ON HIGHER FITTING IDEALS OF IWASAWA MODULES OF
IDEAL CLASS GROUPS OVER IMAGINARY QUADRATIC FIELDS
AND EULER SYSTEMS OF ELLIPTIC UNITS

TATSUYA OHSHITA

ABSTRACT. Kurihara described all higher Fitting ideals of the minus part of Iwa-
sawa modules of ideal class groups over totally real fields by using Stickelberger
elements and Euler systems of “Gauss sums”. In this paper, we obtain some par-
tial results for elliptic units which are analogues of his result. By using Kolyvagin

derivative classes of Euler systems of elliptic units, we construct some ideals fol;

of Iwasawa algebras, and prove that they give “upper bounds” of higher Fitting
ideals of one and two-variable Iwasawa modules of ideal class groups over imaginary
quadratic fields.

1. INTRODUCTION

Let K be an imaginary quadratic field. We fix an algebraic closure Q = K of K. In
this paper, an algebraic number field is a finite extension of Q in this fixed algebraic
closure Q. For each algebraic number field F', we denote the ring of integers of F by
Op. If F5/F) is a finite extension of fields, we write F; Cy Fh.

We fix an abelian extension Ky of K, and put A := Gal(K,/K). Let p be a prime
number which does not divide #(le(o)tors#A. We consider an abelian extension
K /K which contains K. We assume that I' := Gal(K/Kj) is isomorphic to Z, or
Z2 as a topological group. We put G := Gal(K/K) = AxI'. We define A := Z,[[G]].

Put A = Hom(A,@;). For any character y € A, we denote by O, the Z,[Al-
algebra, which is a Z,-algebra isomorphic to Z,[Im x| with action of A via y. The

A-algebra A, is defined by O,[[I']]. Note that for any x € A, the algebra A, is flat
over A since we assume that p does not divide #A. The ring A is decomposed into
A= erz A, as A-algebra. For any A-module M, we put M, := M ®, A,.

Let X be a projective limit of the systems
{Npp: Ap — Ap | Ko C; F' C4 F' C Koo},

where Ap is the p-Sylow subgroup of the ideal class group of F' and Ng/p is the
norm map. Note that X is a finitely generated torsion A-module. Let Xg, be the
largest pseudo-null A-submodule of X, and X’ := X/Xj,. In our paper, we study the
higher Fitting ideals {Fitta, ;(X})}icz., for each x € A by using the Euler systems of
elliptic units. In §4, we will define ideals €fl>1< of A, for all ¢ € Z>(, which are analogues
of Kurihara’s higher Stickelberger ideals in [Ku| for elliptic units, and we will prove
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that they give “upper bounds” (admitting some “error factors”) of Fitta, ;(X}) (cf.
Theorem 1.1 and Theorem 5.1).

To state our main theorem, we define some ideals, which appear in “error factors”
of our main theorem. For each place v of K, we denote the decomposition group of
vin A (resp. G) by Da, (resp. D,). For any subgroup H of G, let Z(#H) be the ideal
in A generated by {v — 1|~y € H}. Let T be the set of places of K above p which
ramify in Ko /K. We define Zr := [[, . Z(D,).

Let n be a positive integer. For each ring R, we denote the group of all n-th roots
of unity by u, (R). For simplicity, we write p, 1= p,,(K) and pipeo := {U,,51 Hym (K).
We put Z,, = anny (e (Kxo))-

The following is a rough form of the main theorem of our paper. (For precise
version, see Theorem 5.1.)

Theorem 1.1. Let x € A be a non-trivial character. If Ky contains ji,, we assume
X # w and x # x " 'w, where

w: A — Gal(K () / K) — Z,
is the Teichmiiller character. Assume one of the following:
e p splits completely in K/Q;
e p does not split (i.e. p ramifies or inerts) in K/Q, and for the element p €

T, the character x is non-trivial on Da,. (Note that in this case, T is a
singleton.)

Then, the following holds:

(1) If the character x is non-trivial on Da, for any p € T, then we have
€5l C Fitta, o(X7).
(2) For any i € Z>o, there ezists a height-two ideal J;, of A, satisfying
JinTy Fitta, (X)) C €.

Moreover, if I ~ Z, and Iy, =1,, = A, we have

anny, (Xiw) Fitta, (X)) € €5
for any 1 € Z>.

Remark 1.2. Here, we remark briefly on the structure of X, in the case of x = 1. For
the two-variable cases, the generalized Greenberg conjecture predicts that the Iwasawa
module X of the Zg—extension of any imaginary quadratic field Ky = K is pseudo-
null. (For details, see [Gr] Conjecture 3.5.) In [Mi], Minardi proved the generalized
Greenberg conjecture for imaginary quadratic fields when p does not divide the class
number of K. So, the assertion of our main theorem holds trivially in this case.

For the one-variable cases, the following results are known.
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(1) Assume that p does not split in K/Q. Then, we have X = X’ = 0 for any
Zy-extensions Ko, of Ky = K (a special case of Iwasawa’s result in [Iw]).

(2) Assume that p splits in K/Q and the class number of K is prime to p. Then
for all but finitely many Z,-extensions K, of Ky = K, the A-module X' = X]
associated to K /K is free of rank 1 as a Z,-module ([Oz] Theorem 1).

Assume p splits in K/Q, and p does not divide the class number of K. Then, the
result (2) by Ozaki and the Iwasawa main conjecture imply that we have

_ chary (€5 /Cx) ifi=0
Fitty (X)) =

16t (X) {A if i > 0
for all but finitely many Z,-extensions K., of Ky = K, where £, (resp. Cy) is the
A-module of global units (resp. the A-module of elliptic units) defined in §2.1 (resp.
§2.2) of this paper.

In this paper, we prove Theorem 1.1 by using Kurihara’s Euler system argument in
[Ku] for elliptic units. Kurihara’s methods are not “usual” Euler system arguments
which appear in the proof of Iwasawa main conjectures in [Rul] or [Ru3]. Note
that “usual” Euler system arguments work well for Iwasawa modules with a diagonal
relation matrix, but Kurihara’s arguments work for Iwasawa modules with a square
relation matrix. (Recall that when we prove the Iwasawa main conjecture for X,
instead of X, we study an Iwasawa module with a diagonal relation matrix which
is pseudo-isomorphic to X.) Though we also treat non-cyclotomic extensions in our
paper, our Euler system arguments work completely parallel to those of [Ku] and
[Oh], which treat only cyclotomic Z,-extensions.

Remark 1.3. In one-variable case, we can give some bounds of “error factors” J; , Z5, .
of Theorem 1.1 (cf. Theorem 5.1, which is the precise form of our main theorem for
one-variable case). Kurihara’s Euler system arguments work well only for Iwasawa
modules whose relation matrices can be written by square matrices. Under the as-
sumption I' >~ Z,,, the relation of an Iwasawa module M is written by a square matrix
if (and only if) M has no non-trivial submodule whose order is finite (cf. Lemma 2.11).
So, in one-variable case, we can apply Kurihara’s argument directly to X', and we
obtain some bounds of “error factors” .J;,Z3  when we observe Kurihara’s Euler sys-
tem argument carefully. In two-variable case, we cannot bound “error factors” since
we have no “canonical” modification of X to Iwasawa modules with square relation
matrix. (In two-variable case, X’ may not have a relation matrix written by square
matrix.) Indeed, as we will see later in §6, our result for two-variable case follows
from the standard Euler system argument for the proof of Iwasawa main conjecture
without using Kurihara’s methods, and it is not so new or strong.

In particular, when I' ~ Z, and X,  has no non-trivial pseudo-null submodule, then
our theorem give upper bounds of higher Fitting ideals directly.

Corollary 1.4. Let x € A be a non-trivial character. If Ky contains p,, we assume
X #w and x # x 'w. Assume one of the following:

e p splits completely in K/Q;
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e p does not split in K/Q, and for the element p € T, the character x is non-
trivial on D .

Further, we assume I' ~ Z,, Ir, =1, = A, and Xgn, = 0. Then, we have the
following:

(1) If the character x is non-trivial on Da, for any p € T, then we have
Fitta, 0(Xy) = €.

(2) Fitty, (X)) C € for any i € Zxo.
Remark 1.5. Here, we give an example satisfying X, = X|. (Note that we usually
have X, # X for many cases.) When X is the Iwasawa module associated to the
anti-cyclotomic Z,-extension K of a imaginary quadratic field Ky = K, Theorem 4.2
in [Fu] gives a sufficient condition which make X a cyclic A-module satisfying X = X".
For instance, let K, be the anti-cyclotomic Zs-extension of K = Q(y/—461), and ~
a topological generator of I' = Gal(K/K), then we have

X =X~A/(v*—1)A.

This implies
(= 1A ifi=0
A it > 0.
For details of this example, see the examples below Theorem 2 and Theorem 4.2 in

[Fu]. Note that we cannot apply Corollary 1.4 in this case since the corollary requires
that x is a non-trivial character.

Fitty;(X) = Fitty (X)) = {

Remark 1.6. Recall the fact that the Iwasawa main conjecture for Iwasawa modules
X of ideal class groups implies the Iwasawa main conjecture for Iwasawa modules
of Selmer groups of elliptic curves over Q with complex multiplication. (See §12 in
[Rul].) But this fact follows from multiplicativity of characteristic ideals for exact
sequences of Iwasawa modules. Since higher Fitting ideals do not have multiplicativ-
ity, our main theorem does not imply any bounds of higher Fitting ideals of Iwasawa
modules of Selmer groups of elliptic curves with complex multiplication.

Notation. In this paper, we use the following notation.

Let L/K be a finite Galois extension of algebraic number fields. Let A be a prime
ideal of K, and X a prime ideal of L above \. We denote the completion of K at A by
K, and the completion of L at X' by Ly. If A is unramified in L/K, the arithmetic
Frobenius at X" is denoted by (N, L/K) € Gal(L/K).

We fix a family of embeddings {lz: K < F[}[:prime satisfying a technical condition
(A) as follows.

(A) For any subfield L C K which is a finite Galois extension of K and any
element o € Gal(L/K), there exist infinitely many prime ideals | of Ok such
that U is unramified in L/K and (I, L/K) = o, where I, is the prime ideal
corresponding to the embedding lz| .
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The existence of a family satisfying the condition (A) is easily proved by using the
Chebotarev density theorem.

Let [ be a prime ideal [ of Og. For an algebraic number field L, let [; be the prime
ideal of Of, corresponding to the embedding liz|,. Then, if Ly O L; is an extension
of algebraic number fields containing K, we have [, | [, .

For an abelian group M and a positive integer n, we write M /n in place of M /nM
for simplicity. In particular, for the multiplicative group K> of a field K, we write
K*/pN in place of K*/(K*)P".

Let F be a finite extension field of K, contained in K. We put I'p := Gal(K/F).
For a A-module M, we denote the I'p-invariants (resp. I'p-coinvariants) of M by M'r
(resp. Mr,. or Mp).

Let R be a commutative ring. For an R-module M, we define anng (M) to be the
annihilator of M. Namely,

anng(M) :={a € R |am =0 for any m € M}.

The maximal torsion submodule of M is denoted by M.
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2. PRELIMINARIES

In this section, we review some preliminary results. We use the same notation as
in §1. This section consists of three subsections. In the first subsection, we recall
some Iwasawa theoretical results on unit groups and ideal class groups. In the second
section, we recall the definition and some properties of elliptic units. In the last
subsection, we recall the notion of higher Fitting ideals.

2.1. In this subsection, we recall some preliminary results on Iwasawa theory which
is used in our paper. For each finite extension field F' of K, contained in K, we put

gF = O; (%9 Zp,
and we define a A-module &, to be the projective limit of the system
{NF//FZ Ep — EF ’ Ky Cy F’ Cy F' C Koo}

where Ng//p are the norm maps.
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Let F' be a number field satisfying Ky C¢ ' C K. Recall that we put I'p :=
Gal(K/F'), and for a A-module M, we denote the I' p-coinvariants of M by Mp. We
consider the natural homomorphisms

Ter: (Eso)r — Er,
TAF: <X00>F — AF

We define the ideals Z¢, Je, Z4 and J4 of A by

Te = ﬂannA(Ker er), Je = ﬂannA(Coker Ter),
F F
Ty = ﬂannA(Ker TAr), Ja:i= ﬂannA(Coker TAF),
F F
where F' runs all intermediate fields of K. /K satisfying Ko C F.

Recall that we denote the set of places of K above p which ramify in K,/K by T,
and we define Iy := [[ . Z(D,), where we denote the decomposition group of p in
G by D,, and let Z(D,) be the ideal in A generated by {y —1|~ € D,}.

Proposition 2.1. (1) There exist a height two ideal A satisfying
ITA g Ig and I%.A Q jg.

Further, if we assume that I' ~ Z,, and let x € A be a character satisfying
Ir, = Ay, then we have

Ten = Ay and anny (Xeany) C Jey-

([Rul] Theorem 17.6.)
(2) We have

IrTy CZa and Z(G) C Ja,

where Z(G) is the augmentation ideal, which is an ideal of A generated by
{v—1[v€g}, and

A if ' ~7Z,,
IO = . 9
(G) ifI~Z;.
In particular, if we assume that I' ~ 7Z,, then the natural homomorphism
TAF: (Xoo>F — AF

is an isomorphism for any number field F' satisfying Ko C; F' C K, and any
character x € A satisfying Zr, = A. So, if I' ~ Z,, and if Ir, = A, then
we have

Tay =Tay =Ny
([Rul] Theorem 5.4.)
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2.2. Here, we briefly recall the definition and some properties of elliptic units. We fix
an embedding cor: K — C, and regard K as a subfield of C by oo Let F be an
intermediate field of C/ K, and E an elliptic curve over F' with complex multiplication
by Ok. In this paper, we always identify Ok with End(E) by unique isomorphism
Ok — End(E) such that the composite map

Ok — End(F) — Endp(Lie(E)) = F

coincides with the inclusion map. For each ideal a of Ok, we denote the a-torsion
subgroup scheme of FE by F.

Proposition 2.2. Let a be an ideal of Ok which is prime to 6. Then, there exists a
unique element 0p of O(E \ (E)* satisfying the following conditions (i), (ii).

(i) The divisor of .0 is N(a) - (0) — ,E.

(ii) For any integer b prime to a, we have

Ny (obe|B\r) = o,

where N2 O(E \pa ) — O(E \ E)* is the norm map associated to the
multiplication map

B]: B\ joE — E\ .E.

We use the notion of “CM-pair” in [Ka] §15. Let F' be an intermediate field of C/ K,
and f be an ideal of Op which makes the natural homomorphism O — (Og /f)* be
injective. (For instance, if f is a proper ideal of Ok prime to 6, then this injectivity
holds.) We call a pair (E, a) a CM-pair of modulus f over F'if F is an elliptic curve
over F' with complex multiplication by O, and « is a torsion point of F(F) satisfying
annp, (o) = f. A CM-pair (EF, «) over F is isomorphic to a CM-pair (£’, /) if and
only if there exists an isomorphism ¢: £ — E’ satisfying (o) = t(o/). Note that
since we assume the natural homomorphism Oy — (Og/f)* is injective, if a CM-
pair (E,a) over F is isomorphic to a CM-pair (E’, '), then there exists only one
isomorphism from (F, ) to (E', o).

Let n be a non-zero ideal of Og. Then, we denote the ray class field of K of the
modulus n by K(n). In particular, K(Ok) is the Hilbert class field Hx of K. The
following facts are well-known.

e There exists a CM-pair of modulus f over K (f) which is isomorphic to (C/f, 1
mod f) over C. This CM-pair of modulus § over K(f) is unique up to unique

isomorphism. We call this CM-pair of modulus f over K(f) the canonical
CM-pair over K (f), and denote it by (E,,, o/

can’ Can)'
e Let F' be an intermediate field of C/K, and (E,«) a CM-pair of modulus f
over F. Then, there exists a unique embedding ¢: K(f) — F such that the

base change (\*Ef,,t*al,,) of the canonical CM-pair is isomorphic to (E, «).

can?’ can

Definition 2.3. Let a and § be ideals of O satisfying the following condition(I).

(I) The ideal a is prime to 6f, and the ideal § makes the natural homomorphism
Ox — (Ok/f)* injective.
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Then, we define
afy = aechan (O‘Ean) € K(f)X

The following properties of ,z;’s are well-know.

Proposition 2.4 ([dS] Chapter II, Proposition 2.5, norm compatibility). Let a and
f be ideals of Ok satisfying the condition (1).

(1) If§ is a power of one prime ideal of O, we have oz; € Ok y)[1/f]*. Otherwise,
we have qz; € le((f)'
(2) Let [ be a prime ideal of Ok not dividing a. Then, we have

1-Fr;

f [ is prime to §
N z = qu Zf p
K (/K (5) (aZ71) {uzf if U divides §,

where Fri € Gal(K (f)/K) is the arithmetic Frobenius element at .

Here, we define elliptic units.

Definition 2.5. Let F' be a finite abelian extension field of K which contains Hy.
We denote the conductor of F'/K by Cond(F).

(1) Let n be an ideal of Ok prime to a. We define
o2§(Fyn) 1= Np(j)/r(aZfn)-
For simplicity, we put o2;(F) := ¢2;(F, Ok).
(2) We denote by Dp the Z[Gal(F/K)]-submodule of F'* generated by

a and f are ideals of Ok satisfying «
{“Zf(F) ‘ the condition (I) and § | Cond(F) U (O Jiors

We denote the intersection Dr N Of by Cp, and we call Cr the group of

elliptic units of F.
(3) We denote by Cp the Z,|Gal(F/K)]-submodule of £ generated by the image
of Cr, and we define a A-module C., to be the projective limit of the system

{NF’/F5 Crr — Cp | Ky nggf F/CKOO}

where Ngv/p are the norm maps.

Here, we recall the statement of the Iwasawa main conjecture proved in [Rul]
and [Ru2| briefly. Let x € A be an arbitrary character. It is well-known fact that
Eoon/Coox 18 a torsion A,-module. Assume one of the following:

e p splits completely in K/Q;
e p does not split in K/Q, and for the element p € T, the character x is non-
trivial on D.

Then, we have
chary (Xoo,y) = chary (Esoy/Coory)-
(See [Rul] Theorem 4.1 and [Ru2] Theorem 2.)
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Here, we recall some results on the A-modules £, and C.

Proposition 2.6 ([Rul] Proposition 7.7 and Corollary 7.8). Recall we put I, =
anny (pye (Koo))-

(1) Let (Exo)tors (1esp. (Coo)tors) be the mazimal torsion A-submodule of Es (resp.
Cx). Then, we have

(Eco)tors = (Coo)tors = {Lmupn if Koo = Ko(pipe)

0 otherwise.
(2) We have
7, if I' ~Z,, Koo # Ko(ptpeo)
Coo == A@@ﬂpn if Koo = Ko(ptp>)
Z(G)Z, if I~ Zz.

In this paper, we fix a generator 6, € A, of the ideal chary (€, /Cs,y)- For each
homomorphism ¢: €, — A, of A,-modules, we write

I(Coo,x; 90) = epzlgp(coo,x»
Note that it follows from Proposition 2.6 (1) that Z(Cw y; ¢) is an integral ideal of
Ay

Definition 2.7. We define 7, to be the ideal of A, generated by U(p Z(Coox; ¥)s
where ¢ runs through all homomorphism ¢: £, — A, of A,-modules.

Note that Z¢, is an ideal of A, of height at least two. The following corollary
follows from Proposition 2.6.

Corollary 2.8. Assume I' >~ Z,. Let x € A be a character satisfying Z,,,, = A,.
Then, there exists a A, -homomorphism ¢: s, — A, satisfying

¢(Coo,x) = chary (Esoy/Coox)-
In particular, Ic, = Ny if L, = Ay,

2.3. Here, we recall the notion of higher Fitting ideals.

Definition 2.9 (Higher Fitting ideals, see [No] §3.1). Let R be a commutative ring,
and M be a finitely presented R-module. Let

R Ly R — M —0
be an exact sequence of R-modules. For each i > 0, we define the i-th Fitting ideal
Fittg (M) to be the ideal of R generated by all (n —4) x (n —4) minors of the matrix
corresponding to f. Note that when 0 < i < n and m < n—i (resp. i > n), we define
Fittg,(M) := 0 (resp. Fittg;(M) := R). Definition of these ideals depends only on
M, and does not depend on the choice of the above exact sequence. We have the
ascending filtration

Fittgo(M) C Fittg (M) C -+ C Fittg,(M) = Fittg 1 (M) = - = R.
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We denote the smallest number of generators of an R-module M by ng(M). If
Fittg,(M) # R, then np(M) > n+ 1. Note that when R is a local ring or a PID, we
have ng(M) =i+ 1 if and only if Fittg,;,(M) # R and Fittg,11(M) = R.

Example 2.10. Let O be the valuation ring of some finite extension field of Q,.
Suppose R is a ring isomorphic to O[[T]] or O[[S,T]], and M is a finitely generated

torsion R-module. (For example, R = A, for some x € A.) Assume
M ~ @ R/[iR
i=1

and f; divides f;11 for 1 <4 < n — 1. Then, for each ¢ with ¢ > 0, there exists an
ideal I; of height at least two in R such that

Fittg(M) = {(Hﬁ fi)l; ifi<n

(cf. [Ku] Lemma 9.2). This implies that the family {Fittg,;(M)};>o of Fitting ideals
of M determines the pseudo-isomorphism class of M. Note that for two pseudo-
isomorphic R-modules which have no non-trivial pseudo-null submodules, their higher
Fitting ideals may be different. For example, we consider the following. Let f,g € R
be distinguished polynomial which are prime to each other, and put M; := R/(fg)
and My := R/(f)® R/(g). Then, R-modules M; and M have no non-trivial pseudo-
null submodules, and they are pseudo-isomorphic, but their first Fitting ideals are
different: Fittp,(M;) = R and Fittg,(Ms) = (f,g) # R. Note that higher Fitting
ideals do not determine the isomorphism classes of R-modules. See [Ku] Remark 9.4.

We need the following lemma in the proof of Theorem 1.1.

Lemma 2.11 (for example, see [Ku] Theorem 9.1). Let O be the valuation ring of
some finite extension field of Q,, R := O[[T]] and M a finitely generated torsion
R-module. Suppose M contains no non-trivial pseudo-null R-submodule. Then, there
exists an exact sequence

0 —R"—R"—M—0

for some integer n > 0, and we have
FittR,()(M) = charR(M).

3. EULER SYSTEMS OF ELLIPTIC UNITS AND KURIHARA’S ELEMENT

In this section, we set up some notions related to Euler systems of elliptic units,
and prove some preliminary propositions to prove our main theorem. This section
contains four subsections. In the first section, we recall the notion of Kolyvagin
derivative classes. In the second subsection, we define two homomorphisms which
play key roles in Euler system arguments. In the third subsection, we define elements
Tng(n,a) € (F*/pY)y, which are analogues of Kurihara’s elements defined in [Kul
87 for elliptic units. We define them by using the Kolyvagin derivative classes of
the Euler system of elliptic units. In the final subsection, we prove an important
proposition for induction arguments in the proof of our main result.
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3.1. Here, we recall the definition of the Kolyvagin derivative classes ;q(F, N;n) of
the Euler system of elliptic units (cf. for example, [Rul]).

We denote the ideal class group of K by Clg, and we fix a decomposition

k
Clx = @ za;
i=1

of Clg into a direct sum of cyclic subgroups, where a; is the ideal class of a prime
ideal a; of Ok for each 7. We denote the order of a; in Clg by n;, and fix a generator
a; of the principal ideal a;".

Let F be a finite extension field of Ky. For an integer N > 1, let S¥"™°(F) be the
set of all prime ideals [ of Ok satisfying the following conditions:

(1) [ does not divide #Oy;
(2) [splits completely in F'(,~, ai/pN, . ,a,lc/pN)/K.

We denote the set of all square-free integral ideals n of Ok such that all prime divisors
of n belong to Sy™°(F) by Sy(F). For simplicity, we put Sy := Sy (Kp) and
Sy = Sn(Kp). Recall the following lemma in [Ru2].

Lemma 3.1 ([Ru2| Lemma 3). Let N be a positive integer. For any [ € SY™, there
exists a cyclic extension Ko(I; N) of F of degree p" contained in the composite field
Ko - K(I), which is totally ramified at all primes above [, and unramified at all primes
not dividing 1.

Definition 3.2. Let F' be a finite extension field of Ky contained in K., and N
a positive integer. Let n € Sy(F) be any element, and assume n is decomposed
as n = [[._, ;, where [;,...,[, are distinct prime ideals of O. For each [;, let
Ko(l;) = Ko(l;; N) be as in Lemma 3.1.

e We denote the composite field F' - Ko(l;; N)--- Ko(l,; N) by F(n; N), or by
F(n) for simplicity. In particular, we put F(Ok) := F.
e We put
Hn = Han = Gal (KQ(Il)/Ko)
Note that Ko(ly),..., Ko(l,) and F' are linearly disjointed over Ky, we have
the natural isomorphism

Gal (F(n)/F) o~ Hy = Hy, X - X Hy,,

and we identify them by this natural isomorphism.

As in §2.2, we regard K as a subfield of C by the fixed embedding coz: K — C.
We put ¢, := e2™/™ € K for any positive integer n. Let F be a finite extension field
of K contained in K, and [ € S¥™°(F). Recall H; = Hyy is a cyclic group of order
pV. We take a generator o of H; as follows:

Note that since the prime ideal | splits completely in Ko(p,~)/K, we have
(Ko)i, = Ki and (v € K. We put L := Ko(l) We identify Gal(L/Kj)

S ON
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with Hy by the isomorphism induced by the embedding
[Ko([): Ko([) — L

fized in §1 Notation. Let m be a uniformizer of Op. We fix a generator oy of
‘H such that

a0l = CpN (mod mL),
where my, is the maximal ideal of Op. Note that the definition of o, does not
depend on the choice of .

Let n € Sy(F). We define the element D, of the group ring Z[H,] as follows.

Definition 3.3. Let n = [[_, ; € Sx(F) such that [; € S¥™(F) for i = 1,...,7.
We define

pN -1
Dy = Y kol € Z[M,] C Z[M,]
k=1
fori=1,...,r, and

Dy =[] Dy, € Z[M.].
=1

The following lemma is well-known.

Lemma 3.4. Let a and § be ideals of Ok satisfying the condition (1) in Definition
2.3. Let ni,ny € Sy(F). Assume | € SY™ (F(ny)) for each prime divisor | of
ny. We put n = nyny.  Then, the image of oz;(F,n)P2 in F(n)*/pN is fized by
Ha, = Gal (F(n)/F(ny)).

The Kolyvagin derivative class
Kpy(F, Nin) € F(ng)* /pY
is an element of F(n;)*/p" such that its image in F(n)*/p™ by the natural homo-
morphism
v F(m) /N — (F@* /)"

coincides with the class of 4z;(F,n)”"2. Note that the natural homomorphism ¢ is not
injective or surjective in general, so the inverse image ¢! (az;(F,n)P"2) may not be
a singleton. In order to construct Kolyvagin derivative classes, we recall the notion

of universal Euler systems. Let F,N,f,a and n = nyn, be as in Lemma 3.4. Let
YVrm)(n,) be the free Z[H,,]-module whose basis is symbols

{y(0) | 9 is an ideal of O dividing n,}.

We write the group law multiplicatively. Let Zp(,)(n2) be the Z[H,,|-submodule of
YVr(n,)(n,) generated by

{y(®)7~" | v is an ideal of Ok dividing n,, and o € Gal (F(n)/F(n,0))}
o) Ve

0 is an ideal of Ok dividing n,,
and [ is a prime ideal of Ok dividing 0 [’
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where Ny := ), o € Z[H,], and Fr( is the arithmetic Frobenius at [ in H,,,. (Note
that we regard H,,, as a subgroup of H,,.) Then, we define the module Xp(,,)(ny)
of “universal Euler systems at F'(n;)” by

Xrm)(M2) = Vrm)(n2)/ Zrm)(n2).

In order to define Kolyvagin derivatives, we use the following lemma.

Lemma 3.5 ([Rul| Lemma 2.1). (i) The Z[Hy,]-module Xpw,)(n2) is torsion free.
(ii) For any ideal ® of Ok dividing n and any o € H,,, we have

N

y(D)D°(”_1) € Xpm)(n2)? .

By Lemma 2.4, we define a homomorphism
§: Xiguy(na) — F(n)*

of Z[Hn,]-modules by 6(y(2)) := a2;(F(n1),n10) for each ideal d of O dividing ns.
Then, by Lemma 3.5, we (uniquely) define a 1-cocycle ¢: H,, — F(n)” by

() = 0 ((y(@) ™)),

By Hilbert’s Theorem 90, there exists an element 3 € F(n)™ such that 37! = ¢(0)
for any o € H,,.

Now, we define the Kolyvagin derivative class ff;‘la(F L N;n).
Definition 3.6. Let F, N,f, a,n = nyny, be as in Lemma 3.4. We define
ni n N

/-@ﬁa(F, Nin) = oz(F, n) P /BT € F(ny)* /pY.

Note that the definition of rj{(F, N;n) is independent of the choice of 3. When
n; = Ok, the element /@SQK(F, N;n) is denoted by kjq(F, N;n).

3.2. Let F' be a finite extension field of Ky contained in K. We put Rpy :=
Z/p"N[Gal(F/K)] and Rp,n, := Rpn ®z,1a] Oy for any character x € A. Let n be an
element of Sy (F). Here, for each [ € SY"™(F (n)), we define of two homomorphisms

['];,N,x: (F*/p™)y — Rpny (cf. Definition 3.7)
and
QE%(“)’NX: (F(n)*/p™)y — Rpny[Hal (cf. Definition 3.8),
which play important roles in Euler system arguments.
First, we define []fn N, Let F' be an algebraic number field. We define
Ir = Div(Spec(Op))

to be the divisor group, and we write its group law additively. We define the homo-
morphism (-)p: F'* — Zp by

(x)p = Z ordy(z)A,
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where A runs through all prime ideals of Op, and ordy: F’* —= 7Z is the normalized

valuation of A. For any prime ideal I of Ok, we define Z}. to be the subgroup of Zr
generated by all prime divisors above [. Then, we define (-)%: F* — Z% by

p)p = ordy(z)A

All

Recall that we fix a family of embeddings {lz: K — K| }iprime satisfying the con-
dition (A) (cf. §1 Notation). For each prime number [ and algebraic number field F,
we denote the ideal of Op corresponding to the embedding li|x by [F. Note that I
splits completely in F//K. Then, Z% is a free Z[Gal(F/K)]-module generated by [,

and we identify Z% with Z[Gal(F/K)] by the isomorphism ¢: Z[Gal(F/K)] — T
defined by z +— z - Ip for x € Z[Gal(F/K)]. We also denote the composite map

F* — I 5 Z[Gal(F/K)] by ()%,
Definition 3.7. We define the Rp y ,-homomorphism

[rna: (B /0" )y — (Zr/p")y

to be the homomorphism induced by (-)%: F* — Zp. For each [ € S¥™(F), we
define the Rp y,-homomorphism

HFNX (F*/pY )x — Rrny

to be the homomorphism induced by (-)%: F* — Z[Gal(F/K)].

Second, we will define gz_ﬁip(m Ny Let I € Sy(F(n)). Note I splits completely in

F(n)/K, so we have F(n), = K, for any prime ideal A of F' above [. The groups
@D, F(n)5 and D, Hi are regarded as Z[Gal(F'(n)/K)|-modules by the identifica-

tion

@F ®ZK>< and @H[ I[ n)®H[?

All All

respectively. (Here, we regard K;* as a Z[Gal(F'(n)/K)]-modules on which the group
Gal(F(n)/K) acts trivially.) We denote by

O, K — Gal (K (D)1, /K1) = Gal (K(I)/K) = H,i
the homomorphism induced by the reciprocity map
Ko K — Gal (Ki/K,)

of local class field theory. (Let 7 be a uniformizer of K and k([) := O/l. Then ¢c()
induces the N(I)-power map on k(I).) The homomorphism

Orm: F(n)* — Z[Gal(F(n)/K)] & Hy
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is defined to be the composite of the three homomorphisms of Z[Gal(F(n)/K)]-
modules:

diag: F(n)* — €D F(n)*,

Al
or,: P Fm); — PHe,
Al Al
s @M Z[Gal(F(n)/K)] @ Hy,
Y[

which are defined as follows:

(1) the first homomorphism diag is the diagonal inclusion;

2) the second homomorphism @¢g, is the direct sum of the reciprocity maps;
p t p y p

(3) the third isomorphism ¢};" is the inverse of the isomorphism

v ZGal(F(n)/K)] @ Hi — @D Hi = Tjoy ® Hy,
Al
which is induced by the isomorphism
v: Z[Gal(F(n)/K)] — Tjyy

given by x +—— x - [p().

Definition 3.8. Let [ € Sy(F(n)). We define
Prmna: (FM) /™) — Z/p" [Gal(F(n)/K)], @ H,

to be the homomorphism of Rp y,[Ha]-modules induced by ¢[F(n)' The choice of a
generator oy of H; induces the Rp y ,[Ha]-homomorphism

Prm vyt (F) /)y — Z[Gal(F(n)/K)]y = Reyv[Ha)-

The following formulas on Kolyvagin derivative classes are well-known. (For ex-
ample, see [Rul] Proposition 2.4 for the proof. Note that our gb% N 18 the map ¢ in
[Rull.)

Proposition 3.9. Let a and f be ideals of O satisfying the condition (1) in Definition

2.83. Let ny,ng € Sy(F). Assume | € SZIi,rime (F(nl)) for each prime divisor | of ny.
We put n = nyns,.

(1) If X is a finite place of K not dz’pz’dz’ng ny, the A-component of ki, (F, Nin)y]rny
is 0. In particular, if q € Sy'"(F) is a prime ideal of Ok not dividing n,
we have

(k5.0 (F, N; “)x]qF,N,X =0.

(2) Let [ be a prime ideal of O dividing n. Then,

[B1a(F, Nin)\Ji vy = O (B0 (F, Nin /D))
To prove our main theorem, we need not only Proposition 3.9 but another relations

of Kolyvagin derivative classes (cf. Proposition 3.11). As in [Ku] §6.2, we need the
notion well-ordered.
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Definition 3.10. Let n € Sy(F'). We call n well-ordered if and only if n has a factor-
ization n = []I_, I; with [; € S¥™°(F) for each i such that [, splits in F(HF /K
fori=1,...,r—1.

Proposition 3.11. Let a and § be ideals of Ok satisfying the condition (1) in Defi-
nition 2.3. Let n € Sy(F') be prime to af. If n is well-ordered, then

QBE?,N,X("Qf,a(Fa Nin)y) =0
for each prime ideal | of Ok dividing n.

Proof. In the theory of Kolyvagin systems, this proposition is proved in more general
situation. (For example, see [MR] Theorem A .4 for the case of Euler systems over Q.)
But in our case, we can give a more elementary proof by using the similar method to
[Ku| Lemma 6.3.

We may assume n # Og. Since n is well-ordered, we put n= H: L b, where [;’s
are elements of SY™(F) Satlsfylng [;+1 splits in F(H ;)/K fori=1,...,r—1.
Assume [ = [;, and put ny := H] 1 G (If L= 14, then we put [} = Ok.) Note that the
image of Kj4(F, N;n) in F(n,)*/p" coincides with K o (£ N n)Pr. Since the diagram

69)\'¢K[

(F(m) ®x K0)" /p" = Th,) ©z (K7 /pY) Thny) @z (Hi/P")

DrdK
(F @k K)*/pN = T% @z (K /p") — Th @z (Hi/pV),

commutes, in order to prove our proposition, it is sufficient to show that
- .
(1) ¢F(n1),N,X(H;t(F7 N) n)X) = 0.

Let A be a place of F(ny) above [, and X a place of F(nyl) above \. We fix a
uniformizer 7' of F(nil)y, and put 7 = Npe,p,, /i), (7). We denote the residue
field of F(ny) by k(\), and fix a generator a of a cyclic group k* /p"v. Then, we have
a decomposition F(n;)5/p" = () x (), where 7 is the image of 7 in F(ny)5/p".
Let

Orw,: F(n)y/p" — Hi/p"
be the local reciprocity map. To prove (1), it is sufficient to prove that the image of
ki o(F, Nin) is contained in Ker(¢r(),) for all A above [. By local class field theory,
we have Ker(¢pm),) = (7) since the image of norm map

Ny /Py, FDS /oY — F(ny)5/pY

coincides with (7). Note that we can check easily that the kernel of the natural
homomorphism

o Py /pY = K fp™ — F(m)/p"
is also (7). So, it is sufficient to prove that the image of v\ (ki (F, N;n)) = 1. The
image of r{(F, N;n) in F(ny0)5,/p"™ coincides with /ff”fu[(F,N, n)Pt 5o let us prove
Ki(F,N; )Dt =1in F(n)}/p". By proposition 3.9 (1), we have

’ﬁ?,la[(Fa Nin) € (Opmn @ Ok,)”,
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where Ok, is localization of Ok at [. The group H; = Gal (F(ni[)/F(n;)) acts
trivially on

(Orn /1 Orni) ™ = Ty ©2 (Ox /1)
since all prime ideals above [ ramifies completely in F'(n[)/F(n;). Therefore, we have
ki (F,Nin) = £1(F, Nyn) P
= R, Ny SR b
= KA (F, Nyn)P" @7 =0/2
=1

in F'(ny1)/F(ny). This implies the image of ¢, (F, N;n) belongs to Ker(ty) = Ker(¢rm),)
for all places A of F'(n;) above [, and completes the proof.

3.3. In this subsection, we will define some elements z,4(n,a) € (F*/p"),, which
are analogues of Kurihara’s elements defined in [Ku] §7 for elliptic units. Elements
Znq(n, a) become a key of the proof of our main theorem for the one-variable cases.

Let F' be a finite extension field of K, contained in K,,, Cond(F') the conductor
ideal of F'//K, and N a positive integer. We consider an elliptic unit n € Cr. Let a
be a map

(Zx)? = {non-zero ideals of Ox}*> — Rpn,; (f,a) — aj4
satisfying the following condition (R):

(R) We have asq = 0 for all but finitely many (a,f), and there exists an element
¢ € (OF )tors satisfying
77 = C H aZf(F)af"‘.
(f,0)€(Zx)?
Further, if ajq # 0, then the pair (f, a) satisfies f | Cond(F') and the condition
(I) in Definition 2.3.

By the definition of elliptic units, there exists such a map a. We define the ideal
a(n; a) of Ok by the product of the all ideals a satisfying a;q # 0 for some §. We put

k(n, a;n) Hf% (F, N;n){ e B> /pV.

Note that for any character y € A satisfying y # w, we have
T = k(n, a; OK)X S (FX/pN)x~

Definition 3.12. Let qn = q[[._, I; € Sy, where q,[;,..., [, are distinct prime
ideals of Ok prime to a(n; a). For any ideal ? of Ok dividing n, we define the element

Fpa ) € (F*/pY) @ (Qy, Hi) by
Fpoar(n, @) = k(1. a;q0) © (Q) o).

o
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Fix a character y € A. Let qn € Sy be an ideal of O satisfying (n,a(n;a)) =1
and assume qn is well-ordered. Assume that for each prime number [ dividing n, an
element wy € Rpn, ® H; is given. Then, we have an element w; € Rp y, such that
w; = wy®or. Note that we will take {w[}qn explicitly later, but here, we take arbitrary
one. For any ideal 0 of Ok dividing n, we define

Wy 1= ®w[ € RFvax & (®H[)
(o (o
We also define the element w, € Ry, vy by Wy = Wy ® (®[|D a[).

Definition 3.13. We write the group law of (F*/p"), ® (®r\a H;) multiplicatively.
We define the element %, 4(n) by

Tnq(n, a) = H Wy ® Rinjoq) (1, )y € (F>* /p™) ® 7-[[
dn o
Note that we naturally identify the Rgx ,-module (F*/p"), ® (®[\o H,) with
RF»N,X ® (®H[) ®RF,N,X (FX/pN)X'
o
The element @, 4(n,a) € (F*/p"), is defined by &y 4(n, a) = Tnq(n,a) @ (®”n o).

The following formulas follows from Proposition 3.9 straightforward.

Proposition 3.14 (cf. [Ku] Proposition 5.2). Let n € F be an elliptic unit as above,
and ng € Sy(F). Fiz a map a: (Zx)* — Rpn, satisfying the condition (R) for 7.
We assume that nq is well-ordered.

(1) If X is a prime ideal of K not dividing n, the A\-component of [Tnglpn, 15 0.
In particular, if s is a prime ideal of O not dividing nq, we have
[$n,q<777 a)]?,N,X =0.
(2) Let I be a prime ideal of Ok dividing n. Then, we have

[xn,q (777 a)][F,N,X = &%,N,X(xn/[,q(nv CL))
(3) Let [ be a prime ideal of Ok not dividing n. Then, we have

O (Tajiq(1,0) = D@y (Tapiq(1, ).

3.4. Recall that we fix a family of embeddings {l%z: K — K[}[;prime satisfying the
condition (A) for families of embeddings as follows.

(A) For any subfield L C K which is a finite Galois extension field of K and any
element o € Gal(L/K), there exist infinitely many prime numbers | such that
[ is unramified in L/K and (I, L/K) = o, where I, is the prime ideal of L
corresponding to the embedding lz|.

Note that the existence of such a family of embeddings follows from the Chebotarev
density theorem. Here, we prove the following proposition, which plays key roles in
induction arguments in the proof of our main theorem.
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Proposition 3.15. Let F' be an intermediate field of Ko /K satisfying K Cy F', and

X € A a non-trivial character. If Ky contains pi,, we assume X # w and Y # X~ 'w.
Let q be a non-zero prime ideal of Ok, and n € Sy(F') an ideal of O prime to q.
Assume n has a factorization n = [[;_, l; into the product of prime ideals. Suppose
the following are given:

e a finite Rpn-submodule W of (F*/p™),;
e an Ry, -homomorphism \: W — Rp .

Then, there ezist infinitely many q' € Sx(F(n)) which have the following properties:

(1) the class of 4 in Ap, coincides with that of qp;
(2) there exists an element z € (F* ® Z,), such that

(2)rx = (dF — qr)y € (IF ® Zp)xa
and
Gy (2) =0

foreachi=1,...,r;
(3) the group W is contained in the kernel of [ v ., and

A@) = dh ()
forany x € W.

Proof. Let F be an intermediate field of K /K satisfying K C; F. For a finite
place v of F, we denote the valuation ring of the completion F, of F' at v by Op,,
and put

Op =={z|z=1 modm,},
where m, is the maximal ideal of Op,. We denote the residue field of F' at v by k(v).

In the first step of the proof, by using global class field theory, we construct a
finite Galois extension L; and an element o € Gal(L;/F), which are related to the
condition (1) and (2) in the assertion of Proposition 3.15. Let F'{n} be the maximal
abelian p-extension of F' unramified outside n. Note that F{n} is Galois over K. By
global class field theory, we have the Gal(F'/K)-equivariant isomorphism

(Hv|n FUX/OIU) X (@ufn FuX/O;u>
the image of F'*

® Z, — Gal (F{n}/F),

where u runs all finite places outside n. We naturally regard Gal(F{n}/F), as a
quotient group of Gal(F{n}/F'). Let F{n}, be the intermediate field of F{n}/F
satisfying Gal (F{n},/F) = Gal(F{n}/F),.

Recall that we fix a decomposition

k
Clg = @Zai
i=1
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of Clg into a direct sum of cyclic subgroups. We denote the order of a; in Clg by n;,
and fix a generator a; of the principal ideal a;*. We put

N N
F' = F(upzv,a}/p al").
Let Ly := F{n}, - F' - F(n) be the composite field.
We put A’ := Gal (Ko(,)/K). By the natural surjection A’ —s= A , we regard x
as a character of A’. Note that the subgroup A’ of Gal(F/K) acts on Gal (F{n},/F)

(resp. Gal (F(u,v)- F(n)/F) and Gal (F'/F(u,~))) via x (resp. trivial character and
w). Since we assume that x is non-trivial and x # w, we have

F{n},NF -F(n)=F.
Then, we take the element o € Gal (L1/F’ - F(n)) such that
‘7|F{n}x = (QF{n}Xa F{n}x/F)

In the second step, by using Kummer theory, we construct a finite Galois extension
Ly/F" and an element N € Gal(Ly/F"), which are related to the condition (3) in the
assertion of Proposition 3.15. We define a projection pr: Rpy — Z/pNZ by

Z agg — ay,

geGal(F/K)

where a, € Z/p"7Z for all g € Gal(F/K), and 1 € Gal(F/K) is the identity element.
We define \' € Hom(W, u,~) by

T — (CpN)pro)\(m)

for all z € W. (Recall (,~ is a primitive pY-th root of unity defined in §3.1.) We use
the following well-known lemma.

Lemma 3.16. Let P: Homg, , (W, Rpy,) — Hom(W, Z/pN7Z) be the map given
by f — pro f. Then, P is bijective.

Indeed, the inverse of P is given by
h—s (x — Y h(glx)g) € Homp, (W, Rrny),
geCal(F/K)
for h € Hom(W, Z/p"7Z). The group A’ acts on W via , so we have
Hompg,, (W, Rpn) = Homg,, (W, Ren,y)-

Note that A’ acts on H'(F(u,~)/F, pn) and HO(F'/F(p,n ), H(F', j1,v)) via the

trivial character. Since we assume that x is non-trivial, we have
1 / —
H (F /F, p,pN)X =0.

So, the natural homomorphism

W C (™ fp™) — (F™/p")x
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is injective. Then, we regard W as a subgroup of (F"*/p"),. Let Ly be the extension
field of I’ generated by all p-th roots of elements of F* whose image in F*/p is
contained in W. We consider the Kummer pairing

Gal(Ly/F') x W — p,n.
This pairing induces a Gal(F'(y1,~)/K)-equivariant isomorphism
Hom (W, p,~) =~ Gal(Ly/F").
(Note that Lo is Galois over K since W is stable by the action of Gal(F’/K).) We
regard X' as an element of Gal(Ls/F”) by this isomorphism.

In the final step, we complete the proof. By the isomorphism Hom(W, p,~) =~
Gal(Ly/F"), the group A" acts on Gal (Ls/F")) via x'w. Comparing the action of
A, we obtain

LiNLy,=F'.
We put the composite field L := L;Ly. By the condition (A), there exists infinitely
many prime numbers q’ such that

(., L1/K) = o € Gal(Ly/F")
(d),, Lo/ K) = N1 € Gal(L,/F").

Let us prove that each of such ¢ unramified in L/K satisfies conditions (1)-(3) of
Proposition 3.15.

First, we show ¢ satisfies conditions (1) and (2). Let a = (a,), € A% be an idele
whose gfp-component is a prime element of Fy, , and other components are 1. Let
B = (Bv)y € Ay be an element whose qp-component is a uniformizer of Fj,, and
other components are 1. By definition, ideles o and 3 have the same image in

((an FvX/Oll%) X (@ufn Fif/(f)xu)

the image of F'*

® zp) ~ Gal (F{n},/F).
X
This implies there exist z € (F'* ® Z,), such that
a=28 in <((H FY/OL) x (D F)/0},)) © Zp> .
vln utn X
Hence, we have (2)r, = (9% —qr)y, and ¢5§1’N7X(z) =0foranyi=1,...,r. The prime
ideal q" of Ok satisfies conditions (1) and (2).

Next, we shall prove ¢’ satisfies condition (3). Since ¢’ is unramified in L/K, the
group W is contained in the kernel of H%Nx Since (g}, Lo/K) = X7, for any
r € W, we have

(CPN>pro>\($) — )\/($) _ (L,L,l/p]\f)l—Frq/7

where Fry € Gal(L/K) is the arithmetic Frobenius at ¢’, and z'/?" € Ly is a pV-th
root of x. Then, we obtain

(CpN)proA(fr) = (=N@))/pY (mod ¢',).
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Let 7 be a uniformizer of M := F(¢’) By the definition of o, we have

Ve
77t = (mod myy),
where m;; is the maximal ideal of M. Recall that W is contained in the kernel of
[1% x5+ By [Se] Chapter XIV Proposition 6, we have
()P0 a@ = 70@=1 = =NV (110d myy)
for all z € W, where we put
o 70[, xr

¢<$) N ¢F,N,X( )

Hence, we obtain

(G )P = (G )Pt @

for all z € W. By Lemma 3.16, we have A\ = q% N,x|W' Therefore ¢ satisfies condition
(3) of Proposition 3.15, and the proof is complete. O

4. ANALOGUE OF KURIHARA’S IDEALS FOR ELLIPTIC UNITS

Let v € A be an arbitrary character. In this section, we define ideals ¢l of A, for
each 7 € Z>( by using elliptic units, and prove Theorem 1.1 for ¢ = 0.

4.1. Let F' be a finite extension field of K¢ contained in K, and N a positive integer.
Let n € Sy(F) with a decomposition n = []'_, ;, where [; € SY™(F') for each i.
We put €(n) := r. Namely, €(n) is the number of prime divisors of n. We denote by
SN (F) the set of all elements in n € Sy(F') which are well-ordered. We define the
Rp N y-submodule Wiy, (n) of (F*/p"), to be the Rp x,-submodule generated by
the image of

{in.aim

We put

n € Cr, (n,a(n;a)) =1 for some a satisfying (R) in §3.3} U (OF )tors-

HWF,N,)((“) = HOIIlRF‘Nyx (WF,N,X(n)7 RF,N,X)-

Definition 4.1. We define €f';, v, to be the ideal of Rp .y, generated by the union
of the images of all f € HWpg n(n), where n runs through all elements of Sy (F)
satisfying e(n) < r.

Remark 4.2. Note that Rpn, is injective as an Ry n,-module, since the Rp n -
module Homgy(Rg, v, Q/Z) is injective and free of rank 1. In particular, for any
n € SN (F), the restriction map

Hompy, . ((F5 /™), Rena) — HWrn(n)

is surjective. This implies that the ideal Q:%}N,x coincides with the ideal of Rpn,,

generated by
U U f(WF,NO((n))u
nof
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where n runs through all elements of Sy (F') satisfying ¢(n) < r, and f runs through
all elements of Hompg,, ,  ((F5/p™ ). REny)-

In order to define the ideal €fl>1< of A, we need the following lemma.

Lemma 4.3. Let Ny, Ny be integers satisfying Ny < No, and Fy C Fy finite extension

fields of Ko contained in Ko,. Then, the image of Qﬁ}},ﬂ%NM by the natural projection

R, Nyx — Ry Ny x 18 contained in &y, -

Proof. 1t is sufficient to show our lemma in the following two cases: (1) Fy = Fi;
(2) Ny = N,. The first case is clear, so let us prove our lemma in the second case.
Assume N; = Ny = N. We put the natural surjection pr: Rp, vy — Rp Ny By
Lemma 2.4, we have

Ny (We vy (1)) € Wiy vy (1)
for any n € Sy(F3). So, it is sufficient to show the following claim:

Claim 4.4. For any homomorphism
fo € Homp,, o ((F5/p™)y, Resny),

there exists a homomorphism
fl € HOHlRFl,N ((le /pN)X7 RFLN,X)

which makes the diagram

f2
(FQX /pn)x > RFz,N,x

NFl,le lpr

n f
(le/p )x - RFLN,X

commute.
For each elements o € Gal(F}/K), we fix a lift ¢ € Gal(Fy/K) of 0. We have
(RFg,N)Gal(F2/F1) — { Z aoa-n Qo S Z/pN}a

o€Gal(Fy /K)

where n is an element of Rp, 5 defined by
e Y
TEGal(FQ/Fl)

Gal(F2/F) =3 Ry ny of Re v y-modules by

Z a,0Nn —> Z 4,0.

c€Gal(F1/K) c€eGal(F1/K)

Let ¢: (F/pY), — (F5/pY), be the natural homomorphism. We have

We define the isomorphism ¢: (Rp, vy )

prof2:¢of20LoNF2/F1.

Since Rp, v,y is an injective Rp, n,-module, there exist a homomorphism

fi: (le/PN)x — Rp Ny
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satisfying
f1|NF2/F1(F1X/pN) =po fQ O L.

By the definition of f;, we obtain the commutative diagram

f:
(Fy /pn)x - Rp, N x

NFl,FQ\L lpr

fi
(le/pn)x - RF1,N,X

as desired. This completes the proof of the claim, and our lemma follows from the
claim immediately. U

Now, we can define the ideals €fl>1< of A, which are analogues of Kurihara’s higher
Stickelberger ideals 655}(2 in [Ku] for elliptic units.

Definition 4.5. We define the i-th elliptic ideal (’:fgl( to be the ideal of A, by Q:f& =

1&1@‘;1}; N> Where the projective limit is taken with respect to the system of the

natural homomorphisms €; g, v, — Q:?}};h Nix for integers Ny, Nj satisfying Ny > Ny

and intermediate fields Fy, F of K /K satistying Ky Cy Fy Cf Fy C K.

4.2. Recall that the Iwasawa main conjecture says
chary (Xo,y) = chary, (Esox/Coopy)-
In order to obtain the “i = 0”-part of our main theorem (Theorem 1.1), we compare
¢l with chary, (Eso,x/Coo.x)-
Proposition 4.6. Let x € A be an arbitrary character. Then, we have the following:

(1) e TexLe x CharAX (5007X/C00,x) C Q:Sl,lx;
(2) If the character x is non-trivial on D, for any p € T, we have

QSI}X C chary, (8007X/C007X).

ell

Proof. We fix a generator 0, € A, with chary (5oo,x /Coo,x). First, let us prove <0y

contains Zg , Je y Lo,y chara, (€sox/Cooy ). 1t is sufficient to show that
éxi&xj&xiax < cSI,IF,N,X

for any intermediate field F' of Ko, [ K satisfying K C; F' and for any positive integer
N, where 0, (resp. Zg ., Je and Z¢ ) is the image of 6, (resp. Zg ,, Je and Zc )
in RF,N,X'

Fix a homomorphism ¢: £, — A, with pseudo-null cokernel, and let
Oc € L(Coops ) € Lo

be an arbitrary element. Note that by the definition of Z(Cw ,; ¢), we have 0c6, €
©(Coory). We fix elements d7 € Z¢ and 67 € Jz. Let F be an intermediate field of
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K /K satisfying K Cy F and N a positive integer. Then, there exists a homomor-
phism ¢: (Ep/p"), — Rp ., which makes the diagram

070 7PF,N

(Coon) /DY — (Esox)r /DY _

| |

Wi (Ok ) (Er/p™)y

= Rpn

commute, where ¢r n: (Exoy)r/PY — REn., is a homomorphism of Ry v ,-modules
induced by ¢. This implies

070700y € 628 7PrN ((Coon)r /DY) =V (Wrnn(OK)) C €N -
Vary a homomorphism ¢, elements d7 € Zg and 67 € Jg, and we have
éxig,xj&xiax C Q:SI,IF,N,X-
Therefore, taking projective limit, we obtain

Il
Ny 2 LexTexZex chary, (goo,x/coo,x)'

Next, Let us prove that € is contained in chary, (€xy/Csoy)- Here, we assume
that the character x is non-trivial on Da, for any p € 7. Under this assumption,
Lemma 2.4 implies that the natural homomorhism Cs, , — Cp,, is surjective. (Recall
that Cp is the Z,[F/K]-submodule of £ generated by the image of the group Cr of

elliptic units.)

Fix a homomorphism ¢: £, — A, of pseudo-null cokernel. Let 6 € Ker ¢ and
§" € Cokery. Let I be an intermediate field of K /K satistying K C; F' and N
a positive integer. Let @pn: (Exon)r/PY — Rpny be a homomorphism induced
by ¢. Let f: Wrn,(Ok) — Rpn,y be an arbitrary Rp y,- homomorphism. Since
Rp N, is an injective Rp y,-module, there exists a homomorphism f c(Er/pN)y —
Rp v, whose restriction to Wg n,(Ok) coincides with f. Then, we have an element
a € Rpn, which makes the following diagram

3'er N

Coo,x - (goo,x)F/pN RF,N,X

i .
(Cofp), — (/™) L~ = Rix
\W ), /

commute, where xa is the homomorphism multiplying a. This diagram implies that
fWeny(Ok)) = 55/(195F,N((CF/]0N)X) C ab66'ZeOyRpn,y C Oy Rpny
Then, we have Q:SI’IF, Ny © ngF, N,x- Taking projective limit, we obtain
o € O Ay = charp (Exy/Coopy)-
This completes the proof. 0
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Theorem 1.1 for ¢« = 0 follows from Proposition 4.6 and the Iwasawa main conjec-
ture.

Corollary 4.7 (Theorem 1.1 for i = 0, precise form). Let y € A be any character.
Assume one of the following:

e p splits completely in K/Q;
e p does not split in K/Q, and for the element p € T, the character x is non-
trivial on D .

Then, the following holds:

(1) IS,XJ&XIQX FittAX’g(XX) g @811 ,

7X’
(2) If the character x is non-trivial on Da, for any p € T, we have

¢l C Fitta, o(Xy).

Remark 4.8. By Proposition 2.1, there exists a height-two ideal Jp , of A, satisfying

IE,XJS,XIC,X = JO,XI’%,X‘
So, Corollary 4.7 implies Theorem 1.1 for ¢ = 0.

5. PROOF OF THE MAIN THEOREM FOR ONE-VARIABLE CASE

Here, we prove our main theorem for I' ~ Z,. First, we recall the notation and
state the precise assertion of our main theorem. In this section, we assume I' :=
Gal(Ko/Ko) > Zp. The A-module X is defined by the projective limit X := lim Ap
with respect to norm maps, where F' runs through all finite extension field of K
contained in K., and Ap is the p-Sylow subgroup of the ideal class group of F.
The A-module X’ is defined by X’ := X/ X§,, where X§, is the maximal pseudo-null
A-submodule of X.

We denote the ideal of A, generated by i-th power of elements of Z4 (resp. Ja)
by Za; (vesp. Ja;) for each i € Z;>¢. The precise assertion of our main theorem for
one-variable case is as follows.

Theorem 5.1. Let x € A be a non-trivial character. If Ky contains ji,, we assume
X #w and x # x 'w. Assume one of the following:

e p splits completely in K/Q;
e p does not split in K/Q, and for the element p € T, the character x is non-
trivial on D,.

Further, we assume that I' ~ Z,,. Then, the following holds:

(1) If the character x is non-trivial on Da, for any p € T, we have
€5 C Fitta, o(X7).

0,x

(2) IE,Xj&XIC,xIA,ijA,i FittAX’i(X;() - Q:fgc fOT any 1€ Zzo.
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We have already proved Theorem 1.1 for 2 = 0 in the last section. Here, we prove
the second assertion for 7 > 1.

5.1. We spend this subsection on the setting of notations. Fix a non-trivial character
X € A. we assume that x # x 'w and y # w if Ky contains j,. Since X, has no
non-trivial pseudo-null submodules, we have an exact sequence

(2) 0— A Lo A" 2,y s,

by Lemma 2.11. Let M be the matrix corresponding to f with respect to the standard
basis (e;)/; of A”. Let {my,...,mp} and {ny,...,ny} be permutations of {1,... A}
For any integer ¢ satisfying 1 < i < h — 1, consider the matrix M; which is obtained
from M by eliminating the n;-th rows (j = 1,...,7) and the my-th columns (k =
1,...,1). If det M; = 0, it is trivial that det M; € fog(. So we assume that det M; # 0.
If necessary, we permute {my,...,m;}, and assume det M, # 0 for all integers r
satisfying 0 < r <.

We fix a finite extension field F' of K contained in K., and we put the group
I'p = Gal(K./F) and the integer Np := max{#Ap, #(X,)r}. (Recall we denote
the ' p-coinvariants of a A-module M by Mp.) We fix positive integer N > N, and
we put, for simplicity, R := Z,[Gal(F/K)], and Ry := Rpy, = Z/p"[Gal(F/K)],.
Let Apfn, be the image of X, , in Ap, by the natural homomorphism.

Let e7 € Z4, and €5 € J4,, be any non-zero elements. Then, we can consider a
homomorphism

Laz,eJ: AF,X/AFvﬁILX — ()(;)F7 [Cl]x — EIb

of R-modules, where b € (X )r is an element whose image by the natural homomor-
phism (X|)r — Apy/Arfn,y is €7[al,. Note the cokernel of i, ., is annihilated by
ZaxTay- From the exact sequence (2), we obtain the exact sequence

0— B* L5 R 25 (X)) — 0,

by taking the I'p-coinvariants. Note the injectivity of the homomorphism f follows
from the finiteness of (X} ). This injectivity become a key of our argument.

The image of e, in R" is denoted by eEF). We define ¢; := g(eq),...,c, == g(ep),
(F) /

and ¢, ’ to be the image of ¢, in (X

large F', and we may assume ! =+ ) if r # s. We fix a lift e\ ¢ Ap, of ch),
and define

)r, namely = g(eﬁF)). We take sufficiently

P, = {[ € SM™(F)

terer (1)) = e@},

where [[p], is the class of [ in Ar,. We define

P = LiJlPr,

and Pr to be the set of all the prime ideals of F' above P. Let J be the subgroup
of T generated by Pp, and the R-submodule F of (F* ® Z,), the inverse image
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of (J ® Z,), by the homomorphism (-)p: (F* ® Z,), — (Zr ® Z,),. We define a
surjective homomorphism

a: (J®Z,), — R"
by [r + e, for each [ € P, and r with 1 < r < h. We define

o =pr,oa: (JQZy), — R" 225 R
to be the composite of o and the r-th projection pr,.

We define the homomorphism 3: F — R" to make the following diagram

() > X can.
(3) F =3 (J @ Ly)x =5 Arx/Arsiny
lﬁ J/szsja lLEZ’EJ
0 Rh ! Rh g anny (X)) —0

commute, where can. is induced by the canonical homomorphism
(4) J — Ap, = Ary/ARfiny
Note that since the second row of the diagram is exact, £ is well-defined. We define
B, :=pr,0f: F s R* Xy R

to be the composite of 8 and the r-th projection pr,.

We consider the diagram (3) by taking (—®Z/p™7Z). We use the following lemmas.
Lemma 5.2. The canonical homomorphism

F/p™ — (F* o)y

18 1njective.
Proof. Let z be an element in the kernel of the homomorphism F/pY — (F*/p"),
and 7 a lift of z in F. Then, there exists y € (F* ® Z,), such that & = y”".
Since (Z)py € (J ® Zy), and (Zp ® Z,)/(J ® Z,,) is torsion free Z,-module, we have
(Y)Fy € (J®Z,),. Hence, y € F, and we obtain z = 1. O

The Ry-module F/p? is regarded as a submodule of (F*/p"), by Lemma 5.2.

We regard (F*/p"), as a A -module. For an element z € (F*/p"), and § € A,,
we write 2° for the scalar multiple of z by 4.

Lemma 5.3. Let -], be the homomorphism
(F*/p™) — (Zp/p")x

induced by (-)p: F* — Ip. Let x be an element of (F*/pY), satisfying [z]rn, €
(J/pN)x. Then, 2° is contained in F/p™ C (F*/p™)y for any 6 € anny (Xgny).-
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Proof. We consider the natural exact sequence:
0 —P —1Ix — Ap — 0,

where P is defined by P = F*/Oj. By the snake lemma for the commutative diagram
0 P Ir Ap 0

lxpN lXpN lxpN

0 P Ty Ap 0,

we obtain the exact sequence

(Recall that we assume p" > #Ap.) Let Bp be the image of J in Ap, and Py =
F/O5. Then, we have the exact sequence

0— Py —J — Br — 0,

and by a similar argument as above, we obtain the exact sequence

0 — Bp — Po/p" % J/pN 5 Bp —s 0.

Now, we obtain two commutative diagrams

[n.0

(5) 0 — Bp —= Py/p" —=Im[|no —0
fi \[\fé f3

0 Ap P/pN ﬂ>Im[']]\f —0

(6) 0 — Im[|yo —— J/pV Br 0

Jf:s £4 jfl
0 ——Im[|y ——=Zp/p" —= Ap —0

whose all rows are exact, and all vertical arrows are injective.

Let z be an element of P/p" satisfying [z]y € Im f; = J/p", and § an arbitrary
element of anny (Xgn,y). Let us show that 2° belongs to Im fo = Py/p". By the
snake lemma for the diagram (6), we have an exact sequence

0 = Ker f; — Coker f3 — Coker fy,
so we obtain [z]xy € Im f3. The exact sequence
Coker f; — Coker fy — Coker f3 — 0

follows from the diagram (5). Then, we obtain 2° € Im f, = Py/p" since the surjec-
tion (4) implies that ¢ annihilates Coker f;. O

The following corollary follows as a byproduct of the proof of Lemma 5.3.
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Corollary 5.4. The kernel of the homomorphism
(e F/pN — J/p"

is finite.

Let n be an element of Sy(F') whose prime divisors are in P. We define P} to be
the set of all elements of P dividing n. We define J, to be the subgroup of J generated
by P, and the submodule F, x of F/p" the inverse image of .J, by the restriction of
[|rny to F/pYN. Note that F, v is a finite Ry-submodule of (F*/p"), by Corollary
5.4. We have obtained the following commutative diagram

HFX

Fan —= (Ju/PV)x

|s

Ry

\Lszs‘ya

f _ ph
Rl .

5.2. First, we take a prime ideal q of Ok by the following way. For each integer r
with 1 < r < h, we fix a prime number g, € P,. We put Q := Hﬁzl q- € Sn(F).
We fix a homomorphism ¢: £, — A, with pseudo-null cokernel. By the Iwasawa
main conjecture, we have

Sp(coo,x) = (det M) 'I(Coo,x; ©).

Then, we fix elements dc € Z(Coo ;) and 0 = (np ) € Cy satisfying p(n,) =
0c det My. Let a be a map

(Zx)? — Reny: (F,0) — a4

satisfying the condition (R) in §3.3 for the elliptic unit 7 := nrp € Cr. We assume
X # w, so we have

ne =00 0k) = [ ()" € (F*/pV)y.
(fia)e(IK)2

We fix non-zero elements o7 € Zg and §7 € Je. Then, as in the proof of Proposition
4.6, there exists a homomorphism v : (£x/p™)x — Ry which makes the diagram

070 7P F N

(Coo,x)F/pN - (goo,x)F/pN

—
—
—
—
—
—
—_
—
—

WF,N,X(OK)C—> (5F/pN)x )

Ry

commute, where ¢rn: (Ecoy)r/ piv — Ry is a homomorphism of Ry-modules in-

duced by ¢. By Proposition 3.15, we can take a prime ideal q € S¥"™(F) prime to
a(n; a) satisfying the following two conditions:

(ql) the class of qp in Ag, coincides with the class of ¢ p;
(q2) For all z € (E/p"),, we have

¢'(z) = ().
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(Note that the natural homomorphism (Er/pY), — (F*/p"), is injective, and
we regard (Ep/p"), as an Ry-submodule of (F*/p"), by this homomorphism.) In
particular, we have

' (ny) = ¥(ny) = d207¢rN(N,,)
= 51(5j50 det MD.

Next, we shall take n and {wi}y.. We fix an element dg, € anny (Xg,). First, we
consider the homomorphism

Bm,: Fagn — Rn.
Applying Proposition 3.15, we can take [, € S¥™°(F(Qq)) prime to a(ng;a) such
that Iy € P,,, [ # g2, and
¢*(2) = B, (2)
for all z € Faqn. We put ny := Ok.
In the case 1 = 1, we put n :=ny = Ok, and
Tng = Tog,q = K(1,a).
It follows from Proposition 3.14 (1) and Lemma 5.3 that xfﬁ;jq is an element of Faq n.

Suppose ¢ > 2. To take n and {w(}., we choose prime ideals [, for each r with
2 <r <1+1 by induction on r as follows. Let r be an integer satisfying 2 < r <741,
and suppose that we have chosen distinct prime ideals [, € S¥™(F(Qqn,_,)) for
each s with 2 < s <r —1. We put n,_; := HZ;; [,. We consider the homomorphism
By Fagn._.,N —> Rn. Applying Proposition 3.15, we can take [, € Sy (F(Qqn,_1))
prime to a(n; a) satisfying the following conditions:

(x1) I, € P,,, and [, # q,;

(x2) there exists b, € (F* ® Z,), such that (b,)py = (L.r — qr.r), and ¢"(b,) =0
for any s with 2 < s < r;

(x3) ¢" () = B, _, (x) for any z € Faqu, , N

Thus, we have taken [y, ..., 11, and we put n := n; = Hi:Q [, € Sy(F). Note that
the ideal n of Ok satisfies (n,a(n;a)) = 1. For each r with 2 < r < i, we put
wy, == —¢"(b,) € Ry @ H,,, and we obtain

Tng = xn,q(na CL) € (FX/pN)X‘

(See Definition §3.13.) It follows from Proposition 3.14 (1) and Lemma 5.3 that z{fr
is an element of Fa, . Note that qn is well-ordered.

Lemma 5.5 (cf. [Ku] Lemma 10.2). Suppose i > 2. Then,

(1) B,y (28) = 0 for all 7 with 2 < r < i;
(2) aj([Taglry) =0 for any j #na,... 0.
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Proof. The assertion (2) of this lemma follows straightforward from Proposition
3.14 (1). Let us prove the assertion (1). We have a([b,]|r,) = 0 for any r satisfying
2 <r <isince (b,)py = (I, r — qrr)y. By definition of 8, we have 8(b,) = 0. We put

7
B (Tuyig,q)
yr:xn,qus n/ls )
s=r

then we have B(2%r) = B(y%n). So, let us show fB,,,_,(y?) = 0 for any r satisfying

n7q

2 <r <. Note that by Proposition 3.14 (2), we have [y,|pn, € Jan, ,. Then, we
have y%n € Fan,_, n. Therefore, we obtain

5ﬁnélr (yr) = erf1 (yfﬁn>

by the condition (x3). Since ¢ (b,) = 0 for all integers s satisfying r +1 < s < i by
the condition (x2), we have

i I (ilr Tn/lp,
3 (9) = 6 (waght "),
By Proposition 3.14 (3), we have

Iy

7 plr Tn/lp, o Y o8 Q_S In/ip,
¢[T(xn,qb? ( A q)) — ¢[ (xn,q) +¢[ (br ( /1 q))
= lU[T(E[T (xn/lr,q> + é[r (xn/lr,q)é“ (br)

- _Qg[r (br)qg[r (xn/lr,q) + QEIT ($n/[r,q)q§[T (br)
=0.

Hence, we obtain S, _, (235) = 6gu¢ (yr) = 0, and this completes the proof. O
As in the fourth step of the proof of Theorem 2.1 of [Ku] in §10.2, we obtain the
following proposition from Lemma 5.5.

Proposition 5.6. We have the following equalities on elements of Ry,

(1) dn(det M) - % (20, .4) = £andr0ge167 - (det My) - oy (0);
(2) For any integer r satisfying 2 < r < i, we have

Sn(det M, 1) - @™+ (24, q) = £0anezes - (det M) - @ (20, q)-

The signs + in (1) and (2) do not depend on F.

Proof. For simplicity, we put
x = B(:Bﬁﬁf‘q) e Rl and y™ = 515304(1'%?‘]) € R,

for each integer r satisfying 1 < r <1, and regard them as column vectors. Then, we
have y = Mx") in RE.
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First, we prove the assertion (1) of this proposition. Note that :c‘fﬁg; is an element
of Fyn. By Proposition 3.9 (2) and condition (q2), we have

y(l) = 6ﬁn€I€j ’ [KOK,CI(T])X]CII?,N,XegL};)

= bnezes - O(ny el

= Ounezes - 0207 - P (ny)ely)
LetA]T/IJ be the matrix of cofactors of M. Multiplying the both sides of y) = Mx™)
by M, and comparing the mq-st components, we obtain

(=1)" "™ B5ndrd zeze g (det Ma) - G (1) = (det M), (25 o).

By condition (x3) for Iy, we have [, (xfgﬁKq) = Smm®? (70, q). Then, the assertion
(1) follows.

Next, we assume ¢ > 2, and let us show the second assertion. This can be proved
similarly to the proof of assertion (1). It is sufficient to prove the assertion when
r=14. We write x = x% and y = y@. Let x' € R;‘V_”l be the vector obtained from
x by eliminating the m;-th rows for j =1,...,7—1, and y’ the vector obtained from
y by eliminating the ng-th rows for £ = 1,...,7 — 1. Since the m,-th rows of x are
0 for all » with 1 < r <i¢— 1 by Lemma 5.5 (1), we have y’ = M;_;x’. We assume
the ml-th component of x" corresponds to the m;-th component of x, and the n/-th
component of y’ corresponds to the n;-th component of y. By Lemma 5.5 (2) and
Proposition 3.14 (2), we have

. N
Y = dmezes - ¢[Z(5Un¢71,q)e’£z;)»

where (¢/")"=i*1 denotes the standard basis of R% 1. Let M;_; be the matrix of

cofactors of M;_;. Multiplying the both sides of y' = M;_1x’ by M;_1, and comparing
the m/-th components, we obtain

(=1)" ™ (det Mi)dgnezes - 0" (n,1.q) = (det Mio1) - B, (a305).
By condition (x3) for [;;1, and since xﬁ‘j&' is an element of Fqqu v, we have

Brm, (xg?c?) = 5ﬁn(5[i+1($n,q>-
This completes the proof. 0

5.3. Now let us prove the main theorem.

Proof of Theorem 5.1 . Here, we vary F and N. So, the element
QE[T+1(xnr,q) € Ry = Rpny = (Z/pN)[Gal(F/K)]X
defined in §5.2 is denoted by ¢"+(zy, 4)F.N-

Let D be a set of pairs (F, N) of an intermediate field F' of K /K, finite over K
and a positive integer N satisfying the following property:

(D) For any intermediate field F of Ko /Ky satisfying Ko Cy F, there exists a
positive integer Ng such that (F, N) € D for any integer N satisfying N > Np.
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Let b be an element of A, and bp y the image of b for any intermediate field F' of K. /K
satisfying K' C; F' and any positive integer N. We say a sequence (apn)rn)eD
converge to b = (bpn) € A if and only if there exists a subset D’ of D satisfying the
condition (D) such that apn = bpn for any (£, N) € D'. If a sequence (ap,n)rn)eD
converge to b, we write lim(ag ) := b.

By induction on r, we shall prove that
lim (gf;”“ (‘r"‘“q)F’N)F,N = +£07070c(ezes)" det M, € A,.
First, we consider the equality
San det M - " (T0y.q) = £0an070 7676 7 det M - @F»N(nx)'
Since the right hand side converges to
+06,070 70ce7e 7 det My - det M
and dg, det M is non-zero element, we obtain
lim (é["’ (‘TOqu)F:N)F,N = 4070 76ceze 7 det M.
(Note the sign + does not depend on F', see Proposition 5.6).
Next, we assume
lim (¢ (2n,_1.4) N) py = £02070¢(e267)" " det M,y
Then, the right hand side of
Sin det M,_q - P+ (%4,.q) = £anezes det M, - o (%, 1.q)

converges to
:I:éﬁnézéjéc(ezgj)r det Mr - det Mr—1~
Since we take det M,_; # 0, we obtain

lim (gg"““ (x"rﬂ)EN)F,N = :|:515\7(5C (€I€j)r det Mr.

By induction, in particular, we conclude (Q;[i"'l(l'n,q)F,N) converges to
:l:éz(;JCSC (818j)i det Mz

Since (Zyq)rn is contained in an Ry-submodule of (F*/p™), generated by

U Wrwa(0)

dlgn

with e(qn) = 4, we have ¢"+!(z,4)rn € €; Ny for any finite extension field F of K
contained in K, and any positive integer N. Hence we have

5IC5J(SC (€I€J)i det M; € Q:@X?

and this complete the proof of Theorem 5.1. ([l
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6. HIGHER FITTING IDEALS FOR TWO-VARIABLE CASES

Here, let us consider the two-variable case. We assume [' ~ ZZ' Note that for any
prime ideal p of Ok above p, the decomposition subgroup D, in G has finite index
by the global class field theory. So, the height of the ideal Z7, of A, is at least two
if I' o~ Zg. In the two-variable cases, our main theorem is stated only in the following
form, which is weaker than the results in the one-variable cases, Theorem 5.1.

Theorem 6.1. Let x € A be a non-trivial character. If Ky contains p,, we assume
X #w and x # Y ‘w. Assume I’ ~ ZZ and one of the following:

e p splits completely in K/Q;
e p does not split in K/Q, and for the element p € T, the character x is non-
trivial on D .

Then, the following holds:

(1) If the character x is non-trivial on Da, for any p € T, we have

&l € ity o(X))

(2) For each i € Z>y, there exists a height-two ideal J; , of A, satisfying
Jix Fitta (X)) C €5,

Note that in the two-variable cases, we cannot give bounds for error factors J; \ Z7. . .
Indeed, as we will see later, our result for the two-variable cases follow from the
standard Euler system arguments for the proof of Iwasawa main conjecture, so it is
not so new or strong.

Proof of Theorem 6.1. The first assertion is proved in Corollary 4.7, so it is sufficient
to prove the second assertion. Note that X, is a finitely generated torsion A,-module,
so we have a pseudo-isomorphism

Lx: @Ax/fi/\x — X,
i=1

where r is a positive integer, and f;’s are non-zero elements of A, satisfying f; | fit1
for all 7. By Example 2.10, it is sufficient to show that for any integer ¢ satisfying
0 <17 <7 —1, there exists a height-two ideal I; of A, satisfying

([ f) -6 ceh
j=1

First, we set up the notation. Let e; € @;_, A,/ fiA, be the element 1 in the i-th
summand A, /f;. For an intermediate field F' of K /K, which is finite over K, and
for any ¢ € Z satistying 0 < ¢ < r, we denote the image of e; by the composite map

@ ANy 25 X, — Apy
=1
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by C.F € AF,x-

Fix a homomorphism ¢: £, — A, of A,-modules with pseudo-null cokernel.
Let 0, € A, be a generator of chary, (£x,y/Coc,y). We put

B := (Zyy - Cokerix) N (Ay - Z(Coox; ).
where Z; and A are as in Proposition 2.1.

We denote the set of all continuous homomorphisms from I" to the discrete group
tp~ by X. Note that any element p € X uniquely extends to a continuous ring
homomorphism p: Ay, — O,[u;°]. For any f € Ay, we define a subset X(f) C X
and an ideal Z(f) by

X(f)={peX|p(f) =0},
Z(f) = {g € A | p(g) = 0 for any p € X(f)}.

If I C A, is a principal ideal generated by f, we define Z(I) := Z(f). Note that if
I' ~ 72, then the ideal

I(char(Xy)) = Z(0y)
is height-two ideal of A,.. (See [Rul] Proposition 7.11.) We define a height-two ideal
B’ of A, by
B :=B- <IT7X N I(@X)),
and fix an element 6 € B’. Note that B’ C Z(Cxy;®), so there exists an element
n = {nr}r € Cw, satistying ©(n,) = 00,.

Let F' be an intermediate field of K. /K, satistying Ky Cy F. We put Rp, :=
Z,|Gal(F/K)],. Let N be any positive integer satisfying

PYOREy C ([F : Kol#Ary6"0,) Ry
Let a be a map
(Zx)? = {non-zero ideals of Ox}*> — Rp Ny
satisfying the condition (R) in §3.3 for the elliptic unit n := nr € CF.

By the argument in the proof of [Rul] Theorem 8.3, let us construct a sequence
{[Z}:ill of distinct prime ideals Ok prime to a(n, a) satisfying the following properties:

(S1) I; € S]I\’,rime (F(ni,l)) for any ¢ with 1 <7 <r+ 1, where we put ng := O and
n; 1= H;=1 [; for i > 1;
S2) the image of the ideal class of [; in Ar, coincides with ¢; p for any i with
7X b
1 <1<

(83) Oy (K0, a5 Ok)) = 60y
(S4) for any ¢ with 2 < i < r+ 1, we have

fr7i+2<2_5%,]v,x ((/f(ﬁ, a; n%l)) = (E[};]\lfx (H(Ua a; ﬂzeQ)) .
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First, we choose [;. By Proposition 2.1, we have § € Z¢ and 6% € Je. So, as in the
proof of Proposition 4.6, there exists a homomorphism s: (€¢/p™)x — Ry which
makes the diagram

3 —
0 PF,N X

(Coo,x)F/pN - (goo,x)F/PiV

i l 7T s

Winn(Ox)— (Er /DY)y

commute. By Proposition 3.15, we can take the prime ideal l; of O prime to a(ng, a)
satisfying the following:

e the prime [; satisfies (S1) and (S2);
il —
* Srnalermn = Vs

Note that the second condition on [; implies the condition (S3).

Next we choose [; for ¢ > 2 inductively on 7. Let ¢ be an integer satisfying 1<
i < r+ 1, and suppose that we have chosen distinct prime ideals {[; } _, satistying
the Condltlon (S1)-(S4). Now let us find a prime ideal [;. Let W;_4 be the Rpn -
submodule of (F*/p"), generated by (1, a;n;_1),. By [Rul] Lemma 8.2, there exists
a homomorphism ¢;_;: W;_y — Rpn, satisfying

freitotio = 54[']%7]\7,,(2 Wiy — RF,N,X~

(For details, see Lemma 8.2 and the arguments in the proof of Theorem 8.3 in [Rul].)
By Proposition 3.15, we can find the prime ideal [; of O prime to a(n,a) - n;_y
satisfying the following:

e the prime [; satisfies (S1);
e the prime [; satisfies (S2) if 7 < r;

= Yi-1.

d ¢FN X,
By the second condition on [; and Proposition 3.9, we have

fr7i+2(5[}1;’7N’X (5(77, a; nifl)) = froivatia (/f(ﬁa a; ﬂz’&))
- [stnasm )],
<Z5FN NGO )
So, the sequence {I;}'_] satisfies the condition (S4). By induction on i, we obtain the
sequence {[;}*] satisfying the conditions (S1)-(S4).

Now, we shall vary F' and N, and prove Theorem 6.1 by using the arguments in
§5.3. For any intermediate field F' of K /Ky satisfying Ky Cy F, for any positive
integer N and for any integer ¢ satisfying 1 < ¢ < r + 1, the element

Qg[i (K<n7 a; nifl)) € RF,N,X
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is denoted by ¢"%(k(n,a;n;_1))rxn. By induction on i, we shall prove

r—i+1

lim (6% (k (1, a3 0i1))rv) e = 00 T i € A

j=1
in the sense of §5.3.

First, by the condition (S3), the sequence (¢"(k(n,a;10))rN)
element

v converges to the

*0, = 0* T i € A
j=1

Next, let ¢ be an integer with 1 < ¢ < r, and assume

r—i+1

lim (lei(“(n, a;ni—l))F,N)RN = H fi € A,

=1
Then, the condition (S4) implies

r—i41

lim (f,,,lurl . é‘”l(ﬁ(n, a; ni))F,N)F’N =t H fi-
j=1

Since f; € A, is non-zero element, we obtain

lim Q_ﬁ[i“(/ﬁ(ﬁ, a; ni))F,N)F,N =ot H fi-
j=1

Therefore, by induction on ¢, we conclude
r—i+1

lim (@ (k(n, a:ni1))r) e = 0° TT £ € A

j=1
for any ¢ satisfying 1 <1 <r, and
lim ((5[”1(/1(77, a; nT)>F’N)F,N = A,

This implies
I B ce
j=1
for any i € Z>(, where B” is the ideal of A, generated by {6* ] & € B'}. Note that B”

is a height-two ideal of A, so this completes the proof. O
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