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We carried out a series of particle simulations to study electron acceleration by Z-mode and

whistler-mode waves generated by an electron ring distribution. The electron ring distribution leads

to excitations of X-mode waves mainly in the perpendicular direction, Z-mode waves in the

perpendicular and parallel directions, and whistler-mode waves mainly in the parallel direction.

The parallel Z- and whistler-mode waves can lead to an effective acceleration of ring electrons. The

electron acceleration is mainly determined by the wave amplitude and phase velocity, which in turn

is affected by the ratio of electron plasma to cyclotron frequencies. For the initial kinetic energy

ranging from 100 to 500 keV, the peak energy of the accelerated electrons is found to reach 2–8

times the initial kinetic energy. We further study the acceleration process by test-particle calculations

in which electrons interact with one, two, or four waves. The electron trajectories in the one-wave

case are simple diffusion curves. In the multi-wave cases, electrons are accelerated simultaneously by

counter-propagating waves and can have a higher final energy. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4829439]

INTRODUCTION

Generation of energetic particles in space and laboratory

plasmas is an important topic in plasma physics. Recently,

electron acceleration and diffusion by whistler-mode chorus

waves and electromagnetic ion cyclotron waves1–4 have

been widely discussed. The phase difference between the

electron gyrophase and wave phase plays a crucial role in

this acceleration process. In our previous study, we showed

that the electron ring distribution excites, through cyclotron

maser process,5 the X-mode waves mainly in the perpendicu-

lar direction, Z-mode waves in the perpendicular and parallel

directions, and whistler-mode waves mainly in the parallel

direction.6,7 The parallel Z-mode waves lead to electron

acceleration and formation of X-like momentum distribu-

tion.7 The electron ring distributions can be produced in

quasi-perpendicular shocks,8,9 by mirror reflection of ener-

getic plasma beam in coronal flux loops10 and by injection of

electron beam in the direction perpendicular to magnetic

field.11

In this paper, we present the results of particle simula-

tions and test-particle calculations. It is found that there exist

three types of electron acceleration and diffusion in velocity

space associated with Z-mode and whistler-mode waves.

The strong acceleration is related to electrons resonant trap-

ping by waves, and wave phase velocity, amplitude, and

frequency play important roles.

SIMULATION SETUP

The 1D and 2D electromagnetic particle-in-cell simula-

tion codes used in this paper are modified from KEMPO1.12

The 2D simulation box lies in the x-y plane with periodic

boundaries. The 1D simulation box is along the x-axis

with periodic boundaries. In the initial condition, all

particles are uniformly distributed in the simulation box

with a constant ambient magnetic field B0 ¼ B0x̂ for 2D

and B0 ¼ B0 cos hBx̂ þ B0 sin hBŷ with wave vector kjjx̂ for

1D. The protons are assumed to be cold and immobile. A

ring distribution function in the cylindrical coordinates can

be expressed as

fr ¼ nrar exp �
u? � ur?ð Þ2 þ u2

jj

2 Duð Þ2

" #
; (1)

where u? and ujj are momentum components perpendicular

and parallel to ambient magnetic field B0, respectively; ur?
is the ring momentum and ar is a normalization constant.

Here, the term “momentum” refers to “momentum per

unit mass,” u ¼ cv, where c is the Lorentz factor. The den-

sity of the ring distribution nr is set to 5% of total electron

density. The momentum dispersion of energetic ring elec-

trons is Du ¼ 0:025c, and the thermal momentum of back-

ground electrons is 0:05c, where c is the speed of light. The

ratio of electron plasma (xpe) to cyclotron (Xce) frequencies

a ¼ xpe=Xce is set to 0.33, 1, and 5. The average initial

kinetic energy, e0 � c0 � 1ð Þmec2, of ring distribution is set

to 100, 200, and 500 keV in the simulation, corresponding

to initial Lorentz factor c0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

r?=c2
p

¼ 1.2, 1.4, and

2, respectively, where me is electron rest mass.

EVOLUTION OF ENERGETIC ELECTRON
DISTRIBUTION

Fig. 1 shows energetic electron momentum distributions

after the saturation of wave energy in 1D simulations with

a ¼ 0.33 and 1 at hB ¼ 0�, 45�, and 90�. For hB ¼ 90�, waves

tend to decelerate electrons along u?. For hB ¼ 0�, the cases
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show strong acceleration of electrons, and the ring distribu-

tion evolves into an X-like pattern. For in-between cases, the

acceleration or diffusion is stronger than that of hB ¼ 90� but

weaker than that of hB ¼ 0�. The acceleration process is

clearly dominated by the waves propagating in the parallel

direction.

We then compare the 1D and 2D simulation results.

Note that in the following we assume parallel propagation of

waves (hB ¼ 0�) in the 1D simulations. Fig. 2 shows the ener-

getic electron distributions in u? � ujj momentum space after

the saturation of wave energy in the 1D and 2D simulations.

For a ¼ 0.1, the acceleration is weak. Most electrons are

decelerated in the perpendicular direction in the 2D cases,

and the waves are too weak to diffuse electrons effectively in

the 1D cases.

For a ¼ 0.33, the 1D and 2D simulation results are simi-

lar. We can see clear X-like pattern and strong acceleration

of electrons in both 1D and 2D cases. The peak energy of

accelerated electrons can reach 3� 4 times the initial kinetic

energy as shown in Fig. 3(a).

For a ¼ 1, the electron acceleration is much stronger

than other cases, but the X-like pattern is unclear. In the 2D

cases, the waves with oblique and perpendicular propaga-

tions lead to a more diffusive pattern of electron distribu-

tions. The peak energy of accelerated electrons can reach

5–6 times the initial kinetic energy as shown in Fig. 3(b).

For e0 ¼ 500 keV, the ring electrons can be accelerated to a

peak energy 2.75 MeV in the 1D case and 3 MeV in the 2D

case; for e0 ¼ 200 keV, electrons can be accelerated to

1.25 MeV for 1D and 1.4 MeV for 2D; for e0 ¼ 100 keV,

electrons can be accelerated to 800 keV for 1D and 850 keV

for 2D.

FIG. 1. Energetic electron distributions

in u? � ujj momentum space after

wave energy saturation of simulations

for the 1D cases with a ¼ 0.33 (top

panels) and 1 (bottom panels) at

hB ¼ 0�, 45�, and 90�. The cases with

hB ¼ 0� show strong acceleration.

FIG. 2. Energetic electron distributions in u? � ujj momentum space after

wave energy saturation of simulations for the 1D and 2D cases with a ¼0.1,

0.33, 1, 2, and 5.
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For a ¼ 2, the X-like pattern vanishes. Both 1D and 2D

cases show shell-like distributions with hot tails in the per-

pendicular direction. For a ¼ 5, the initial electron ring dis-

tribution evolves into a shell shape, showing pitch-angle

scattering with little kinetic energy variation. These shell-

like distribution could then trigger cyclotron maser instabil-

ity for wave excitations in the perpendicular direction in 2D

simulations, leading to a more diffusive pattern.

Table I shows the peak kinetic energies of accelerated

electrons in 1D (2D) simulations as a function of a ¼ xpe=Xce

and the initial kinetic energy e0. The maximum ratio of the

peak to initial kinetic energies is 8 (8.5) and occurs in the case

with a ¼ 1 and e0 ¼ 100 keV. The maximum energy gain is

2250 keV (2600 keV), and it occurs in the case with a ¼ 1 and

e0 ¼ 500 keV.

WAVE EXCITATIONS BY ELECTRON RING
DISTRIBUTION

We examine wave excitations in the simulations and

compare the results with kinetic theory. In the theoretical

calculation, the energetic electron ring distribution is

assumed to be a delta function, and the Doppler effect in the

resonance condition vanishes. The excited waves are

assumed to be at the first harmonic x ¼ Xce=c0. Fig. 4 shows

cold plasma dispersion diagrams of Z and whistler modes as

well as X and O modes at arbitrary propagation angles hB for

a < 1, a ¼ 1, and a > 1. We will concentrate on the Z and

whistler modes.

In Fig. 4(a), for a < 1=c0 < 1 (xpe < x ¼ Xce=c0

< Xce), the excited wave has frequency xpe < x < Xce and

is the Z mode with vph < c (red). For 1=c0 < a < 1

(x ¼ Xce=c0 < xpe < Xce), the whistler mode with x < xpe

is excited in the parallel and oblique directions (blue). The Z

mode with x < xpe and vph > c can be excited in the per-

pendicular and oblique directions if xL < x (green), where

xL is the L-mode cut-off frequency. For a < 1 and hB ¼ 0�,
the Z and whistler modes share the same branches in the x� k
dispersion diagram, and the separation point is x ¼ xpe.

In Figs. 4(b) and 4(c), for 1=c0 < 1 � a (x ¼ Xce=c0

< Xce � xpe), the whistler mode in the parallel and oblique

directions can be excited (blue). The Z mode with vph > c
can be excited if xL < x (green). Since, x ¼ Xce=c0 and

1=c0 is always smaller than unity, without Doppler effect,

the Z mode with x � Xce (red) cannot be excited.

According to the theoretical wave dispersion relations in

Fig. 4, we can identify the wave modes observed in the simu-

lation. Fig. 5 shows the wave dispersion diagrams of

a ¼ 0.33, 1, and 5 obtained from 1D simulations. The Z

mode dominates in the case of a ¼ 0:33, and the whistler

mode dominates in the cases of a ¼ 1 and 5.

Fig. 6 shows the theoretical linear growth rate (see, e.g.,

Ref. 8), wave number and phase velocity as a function of

a ¼ xpe=Xce at hB ¼ 0�. The waves excited at x ¼ Xce=c0

are the Z mode if a < 1=c0 and are the whistler mode if

a > 1=c0. In Fig. 6(a), the growth rate of parallel whistler

mode is higher than that of the parallel Z mode. The parallel

Z mode is less active if a � 0:2, and the acceleration of elec-

trons is weak in the simulations with a � 0:2 as discussed

earlier. As a increases, the wave number of the excited

waves increases as shown in Fig. 6(b), and the phase velocity

decreases as shown in Fig. 6(c). The phase velocity is

vph > 0:5c for the parallel Z mode and is vph < 0:5c for the

whistler mode. For a� 1, the phase velocities of amplified

waves are much less than the speed of light as shown in

FIG. 3. Energetic electron distributions as a function of c� 1ð Þ for the 1D and 2D cases with a ¼ 0.33 and 1 and initial kinetic energies e0 ¼100, 200, and

500 keV.

TABLE I. Peak kinetic energies of accelerated electrons in 1D (2D) simula-

tions as a function of a ¼ xpe=Xce and the initial kinetic energy e0.

e0

a

100 keV 200 keV 500 keV

a¼ 0.33 400 keV 600 keV 1300 keV

(350 keV) (800 keV) (1600 keV)

a ¼ 1:0 800 keV 1250 keV 2750 keV

(850 keV) (1400 keV) (3100 keV)

a ¼ 5:0 200 keV 400 keV 1000 keV

(400 keV) (800 keV) (2000 keV)
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Fig. 6(c). For electromagnetic waves, if the wave energy is the

same, a lower phase velocity leads to a weaker wave electric

field according to Faraday’s Law Ew=cBw ¼ x=ck 	 1.

Hence Ew 	 cBw, and the acceleration by wave electric field

is weak when a� 1 as the simulation cases of a ¼ 5 shown

in Fig. 2. For a	 1, the growth rate of unstable waves is rela-

tively low as shown in Fig. 6(a), and the wave amplitude is

expected to be small. Hence, the acceleration is also

weak when a	 1 as the simulation cases of a ¼ 0:1 shown

in Fig. 2.

In Fig. 7, we compare the energetic electron distributions

obtained from the 1D simulations with diffusion curves. The

diffusion curve is determined by the conservation of kinetic

energy in the frame of reference moving with vph

v0
2
jj þ v0

2
? ¼ const:; (2)

where

v0jj ¼
vjj � vph

1� vjjvph=c2
; (3)

FIG. 4. Cold plasma dispersion relations of Z and whistler modes as well as X and O modes at arbitrary propagation angles hB for (a) a < 1 and (b) a ¼ 1 and

(c) a > 1. The X-mode cut-off, upper hybrid (Z-mode resonant) and L-mode cut-off frequencies are xR, xUH , and xL, respectively.

FIG. 5. Wave dispersion diagrams of a ¼ 0.33, 1, and 5 obtained from 1D

simulations with hB ¼ 0�. The Z mode dominates in the case of a ¼ 0:33,

and the whistler mode dominates in the cases of a ¼1 and 5. The dashed hor-

izontal line indicates the plasma frequency.

FIG. 6. (a) Theoretical linear growth rate, (b) wave number k and (c) phase

velocity vph as functions of a ¼ xpe=Xce for c0 ¼ 1:4 and hB ¼ 0�. The cor-

responding wave real frequency is xr ¼ Xce=c0 
 0:71Xce. The vertical

dashed line corresponds to a ¼ 1=c0 
 0:714.
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v0? ¼ v?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

ph=c2
q
1� vjjvph=c2

: (4)

Since vph of intensive waves in each case of simulations are

almost the same as shown in Fig. 5, the diffusion curves of

these waves are also similar. The formation of X-like elec-

tron distribution in the case with a ¼ 0:33 roughly coincides

with the diffusion curves of the parallel Z-mode waves with

high phase velocity and can be explained by one-wave reso-

nant diffusion.7,13 In the case with a ¼ 5, the initial electron

ring distribution evolves into a shell shape, which is essen-

tially the same as the corresponding diffusion curves.

However, the acceleration of electrons by the whistler mode

with medium phase velocity in the case with a ¼ 1 cannot be

explained by the diffusion curves.

TEST-PARTICLE CALCULATION

In our previous study,7 the test-particle results of

a ¼ 0:33 and c0 ¼ 1:4 show that the kinetic energy incre-

ment in the one-wave case is comparable to that in the two-

wave case. For the Z mode with high phase velocity, one-

wave resonant diffusion can lead to strong acceleration of

energetic electrons. However, for whistler-mode waves with

medium phase velocity, the acceleration of electrons by

counter-propagating waves is important.

To further analyze the acceleration process, we conduct

a series of test-particle calculations. The equation of electron

motion is

me

d cvð Þ
dt
¼ �e Ef þ Eb þ v� B0 þ Bf þ Bbð Þ½ �; (5)

where Bf ;b ¼ k� Ef ;b=x with k k B0 and Ef ;b?B0; �e is

electron charge; the subscripts f and b indicates forward and

backward wave propagation, respectively, with respect to

B0. Let / be the gyration angle of v?, wf ;b be the gyration

angle of Bf ;b, and ff ;b � /� wf ;b be the gyration angle

between v? and Bf ;b. We have

d cvjjð Þ
dt
¼ Xw

v?
sin ff þ sin fb

� �
; (6)

d cv?ð Þ
dt

¼ x
k

Xw sin ff � sin fb

� �
� Xwvjj sin ff þ sin fb

� �
;

(7)

dc
dt
¼ � e

mec2
v?• Ef þEbð Þ ¼

x
k

� �
Xwv?

c2

� �
sin ff � sin fb

� �
;

(8)

d/
dt
¼ Xw

cv?
cos ff

x
k
� vjj

� �
þ cos fb �

x
k
� vjj

� �� �
þ Xce

c
;

(9)

hf �
dff

dt
¼ d/

dt
� x� kvjj
� �

; (10)

hb �
dfb

dt
¼ d/

dt
� xþ kvjj
� �

; (11)

where Xw ¼ XceBw=B0 (see, e.g., Refs. 4 and 7). We have

assumed the same wave amplitude, frequency and wave

number for both forward and backward waves (two-wave

case).

Fig. 8 shows the test-particle results with one wave, two

waves and four waves (two forward waves and two back-

ward waves) for the whistler-mode case corresponding to the

simulation case with a ¼ 1 and c0 ¼ 1:4. The corresponding

energetic electron distribution at the end of the simulation is

also shown as color contours for comparison. The wave fre-

quencies and vectors correspond to the most intensive waves

in the 1D simulation. In the test-particle calculation, the

wave amplitude is determined by the simulation result so

that the total wave energy in the four-, two-, or one-wave

case is equal to the wave peak energy in the 1D simulation.

Fig. 8(a) shows two one-wave cases in which electrons

interact with a forward wave (purple) or a backward wave

(blue), respectively. The electrons move along the diffusion

curves with weak acceleration.

In Fig. 8(b), the two-wave case, electrons interact with

one forward and one backward waves simultaneously.

However, the superposition of all electron trajectories

obtained from the test-particle calculation is slightly differ-

ent from the simulation result as shown in Fig. 8(b).

The test-particle trajectories form a thin “neck” while the

FIG. 7. Comparison between the ener-

getic electron distributions in 1D simu-

lations and the corresponding diffusion

curves.
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electron distribution from simulation has a thick “neck” in

the distribution function.

In Fig. 8(c), the four-wave case, electrons interact with

two forward and two backward waves simultaneously. The

four-wave case further shows a more diffusive pattern

which resembles the simulation result with a thick neck.

The peak energy of accelerated electrons in the two-wave

and four-wave cases can reach 6 times the initial kinetic

energy.

In the two- and four-wave cases, the huge increment of

electron energy is due to simultaneous acceleration by

counter-propagating waves.7 During this stage, electrons are

accelerated primarily in the perpendicular direction. After

that, electron motion is dominated by waves in one direction,

while the waves in the opposite direction just give a small

modulation in energy and momentum. In Figs. 8(b) and 8(c),

the purple curves correspond to electron motion in the later

stage primarily dominated by forward waves, and the blue

ones by the backward waves.

TWO-WAVE RESONANT TRAPPING

In Eq. (8), the acceleration is strong if the conditions

ff � fb ¼ p 6 2np (n is an integer) and ff being within the

acceleration phase are fulfilled. By assuming ff � fb ¼
p 6 2np and vjj ¼ 0 in the initial condition, Eqs. (6), (10),

and (11) give

d cvjjð Þ
dt
¼ 0; (12)

hf � hb ¼ 2kvjj ¼ 0; (13)

which further ensures vjj ¼ 0 and ff � fb ¼ p 6 2np all the

time. Based on the assumption that ff � fb ¼ p 6 2np and

vjj ¼ 0, the governing equations for ideal two-wave reso-

nance can be simplified as

du?
dt
¼ 2

x
k

Xw sin ff ; (14)

dc
dt
¼ 2

x
k

Xwu?
cc2

sin ff ; (15)

hf � 2
x
k

Xw

u?
cos ff þ

Xce

c
� x: (16)

We solve the governing equations numerically and obtain

particle trajectories in u? � ff and hf � ff phase space and

FIG. 8. Test-particle results with (a) one wave, (b) two waves, and (c) four waves. Electron trajectories in u? � ujj momentum space are plotted in the top pan-

els, and kinetic energy time histories are shown in the bottom panels. The wave frequencies and wave numbers indicated at the top correspond to the most in-

tensive waves in 1D simulations with a ¼ 1 and c0 ¼ 1:4. The corresponding energetic electron momentum distribution after wave energy saturation of the

simulation (t ¼ 512X�1
ce ) is also shown as color contours for comparison.

112901-6 Lee, Omura, and Lee Phys. Plasmas 20, 112901 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.54.110.72 On: Wed, 25 Dec 2013 04:11:57



time histories of kinetic energy as shown in Fig. 9. The wave

frequencies and wave numbers correspond to the most inten-

sive waves in the 1D simulations. Two-wave resonant trap-

ping occurs and can lead to a strong acceleration of

electrons, and the blue curves correspond to maximum two-

wave acceleration.

The straight line in the u? � ff plot corresponds to the

initial electron positions with u? 
 0:98c (c0 ¼ 1:4) and dif-

ferent phase ff . The section with red (gray) color is for

trapped (untrapped) electrons. In hf � ff plot, the corre-

sponding curves of the initial positions for trapped and

untrapped electrons with c0 ¼ 1:4 are also drawn. The hori-

zontal dashed line with u? ¼ u?c in the u? � ff plot indi-

cates the vertical center of trapping zone, where u?c is

defined by hf ¼ 0 with ff ¼ p. In the case of a ¼ 0:33, most

electrons are trapped, but the maximum energy increment

from c0 ¼ 1:4 is only Dc 
 0:5. In the case of a ¼ 1,

although the number of trapped electrons is lower, the

energy increment of all these trapped electrons can reach

Dc 
 2 from c0 ¼ 1:4. In the case of a ¼ 5, no electron of

c0 ¼ 1:4 is trapped by two-wave resonance, and hence accel-

eration in this case is weak.

By differentiating Eq. (16) in time, we can obtain the

second order resonance condition

1

X2
ce

dh2
f

dff

þ 4
x
ck

Xw

Xce

� �
c

u?

� �

� 4
x
k

Xw

Xceu?
cos ff �

x
Xce
þ 1

c
þ u2

?
c3c2

 !
sin ff ¼ 0: (17)

For small wave amplitude, the term with Xw cos ff can be

ignored, and we define the trapping frequency as

x2
tr

X2
ce

� 4
x
ck

Xw

Xce

� �
c

u?

� �
� x

Xce
þ 1

c
þ u2

?
c3c2

 !
: (18)

Equation (17) further indicates that the trajectories in phase

space should be pendulum-like. The factor xXw=ckXce in

Eq. (18) controls the vertical width of trapping zone, and wave

frequency determines the vertical center with �x=Xceð Þ in

u? � ff phase space. For a ¼ 0:33, we have x=Xce 
 0:64,

x=ck 
 0:8, Xw=Xce ¼ 0:008, and xXw=ckXce 
 0:006. For

a ¼ 1, we have x=Xce 
 0:45, x=ck 
 0:44, Xw=Xce

¼ 0:06, and xXw=ckXce 
 0:026. For a ¼ 5, we have

x=Xce 
 0:43, x=ck 
 0:1, Xw=Xce ¼ 0:06, and xXw=ckXce


 0:006. In Fig. 9, among the three cases, the maximum verti-

cal width of trapping zone occurs in the case of a ¼ 1 due to

largest xXw=ckXce, leading to maximum kinetic energy incre-

ment for trapped electrons. The highest vertical center of trap-

ping zone in u? � ff phase space occurs in the case of a ¼ 5

due to low wave frequency, and electrons with initial energy

c0 ¼ 1:4 are all untrapped. There seems to exist a threshold of

Xw=Xce for two-wave resonant trapping. If xXw=ckXce is

smaller, the trapping zone is thinner, and the maximum energy

increment of two-wave acceleration is lower. If x=Xce is

lower, the trapping zone shifts upward in u? � ff phase space,

leading to a higher threshold of Xw=Xce for two-wave reso-

nant trapping.

Fig. 10 shows maximum energy gain of accelerated

electrons as a function of wave amplitude for one- and

FIG. 9. Test-particle results of two-

wave cases corresponding to a ¼0.33,

1, and 5. It is assumed that vjj ¼ 0 and

fb ¼ ff þ p. Blue curves correspond to

the maximum acceleration due to two-

wave resonant trapping. The red and

gray lines in u? � ff and hf � ff plots

indicate initial positions of electrons

with u? 
 0:98 (c0 ¼ 1:4). The section

with red (gray) color is for trapped

(untrapped) electrons. The horizontal

dashed line in u? � ff plot indicates

the vertical center of the trapping zone.
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two-wave cases with c0 ¼ 1:4 and a ¼0.33, 1, and 5

obtained from test-particle calculations. Note that here we do

not assume vjj ¼ 0 and ff � fb ¼ p 6 2np, and the initial

conditions of ff and fb are randomly given. There exists a

gap in wave amplitude for strong two-wave resonant acceler-

ation. The acceleration is weak if wave amplitude is lower

than the threshold.

In the one-wave cases, electrons always move along dif-

fusion curves, which is determined by the wave phase veloc-

ity. Diffusion curves of higher phase velocity can cross

through higher energy region in the velocity or momentum

space as the case of a ¼ 0:33 shown in Fig. 7. Strong accel-

eration occurs only if the wave has high phase velocity and

large amplitude.

In the test-particle calculations, the two-wave resonant

acceleration is reversible as shown in Fig. 9. However, it can

be irreversible if Doppler effect comes in at a later stage.

This can be achieved if dvjj=dt 6¼ 0 due to a small difference

in wave frequency, wave amplitude or phase between ff and

fb þ p 6 2np. We consider a single electron with the initial

condition, ff � fb ¼ 0:99p 6 2np and ff ¼ 0, and solve the

full set of equations of electron motion [Eqs. (6)–(11)], and

the result is shown in Fig. 11. The electron is initially

trapped by two-wave resonance as the red curves in Fig. 11.

The two-wave trapping process can be identified by the red

curve in Fig. 11(a). Due to dvjj=dt 6¼ 0, we have Doppler

effect or vjj 6¼ 0 at a later stage. The electron is de-trapped

by the Doppler effect and then trapped again by one of the

two counter-propagating waves,1 as shown by the blue

curves in Fig. 11. The other wave propagating in opposite

direction just gives a small modulation in electron energy

and momentum during one-wave resonant trapping as shown

in Figs. 11(c) and 11(d). The one-wave resonant trapping can

further accelerate electrons to a higher energy level at the

FIG. 10. Maximum energy increment

(dots) of accelerated electrons as a

function of wave amplitude for one-

and two-wave cases with c0 ¼ 1:4 and

a ¼ 0.33, 1, and 5 obtained from test-

particle calculations. The best fitting

lines are also plotted. The initial condi-

tion for electrons in the one-wave

cases is c0 ¼ 1:4 with randomized u?,

ujj and f; c0 ¼ 1:4 with u? ¼ 0:98c,

ujj ¼ 0 and randomized ff and fb in

the two-wave cases.

FIG. 11. Test-particle results of a single electron in the two-wave case corresponding to a ¼ 1 with initial conditions ff ¼ fb þ 0:99p and ff ¼ 0. Red parts of

the electron trajectory curves are associated mainly with the two-wave resonant trapping at the early stage; blue parts are associated mainly with one-wave res-

onant trapping at the late stage. Black dots indicate initial positions.
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later stage. In Fig. 11, the energy gain of two-wave accelera-

tion is Dc 
 1:9, and that of one-wave acceleration at a later

stage is Dc 
 0:3. The total energy gain is about 5.5 times

the initial kinetic energy or Dc 
 2:2 ¼ 5:5 c0 � 1ð Þ.
The phase difference between ff and fb can be written

as

ff � fb ¼ /� wf

� �
� /� wbð Þ ¼ wf � wb

¼ xt� kxþ wf 0

� �
� xtþ kxþ wb0ð Þ

¼ �2kxþ wf 0 � wb0

� �
; (19)

where wf and wb are the phases of forward and backward

waves, respectively; wf 0 and wb0 are the phase constants of

forward and backward waves, respectively. There is no time

dependency on the phase difference. At ff � fb ¼ p 6 2np,

strong two-wave resonant acceleration in the perpendicular

direction occurs. Therefore the efficient acceleration takes

place at a spatial interval corresponding to a wave number of

2k. We examine the particle simulation results of the case

with a ¼ 1 and c0 ¼ 1:4. At tXce ¼ 56, the wave number of

the most intensive waves is ckpeak=Xce 
 1:6, corresponding

to peak wavelength kpeak 
 4c=Xce, as shown by Fig. 12. In

Fig. 13(a), the evolution of electron distribution in u? � x
phase space shows clearly the wavy structure before

tXce ¼ 100. As �2kxþ wf 0 � wb0

� �
varies in space, strong

two-wave resonant acceleration occurs at an interval of

kacc 
 2c=Xce 
 0:5kpeak as shown in Fig. 13(b). At the late

stage, most electrons are accelerated in the parallel direction,

and the wavy structure of trapped electrons in u? � x phase

space becomes vague.

DISCUSSION AND SUMMARY

The electron ring distribution can lead to amplification

of parallel Z- and whistler-mode waves. Intensive interac-

tions between these waves and ring electrons lead to acceler-

ation and deceleration of electrons.

For ideal two-wave resonant trapping, the governing

equation can be simplified to a pendulum-like equation base

on the assumptions, ff � fb ¼ p 6 2np and vjj ¼ 0. The ver-

tical width of trapping zone is proportional to the value of

xXw=ckXce, which affects the maximum energy gain of

trapped electrons. The vertical center (u?c) of the trapping

zone in u? � ff phase space is related to �x=Xceð Þ, and

hence a higher frequency can lower the trapping threshold of

wave amplitude Xw=Xce.

The ideal two-wave resonant acceleration is a reversible

process as shown in the test-particle results. However, if ini-

tially there exists a small difference between ff and fb þ
p 6 2np or in wave frequency or wave amplitude, the elec-

trons can be de-trapped at a later stage due to the Doppler

effect introduced by dvjj=dt 6¼ 0. These electrons can be fur-

ther trapped at a later stage by one-wave resonance and

accelerated to a slightly higher energy.

There exist three types of electron acceleration and dif-

fusion. (i) For Z-mode waves with high phase velocity

(vph 
 0:8c), the electron acceleration and diffusion in mo-

mentum space can be directly related to the one-wave reso-

nant diffusion. (ii) For whistler-mode waves with medium

FIG. 13. (a) Evolution of energetic electron distribution in u? � x phase

space of the case with a ¼ 1 and c0 ¼ 1:4 at different times. (b) An enlarge-

ment of the u? � x plot at tXce ¼ 56, which shows strong two-wave resonant

acceleration with wavelength kacc 
 2c=Xce.

FIG. 12. k � t power spectrum for transverse magnetic field of the case with

a ¼ 1 and c0 ¼ 1:4. At tXce ¼ 56 (dashed line), the wave number of the

most intensive whistler-mode waves is ckpeak=Xce 
 1:6, corresponding to

the peak wavelength kpeak 
 4c=Xce.
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phase velocity (vph 
 0:4c), two-wave resonant acceleration

is needed and very effective, leading to a strong energization

of electrons. (iii) For whistler-mode waves with low phase

velocity (vph 
 0:1c), the threshold of wave amplitude for

two-wave acceleration is high. If no electron is trapped by

two-wave resonance, electrons only undergo pitch-angle

scattering with little energy variation.

In the particle simulations and test-particle calculations,

the peak energy of accelerated electrons can reach 2–8 times

the initial kinetic energy. The initial kinetic energy in our

simulations ranges from 100 to 500 keV, while the final peak

energy can reach 200 to 3000 keV.

The main results can be summarized as follows.

(a) Simultaneous acceleration of electrons by counter-

propagating waves can be very effective while acceler-

ation in one-wave cases is due to electron movement

along the diffusion curve.

(b) For ideal two-wave resonant trapping, higher

xXw=ckXce leads to a thicker trapping zone, and the

maximum energy increment is higher as in the case of

a ¼ 1. On the other hand, lower wave frequency shifts

the trapping zone upward with �x=Xceð Þ in u? � ff

phase space, leading to a higher threshold of Xw=Xce as

in the case of a ¼ 5. The acceleration is very weak if

Xw=Xce is below the threshold.

(c) There exist three types of electron acceleration and dif-

fusion: (i) dominant one-wave resonant trapping with

high wave phase velocity, leading to a sharp X-like

electron distribution in momentum space, as in the case

of a ¼ 0:33; (ii) dominant two-wave resonant trapping

with medium wave phase velocity, leading to an elec-

tron distribution with long “neck,” as in the case of

a ¼ 1, and (iii) no trapped electron in the acceleration

phase with low wave phase velocity, leading to a shell-

like distribution, as in the case of a ¼ 5.

(d) The ideal two-wave resonant acceleration is a reversi-

ble process. However, electrons can be de-trapped at a

later stage due to the Doppler effect introduced by

dvjj=dt 6¼ 0.

(e) The efficient two-wave resonant acceleration takes

place at a spatial interval kacc, which equals to half of

the peak wavelength kpeak of the most intensive wave

mode (kacc 
 0:5kpeak).

(f) In the 1D and 2D particle simulations with a ¼ 0:33

and c0 ¼1.2, 1.4, and 2, the peak energy of accelerated

electrons is about 3� 4 times the initial kinetic energy;

with a ¼ 1, it can reach 6� 8 times the initial kinetic

energy; with a ¼ 5, it can reach only 2� 3 times the

initial kinetic energy.
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