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We have investigated the origin of nanostructures formed on metals by low-fluence femtosecond

laser pulses. Nanoscale cracks oriented perpendicular to the incident laser polarization are induced on

tungsten, molybdenum, and copper targets. The number density of the cracks increases with the

number of pulses, but crack length plateaus. Electromagnetic field simulation by the finite-difference

time-domain method indicates that electric field is locally enhanced along the direction perpendicular

to the incident laser polarization around a nanoscale hole on the metal surface. Crack formation

originates from the hole. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827296]

Nanostructures formed on metals by femtosecond laser irra-

diation have attracted much interest due to applications such as

coloration,1,2 friction reduction,3 wettability modification,4,5 and

surface-enhanced Raman scattering.6 Periodic grating structures

in particular have been intensively investigated; their formation

is currently attributed to surface plasmons,7,8 interference

between incident light and surface plasmons,9,10 or interference

between incident light and scattered light.11–13 The grating pe-

riod depends on laser irradiation parameters such as fluence,7,8

number of pulses,14 and laser wavelength (kL)14 and falls

between 0.5kL and 0.85kL (Ref. 7) at fluence above the ablation

threshold fluence (Fth), which can be defined by fitting the laser

fluence dependence of ablation rate to l¼ a�1 ln(FL/Fth),
15,16

where l, a, and FL are ablation rate, optical absorption (or heat

penetration coefficient), and laser fluence, respectively. Even at

the fluence below Fth, a structure with a much shorter interspace

(�0.3kL) has been observed in copper after irradiation of many

pulses,7,17 and emission of energetic ions has been observed.18

The formation process of nanostructures below Fth should be

different from that above Fth, yet no physical interpretation has

been put forward for the nanostructure formation in the low flu-

ence range. Understanding the physical process is important for

the application mentioned above and for the development of

laser nanoprocessing. In this study, we have investigated the

morphology and formation mechanism of surface nanostructures

on metal targets [tungsten (W), molybdenum (Mo), copper (Cu),

platinum (Pt)] irradiated by femtosecond laser pulses below Fth.

The surface nanostructures observed here have no periodicity,

so we cannot apply the formation mechanism for a periodic

structure to these surface nanostructures.

We used linearly polarized laser pulses (40 fs pulse dura-

tion, 800 nm center wavelength, 10 Hz repetition rate) from a

Ti:sapphire chirped-pulse amplification system (ICR, Kyoto

University). In air, the laser pulses were focused onto the

metal targets by a spherical lens with focal length of 100 mm.

To avoid the spatial non-uniformity of laser fluence, a flat-top

profile was formed, and the diameter of the flat-top region

was 35lm. The targets were W, Mo, Cu, and Pt metals, which

had been mechanically polished. The pulse energy was

adjusted by two polarizers and a pair of half-wave plates. For

each metal, the incident pulse number was varied with the

FIG. 1. Laser fluence dependence of ablation rate. Arrows indicate

ablation threshold fluences (Fth) determined by fitting the laser fluence

dependence of ablation rate to l¼ a�1 ln(FL/Fth) and fluences for the pres-

ent experiment (Fex).
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laser fluence fixed below Fth. The ablation threshold fluence is

determined by fitting the laser fluence dependence of ablation

rate to l¼ a�1 ln(FL/Fth). To evaluate ablation rate, we meas-

ured crater depth with a confocal laser scanning microscope

(HL-150, Lasertec). Figure 1 shows the laser fluence depend-

ence of ablation rate, the ablation threshold fluence (Fth), and

fluences for the present experiment (Fex). The irradiated spots

were observed by a field-emission scanning electron micros-

copy (FESEM; JSM-6700F, JEOL).

Figures 2(a)–2(i) show FESEM images of W, Mo, Cu,

and Pt surfaces after irradiation of multiple laser pulses. For

W, Mo, and Cu, nanocracks oriented perpendicular to the

incident laser polarization were generated, and the number

density of the cracks increased with the number of incident

laser pulses. In this letter, we refer to the aggregation of

nanocracks as a “striped structure.” The interspaces between

the nanocracks on W (10 000 shots) and Mo (20 000 shots)

are 50–200 and 50–150 nm, respectively. The number den-

sity of nanocracks on Cu (3000 shots) is smaller than that on

W and Mo. The minimum interspace of the nanocracks on

Cu (3000 shots) is 70 nm. The power spectra obtained by 2D

Fourier transform of the images of the striped structures con-

tain no sharp peak, which indicates that the striped structures

were not periodic arranged. For Pt, nanocracks were not

induced even after 20 000 pulses, but a structural change was

observed around hole of 130 nm in diameter along the direc-

tion perpendicular to the laser polarization.

Since the diameter of the flat-top region of the laser

beam (35 lm) was much larger than the size of a nanocrack

(�1 lm or smaller), the nanocrack formation was not attrib-

uted to spatial non-uniformity of incident laser fluence. We

hypothesized that the nanoscale roughness on metal surfaces

would cause the nanocrack formation. To examine the for-

mation process, we simulated the intensity distribution of

electric field around a nanoscale hole (nanohole) on a metal

surface by the finite-difference time-domain method.

We used commercially available software (Poynting,

Fujitsu). The modeled nanohole is shown in Fig. 3(a). A

hemispherical hole of 50 nm in diameter was put in a metal

surface. A continuous wave (800 nm wavelength, 1 V/m

electric field amplitude) was injected perpendicular to the

surface. The complex refractive indices used in the simula-

tion were 3.5þ 2.7i (W), 3.6þ 3.3i (Mo), 0.24þ 5.0i (Cu),

and 2.8þ 4.9i (Pt).19 There is a report that complex refrac-

tive index does not change during the interaction of a 100 fs

laser pulse with a gold surface.20 The intensity distribution is

observed on the metal surface. Figure 3(b) shows the inten-

sity distribution of electric field on the W surface. The elec-

tric field was enhanced around the nanohole in the direction

perpendicular to the laser polarization and was diminished in

the direction parallel to it. The nanocrack direction observed

in the present experiment was the same as the direction of

electric field enhancement, which we suggest is the cause of

the nanocracks observed for W, Mo, and Cu. However,

FIG. 2. FESEM images of surface nanostructures on (a)–(c) W, (d)–(f) Mo, (g)–(i) Cu, and (j)–(l) Pt. The double arrow in (a) shows the polarization direction

of the incident laser field, which is the same for all images. N is the number of incident pulses. The white bar in each image corresponds to 500 nm.
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nanocracks were not observed on Pt even though a similar

enhancement was observed in the simulation. We propose

the following mechanism for the crack formation. (1) A fs

laser pulse is absorbed, and the temperature rapidly increases

and then decreases on the metal surface. (2) Thermal stress

due to the heating and cooling induces a tiny crack on the

metal surface.21 (3) When the next pulse comes, the electric

field is enhanced around the tiny crack in the direction per-

pendicular to the laser polarization, thus inducing intense

thermal stress in the enhanced field region and producing a

nanocrack. (4) Subsequent laser pulses extend the nanocrack.

Although we cannot confidently explain why no cracks form

on platinum, a possible reason is its high ductility.22

Figure 4 shows the histogram of crack length after 5000

and 3000 pulses for W. The crack length at the frequency

peak for 5000 pulses was equal to that for 3000 pulses. The

maximum length was less than 1.5 lm in both cases. As the

number of pulses increased, the crack length distribution did

not shift to longer lengths and only the number density of

crack increased. To understand this trend, we simulated the

enhancement factor of the electric field at the crack edge for

W metal. We modeled the nanocrack as a hemi-ellipsoidal

hole [Fig. 4(b), inset], with the semi-major axis perpendicu-

lar to the laser polarization, and we calculated the hole-

length (L) dependence of the field enhancement factor at two

positions, namely, at the semi-major axis and at the semi-

minor axis along the hold edge. The intensities at these

points are Ilong and Ishort, respectively. The enhancement fac-

tor (g) is defined as I/Ifar, where Ifar is the intensity at a posi-

tion very far from the hole. For Ilong, the value of g reaches a

maximum around L¼ 200 nm and then decreases with

increasing L. This indicates that crack extension is limited.

The enhancement factor for a deep hole is larger than that

for a shallow hole. Therefore, in our experiment, the var-

iance in the crack length distribution was due to the variation

of depth, width, and length of the initial tiny crack. These

features will depend on the initial surface state of the metal

targets and laser irradiation parameters such as fluence and

incident pulse number. In the experiment, only the number

of incident laser pulse was different (5000 and 3000 pulses).

If the features of initial cracks are independent on the inci-

dent pulse number, the crack length distribution will be inde-

pendent on the number of laser pulses.

Near the hole edge at the semi-minor axis, the field is

almost zero. As shown in Fig. 3(b), the low intensity field

spans several tens nanometers. In this region, further modifi-

cation such as additional formation of new tiny cracks will not

be induced. The width of this low field region in the laser

polarization direction would determine only the minimum

interspaces of the striped structures. Therefore, the striped

structures do not have periodicity. This is clearly different

from the case above Fth, in which the surface structure has pe-

riodicity derived from surface plasmons or scattered light.7–13

In summary, we have observed the generation of nano-

cracks oriented perpendicular to the incident laser polarization

at fluence below Fth for W, Mo, and Cu metal targets. The

number density of nanocracks increased with incident pulse

number, but their length distributions were independent of it.

From the experimental and simulation results, we proposed

that an initial tiny crack on the metal surface grows to a nano-

crack through local field enhancement. The enhanced field

near the hole edge in longitudinal direction of the nanocrack

makes the crack longer, and the low intensity field near the

edge on short direction governs the space to the next crack.

FIG. 3. Electric field intensity around the 50-nm-diameter hole in W calcu-

lated by the finite-difference time-domain method. (a) Modeled shape and

(b) intensity distributions. The amplitude of incident light is normalized to

1 V/m. The white dotted line indicates the rim of the hole. The black bar cor-

responds to 50 nm.

FIG. 4. (a) Histograms of crack length after 5000- and 3000-pulse irradia-

tions (measured and counted in a 12 lm� 9.6 lm area of each FESEM

image). In counting, we eliminated cracks that had interconnections or

branching. (b) Hole length dependence of electric field enhancement factor

for W. The inset shows the modeled shape and the observation points of in-

tensity. The enhancement factor is calculated by the ratio of intensity at the

edge to that at a position very far from the hole. The hole is hemi-

ellipsoidal. The parameter d is depth at the center.
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