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Abstract 

Human T-cell leukemia virus type 1 (HTLV-1) spreads primarily by cell-to-cell 

transmission. Therefore, HTLV-1 promotes the proliferation of infected cells to 

facilitate transmission. In HTLV-1 infected individuals, the provirus is present mainly 

in effector/memory T cells and Foxp3+ T cells. Recent study suggests that this 

immunophenotype is acquired by infected cells through the function of HTLV-1 bZIP 

factor (HBZ). Tax, which is encoded by the plus strand, is critical for viral replication 

and de novo infection, while HBZ, encoded by the minus strand, is important for 

proliferation of infected cells. Importantly, HBZ and Tax have opposing functions in 

most transcription pathways. HBZ and Tax cooperate in elaborate ways to permit viral 

replication, proliferation of infected cells and propagation of the virus.  
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Introduction 

Transmission of human T-cell leukemia virus type 1 (HTLV-1) is confined to three 

routes; mother-to-infant, sexual parenteral transmission, and blood transfusion/needle 

sharing [1]. A striking feature of this virus is that HTLV-1 is transmitted primarily in a 

cell-to-cell fashion, and infectivity of free virions is very poor. In contrast, another 

human retrovirus, human immunodeficiency virus (HIV), transmits by both cell-free 

and cell-to-cell contact. The transmission of HTLV-1 requires living infected cells in 

breast milk, semen and blood products. To facilitate its transmission, this virus 

increases the number of infected cells in vivo by stimulating their proliferation.  

   HTLV-1 was discovered in 1980 as the first human retrovirus [2,3]. Thereafter, this 

virus was found to be linked with a human disease, adult T-cell leukemia (ATL) [4]. 

Subsequently it was found that this virus also causes another disease, HTLV-1 

associated myelopathy/tropical spastic paraparesis (HAM/TSP), as well as HTLV-1 

uveitis, infective dermatitis, and myopathy [1]. These diseases are thought to be 

associated with the fact that infected host immune cells proliferate in vivo. In this 

review, we summarize recent findings on the replication of HTLV-1, the proliferation of 

infected cells, and HTLV-1 propagation -- matters which are closely related for this 

virus.  

 

Virus entry and cell-to-cell transmission 

Unlike HIV, HTLV-1 can infect a variety of cells; its receptor is thought to be a 

commonly expressed molecule [5]. It has been reported that HTLV-1 envelope protein 
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interacts with three cellular molecules, heparan sulfate proteoglycan (HSPG) [6], 

neuropilin-1 [7], and a glucose transporter, GLUT1 [8], for entry into cells. 

Conformational changes of the complex consisting of the HTLV-1 virion and these 

molecules are thought to occur sequentially during the entry step. First, the HTLV-1 

envelope attaches to HSPG, and it then forms complexes with neuropilin-1, which 

results in stabilization of the complex. Thereafter, GLUT1 is associated with the 

complex, and finally triggers the fusion process necessary to viral entry [9].  

   In vitro experiments showed that free virions had poor infectivity, while co-culture 

of uninfected cells with HTLV-1 infected cells easily established HTLV-1 infected cells 

[10]. It has been reported that cell-mediated infection of HTLV-1 is 10000 times more 

efficient than cell-free infection, while cell-to-cell infection by HIV-1 is only twice as 

efficient as cell-free infection [11]. Two models for the mechanism of cell-to-cell 

infection by HTLV-1 have been proposed: 1) virological synapse [12] and 2) biofilm 

[13], and 3) cellular conduits [14]. HTLV-1 infected cells form a virological synapse 

with uninfected cells; ICAM-1 and LFA-1 are implicated in this synapse formation. Tax 

is also implicated, specifically in microtubule reorientation [15]. Indeed, Tax enhances 

cell-to-cell infection [11]. On the other hand, there is evidence to support the biofilm 

model as well.  HTLV-1-infected T cells retain viral particles with virally-induced 

extracellular matrix components, including collagen, agrin, tetherin and galectin-3 [13]. 

By cell contact, these viral assemblies adhere to other cells, resulting in infection with 

HTLV-1.  

   An increased number of infected cells augments the chances of transmission. Indeed, 
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for mother-to-infant transmission, it has been reported that infants have higher chances 

of getting infected from mothers with higher proviral loads [16].  

  

 

Transmission of HTLV-1 

HTLV-1 can be transmitted by breast-feeding, sexual contact and blood transfusion. 

This transmission requires living infected cells, since this virus transmits mainly by 

cell-to-cell contact (Figure 1). Therefore HTLV-1 infected cells are hypothesized to 

have attributes that promote their entry into breast milk and semen. It has been reported 

that breast milk contains T-cells, most of which are effector/memory T cells expressing 

LFA1 and ICAM-1 [17], and HTLV-1 provirus has been detected in such 

effector/memory T cells [18]. These findings suggest that HTLV-1 may confer a 

phenotype to infected cells that facilitates their entry into breast milk. What component 

of HTLV-1 confers this effector/memory phenotype to HTLV-1 infected cells? 

Transgenic expression of HBZ in CD4+ T cells increased the number of 

effector/memory T cells and regulatory T cells, while transgenic mice expressing Tax 

had no change in the phenotype of CD4+ T cells [19]. This clearly demonstrates that the 

immunophenotypes of ATL cells and HTLV-1 infected cells are conferred by HBZ, not 

by Tax. This conferred phenotype, which involves high levels of expression of adhesion 

molecules, enables HTLV-1 infected cells to enter into breast milk and semen (Figure 

1).   

   Next, the virus must override epithelial barriers. How does HTLV-1 cross the 
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alimentary tract? Recently, it has been shown that free infectious HTLV-1 virions could 

cross the epithelial barrier via a transcytosis mechanism [20]. HTLV-1 virions could 

then infect human dendritic cells (DCs) that exist in the epithelial barrier [21]. Infected 

DCs likely migrate to draining lymph nodes and then form virological synapses with T 

cells (Figure 1). It is difficult to infect T cells by free virus in vitro. However, free virus 

can infect DCs, and infected DCs can propagate HTLV-1 infection, suggesting that DCs 

are the spreader of this virus in vivo [21]. Expression of adhesion and co-stimulatory 

molecules is critical for immunological synapses between T cells and DCs [22]. Thus, 

the immunophenotypes (effector/memory T cells, regulatory T cells, and enhanced 

expression of adhesion molecules) conferred by HBZ are critical for the further spread 

of this virus in vivo. Thus, using HBZ, HTLV-1 induces infected cells to acquire certain 

immunophenotypes that facilitate its entry into the body and its subsequent spread 

within the body.  

 

Clonal proliferation of HTLV-1 infected cells 

After infection, HTLV-1 spreads by cell-to-cell infection and DC mediated infection. 

This de novo infection of cells is thought to form a pool of infected cells at an early 

phase of infection. In an experiment using immunodeficient mice with human 

lymphocytes, administration of reverse transcriptase inhibitors, tenofovir disoproxil 

fumarate (TDF) or azidothymidine (AZT) beginning after one week of infection could 

neither block nor decrease proviral load of HTLV-1, while TDF or AZT could block 

infection when they were injected at the same time of infection [23]. These results 
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suggest that a pool of HTLV-1 infected clones is generated at very early phase of 

infection, and after that time, clonal proliferation of infected cells is predominant. This 

notion is also supported by clinical findings that reverse transcriptase inhibitors or 

integrase inhibitors did not alter proviral load in HTLV-1 infected individuals [24,25].  

     After this early stage of de novo infection, HTLV-1 infected clones are subject to 

selection by both host immunological attack and viral gene expression. In 

seroconvertors, the clonality of HTLV-1 infected cells was not stable at an early phase, 

but then stabilized at the chronic carrier state phase [26], indicating that HTLV-1 

infected clones are selected at early phase of infection, and then, selected clones survive 

in vivo.  

   Since the HTLV-1 provirus integrates at random sites within the host genome, the 

clonality of HTLV-1 infected cells can be analyzed by studying these integration sites. 

Inverse PCR has been used to identify the integration sites and determine the clonality 

of infected cells [27,28]. Recently, high-throughput sequencing has been shown to be 

capable of detailed analysis of clonality [29]. It is well known that HAM/TSP patients 

possess higher proviral loads compared with asymptomatic carriers. Analysis of 

clonality using high-throughput sequencing revealed that the abundance of each clone 

did not differ, but the number of different clones increased in HAM/TSP patients 

compared with asymptomatic carriers [29]. In contrast, the abundance of certain clones 

increased in patients coinfected with HTLV-1 and strongyloides, and in infective 

dermatitis patients with HTLV-1 infection (IDH patients) [30]. It is noteworthy that 

ATL develops relatively frequently in IDH patients and HTLV-1 carriers coinfected 
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with strongyloides, while the occurrence of ATL is not so frequent in HAM/TSP 

patients [31]. Thus the enhanced abundance of clones and increased cell division might 

promote the development of ATL.  

   What drives cell division of HTLV-1 infected cells? HBZ is ubiquitously expressed 

in ATL cells and HTLV-1 infected cells in vivo, and promotes their proliferation [32]. 

In addition, Tax enhances mitogenic antigen-receptor signals [33,34]. The details of the 

mechanisms by which HBZ and Tax stimulate cell proliferation are complex and 

fascinating. In fact, HBZ and Tax have opposite effects on most signaling pathways [35] 

(Figure 2). For example, Tax activates the AP-1, NFAT, and CREB pathways while 

HBZ suppresses them [36,37]. Conversely, Tax inhibits TGF-β/Smad pathway whereas 

HBZ activates it [38]. Tax activates both the canonical and non-canonical NF-κB 

pathways [39]. HBZ inhibits only the canonical NF-κB pathway by interacting with p65. 

Expression of Tax promotes cell proliferation and simultaneously induces cellular 

senescence by induction of p21 and p27. HBZ prevents Tax induced cellular senescence 

by inhibiting p65 [40]. Thus, the elaborate interactions of various signaling pathways 

with Tax and HBZ control the proliferation of HTLV-1 infected cells. In addition to this 

relationship between HBZ and Tax, it has been reported that HBZ mRNA has 

growth-promoting activity [32] , indicating another complex connection of HBZ as 

RNA and protein.  

   Furthermore, we have reported that HBZ suppresses the canonical Wnt pathway by 

inhibiting DNA binding by TCF-1/LEF-1 transcription factors, while Tax activates 

canonical Wnt signaling [41]. In contrast, HBZ enhances the transcription of Wnt 5a, 
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which is a ligand for the non-canonical Wnt pathway. The canonical Wnt pathway is 

predominant during the development of T cells in the thymus, while non-canonical Wnt 

signaling is activated in peripheral T cells. These findings suggest that HBZ modulates 

the intra-cellular environment of peripheral T cells, which are natural target of this 

virus.  

 

Control of transcription of viral genes 

The HTLV-1 provirus encodes the regulatory genes (tax and rex) and the accessory 

genes (p12, p13, p30, and HBZ) in pX region; these genes regulate viral replication and 

the proliferation of infected cells [1]. For their transcription, the LTRs at each end of the 

provirus are used as promoters: the 5’LTR and 3’LTR control the transcription of the 

viral genes encoded in the plus and minus strands of the provirus, respectively (Figure 

3). Since the plus strand of the provirus encodes all structural proteins and the viral 

genomic RNA, 5’LTR-mediated transcription is required for viral replication and 

transmission. Tax is a potent activator of viral transcription through the 5’LTR. Tax 

does not bind to DNA, but activates the transcription of target genes by recruiting 

various transcription factors and modifying the epigenetic status of promoter regions 

[42].The association between Tax and CREB is critical for viral gene transcription. 

There are three 21-bp repeat elements, called Tax-responsive elements (TREs), located 

in 5’LTR, and the Tax-CREB complex recruits several histone acetyltransferaeses 

including CREB biding protein (CBP), p300, and p300/CBP-associated factor (PCAF) 

to the LTR, resulting in induction of viral expression. In addition to Tax, some cellular 



 10 

signaling machinery can enhance the activity of the 5’LTR. It has been shown that 

immune stimulation via T-cell receptor signaling activates the 5’LTR [34,43]. Another 

study showed that apoptotic signals induced viral transcription [44]. 5’LTR activation 

by these signals might be advantageous to efficient viral transmission and to viral 

“escape” from a dying host cell. 

   Importantly, viral replication is actually suppressed in vivo [45], while viral antigens 

including Tax are quickly expressed in infected cells after they are transferred to ex vivo 

culture [46]. Host immune surveillance eliminates infected cells by targeting viral 

antigens. Among viral proteins, Tax is a major target of cytotoxic T-cells (CTLs) [47]. 

It is well known that removal of CD8+ T-cells from PBMC allows infected cells to 

express Tax in the ex vivo cell culture [45], suggesting the presence of immune pressure 

against Tax in vivo. In addition, it was shown that, even in immunodeficient animal 

models, viral transcription from 5’LTR was suppressed, indicating that other 

mechanisms are involved in the silencing [48]. HTLV-1 can suppress its replication by 

its own proteins; p30 and HBZ are known to counteract Tax by competing for the 

binding to CREB, resulting in suppression of HTLV-1 replication [49]. p30 also inhibits 

the nuclear export of tax/rex mRNA [50]. Epigenetic changes, such as DNA 

methylation and histone modifications, are also involved in the silencing of HTLV-1. 

HTLV-1 differs from HIV in this respect. The LTR of HIV contains few CpG sites, 

while there are DNase hyper-sensitive regions, which explains the resistance of the HIV 

LTR to silencing [51,52]. On the other hand, the HTLV-1 LTR has many CpG sites, 

suggesting that HTLV-1 is susceptible to gene silencing mediated by DNA methylation. 
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CpG methylation in the HTLV-1 provirus is observed in HTLV-1 carriers, and 

methylation tends to increase and to spread toward the 5’LTR during disease 

progression [53]. Indeed, Tax expression is frequently missing in ATL cells by 

epigenetic silencing of the 5’LTR as well as by genetic destruction of the 5’LTR or the 

tax gene [54,55]. Destruction of Tax expression enables ATL cells to escape from 

Tax-specific CTLs. Recently, it was reported that a histone deacetylase inhibitor, 

valproate (VPA), enhanced the expression of Tax and Gag in cultured HTLV-1-infected 

cells from asymptomatic carriers and HAM/TSP patients, suggesting that viral 

expression is suppressed by epigenetic mechanisms even in the carrier state [56].  

   The 3’LTR functions as a promoter of the minus strand of the provirus [57]. It has 

been shown that the 3’LTR is conserved in all cases and CpGs are hypomethylated, 

suggesting that transcription through the 3’LTR is required for infected cells [53,58]. 

The HBZ gene is encoded in the minus strand, and alternative splicing makes the splice 

variants, the spliced and unspliced isoforms [59,60]. The spliced HBZ gene is 

transcribed from the 3’LTR, and the SP1 binding elements in 3’LTR are important for 

its transcription [57]. SP1 is a transcription factor ubiquitously expressed in a variety of 

cells, a fact which corresponds to the finding that HBZ is constitutively expressed in all 

ATL cases and HTLV-1 infected individuals [61]. It was also reported that SP1 forms a 

complex with HBZ and JunD and enhances the promoter activity of HBZ [62], 

suggesting that SP1 is a key transcription factor for the activity of the 3’LTR. 

Interestingly, it was shown that Tax positively regulates 3’LTR activity [57], although 

the significance of this observation remains unclear. Further studies need to be 
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conducted for us to fully understand the regulation of transcription via the 3’LTR. 

 

The host immune system and proliferation of infected cells 

After infection, provirus load (the number of infected cells) and clonality are 

determined by the balance between viral gene expression and the host immune response 

[63]. As described, Tax is highly immunogenic, while the immunogenicity of HBZ 

protein is very low [64]. However, provirus load is well correlated with the immune 

response to HBZ; a low immune response to HBZ is associated with a high provirus 

load in HTLV-1 infected individuals. It is thought that HTLV-1 evolves to reduce the 

immunogenicity of HBZ, which is constitutively expressed and critical for the 

proliferation of infected cells. Conversely, HTLV-1 infected cells express Tax more 

transiently. Tax is important for viral replication and de novo infection by HTLV-1. 

However, due to the high immunogenicity of Tax, HTLV-1 suppresses Tax expression 

in vivo by elaborately regulated mechanisms. 

 

Conclusion 

HTLV-1 evolved to propagate by cell-to-cell transmission. Therefore, this virus induces 

the proliferation of infected cells while under the pressure of host immune system. To 

this end, Tax and HBZ cooperate with each other in complicated ways to permit viral 

replication and promote the proliferation of infected cells. These phenomena are closely 

associated with the pathogenesis of this virus.  
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Figure legends 

 

Figure 1. Transmission and de novo infection with HTLV-1 

HTLV-1 is transmitted via breast feeding, sexual intercourse, and blood transfusion. For 

any of these routes, living infected cells are essential. HTLV-1 infected cells have the 

immunophenotypes of effector/memory T cells or regulatory T cells. These cells tend to 

enter breast milk. HTLV-1 enters into the alimentary tract by transcytosis, and infects 

dendritic cells. Infected DCs transmit virus to uninfected T cells via virological 

synapses. Then infected T cells expand clonally in vivo.  

 

Figure 2. Opposite functions of Tax and HBZ 

Tax and HBZ have opposite functions in many signaling pathways. Tax activates the 

CREB pathway by recruiting CREB and CBP/p300 to the promoters of target genes, 

whereas HBZ also interacts with the same proteins, suppressing Tax-mediated 

transcription. Tax activates both the classical and the alternative NF-κB pathways, and 

HBZ selectively suppresses classical signaling by targeting p65. Tax activates PI3K and 

induces the transcription of AP-1 target genes. HBZ negatively regulates this pathway 

by its inhibitory interactions with c-Jun and JunB through their bZIP domains. Tax 

forms a complex with DAPLE and DVL, and activates the canonical Wnt pathway. 

HBZ interacts with LEF-1/TCF-1 at point further downstream in this pathway and 

suppresses the transcription of the target genes. Tax has a negative effect on the 

TGF-β/SMAD pathway; however, HBZ activates it by interacting with SMAD2/3 and 
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recruiting CBP/p300 to the promoters of the target genes. 

 

Figure 3. Transcriptional control of HTLV-1 provirus 

The 5’LTR is a promoter and enhancer of the plus strand transcripts that encode the 

viral genomic RNA, the structural proteins (Gag, Pol, and Env), and the 

regulatory/accessory proteins (Tax, Rex, p12, p13, and p30). Transcription via the 

5’LTR is induced by recruiting the Tax-CREB-CBP/p300 complex to TREs in U3 

region of 5’LTR, whereas the other viral factors (HBZ and p30) and epigenetic 

modifications on the 5’LTR suppress it. Some extrinsic factors are also associated with 

the activity of 5’LTR. In contrast, the 3’LTR is constitutively activated, and recruitment 

of SP-1 to its binding elements in U5 of the 3’LTR is important for 3’LTR activity. 

HBZ is encoded in the minus strand, and the HBZ-JunD complex enhances the 

transcriptional function of SP-1 on the 3’LTR. 
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