)12 on NS5(12345) induces D3(345), and a

further T -duality along x3 says that (C3)12 on NS5(12345) induces D2(45). However, the way

this works must be not so simple. In order that (C3)12 on NS5(12345) induces D2(45), one

naively thinks that the NS5-brane WZ terms contains
∫

6
C3∧C3, but this identically vanishes.

We will discuss below in what sense D-brane source charges are induced on NS5 worldvolume.

We can derive the WZ coupling for the NS5-brane by following the logic around (D.33)

where we derived the WZ term for D-branes by gauge invariance. This is the strategy taken

in [66]. The NS5-brane is electrically coupled to B6, but the minimal coupling
∫

6
B6 is not

gauge invariant (we defined B6 in (D.16) for IIA and in (D.29) for IIB). Just like we defined

the gauge invariant field 2πα′F2 ≡ B2 +2πα′F2 on D-brane worldvolume, we can define gauge

invariant fields on the NS5 worldvolume by introducing worldvolume gauge fields [66]. In type

IIA, we define

G1 ≡ C1 + dc0, G3 ≡ C3 + dc2 −H3c0, G5 ≡ C5 + dc4 −H3c2, (D.58)

where c0,2,4 are worldvolume fields with the gauge transformation rule

δc0 = −λ0, δc2 = −λ2, δc4 = −λ4. (D.59)

Then it is not difficult to find a combination of fields which transforms into a total derivative:

δ

[
B6 +

1

2
(−G5C1 + G3C3 − G1C5)

]
= d

[
ζ5 +

1

2
(G5λ0 − G3λ2 + G1λ4)

]
. (D.60)

Therefore, the WZ term for IIA NS5 is

2κ2
10S

NS5A
WZ = (2πls)

2

∫
6

[
B6 +

1

2
(−G5C1 + G3C3 − G1C5)

]
. (D.61)
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This is pretty much the same as eq. (3.22) of [66]. Explicitly written, this is

2κ2
10S

NS5A
WZ = (2πls)

2

∫
6

[
B6 +

1

2

(
−(dc4 −H3c2)C1 + (dc2 −H3c0)C3 − dc0C5

)]
. (D.62)

Note that quadratic terms in C canceled out; for example, as mentioned above, there is no

term C3∧C3. By adding this WZ to the bulk action (D.42) and taking variation with respect

to C1,3,5, assuming that we can still use the democratic formulation in the presence of NS5

source, we obtain the equations of motion

dG8 −H3G6 = (2πls)
2(dc4 −H3c2) δNS5

4 ,

dG6 −H3G4 = (2πls)
2(dc2 −H3c0) δNS5

4 ,

dG4 −H3G2 = (2πls)
2dc0 δ

NS5
4 .

(D.63)

Note that, in contrast to the D-brane WZ action (D.40), we do not divide (D.62) by two,

since we are not using a democratic formulation for B2 and B6. We see from (D.63) that

the spacetime RR potentials C do not induce D-brane source charges via the WZ coupling

(D.62).

Similarly, in type IIB, we can define

G0 = C0, G2 = C2 + dc1, G4 = C4 + dc3 −H3c1, G6 = C6 + dc5 −H3c3, (D.64)

where c1,3,5 are worldvolume fields with the gauge transformation rule

δcp = −λp. (D.65)

Then we can show

δ

[
B6 +

1

2
(G0C6 − G2C4 + G4C2 − G6C0)

]
= d

[
ζ5 +

1

2
(G0λ0 − G2λ2 + G4λ2 − G6λ0)

]
.

(D.66)

Therefore, the WZ term for the IIB NS5 is

2κ2
10S

NS5B
WZ = (2πls)

2

∫
6

[
B6 +

1

2
(−G6C0 + G4C2 − G2C4 + G0C6)

]
= (2πls)

2

∫
6

[
B6 +

1

2

(
−(dc5 −H3c3)C0 + (dc3 −H3c1)C2 − dc1C4

)]
. (D.67)

The equations of motion derived from this are

dG9 −H3G7 = (2πls)
2(dc5 −H3c3) δNS5

4 ,

dG7 −H3G5 = (2πls)
2(dc3 −H3c1) δNS5

4 ,

dG5 −H3G3 = (2πls)
2dc1 δ

NS5
4 .

(D.68)

83



Again, the spacetime RR potentials C do not induce D-brane source charges via the WZ

coupling.

This result can be stated as follows: both in type IIA and IIB, the equations of motion in

the presence of NS5-branes are

dG−H3G = (2πls)
2(dc−H3c)δ

NS5
4 , c =

∑
p

cp. (D.69)

If we include D-branes as well, we have the following equation of motion:

dG−H3G = e2πα′F2δD + (2πls)
2(dc−H3c)δ

NS5
4 . (D.70)

Actually, this equation (D.70) is not gauge invariant in this form. This is because the NS5-

brane is the magnetic source of B2 and therefore the Bianchi identity dH3 = d2B2 = 0 is

modified to

dH3 = ∗jNS5,bs
6 = (2πls)

2δNS5
4 6= 0, (D.71)

where jNS5,bs
6 is the NS5-brane source current. We assume that there is no induced NS5

current on other branes and thus ∗jNS5,bs
6 = (2πls)

2δNS5
4 (for example, C2 on 73 induces NS5,

but we assume that there is no such induced NS5). Eq. (D.71) means that the combination

G = dC −H3C (D.72)

is no longer gauge invariant under the C gauge transformation

δC = dλ−H3λ. (D.73)

Explicitly, gauge invariance is violated by

δG = d(dλ−H3λ)−H3(dλ−H3λ) = −dH3 λ+H3 dλ−H3 dλ

= −(2πls)
2δNS5

4 λ 6= 0. (D.74)

where we assumed d2λ = 0. Therefore, neither side of the equation of motion (D.70) is gauge

invariant.

We can rectify this problem by defining an improved field strength Ĝ by

Ĝ ≡ dC −H3C − (2πls)
2δNS5

4 c (D.75)

which can be easily shown to be gauge invariant. This is defined in spacetime, although it

involves c defined only on the NS5 worldvolume, because of the factor δNS5
4 . Note that the

left hand side of (D.70) can be written as

dG−H3G = dĜ−H3Ĝ+ (2πls)
2(dc−H3c)δ

NS5
4 . (D.76)
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If we substitute this into (D.70), the terms involving c cancel between the two sides and we

finally obtain the following gauge invariant equation of motion:

dĜ−H3Ĝ = e2πα′F2δD. (D.77)

The NS5 charge does not appear in this equation. Formally, this equation has the same form

as in the case without NS5-brane source, (D.47), if we replace G→ Ĝ.

Just as in the case without NS5-branes, (D.77) can be rewritten as

d(e−B2Ĝ) = e2πα′F2δD ≡ ∗̂D,Page. (D.78)

The D-brane Page current ̂D,Page defined through this equation is manifestly closed and thus

conserved. Even in the presence of NS5-branes, the D-brane Page current ̂D,Page is induced

only by F2, the D-brane worldvolume field; namely, neither spacetime fields B2, C nor the NS

worldvolume field c induces D-brane Page current on NS5. Just as in (D.57), we can define

the charge contained in a (9− p)-volume V 9−p as

Q̂Dp,Page ≡ 1

(2πls)7−p

∫
V 9−p

∗̂D,Page =
1

(2πls)7−p

∫
S8−p

eB2Ĝ. (D.79)

Note that the RR potentials C do not induce D-brane charges on the NS5 in the naive

way we expected. However, actually, D-brane charges are indeed induced, although rather

secretly. If we plug the definition of G, (D.72), into the left hand side of the equation of

motion (D.70), we obtain

dG−H3G = d2C − (2πls)
2C δNS5

4 . (D.80)

By equating the last expression with the right hand side of (D.70), we obtain

d2C = e2πα′F2δD + (2πls)
2GδNS5

4 ≡ ∗̂D,bs. (D.81)

This is exactly as expected, because the violation of the Bianchi identity d2C = 0 is directly

related to the existence of charges that C couples to. The first term of (D.81) is the D-brane

charges induced on the D-brane worldvolume, while the second term is the D-brane charges

induced on the NS5-brane worldvolume. It is appropriate to call this quantity the D-brane

source current, ∗̂D,bs, in the presence of NS5-brane source, as we already did in (D.81). This

quantity is gauge invariant and localized but not conserved.

At the beginning of D.2.2, we raised a puzzle of how D-brane charges can be induced on

NS5-brane worldvolume by RR C fields, even though for example C3∧C3 identically vanishes.

We can now see how this puzzle is resolved: the induced D-brane charge on the NS5-brane

comes not from the NS5 WZ action but secretly from the bulk supergravity action (D.42).

From (D.43),

2κ2
10 δS

bulk,RR =
1

2

∑
p

(−1)b
p
2
c
∫

10

(dG9−p −H3 ∧G7−p) ∧ δCp, (D.82)
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where we already used the duality relation (D.5) at this point. If we rewrite dG9−p−H3∧G7−p

in terms of C using (D.72), we get

2κ2
10 δS

bulk,RR =
1

2

∑
p

(−1)b
p
2
c
∫

10

(d2C8−p − dH3 ∧ C6−p) ∧ δCp. (D.83)

The second term in the integrand means that, at the point where dH3 6= 0, there is induced

D-brane charge proportional to C.

Let us conclude with remarks on the limitation of the results obtained in this section.

First, we only took into account D-brane charges induced by WZ coupling of NS5-branes.

The complete NS5-brane action includes the DBI part, which involves RR potentials [153,154]

and can induce D-brane charges. A more complete analysis requires that we take that also

into account. Secondly, we assumed that there is no induced NS5-brane charge. For example,

C2 on 73-brane can induce NS5 (this is the S-dual statement of B2 on D7 inducing D5) and,

in more general situations, we should take such induced NS5-branes into account. Because an

induced NS5/brane can have further induced charges in it, we expect much richer structure

arising in such more general situations. We should also point out that we have neglected

various topological issues related to the fact that the B-field is really a two-gerbe, D-brane

charges are properly computed using K-theory, etc. Finally, we left the F1 charge completely

out of the discussion. We leave a fuller analysis of brane charges for very interesting future

research.
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