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Insertion and release of a solute into and from a vessel comprising biopolymers is a fundamen-
tal function in a biological system. A typical example is found in a multidrug efflux transporter.
“Multidrug efflux” signifies that solutes such as drug molecules with diverse properties can be han-
dled. In our view, the mechanism of the multidrug efflux is not chemically specific but rather has
to be based on a physical factor. In earlier works, we showed that the spatial distribution of the
solute-vessel potential of mean force (PMF) induced by the solvent plays imperative roles in the
insertion/release process. The PMF can be decomposed into the energetic and entropic components.
The entropic component, which originates from the translational displacement of solvent molecules,
is rather insensitive to the solute-solvent and vessel inner surface-solvent affinities. This feature is
not shared with the energetic component. When the vessel inner surface is neither solvophobic nor
solvophilic, the solvents within the vessel cavity and in the bulk offer almost the same environment
to any solute with solvophobicity or solvophilicity, and the energetic component becomes much
smaller than the entropic component (i.e., the latter predominates over the former). Our idea is that
the multidrug efflux can be realized if the insertion/release process is accomplished by the entropic
component exhibiting the insensitivity to the solute properties. However, we have recently argued
that the entropic release of the solute is not feasible as long as the vessel geometry is fixed. Here
we consider a model of TolC, a cylindrical vessel possessing an entrance at one end and an exit
at the other end for the solute. The spatial distribution of the PMF is calculated by employing the
three-dimensional integral equation theory with rigid-body models in which the constituents interact
only through hard-body potentials. Since the behavior of these models is purely entropic in origin,
our analysis is focused on the entropic component. We show that the entropically inserted solute can
be released by a continuous variation of the vessel geometry which forms a time-dependent entropic
force continuing to accelerate the solute motion to the exit. Solutes with a wide range of sizes are en-
tropically released using the same vessel-geometry variation. The results obtained are fairly general
and also applicable to the efflux pump protein AcrB and ATP-binding cassette transporter. © 2013
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4832896]

I. INTRODUCTION

Drug extrusion via efflux through a tripartite complex
constructing the Resistance-Nodulation-Cell Division (RND)
system is a widely used mechanism in Gram-negative
bacteria. The complex comprises AcrA, AcrB, and TolC
as illustrated in Fig. 1.1–8 AcrB, which is referred to as an
efflux pump protein, comprises three protomers. It has been
suggested that each protomer undergoes a sequential struc-
tural change among three states in which a drug insertion,
binding, and release take place, respectively.5, 6, 8 The outer
membrane protein, TolC, is a cylindrical vessel possessing an
entrance at one end and an exit at the other end for the solute.
The periplasmic linker protein, AcrA, mediates the contact
between AcrB and TolC.5, 6, 8 AcrB interacting with TolC in

a)Author to whom correspondence should be addressed. Electronic mail:
kinoshit@iae.kyoto-u.ac.jp.

this way sends the solute to the central position within the
vessel cavity of TolC at the entrance, and then the solute is
moved to the exit. Thus, the transporter enables a passage
of the drug from the periplasm to the external medium. A
feature of the transporter is that it is capable of handling drugs
with diverse properties (i.e., solvophobic and solvophilic
solutes with a wide range of sizes).6–8 This feature, which
is known as “multidrug efflux,” is in marked contrast with
the high selectivity in the receptor-ligand binding. In our
earlier works, it was shown that the high selectivity is
ascribed to geometric characteristics of the receptor pocket
and ligand, which are made substantial by the entropic effect
originating from the translational displacement of solvent
molecules.9–11 Here, we show that the solvent-entropy
effect plays crucially important roles in the multidrug efflux
as well.

A prevailing view is the following: The multidrug efflux
stems from multifunctional ligand-binding sites4, 5, 12 of AcrB
which recognize various types of functional groups; once the

0021-9606/2013/139(20)/205102/13/$30.00 © 2013 AIP Publishing LLC139, 205102-1
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FIG. 1. Cartoon illustrating an efflux transporter, AcrA/AcrB/TolC.

solute enters TolC, it goes to the external medium merely by
“diffusion”12 in the presence of no particular potential field;
and only AcrB is responsible for the multidrug efflux (in gen-
eral, AcrB has caught more attention than TolC for analy-
ses on the solute motion12, 13). However, there is an important
point to be noticed: Once AcrB sends the solute to the central
position within the vessel cavity of TolC (the length of TolC
reaches ∼14 nm that is far larger than the solute size) at the
entrance, the solute must be ejected to the external medium
through the exit before AcrB sends the next solute. The ejec-
tion of every solute needs to be finished with sufficient rapid-
ness, but it is uncertain whether such ejection is achievable by
the mere diffusion mentioned above or not. The achievement
may be assured if the solute motion is directed only toward
the exit (i.e., the solute motion is unidirectional). Also, we
emphasize that the multidrug efflux of AcrA/AcrB/TolC can
be realized only when TolC as well as AcrB exhibits this fea-
ture. TolC possesses an uncomplicated structure of a cylindri-
cal shape with an open space inside it and works as a tunnel
for drugs. The existence of the multifunctional ligand-binding
sites can hardly be applied to TolC, implying that the mul-
tidrug efflux is implemented through a different mechanism.
Further, it is not definite that such sites actually exist in AcrB.
Even if they exist, a solute once bound to one of the sites is not
likely to be released from it since the solute properties remain
unchanged. The binding must be strong enough for the solute
to remain captured, whereas it must be sufficiently weak for
the solute dissociation in the next step. It is not straightfor-
ward to meet both of these requirements. In the present study,
we revisit the mechanism of the multidrug efflux by consider-
ing TolC, from the standpoint that the mechanism cannot be
chemically specific but rather has to be based on a physical
factor. It is demonstrated that the multidrug efflux can be re-
alized without assuming the existence of the multifunctional
ligand-binding sites.

A principal concern is insertion of a solute into a ves-
sel comprising biopolymers followed by release of the same
solute from it. It is quite interesting that the two apparently
opposite events, insertion and release, successively occur in a
system. In earlier works,14–17 we showed that the spatial dis-
tribution of the solute-vessel potential of mean force (PMF
denoted by �) formed by the solvent plays imperative roles
for the insertion/release process. The PMF represents “the

free energy of the solvent for a fixed configuration of the
solute-vessel pair” minus “that for the configuration where the
solute is infinitely far from the vessel.” The spatial distribu-
tion of the PMF becomes largely positive and largely negative
with the periodicity of the molecular diameter of the solvent,
dS = 0.28 nm. The motion of a solute immersed in a sol-
vent confined on the scale of a nanometer is influenced by the
distribution.

It is physically insightful to decompose the PMF scaled
by kBT (kB is Boltzmann’s constant and T is the absolute tem-
perature), �/(kBT), into its energetic and entropic components
denoted by �E/(kBT) and −�S/kB, respectively: �/(kBT)
= �E/(kBT)−�S/kB. In what follows, the conclusions drawn
from our earlier works15, 16 are recapitulated. �E/(kBT) is
strongly dependent on the solute-solvent and vessel inner
surface-solvent affinities. When the inner surface of the vessel
is solvophilic, the average solvent number density within the
vessel cavity is higher than that in the bulk solvent. As a re-
sult, the solvent environment becomes more favorable within
the cavity than in the bulk for a solvophilic solute, while the
opposite is true for a solvophobic solute: The solvophilic so-
lute is preferentially solvated within a small space almost in
the center of the cavity but the solvophobic solute is more
stabilized in the bulk. A solvophobic inner surface gives rise
to a lower solvent number density on an average within the
cavity, leading to preferential solvation of a solvophilic so-
lute in the bulk and more stabilization of a solvophobic solute
within the cavity. −�S/kB, which originates from the transla-
tional displacement of solvent molecules, is rather insensitive
to the solute-solvent and vessel inner surface-solvent affini-
ties, namely, to whether the solute or the vessel inner surface
is solvophobic or solvophilic (on condition that they are nei-
ther too solvophobic nor too solvophilic). It is closely related
to the excluded volume (EV) generated by the solute. (The so-
lute generates a space which the centers of solvent molecules
cannot enter, and the volume of this space is the EV.) −�S/kB

always drives the solute to be inserted into the vessel cav-
ity and constrained within a small space almost in the cen-
ter. The power of insertion and constraint becomes stronger
as the EV increases. The release can be performed only
by �E/(kBT).

In the protein flux through a chaperonin system,15, 16, 18–20

where an unfolded protein is inserted into the chaperonin from
the bulk solvent and the folded protein is released back to
the bulk, the vessel properties (i.e., geometry and vessel in-
ner surface-solvent affinity) are the same for insertion and re-
lease. The inner surface is weakly solvophobic. However, the
solute properties are different for the two events. Since the
unfolded protein possesses large EV and weak solvophobic-
ity, it is driven to be strongly inserted by −�S/kB and weakly
inserted by �E/(kBT), and the net action is insertion. The
folded protein is characterized by small EV and solvophilic-
ity with the result that the power of insertion by −�S/kB be-
comes weaker and �E/(kBT) dominates. The folded protein
is released back to the bulk solvent for preferential solvation.
The switch from insertion to release is thus realized. An im-
portant point is that �E/(kBT) is requisite in release. In TolC,
by contrast, the solute properties remain unchanged for inser-
tion and release. To accomplish the release, the vessel inner
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surface needs to be solvophobic for a solvophilic solute,
whereas it needs to be solvophilic for a solvophobic solute.
It turns out that releasing both of the solvophilic and solvo-
phobic solutes is not achievable.

Our basic idea is as follows: Only the entropic component
of the PMF possesses the insensitivity to the solute-solvent
and vessel inner surface-solvent affinities; and the multidrug
efflux can be realized if the entropic component predomi-
nates over the energetic one. When the vessel inner surface
is neither solvophobic nor solvophilic, the solvents within the
vessel cavity and in the bulk offer almost the same environ-
ment to any solute with solvophobicity or solvophilicity, and
the energetic component becomes much less powerful than
the entropic component (i.e., the latter dominates). This can
be relevant to TolC whose inner surface possesses a mix-
ture of predominantly nonpolar and isolated electronegative
patches.1 The remaining issue is to explore how to release a
solute entropically.

In the present study, we calculate the spatial distribution
of the PMF between a big sphere and a cylindrical vessel with
two open ends immersed in small spheres using the three-
dimensional (3D) integral equation theory9, 10, 14–17, 21–26 com-
bined with rigid-body models in which the constituents in-
teract only through hard-body potentials. The big sphere and
small spheres correspond to a solute and solvent, respectively,
and the vessel is a model of TolC. To focus our analysis on the
entropic component of the PMF, we employ the rigid-body
models mentioned above where all of the allowed system con-
figurations share the same energy and the system behavior is
purely entropic in origin. Namely, we look at �/(kBT) pos-
sessing only the entropic component: �/(kBT) = −�S/kB.
Unlike in our earlier works,14–16 the vessel geometry is made
variable after the solute insertion. (For a fixed geometry of
the vessel, the solute remains confined within the vessel cav-
ity once it is inserted.) It is demonstrated that release can also
be realized by the entropic component of the PMF: The so-
lute is entropically moved from the entrance to the exit by a
continuous variation of the vessel geometry. Due to the PMF
periodicity of dS = 0.28 nm explained above, even a vessel-
geometry variation of this scale leads to a drastic change in
the spatial distribution of the PMF, thus enabling the vessel to
control the solute motion. The key factor is a time-dependent
entropic force acting on a solute, which originates from the
solvent-mediated interaction between the solute and the ves-
sel whose geometry is continuously varied and time depen-
dent. Solutes with a wide range of sizes are entropically re-
leased using the same vessel-geometry variation. Such rich
behavior is observed even in our simplified model neglecting
the potentials other than hard-body potentials and polyatomic
structures of the vessel and the solute.

A brief report has already been published by us in a
Letter,17 but much more extensive parametric studies are car-
ried out with detailed arguments in the present article. In par-
ticular, we show for the first time that solutes with a wide
range of sizes can be handled, thus developing a sounder
physical basis of the multidrug efflux. The conclusions drawn
are fairly general and also applicable to other proteins (or pro-
tein complexes) exhibiting the multidrug efflux such as AcrB
and ATP-binding cassette (ABC) transporter.27, 28

II. MODEL AND THEORY

A. Three-dimensional integral equation theory
applied to rigid-body models

Though the model, basic equations, numerical solution
strategy were described in our earlier brief report,17 they are
reinterpreted here.

In biological systems, the solvent is water characterized
by hydrogen bonds. Solute insertion into water, for instance,
causes restrictions of translational and rotational freedoms of
water molecules. However, the contribution from the transla-
tional restriction is much larger: In hydration thermodynamics
of a solute, the translational entropy predominates over the ro-
tational entropy.29, 30 In many cases, the translational-entropy
effect can be described by modeling water as hard spheres as
long as the diameter and number density of the hard-sphere
solvent are set at those of water.31, 32 (An exception is found
in the elucidation of cold denaturation of a protein33–35 where
the weakening of the entropic effect at low temperatures plays
essential roles and a suitable molecular model is necessitated
for water.) We note that the hydrogen bonding allows water to
exist as a dense liquid despite its quite a small molecular size,
leading to an exceptionally large entropic effect.

We consider rigid-body models in which the constituents
interact only through hard-body potentials: a big hard vessel
and a big hard sphere immersed at infinite dilution in small
hard spheres with diameter dS forming the solvent. The big
sphere corresponds to a solute and its diameter is denoted by
dB. The initial geometry of the vessel is shown in Fig. 2(a).
After the solute insertion, the vessel geometry is varied for

FIG. 2. Variation of vessel geometry: (a)→(b)→(c)→(d)→(e)→(f). The
geometry in (a) is a cylinder with inner diameter 8dS, length 14dS, and thick-
ness dS (dS is the molecular diameter of the solvent). The coordinate system
is chosen as illustrated here. In the geometry in (d), D = 8dS. D is reduced
as (d)→(e)→(f). The cross section of z = 0 is shown for each geometry.
Though the geometry variation is illustrated in a stepwise manner, it is made
continuously.
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the solute release as explained in Figs. 2(b)–2(f). The Carte-
sian coordinate system is chosen as illustrated in Fig. 2(a).
The cross section of z = 0 is shown for each geometry. More
details are described in Sec. II B.

The vessel with a prescribed geometry is considered.
First, the solvent-solvent correlation functions are calcu-
lated using the radial-symmetric (RS) hypernetted-chain
(HNC) theory for spherical particles.36 Second, the vessel-
solvent correlation functions are calculated by means of
the 3D integral equation theory described below. This
theory9, 10, 14–17, 21–26 and the density functional theory37–40

have been applied to a variety of important problems in bio-
physics and colloidal science with the emphasis on the en-
tropic force41, 42 induced between big, spherical and nonspher-
ical bodies immersed in small spheres.9, 10, 14–17, 23, 25, 26, 37–40

Third, the solute-solvent correlation functions are calculated
using the RS-HNC theory for spherical particles.36 The PMF
between the vessel and the solute is then calculated by assum-
ing that the solvent particles are always in equilibrium with
each configuration of the vessel-solute pair.

The Ornstein-Zernike (OZ) equation in the Fourier space
is expressed by9, 10, 14–17, 21–26

W1S(kx, ky, kz) = ρSC1S(kx, ky, kz)HSS(k). (1)

This is coupled with the HNC closure equation written
as9, 10, 14–17, 21–26

c1S(x, y, z) = exp{−u1S(x, y, z)/(kBT )} exp{w1S(x, y, z)}
−w1S(x, y, z) − 1. (2)

In these equations, the subscripts “1” and “S” denote the ves-
sel and the solvent, respectively, w = h−c, c is the direct cor-
relation function, h is the total correlation function, u is the
potential, and ρS is the bulk density. The molecular diameter
dS is set at the value of water, 0.28 nm. The reduced number
density ρSdS

3 is taken to be the value of water at 298 K and
1 atm, 0.7317. C, H, and W represent the Fourier transforms
of c, h, and w, respectively. HSS(k) (k2 = kx

2+ky
2+kz

2) cal-
culated using the RS-HNC theory for spherical particles36 is
part of the input data. We emphasize that the OZ equation is
exact.43 It has been stated that the OZ equation includes se-
rious approximations in a publication,38 but this statement is
incorrect. On the other hand, the bridge function is neglected
in the HNC closure equation. However, it has been corrobo-
rated that the 3D-OZ-HNC theory gives quantitatively reliable
results.10

The numerical procedure is briefly summarized as fol-
lows: (1) u1S(x, y, z) is calculated at each 3D grid point, (2)
w1S(x, y, z) is initialized to zero, (3) c1S(x, y, z) is calculated
from Eq. (2), and c1S(x, y, z) is transformed to C1S(kx, ky, kz)
using the 3D fast Fourier transform (3D-FFT), (4) W1S(kx, ky,
kz) is calculated from Eq. (1), and W1S(kx, ky, kz) is inverted to
w1S(x, y, z) using the 3D-FFT, and (5) steps (3) and (4) are re-
peated until the input and output functions for w1S(x, y, z) be-
come identical within convergence tolerance. On grid points
where a solvent particle and the solute overlap, exp{−u1S(x, y,
z)/(kBT)} is zero. On those where a solvent particle is in con-
tact with the solute, it is set at 0.5, and otherwise it is unity.
The grid spacing (�x, �y, and �z) is set at 0.1dS, and the grid

resolution (Nx × Ny × Nz) is 256 × 256 × 256. It has been
confirmed that the spacing is sufficiently small and the box
size (Nx�x, Ny�y, Nz�z) is large enough for the correlation
functions at the box surfaces to be essentially zero.

The Fourier transform of the vessel-solvent direct cor-
relation function denoted by C1S(kx, ky, kz) is calculated in
accordance with the procedure described above. The Fourier
transforms of the solute-solvent total correlation function de-
noted by H2S(k) (the subscript “2” denotes the solute) is calcu-
lated using the RS-HNC theory for spherical particles where
HSS(k) is part of the input data. The PMF between the vessel
and the solute, �12(x, y, z), is then obtained from

�12(x, y, z)/(kBT ) = u12(x, y, z)/(kBT ) − w12(x, y, z),
(3)

where w12(x, y, z) is calculated by inverting W12(kx, ky, kz)
given by

W12(kx, ky, kz) = ρSC1S(kx, ky, kz)H2S(k). (4)

The two equations,16, 26

�12(x, y, z) = F (x, y, z) − F∞ (5)

and

g12(x, y, z) = exp{−�12(x, y, z)/(kBT )}, g12,∞ = 1, (6)

allow us to understand the physical meaning of �12(x, y, z).
Here, F(x, y, z) is the free energy of small spheres in the case
where the solute center is at the position (x, y, z), and g12(x, y,
z) is the pair distribution function. The subscript “∞” denotes
the value in the case where the solute is infinitely separated
from the vessel. For rigid-body models, the behavior of �12(x,
y, z) is purely entropic in origin. Due to the microscopic struc-
ture of small spheres formed within the domain confined by
the solute and the vessel, �12(x, y, z) exhibits a complex spa-
tial distribution. A great advantage of the 3D integral equation
theory is that the values of �12 on all the grid points are ob-
tained from only a single calculation, which is not inherent
in the usual computer simulation (e.g., a molecular dynamics
(MD) simulation).

B. Variation of vessel geometry

We emphasize that the vessel-geometry variation is made
continuously though it is represented in a stepwise manner in
Fig. 2. Figure 2(a) shows the initial geometry of the vessel,
a cylinder with inner diameter 8dS, length 14dS, and thick-
ness dS. These dimensions roughly mimic those of TolC ex-
cept that the length is set at a much shorter value (the length
of TolC in the real system is ∼50dS).44 This is because all
we need in the present study is a length which is sufficiently
longer than the diameter of the solute dB set at 2dS−5dS. The
left and right ends of the cylindrical vessel are the entrance
and the exit, respectively. The inner diameter at the entrance
is first reduced to 6dS (Fig. 2(b)). L1 and L2, lengths of the
portions with inner diameter 6dS and 8dS, respectively, are
gradually increased and decreased, respectively (Fig. 2(c)).
Since the length of the tapering portion is set at 2dS,
L1 + L2 = 12dS. The inner diameter at the exit D is gradually
reduced after the geometry with D = 8dS shown in Fig. 2(d)
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is reached. In the case of D = 6dS, the inner diameter uni-
formly becomes 6dS (Fig. 2(e)). As the final geometry, D is
made smaller than 6dS (D = 5.5dS in Fig. 2(f)). Hereafter, the
vessel geometries shown in Figs. 2(a)–2(f) are referred to as
vessel geometries (a), (b), (c), (d), (e), and (f), respectively.

In AcrA/AcrB/TolC, the proton motive force causes
structural changes of AcrB, which are transmitted to TolC
through AcrA.5, 6, 8 This action may lead to a continuous
vessel-geometry variation of TolC. On the other hand, a re-
cent MD simulation study44 has suggested that TolC can vary
its geometric characteristics by itself: They have observed a
peristaltic motion of the periplasmic domain and closing and
opening for both of the periplasmic and extracellular mouths.
This observation is consistent with the geometry variation il-
lustrated in Fig. 2. We start with the geometry of Fig. 2(a)
where the left end corresponding to the periplasmic mouth is
opened. In the geometry of Fig. 2(f), the right end correspond-
ing to the extracellular mouth begins to change its geometry
toward closing. Of course, details of the geometry variation
in the real system during the insertion/release process are not
known. However, our conclusions are independent of the de-
tails as discussed in Sec. III E. What we emphasize in the
present study is that release as well as insertion of solutes with
a wide range of sizes can be achieved entropically and that a
continuous vessel-geometry variation plays essential roles.

III. RESULTS AND DISCUSSION

A. Entropic potential for vessel geometry (a) in Fig. 2

Hereafter, the PMF scaled by kBT between the vessel and
the solute are denoted simply by −�S/kB because the equa-
tion, �/(kBT) = −�S/kB, holds for our model system. We re-
fer to −T�S as “entropic potential.” Unless otherwise men-
tioned, the solute size dB is set at mdS (m = 2, 3, 4, 5).

Figure 3 shows the distributions of −�S/kB on the cross
section of z = 0 for vessel geometry (a) (see Fig. 2(a)) for
the four values of dB. As the color approaches dark blue,
−�S/kB and the free energy of the solvent become lower and
the solute is more stabilized there. As the color approaches
dark red, they become higher and the solute is more desta-
bilized there. The center of the big sphere cannot enter the
domain drawn in white. The stripe pattern of the entropic po-
tential formed along the y-axis can physically be interpreted
as follows. When the separation between the nearest solute
and vessel inner surfaces, which is denoted by η, is not suffi-
ciently close to ndS (n = 0, 1, 2, . . . ), spaces unavailable to the
translational displacement of solvent molecules appear as in-
dicated in Fig. 4(a). By contrast, in cases of η ∼ ndS, such
unfavorable spaces do not appear and the solvent particles
can efficiently be packed within the domain confined between
two surfaces as illustrated in Fig. 4(b). The configuration in
Fig. 4(a) is entropically unfavorable, while that in Fig. 4(b)
is entropically favorable, leading to the stripe pattern formed
along the y-axis. The inner diameter of vessel geometry (a)
is 8dS. The entropic potential in the central region around y
= 0 is negative when (8dS − dB)/dS is even (i.e., dB = 2dS or
4dS), whereas it is positive when (8dS − dB)/dS is odd (i.e., dB

= 3dS or 5dS), as observed in Fig. 3. The amplitude of the

FIG. 3. Distributions of −�S/kB on the cross section of z = 0 for the initial
vessel geometry illustrated in Fig. 2(a) for the solutes with dB = 2dS (a), dB
= 3dS (b), dB = 4dS (c), and dB = 5dS (d). −�S/kB becomes lower as the
color approaches dark blue, and it becomes higher as the color approaches
dark red (“max” and “min” represent the maximum and minimum values,
respectively). The center of the big sphere cannot enter the domain drawn in
white.

stripe pattern formed along the y-axis becomes progressively
larger as the solute size increases.

It was experimentally shown for the entropic interaction
between large spheres immersed in small spheres that a free-
energy barrier well exceeding kBT cannot readily be overcome
and that with the barrier of ∼2kBT the large spheres come

FIG. 4. Cartoons illustrating how the stripe pattern of the entropic potential
shown in Fig. 2(a) is formed along the y-axis. (a) Separation between the
nearest solute and vessel inner surfaces, which is denoted by η, is not suffi-
ciently close to ndS (n = 0, 1, 2, . . . ). (b) In the case of η ∼ ndS.
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together only rarely.45 The best way of discussing a barrier
is to analyze the dynamic behavior of the solute by solving
the Fokker-Planck equation. Such a detailed analysis, which
provides us with useful information on the time required for
overcoming it, is an issue to be pursued in the near future. In
the present study, we discuss a barrier in reference to the ex-
perimental observation mentioned above. (As argued below,
the time required for overcoming the barrier in the final stage
of the solute release at the exit can be an important quantity: It
is better to make this time as short as possible by keeping the
barrier as low as possible. See the fourth and fifth paragraphs
in “CONCLUSIONS” for a more detailed discussion.)

As observed in Fig. 3, the solute is most likely to be in-
serted into the central region around y = 0 for dB = 2dS or 4dS

and into the region next to the central one around y/dS = ±0.5
for dB = 3dS or 5dS (these regions are referred to as the most
stable regions). However, for all the solute sizes tested there
is a possibility that the solute is inserted into a different re-
gion with negative −�S/kB due to the presence of a trajectory
possessing a sufficiently low barrier. As shown in our earlier
works,14–16 a modification of the vessel geometry (e.g., trun-
cation of the edge at the entrance) increases the barriers in a
trajectory in the region x/dS<−7 along which the solute can
touch the vessel and may enable the solute to be inserted into
the most stable region with higher probability. In any case, we
postulate that the solute is inserted into the most stable region
for each solute size. This postulation is justified because in the
real system AcrB interacting with TolC at its entrance sends
the solute to the central position within the vessel cavity.

The profiles of −�S/kB along “y = 0 and z = 0” (i.e., the
x-axis) are shown in Fig. 5(a) for dB = 2dS and 4dS. Those
along “y/dS = ±0.5 and z = 0” are presented in Fig. 5(b)
for dB = 3dS and 5dS. The dotted line indicates the position
near the entrance where −�S/kB takes the lowest value. The
position is located at x/dS = −5.5 in Fig. 5(a) and at x/dS

= −5.7 in Fig. 5(b). Figure 6 shows the profiles of −�S/kB

in the radial direction along “x/dS = −5.5 and z = 0” for dB

= 2dS and 4dS together with those along “x/dS = −5.7 and z
= 0” for dB = 3dS and 5dS. The open circle indicates the posi-
tion where the solute is stabilized with the highest probability
right after the solute insertion. If the vessel geometry under-
went no change, the solutes with dB = 4dS and 5dS would
remain confined within the region of −6 < x/dS < 6 (see
Fig. 5). A problem is that the solutes with dB = 2dS and
3dS may go in the left direction by overcoming the barriers
of ∼kBT. Moreover, the solute with dB = 2dS may move in
the radial direction without difficulty (see Fig. 6). These un-
favorable motions of the smaller solutes can be prevented by
the variation in the vessel geometry which is made as soon
as the solute is inserted into the most stable region for each
solute size. More details are discussed in Sec. III B.

B. Entropic potentials for vessel geometries (b), (c),
and (d) in Fig. 2

For the solute with dB = 2dS, the distributions of −�S/kB

on the cross section of z = 0 for vessel geometries (b), (c), and
(d) (see Figs. 2(b)–2(d)) are shown in Figs. 7(a)–7(c), respec-
tively. Those for the solutes with dB = 3dS, 4dS, and 5dS are

FIG. 5. (a) Profiles of −�S/kB along “y = 0 and z = 0” for dB = 2dS (black)
and 4dS (blue). (b) Those along “y/dS = ±0.5 and z = 0” for dB = 3dS (red)
and 5dS (green). The two broken lines in each plot represent positions of
the vessel ends, x/dS = ±7. The dotted line indicates the position near the
entrance where −�S/kB takes the lowest value.

presented in Figs. 8–10, respectively. In vessel geometry (c),
L1 = L2 = 6dS. The open circle indicates the position where
the entropic potential is locally minimum. For the portion of
length L1 as well as for that of length L2 (see Fig. 2(c)), the en-
tropic potential in the central region around y = 0 is negative
when (8dS−dB)/dS is even (i.e., dB = 2dS or 4dS), whereas it
is positive when (8dS−dB)/dS is odd (i.e., dB = 3dS or 5dS).

FIG. 6. Profiles of −�S/kB in the radial direction along “x/dS = −5.5 and
z = 0” for dB = 2dS (black) and 4dS (blue), and those along “x/dS = −5.7
and z = 0” for dB = 3dS (red) and 5dS (green). The open circle indicates the
position where the solute is stabilized with the highest probability right after
the solute insertion.
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FIG. 7. Distributions of −�S/kB on the cross section of z = 0 for vessel
geometries (b), (c), and (d) illustrated in Figs. 2(b)–2(d), respectively. The
solute size dB is 2dS. −�S/kB becomes lower as the color approaches dark
blue, and it becomes higher as the color approaches dark red (“max” and
“min” represent the maximum and minimum values, respectively). The open
circle indicates the position where the entropic potential is locally minimum.

Within the intermediate portion (i.e., portion of length 2dS)
around the x-axis, a small domain with positive −�S/kB is
formed for dB = 2dS or 4dS, while that with negative −�S/kB

is formed for dB = 3dS or 5dS. Next to the solute on the

FIG. 8. Distributions of −�S/kB on the cross section of z = 0 for vessel
geometries (b), (c), and (d) illustrated in Figs. 2(b)–2(d), respectively. The
solute size dB is 3dS. −�S/kB becomes lower as the color approaches dark
blue, and it becomes higher as the color approaches dark red (“max” and
“min” represent the maximum and minimum values, respectively). The open
circle indicates the position where the entropic potential is locally minimum.

FIG. 9. Distributions of −�S/kB on the cross section of z = 0 for vessel
geometries (b), (c), and (d) illustrated in Figs. 2(b)–2(d), respectively. The
solute size dB is 4dS. −�S/kB becomes lower as the color approaches dark
blue, and it becomes higher as the color approaches dark red (“max” and
“min” represent the maximum and minimum values, respectively). The open
circle indicates the position where the entropic potential is locally minimum.

left side, the potential becomes positive regardless of the so-
lute size. Since L1 is continuously lengthened as illustrated in
Fig. 2, the solutes with all the sizes tested are driven to move
in the right direction along the x-axis toward the exit (see
Figs. 7–10).

FIG. 10. Distributions of −�S/kB on the cross section of z = 0 for vessel
geometries (b), (c), and (d) illustrated in Figs. 2(b)–2(d), respectively. The
solute size dB is 5dS. −�S/kB becomes lower as the color approaches dark
blue, and it becomes higher as the color approaches dark red (“max” and
“min” represent the maximum and minimum values, respectively). The open
circle indicates the position where the entropic potential is locally minimum.
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A notable point is that the entropic potential does not re-
main constant: It is time dependent. There are three different
time scales: those of the solvent motion, variation in the ves-
sel geometry, and solute motion. The time scale of the solvent
motion is doubtlessly the fastest. The solvent is practically in
equilibrium with the solute-vessel configuration all the time.
Here, we assume that the variation of the vessel geometry
(that is, the variation of the entropic potential) is relatively
faster than the solute motion. The faster variation of the ves-
sel geometry could be realized by structural changes of AcrB
caused by the proton motive force. It follows that an entropic
force, which is given as FS = −{∂(−T�S)/∂x}, continuously
acts on the solute in the right direction along the x-axis and
continues to accelerate its motion during the variation of the
vessel geometry. When vessel geometry (d) is reached, the
solute should possess a considerably high velocity. As a con-
sequence, even a barrier well exceeding kBT can readily be
overcome by the solute.

Figure 11(a) shows the entropic forces acting on the so-
lute with dB = 2dS in vessel geometry (c). They are for (L1,
L2) = (6dS, 6dS) and for (L1, L2) = (6.1dS, 5.9dS), respec-
tively. A similar plot is made in Fig. 11(b) for the solute with
dB = 5dS. When the solute is at the location indicated by
the dashed-dotted line representing the potential minimum for
(L1, L2) = (6dS, 6dS), the force looking like that for (L1, L2)
= (6.1dS, 5.9dS) is applied to the solute. This is because the

FIG. 11. Entropic forces acting on the solute in vessel geometry (c) illus-
trated in Fig. 2(c) for (L1, L2) = (6dS, 6dS) (black and solid) and for (L1, L2)
= (6.1dS, 5.9dS) (red and broken). The solute size dB is 2dS in (a) and 5dS
in (b). The position of the potential minimum for (L1, L2) = (6dS, 6dS) is
indicated by the dashed-dotted line.

solute is always on the left side of (and close to) the location
with the potential minimum when the variation of the ves-
sel geometry is relatively faster than the solute motion. The
force continuously accelerates the solute motion in the right
direction along the x-axis. The maximum value of the force
increases remarkably as the solute size becomes larger: For
instance, it is approximately 25 times stronger for dB = 2dS

than for dB = 5dS.

C. Entropic potentials for vessel geometries (d), (e),
and (f) in Fig. 2

To complete the release of the solute, the inner diameter
at the exit D is gradually reduced as illustrated in Figs. 2(d)–
2(f). Figure 12(a) shows the profiles of −�S/kB along the x-
axis for vessel geometries (d) (D = 8dS), (d) with D = 7dS, (e)
(D = 6dS), and (f) (D = 5.5dS) for the solute with dB = 2dS.
Those for the solute with dB = 5dS are displayed in Fig. 12(b).
The open circle indicates the position where the entropic po-
tential is locally minimum. The coordinate, (x/dS, y/dS, z/dS)
= (7, 0, 0), corresponds to the position where the right half
of the solute is outside the vessel. As D decreases, the so-
lute is driven to move further in the right direction along the

FIG. 12. Profiles of −�S/kB along the x-axis for vessel geometries (d) with
D = 8dS (black), (d) with D = 7dS (red), (e) (blue), and (f) (green). The solute
size dB is 2dS in (a) and 5dS in (b). The open circle indicates the position
where the entropic potential is locally minimum. The coordinate, (x/dS, y/dS,
z/dS) = (7, 0, 0), corresponds to the position where the right half of the solute
is outside the vessel. The broken line in each plot represents position of the
right end of the vessel, x/dS = 7.
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x-axis and the barrier becomes progressively lower. It should
be quite easy for the solute with dB = 2dS to overcome the
barrier for being released to the bulk, even in vessel geome-
try (d) (D = 8dS). However, the barriers become higher as the
solute size increases. For the solute with dB = 5dS, though
the velocity of the solute in the right direction along the x-
axis is expected to be much higher than for the solute with dB

= 2dS, it is not definite if the barriers in vessel geometries (d)
(D = 8dS), (d) with D = 7dS, and (e) (D = 6dS) can be over-
come. Fortunately, the barrier decreases to ∼3.5 kBT in vessel
geometry (f) (D = 5.5dS). This value should be sufficiently
low in the light of the very strong entropic force discussed
in Sec. III B.

From the above argument, we conclude that solutes with
a wide range of sizes can be released to the bulk. The key
idea is a continuous variation of the vessel geometry accom-
panying that of the spatial distribution of the entropic poten-
tial. We remark that the solute velocity in the final vessel ge-
ometry considered becomes higher as the vessel length in-
creases. In other words, a longer vessel enables the solute
to overcome a higher barrier for being released to the bulk.
Even a barrier that is considerably higher than kBT could
readily be overcome. The very large value of the length of
TolC, ∼50dS, may play crucially important roles in the solute
release.

Within the cylindrical vessel with two open ends (i.e.,
entrance and exit for the solute), the solute motion is thus di-
rected only toward the right end. Such unidirectional motion
cannot be performed by the mere diffusion: The solute release
from the right end is achievable only with the probability of
0.5 at most; and the actual probability is significantly lower
than 0.5 since the initial position of the solute is in the vicinity
of the left end. Even when the left end is closed (it is confined
by AcrB in the real system), the probability that the solute
remains near the left end is considerably high.

D. Case where solute size differs from integral
multiplication of dS

We consider the solute sizes that differ from the in-
tegral multiplication of dS: Solutes with the 11 sizes, dB

= 3dS+0.1mdS (m = 0−10), are compared. We find that
the stripe pattern observed in Fig. 3 persists even for the
solute sizes differing from the integral multiplication of dS.
Figure 13 shows the profiles of −�S/kB in the radial direc-
tion along “x/dS = −p and z = 0” for m = 0−10 (p = 5.7,
5.6, 5.8, 6.1, 5.9, 6.0, 6.0, 5.9, 5.7, 5.6, and 5.5, respectively).
This figure corresponds exactly to Fig. 6, and the open cir-
cle indicates the position where the solute is stabilized with
the highest probability right after the solute insertion. It is ob-
served that the barrier to overcome for the solute to reach y/dS

= 1 is sufficiently high for all the solute sizes tested. At y = 0,
−�S/kB takes the maximum value for m = 0−2 (category 1),
whereas it takes the minimum value for m = 7−10 (category
2). −�S/kB for m = 3 behaves like that in category 1 in the
sense that the solute rarely comes to the center of y = 0. The
profiles of −�S/kB for m = 5 and 6 are qualitatively similar to
those in category 2. −�S/kB for m = 4 (dB = 3.4dS) exhibits
intermediate behavior.

FIG. 13. Profiles of −�S/kB in the radial direction for solutes with the 11
different sizes, dB = 3dS+0.1mdS (m = 0−10). (a) m = 0 (black), m = 1
(red), m = 2 (blue), m = 3 (green), and m = 4 (purple). (b) m = 5 (black),
m = 6 (red), m = 7 (blue), m = 8 (green), m = 9 (purple), and m = 10
(orange). This figure corresponds exactly to Fig. 6. The open circle indicates
the position where the solute is stabilized with the highest probability right
after the solute insertion.

The distributions of −�S/kB on the cross section of
z = 0 for vessel geometries (b), (c), and (d) (see Figs. 2(b)–
2(d)) are shown for m = 3 in Fig. 14. Those for m = 4 and 5
are presented in Figs. 15 and 16, respectively. We find that the
basic patterns of the distributions for m = 1−3 is qualitatively
similar to those for m = 0 (dB = 3dS). This sentence is valid
when “m = 1−3” and “m = 0 (dB = 3dS)” are replaced by “m
= 5−9” and “m = 10 (dB = 4dS),” respectively. Even for m
= 4, the potential becomes positive next to the solute on the
left side and an entropic force continuously acts on the solute
in the right direction along the x-axis and continues to accel-
erate its motion during the variation of the vessel geometry.
The figure corresponding to Fig. 12 is presented for m = 4 as
Fig. 17. The solute release to the bulk is completed by means
of the vessel-geometry variation, (d)→(e)→(f), illustrated in
Fig. 2. Similar arguments are possible for the solutes with dB

= 2dS+0.1mdS and dB = 4dS+0.1mdS (m = 0−10). Thus,
solutes with a wide range of sizes can be released using the
same vessel-geometry variation.

E. Another method of vessel-geometry variation

The method of the vessel-geometry variation achieving
the entropic release for solutes with a wide range of sizes is
not unique. To demonstrate this, we consider another type of
variation illustrated in Fig. 18. Tapering in the diameter from
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FIG. 14. Distributions of −�S/kB on the cross section of z = 0 for vessel
geometries (b), (c), and (d) (see 2(b)–2(d)) for the solute with dB = 3.3dS.
−�S/kB becomes lower as the color approaches dark blue, and it becomes
higher as the color approaches dark red (“max” and “min” represent the max-
imum and minimum values, respectively). The open circle indicates the po-
sition where the entropic potential is locally minimum. This figure is to be
compared with Figs. 8 and 9.

FIG. 15. Distributions of −�S/kB on the cross section of z = 0 for ves-
sel geometries (b), (c), and (d) (see Figs. 2(b)–2(d)) for the solute with dB
= 3.4dS. −�S/kB becomes lower as the color approaches dark blue, and it
becomes higher as the color approaches dark red (“max” and “min” represent
the maximum and minimum values, respectively). The open circle indicates
the position where the entropic potential is locally minimum. This figure is
to be compared with Figs. 8 and 9.

FIG. 16. Distributions of −�S/kB on the cross section of z = 0 for ves-
sel geometries (b), (c), and (d) (see Figs. 2(b)–2(d)) for the solute with dB
= 3.5dS. −�S/kB becomes lower as the color approaches dark blue, and it
becomes higher as the color approaches dark red (“max” and “min” represent
the maximum and minimum values, respectively). The open circle indicates
the position where the entropic potential is locally minimum. This figure is
to be compared with Figs. 8 and 9.

8dS to 6dS is applied only to a small portion of the vessel,
and the portion is continuously moved in the right direction
toward the exit. Figure 19 shows the distributions of −�S/kB

on the cross section of z = 0 for vessel geometries (b), (c) with
L1 = L2 = 5dS, (d), and (e) (see Fig. 18) for the solute with
dB = 3dS. The open circle indicates the position where the
entropic potential is locally minimum. Those for the solute
with dB = 4dS are displayed in Fig. 20. An entropic force
continuously acts on the solute in the right direction along
the x-axis and continues to accelerate its motion during the

FIG. 17. Plot for the solute with dB = 3.4dS corresponding to Fig. 12. The
open circle indicates the position where the entropic potential is locally min-
imum. The coordinate, (x/dS, y/dS, z/dS) = (7, 0, 0), corresponds to the posi-
tion where the right half of the solute is outside the vessel. The broken line in
each plot represents position of the right end of the vessel, x/dS = 7.
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FIG. 18. Variation of vessel geometry: (a)→(b)→(c)→(d)→(e). The ge-
ometry in (a) is exactly the same as that in Fig. 2. The coordinate system
is chosen as illustrated here. L1 and L2 are gradually increased and de-
creased, respectively. The cross section of z = 0 is shown for each geometry.
Though the geometry variation is illustrated in a stepwise manner, it is made
continuously.

variation of the vessel geometry. The solute is released to the
bulk without difficulty.

We have thus obtained qualitatively the same results for
the vessel-geometry variations illustrated in Figs. 2 and 18.
A vessel in the real system is expected to exhibit a more
complex variation. However, the geometric properties play
essential roles and should appropriately be designed just for
the portion around the position where the entropic force
acts on the solute. The geometric variation for the other
portions can be different from that assumed in the present
study.

F. Applicability of results obtained to AcrB
and ABC transporter

The principal results obtained are as follows: The en-
tropic release of the solute is not feasible as long as the ves-
sel geometry is fixed; it can be accomplished by a continu-
ous variation of the vessel geometry; and solutes with a wide
range of sizes can be handled. Namely, a time-dependent en-
tropic force continuing to accelerate the solute motion in the
axial direction toward the exit is the key to the multidrug ef-
flux. These results, which are obtained using simple model
calculations, seem to be fairly general and applicable to other
types of efflux transporters. In the ABC transporter27, 28 with
the inward-facing structure and in AcrB1–8 with the structure

FIG. 19. Distributions of −�S/kB on the cross section of z = 0 for vessel
geometries (b), (c) with L1 = L2 = 5dS, (d), and (e) illustrated in Fig. 18. The
solute size dB is 3dS. −�S/kB becomes lower as the color approaches dark
blue, and it becomes higher as the color approaches dark red (“max” and
“min” represent the maximum and minimum values, respectively). The open
circle indicates the position where the entropic potential is locally minimum.

drawn in blue in Fig. 1, a solute can spontaneously be inserted
into a cavity within the transporter or AcrB. In the transporter,
after the solute insertion, the inward-facing structure is gradu-
ally changed to the outward-facing one, performing the switch
from insertion to release. Similarly, in AcrB the solute release
is promoted by a gradual variation from the structure drawn
in blue to that drawn in red (see Fig. 1). Our view thus sug-
gested concerning the insertion/release process for AcrB is
substantially different from the one relying on the mere dif-
fusion which is unable to perform the unidirectional solute
motion.

In AcrB the variation of the structure (i.e., the geome-
try) is induced by the proton motive force,1–8 while in ABC
transporter it is controlled by the cycle comprising the bind-
ing of adenosine triphosphate (ATP), hydrolysis of ATP, and
dissociation of Pi and adenosine diphosphate (ADP).27, 28

Despite this difference, these two protein complexes share
the feature that the structure is continuously changed to
carry out the switch from insertion to release for the
solute.
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FIG. 20. Distributions of −�S/kB on the cross section of z = 0 for vessel
geometries (b), (c) with L1 = L2 = 5dS, (d), and (e) illustrated in Fig. 18. The
solute size dB is 4dS. −�S/kB becomes lower as the color approaches dark
blue, and it becomes higher as the color approaches dark red (“max” and
“min” represent the maximum and minimum values, respectively). The open
circle indicates the position where the entropic potential is locally minimum.

IV. CONCLUSIONS

We have investigated insertion and release of a solute
into and from a cylindrical vessel possessing an entrance at
one end and an exit at the other end for the solute. This
model vessel mimics TolC, an important component of the
multidrug efflux transporter, AcrA/AcrB/TolC.44 The spatial
distribution of the solute-vessel PMF formed by the sol-
vent is calculated using the three-dimensional integral equa-
tion theory9, 10, 14–17, 21–26 combined with rigid-body models in
which the constituents interact only through hard-body poten-
tials. With such models, all of the allowed system configura-
tions share the same energy, and the system behavior is purely
entropic in origin. It has been demonstrated that the two oppo-
site events, insertion and release, can be driven solely by the
entropic effect arising not from the electrostatic and van der
Waals interactions for solute-vessel, solute-solvent, solvent-
vessel, and solvent-solvent pairs but from the translational
displacement of solvent molecules.

A principal aim of the present study is to develop a novel
physical picture of the multidrug efflux6–8 implying that so-
lutes such as drug molecules with diverse properties (i.e.,
solvophobic and solvophilic solutes with a wide range of
sizes) can be handled. The insertion/release process can be
described in terms of the PMF consisting of the energetic and

entropic components. The energetic component is strongly
dependent on the solute-solvent and vessel inner surface-
solvent affinities, whereas the entropic component is rather
insensitive to them. The basis of our physical picture is that
the multidrug efflux can be assured under a condition where
the entropic component dominates. This condition is satisfied
when the inner surface of the vessel is neither solvophobic
nor solvophilic. As long as the vessel geometry is fixed, how-
ever, the entropic component does not work for release. A
finding is that a solute which has been inserted can also be
released entropically using a continuous variation of the ves-
sel geometry. Two typical examples of the variation are illus-
trated in Figs. 2 and 18. The variation is never unrealistic for
the following reasons: The proton motive force causes struc-
tural changes of AcrB, they are transmitted to TolC through
AcrA,5, 6, 8 possibly leading to a continuous vessel-geometry
variation of TolC; and a recent molecular dynamics simula-
tion study44 has suggested that TolC can vary its geometric
characteristics even by itself (an observed variation is a peri-
staltic motion of the periplasmic domain).

The variation of the vessel geometry is initiated as soon
as the solute is inserted into the vessel at its entrance. In the
real system, the solute insertion is made with the aid of AcrB:
AcrB interacting with TolC sends the solute to the central po-
sition within the vessel cavity of TolC. The manner of the
vessel-geometry variation proposed in the present study gen-
erates a time-dependent entropic force. There are three dif-
ferent time scales: those of the solvent motion, variation in
the vessel geometry, and solute motion. The time scale of the
solvent motion is the fastest, and the solvent is practically in
equilibrium with the solute-vessel configuration all the time.
We assume that the variation of the vessel geometry (that is,
the variation of the entropic potential) is relatively faster than
the solute motion. The faster variation of the vessel geometry
could be realized by structural changes of AcrB caused by the
proton motive force. The time-dependent entropic force then
continues to accelerate the solute motion in the axial direc-
tion toward the exit. A larger solute is subjected to a stronger
force. The solute velocity at the exit becomes higher as the
solute size or the vessel length increases. Solutes with a wide
range of sizes can be released using the same manner of the
variation. It is quite interesting and important that such rich
behavior is observed in the very simple model system adopted
in the present study.

Once a solute is sent from AcrB to the central position
within the TolC cavity, the solute must be ejected to the ex-
ternal medium through the exit before the next solute is sent.
Namely, the ejection of every solute needs to be finished with
sufficient rapidness. This requirement can be met with much
more certainty when the solute motion is directed only toward
the exit. This unidirectional motion is assured by the time-
dependent entropic force arising from the vessel-geometry
variation proposed in the present study. Our physical picture
of the multidrug efflux is clearly distinguished from the previ-
ously reported one4, 5, 12 assuming the existence of multifunc-
tional ligand-binding sites which recognize various types of
solutes and relying on the mere diffusion (i.e., the diffusion in
the presence of no particular potential field) by which the uni-
directional solute motion is not realized. In earlier works,9–11
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we showed that the solvent entropy plays crucially important
roles in the high selectivity pertaining to the receptor-ligand
binding. Interestingly, it is also true in the multidrug efflux
which is in marked contrast with the high selectivity.

To complement the physical picture of the multidrug ef-
flux, we need to analyze dynamic aspects of the entropic re-
lease by solving the Fokker-Planck equation in the presence
of a time-dependent force field calculated in the present study.
The time required for overcoming the barrier in the final stage
of the solute release at the exit is an important quantity. How-
ever, it is to be argued in the light of the interval between
the two times when a solute and the next solute are sent
from AcrB to the central position within the TolC cavity at
the entrance. Even if the former time is shorter than the in-
terval, the vessel-geometry variation should still be required.
This is because the solute cannot always arrive at the exit in
time without its unidirectional motion toward the exit: The
long length of TolC (∼50dS) is a noticeable factor. When the
vessel-geometry variation is applied, the long length may in-
versely play crucial roles in the solute release as discussed in
Sec. III C. (The interval mentioned above is unknown and to
be measured in future experimental and theoretical works.)

The details of the polyatomic structures of the vessel
and/or the solute are also essential factors whose effects are
to be examined. We remark that our physical picture is fairly
general and also applicable to AcrB and ABC transporter27, 28

as discussed in Sec. III F, pending detailed analyses. It is
challenging to investigate the sequential structural change
exhibited by each protomer of AcrB among three states in
which a drug insertion, binding, and release take place.5, 6, 8

We have recently developed a novel physical picture46–48 for
F1-ATPase in which the α3β3 complex always tries to form
three regions which are tightly packed, moderately packed,
and loosely packed, respectively, and these regions are cycli-
cally exchanged. The inhomogeneous packing structure and
the cyclic exchange are attributed to the maintenance of the
maximal solvent entropy. This picture, which is consistent
with the experimental observations for F1-ATPase without the
γ -subunit,49 may also be relevant to the sequential structural
change in AcrB. The most important matter is treating the sol-
vent as an ensemble of particles with finite sizes to account for
the imperative solvent-entropy effect (this has often been ne-
glected as in a recent simulation study50). Works along these
lines are in progress in our group.
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