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S U M M A R Y
We clarified the theoretical relationship between the back-projection (BP) imaging and classi-
cal linear inverse solutions via the hybrid back-projection (HBP) imaging. In the HBP imaging,
which is mathematically similar to the time-reversal source imaging, cross correlations of ob-
served waveforms with the corresponding Green’s functions are calculated. The key condition
for BP to work well is that the Green’s function is sufficiently close to the delta function.
Then, the BP image represents the slip motion on a fault, and approximately equals to the
least-squares solution (LSS). In HBP, instead of the Green’s function in BP, the stacked auto-
correlation function of the Green’s function must be close to the delta function to obtain a fine
image. Because the autocorrelation function is usually closer to the delta function than the
original function, we can expect that HBP works better than BP, if we can reasonably estimate
the Green’s function. With additional condition that the stacked cross-correlation function of
the Green’s functions for different source locations is small enough, the HBP image is also
approximately equal to the LSS. If these assumptions are not satisfied, however, the HBP
image corresponds to a damped LSS with an extremely large damping parameter, which is
clearly inferior to usual inverse solutions. On the other hand, the advantages of the BP method
are much less computation and no necessity of Green’s functions.

Key words: Inverse theory; Earthquake dynamics; Earthquake source observations; Theo-
retical seismology.

1 I N T RO D U C T I O N

In order to clarify the rupture process of earthquakes, inversion
analyses of seismic waveform data have traditionally been carried
out (e.g. Trifunac 1974; Olson & Apsel 1982; Hartzell & Heaton
1983; Ji et al. 2002; Piatanesi et al. 2007; Yagi & Fukahata 2011a).
In the inversion analysis, observed data are inverted to estimate
model parameters, using some theoretical relationship between the
observed data and model parameters, commonly on the basis of least
squares principle. In the inverse problem to estimate the rupture
process, the model parameters are generally taken to represent slip
motion on the fault.

In recent years, the back-projection (BP) analysis has become a
popular tool to image the rupture process of large earthquakes since
the success of Ishii et al. (2005), which clarified the northward
rupture progression of the 2004 Sumatra–Andaman earthquake.
In the BP analysis, observed waveform data are not inverted, but
simply stacked with appropriate time-shifts. In these days, once a

∗Now at: Department of Earth Sciences, University of Oxford, UK.

large earthquake happened, the BP image has been presented quite
soon, for example, for the 2005 Nias (Walker et al. 2005), the 2008
Wenchuan (Xu et al. 2009), the 2010 Chili (Kiser & Ishii 2011),
the 2011 Tohoku (Koper et al. 2011; Meng et al. 2012; Yagi et al.
2012) and the 2012 far-off northern Sumatra (Wang et al. 2012).
In some of these studies, improvements of the BP method were
also carried out. Xu et al. (2009) investigated the effects of array
distributions and stacking methods. Yagi et al. (2012) proposed a
hybrid back-projection (HBP) method in which cross correlations
of observed waveforms with the corresponding Green’s functions
were calculated. Kiser et al. (2011) and Wang et al. (2012) also
added the information of Green’s functions to obtain an image with
better resolution.

We now see so many images obtained by the BP method. On
the other hand, it has not been clear what the BP image represents
physically. In addition to this, the relationship between the inverted
solution and the BP image has also not been understood yet. Ishii
et al. (2005) stated that the obtained BP image represents energy
release. Of course, the BP image must be related to energy release
in some way. However, no explicit relationship was shown. Re-
cently, Yao et al. (2012) showed that the time-evolving BP image
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approximately corresponds to the source time function at the cor-
responding source location. However, the situation is a bit more
complicated. In this paper, we more clearly show the conditions
under which that approximation is valid and we will see the BP
analysis intends to obtain the time-evolving image of slip motion
on the fault.

Once what the BP image represents has become clear, it is now
possible to compare the BP image with classical linear inverse
solutions. However, the BP method is too simple to be directly
compared to inverse solutions, although the simplicity is the superior
point of the BP analysis. Therefore, in order to compare BP with
inverse solutions, we pass through the HBP method. That is to say,
we make comparisons of BP to HBP and HBP to inversion.

2 M E T H O D S O F S E I S M I C S O U RC E
I M A G I N G

In general, seismic waveform d observed at a station k is related to
fault slip a through a Green’s function G:

dk(t)=
∫

S
[a(ξ ) ∗ Gk(ξ )] (t) dξ =

∫
S

∫ ∞

−∞
a(ξ , τ ) Gk(ξ , t − τ ) dτ dξ ,

(1)

where S is a fault surface and ∗ denotes convolution. In a far field, a
represents slip velocity on the fault for displacement data d or slip
acceleration on the fault for velocity data d, if G is the Green’s func-
tion for displacement waveform. The Green’s function Gk(ξ , t − τ )
means the deformation (e.g. displacement or velocity) at the obser-
vation station k at time t generated by a unit impulse slip on the
fault plane S at the point ξ at time τ . For simplicity, we consider
only one component for d and a, respectively, and so we omitted the
suffixes which represent the directions of deformation at the obser-
vation station and slip motion at the source in eq. (1). The origin of
time (t = 0) is set at the initiation of an earthquake. Then, we may
take the range of the integral with respect to τ to be [0, t] due to
causality, instead of the infinite integral in eq. (1). We may rewrite
eq. (1) by taking a summation for the integration with respect to the
fault surface S as

dk(t) =
∑

l

(al ∗ Gkl ) (t), (2)

where al represents slip motion at the lth source grid on the fault
plane S and Gkl means the deformation at the observation station k
generated by a unit impulse slip at the lth source grid on the fault
plane S.

2.1 Back-projection

The basic equation of the BP imaging is expressed as follows (Ishii
et al. 2005):

sBP
l (t) =

∑
k

ckdk(t + t p
kl ), (3)

where sBP
l represents the stacked BP image at the lth potential source

grid, t p
kl is the predicted traveltime between the grid l and the station

k and ck is the normalizing (weighting) factor for each seismogram.
Concerning observed data dk , only the P-wave portion is usually
used. Although the sign in front of t p

kl is taken to be minus in Ishii
et al. (2005, 2007), the sign must be plus if we use a common time
axis for the source and observation points, because the first seismic
wave arrives at the station k at t = t p

kl and dk(t) is zero for t < t p
kl .

By substituting eq. (2) into (3), we obtain

sBP
l (t) =

∑
k

ck

∑
�

(a� ∗ Gk�)(t + t p
kl ). (4)

In the BP image sBP
l (t), it is expected that the waveforms due to

slips on gridpoints except for l are cancelled out each other (Ishii
et al. 2005). This condition that holds true for arbitrary a� can be
expressed as∑

k

ck Gk�(t + t p
kl ) ≈ 0 (l �= �, ∀t). (5)

Then, eq. (4) becomes

sBP
l (t) ≈

∑
k

ck (al ∗ Gkl ) (t + t p
kl ). (6)

It should be noted that sBP
l (t) includes the contribution of the slip

on gridpoints other than l, when the condition (eq. 5) does not hold
true.

In the basic equation of BP (eq. 3), the theory of elastodynamics
is used only for the predicted traveltime t p

kl . Information concerning
the later phases, inelastic attenuation and amplitude is neglected.
Therefore, we can consider that in BP analyses the Green’s function
is implicitly assumed to be like the delta function with an amplitude
that does not depend on the source location and mechanisms

Gkl (t + t p
kl ) ≈ cδ(t), (7)

where c is a constant proportional to the amplitude of the Green’s
function, which may depend on the station location k. The condition
(eq. 7) can be loosened to∑

k

ck Gkl (t + t p
kl ) ≈ δ(t), (8)

where the proportional constant c is included in the weighting factor
ck . It has been reported that the images of BP are clearer for deep
earthquakes (Suzuki & Yagi 2011). This is reasonable because the
assumption of eq. (8) is more appropriate for such cases. If eq. (8)
is not a good approximation, sBP

l (t) shows a smeared image in time.
By substituting eq. (8) into (6), we finally obtain

sBP
l (t) ≈ al (t). (9)

Eq. (9) shows that the BP image sBP
l (t) is directly related to the

motion on the fault. A similar result has already been obtained by
Yao et al. (2012). In brief, BP intends to obtain the time-evolving
image of slip motion for an earthquake, under the assumptions of
eqs (5) and (8). In the BP analysis, however, the Green’s function
is not explicitly used. So, we never know the BP image represents
slip velocity or acceleration. This point will be further discussed in
a later section.

2.2 Hybrid back-projection

Yagi et al. (2012) proposed an improvement of BP by taking the
cross correlation of observed waveforms and the Green’s function

sHBP
l (t) =

∑
k

c′
k

(
dk ×̂ Gkl

)
(t) =

∑
k

c′
k

∫ ∞

−∞
dk(τ ) Gkl (τ − t) dτ,

(10)

where ×̂ denotes cross correlation and c′
k is a normalizing (weight-

ing) factor for each seismogram. Although an Nth root stack is used
in Yagi et al. (2012), we used the same stacking procedure as BP in
eq. (10) to focus on the essential difference between them. Here, it
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should be noted that we can rewrite the basic equation of BP (eq. 3)
as

sBP
l (t) =

∑
k

ck

(
dk ×̂ δ

)
(t + t p

kl ). (11)

This means that the BP method is equivalent to stacking the cross
correlations of observed waveforms with the shifted delta function.
This observation lead Yagi et al. (2012) to propose stacking the
cross correlations of observed waveforms with the Green’s func-
tion, because the synthetic waveform for an impulse slip is the
Green’s function. Yagi et al. (2012) called the imaging method ex-
pressed by eq. (10) the hybrid BP, because this method is relatively
closer to inversion analyses. However, the method is essentially an
improvement of BP.

From eqs (2) and (10), we obtain

sHBP
l (t) =

∑
k

c′
k

(∑
�

(a� ∗ Gk�) ×̂ Gkl

)
(t). (12)

HBP also expects that the waveforms due to slips on gridpoints
except for l are cancelled out each other by stacking. This condition
that holds true for arbitrary a� is expressed as∑

k

c′
k

(
Gk� ×̂ Gkl

)
(t) ≈ 0 (l �= �, ∀t). (13)

With the condition (13), eq. (12) becomes

sHBP
l (t) ≈

∑
k

c′
k (al ∗ AuGkl ) (t), (14)

where

AuGkl (t) = (
Gkl ×̂ Gkl

)
(t) =

∫ ∞

−∞
Gkl (τ )Gkl (τ − t) dτ , (15)

where AuGkl (t) is the autocorrelation function of Gkl (t). If we can
further assume that

AuGkl (t) ≈ c′δ(t) (16)

or more precisely∑
k

c′
k AuGkl (t) ≈ δ(t) (17)

then we have the same expression for HBP as eq. (9) for BP

sHBP
l (t) ≈ al (t), (18)

where c′ is a proportional constant. From eq. (18), we can consider
that HBP also intends to estimate the slip motion on the fault.
Because the Green’s function is explicitly given in HBP, there is
no ambiguity as to what the HBP image represents physically. The
HBP image represents slip velocity on the fault for displacement
data d or slip acceleration on the fault for velocity data d, if we use
the Green’s function for displacement waveform.

Based on the comparison of eqs (5) and (13), and (8) and (17),
we can judge the goodness of the images obtained by BP and HBP.
The autocorrelation function always has its maximum at t = 0.
Therefore, we can expect that the approximation of (17) is better than
(8), especially for shallow earthquakes, for which reflection phases
at the Earth’s surface (pP and sP) are more important. However, it
should be noted that the two Green’s functions included in the auto-
and cross-correlation functions are not identical: one is theoretically
or empirically estimated and the other is true and unknown. This
means that the obtained image becomes worse if we use a Green’s
function that is not close to the true one.

2.3 Time reversal

In the time reversal (TR) imaging of seismic sources, the time
reversed observed waveforms are back propagated to the source
region to search the locations where the waves are constructively
interfered. It can be written as (Larmat et al. 2006; Kawakatsu &
Montagner 2008)

sTR
l (t) =

∑
k

c′′
k

∫ ∞

−∞
dk(t0 − τ ) G̃lk(t − τ ) dτ, (19)

where t0 is an arbitrary reference time and c′′
k is a weighting factor.

Here, it should be noted that the Green’s function G̃lk is not for a
displacement discontinuity across a fault surface as in eq. (1), but
for a single force. G̃lk(t − τ ) means the displacement at the point l
at time t generated by a single force applied at the point k at time
τ , and dk is the displacement waveform at a station k. By changing
the integral variable in eq. (19), we obtain

sTR
l (t) =

∑
k

c′′
k

∫ ∞

−∞
dk(τ ) G̃kl (τ − t0 + t) dτ

=
∑

k

c′′
k

(
dk ×̂ G̃kl

)
(t0 − t), (20)

where we used the reciprocity of the Green’s function. Eq. (20)
shows TR also stacks the cross-correlations of observed waveforms
with the Green’s function as in eq. (10), although the direction of
the time axis is reversed. The relation of the times between HBP
(eq. 10) and TR (eq. 19) is expressed as

tHBP = t0 − tTR. (21)

As can be seen in eq. (20), HBP is closely related with TR, although
the definition of the Green’s function and original ideas are different.

3 R E L AT I O N T O I N V E R S E S O LU T I O N S

3.1 Vector expression of seismic source imaging

In order to compare seismic source images of the BP and HBP
analyses with inverse solutions, we introduce vector expressions.
When we consider only one source gridpoint l and one observed
waveform at a station k, eq. (2) may be written in the following form
with a discretization of time:

dk = Gklal , (22)

where the components of the vectors and matrix are as follows:

(dk)i = dk(ti ), (Gkl )i j = Gkl (ti − τ j ), (al ) j = al (τ j ), (23)

where (·)i denotes the ith component of the vector and (·)i j denotes
the ij component of the matrix. When the numbers of the sources and
observation stations are not limited to one, eq. (22) is generalized
as

d = Ga (24)

with

d =

⎛⎜⎜⎜⎜⎜⎝
d1

d2

...

dK

⎞⎟⎟⎟⎟⎟⎠ , G =

⎛⎜⎜⎜⎜⎜⎝
G11 G12 · · · G1L

G21 G22 G2L

...
. . .

GK 1 GK L

⎞⎟⎟⎟⎟⎟⎠ , a =

⎛⎜⎜⎜⎜⎜⎝
a1

a2

...

aL

⎞⎟⎟⎟⎟⎟⎠ ,

(25)
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The vectors d and a and the matrix G are composed of the subvectors
dk and al and the submatrices Gkl .

Similarly, we can express the basic equation of HBP (eq. 10) as

sHBP
l =

∑
k

c′
kGT

kldk (26)

with(
sHBP

l

)
j
= sHBP

l (τ j ), (27)

where the superscript T denotes transpose. When we consider more
than one gridpoints for the source, eq. (26) becomes

sHBP = GT C′ d (28)

with

sHBP =

⎛⎜⎜⎜⎜⎜⎝
sHBP

1

sHBP
2

...

sHBP
L

⎞⎟⎟⎟⎟⎟⎠ , C′ =

⎛⎜⎜⎜⎜⎜⎝
c′

1I1 0

c′
2I2

. . .

0 c′
K IK

⎞⎟⎟⎟⎟⎟⎠ , (29)

where Ik is the unit matrix with a suitable size.
In the same way, with an appropriate discretization of time, we

can express the basic equation of BP (eq. 3) for multiple source
gridpoints as

sBP = BT Cd (30)

with

sBP =

⎛⎜⎜⎜⎜⎜⎝
sBP

1

sBP
2

...

sBP
L

⎞⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎝
B11 B12 · · · B1L

B21 B22 B2L

...
. . .

BK 1 BK L

⎞⎟⎟⎟⎟⎟⎠ ,

C =

⎛⎜⎜⎜⎜⎜⎝
c1I1 0

c2I2

. . .

0 cK IK

⎞⎟⎟⎟⎟⎟⎠ (31)

and

(Bkl )i j =
{

1 (ti − τ j = t P
kl )

0 (ti − τ j �= t P
kl )

. (32)

In the BP image sBP
l , observed data are simply stacked with time-

shifts (eq. 3). The matrix Bkl merely controls the time-shifts. Inci-
dentally, the expression of Bkl in eq. (32) can be obtained from
Gkl in eq. (23) with the condition that the Green’s function is
approximated to the delta function, as can be seen in eqs (10)
and (11).

3.2 Inverse solutions

The observation eq. (24), d = Ga, can be solved by inversion anal-
yses, in which we estimate the model parameter a from observed
data d.

The simplest way to estimate a practically used would be the
following expression (e.g. Claerbout 2001):

â = GT d, (33)

where the hat denotes the estimate. As can be seen in eq. (28), the
HBP image is nothing different from this estimate, if we take the
weighting factor ck to be common for all observed data. Note that
the BP and HBP images have a degree of freedom in amplification.
Some readers may notice that eq. (33) represents an estimation
with the adjoint operator (GT ), which is widely used to obtain the
gradient of an evaluation function in improving the inverse solution
of non-linear problems (e.g. Tromp et al. 2005).

The most famous inverse solution is the least-squares solution
(LSS)

â = (GT E−1G)−1GT E−1d, (34)

where it is assumed that the misfit, d − Ga, follows the Gaussian
distribution with mean zero and covariance E. The covariance ma-
trix E controls the weight of each data, and so E has a similar
function to C and C′. If the variance of the misfit for each data is
common and independent of each other (E−1 = σ 2I), the LSS is
simplified as

â = (GT G)−1GT d. (35)

When we do not have enough amount of data with good accuracy,
as it is well known, the LSS (eqs 34 or 35) does not give a good
estimate of the model parameters. We can never obtain a meaning-
ful solution only by enhancing the fit to data, when the data are
insufficient. In such a situation, some studies (e.g. Aki et al. 1977)
have used a damped LSS

â = (GT E−1G + ε2I)−1GT E−1d, (36)

where ε2 is called a damping parameter.
According to Jackson (1979) and Tarantola (2005), the damp-

ing term can be interpreted to express prior information about the
problem. In this case, the damping term requires the solution length
to be minimized. The relative weight to minimizing the misfit is
controlled by the damping parameter ε2. In inversion analyses for
seismic source processes, smoothing constraint has been commonly
used (e.g. Yagi & Fukahata 2011b). The smoothing constraint is also
considered to be a kind of prior information (Matsu’ura et al. 2007).

3.3 Model resolution matrix

As shown in the previous section, there can be several inverse so-
lutions for the same problem. As a measure of the goodness of the
inverse solutions, we introduce a model resolution matrix (Menke
2012). The solution of the linear inverse problem (eq. 24) can be
symbolically expressed as

â = G−gd, (37)

where G−g is called the generalized inverse. By substituting eq. (24)
into eq. (37), we obtain

â = G−gGa = Ra, (38)

where R is called the model resolution matrix. We can see that â
is a good estimate of a, when R is close to the identity matrix. It
should be noted that the model resolution matrix is independent of
the actual values of the data.

For the case of the LSS, the model resolution matrix is

RLSS = I. (39)

This means that â = a and each model parameter is perfectly re-
solved.

We have seen in Section 2 that sHBP and sBP are intended to
represent slip motion a on the fault. In other words, sHBP and sBP
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are a kind of estimates of the model parameter a. Therefore, by
substituting eq. (24) into eqs (28) and (30), we can obtain the model
resolution matrices for the HBP and BP images as

RHBP = GT C′G (40)

and

RBP = BT CG (41)

Because RHBP and RBP are not the identity matrix, the HBP and
BP images are clearly inferior to the LSS in terms of the model
resolution matrix.

However, if the model resolution matrices, RBP and RHBP, are
close to the identity matrix, it does not cause a serious problem.
From simple algebra, we obtain

RHBP =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∑
k

c′
kGT

k1Gk1
∑

k
c′

kGT
k1Gk2 · · · ∑

k
c′

kGT
k1GkL∑

k
c′

kGT
k2Gk1

∑
k

c′
kGT

k2Gk2

...
. . .∑

k
c′

kGT
kL Gk1

∑
k

c′
kGT

kL GkL

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(42)

The conditions that RHBP is equal to the identity matrix are expressed
as follows:∑

k

c′
kGT

k�Gkl =
{

0 (l �= �)

I (l = �)
, (43)

The conditions of eq. (43) exactly correspond to eqs (13) and (17),
which are the assumptions made in the HBP analysis in order for
the HBP image to represent slip motion on the fault.

In the same way, the conditions that RBP is equal to the identity
matrix are∑

k

ckBT
k�Gkl =

{
0 (l �= �)

I (l = �)
. (44)

These conditions also exactly correspond to eqs (5) and (8). Inciden-
tally, if the Green’s function is like the delta function, the conditions
of eq. (44) are approximately satisfied.

As shown in eqs (43) and (44), if the assumptions of (13) and
(17) or (5) and (8) are satisfied, the HBP and BP images represent
slip motion on the fault. However, these conditions are usually not
satisfied. Then, what will happen? In the damped LSS (eq. 36), by
taking ε2 to be extremely large, we obtain

â ≈ c GT E−1d, (45)

where c is a proportional constant. This solution is nearly equal
to zero practically, but not exactly zero. Considering that E has
a similar function to C′ and that the HBP image has a degree of
freedom in amplification, the estimate of eq. (45) is equivalent to the
HBP image (eq. 28). That is to say, the HBP image corresponds to a
damped LSS with an extremely large damping parameter. In the BP
image, the Green’s function in G in eq. (45) is further approximated
by the delta function.

4 S I M P L E N U M E R I C A L E X A M P L E S
A N D D I S C U S S I O N

In this section, through simple numerical computations, we inves-
tigate the validity of the approximations used in the BP and HBP
methods, and compare the images obtained by these methods with
the damped LSS.

Figure 1. Time profiles of the stacked Green’s function (top) and the stacked
autocorrelation function of the Green’s function (bottom) for a strike-slip
point source on a vertical fault (solid lines). Those profiles for dip-slip point
sources on a vertical fault (dotted lines) and on a thrust fault with a dip angle
of 30◦ (broken lines) are also shown. All point sources are put at a depth
of 15 km. Observation stations are distributed every 10◦ with the radial
distance from 30◦ to 90◦ and all azimuthal direction. These time profiles
represent the left-hand side of eq. (8) for top and that of eq. (17) for bottom.
In order to obtain a sharp image by the BP and HBP analyses, these profiles
must be close to the delta function. When an impulse slip was given at the
point source, these profiles correspond to the time-evolving image of BP
(top) and HBP (bottom) at the location of the point source.

We put an impulse strike-slip point source on a vertical fault
plane at a depth of 15 km and t = 0. With the method of Kikuchi
& Kanamori (1991), we computed the synthetic velocity waveform
at observation stations that are distributed every 10◦ with the radial
distance from 30◦ to 90◦ and all azimuthal direction; the total num-
ber of the stations is 252. The synthetic waveforms were calculated
every 0.05 s and no errors were added. Because an impulse slip was
given, the synthetic velocity data dk is equal to the Green’s function
Gkl for velocity waveform, where l represents the point-source loca-
tion. The source grid interval in the BP and HBP images were taken
to be 1 km × 1 km. We gave an equal weight for each observed data
(ck and c′

k are constant).
In Fig. 1, we show the time profiles of the stacked Green’s func-

tion (top) and the stacked autocorrelation function of the Green’s
function (bottom) by solid lines. These profiles correspond to eq. (8)
for top and eq. (17) for bottom. As shown in the previous sections,
in order to obtain a sharp image by the BP and HBP methods, these
profiles must be close to the delta function. The Green’s function,
however, commonly has later phases, such as pP and sP, which are
not easily cancelled out by stacking. In the case of a strike-slip on a
vertical fault, the amplitude of a later phase after stacking is larger
than the direct P phase, which results in ghosts in the BP image.
For the case of HBP, the situation is better. The highest peak is
always taken at t = 0 owing to the nature of autocorrelation func-
tions. However, the effect of later phases still remains and ghosts
emerge even before t = 0. In Fig. 1, we also show dip-slip cases on
a vertical fault (dotted lines) and on a thrust fault with a dip angle
of 30◦ (broken lines). Even if we consider a dip slip, as shown in
Fig. 1, the situation is similar; the stacked Green’s function for BP
and the stacked autocorrelation function of the Green’s function for
HBP are significantly different from the delta function, although the
direct P phase takes the largest positive value.
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In Fig. 2, we show the images of BP (left-hand side) and HBP
(middle) on the vertical fault plane for the case of the strike-slip
point source. These images and the time profiles in Fig. 1 are nor-
malized by the maximum value of each image. Since the observed
waveform is equal to the Green’s function, these images correspond
to the model resolution matrices on the fault plane for the given point
source. The obtained BP and HBP images are not confined to the
black dot at t = 0, where the source was put, but widely smeared in
space and time. This means the stacking procedure to cancel out the
waveforms does not work efficiently, because the Green’s functions
in the smeared area are quite similar to that at the point source.
Apparent movement of the source is also observed for both BP and
HBP images. The source moves from top to bottom in BP, because
the traveltime is longer for shallower grids. On the other hand, the
source moves from bottom to top in HBP, because the traveltime of
the sP phase, which is dominant in the computation of the autocor-
relation functions in the present case, is shorter for shallower grids.
Such artefacts may result in incorrect estimation of the rupture ve-
locity. In the BP image, the largest peak emerges at a different time
and location from the true ones. Even in an ideal situation, such as
equally distributed many stations, no errors and a point source, the
images show such artefacts and have limited resolution. The results
show that the resolution matrices for BP (eq. 41) and HBP (eq. 40)
are not well approximated by the identity matrix.

We also show a damped LSS in the right-hand column of Fig. 2.
The image also corresponds to the model resolution matrix for the
given point source. In obtaining the solution, we added a very small
damping parameter to avoid numerical instability due to compu-
tational errors. As shown in Fig. 2, the damped LSS with a small
damping parameter is completely different from the images obtained
by the BP and HBP methods. The difference simply comes from the
equations used in the estimations: BT d (eq. 30) for BP, GT d (eq.
28) for HBP and (GT G + ε2I)−1GT d (eq. 36) for the damped LSS.
This example vividly shows the importance of equations used in
estimations. If some errors are added in data, we should use a larger
damping parameter, which results in a more smeared image of the
damped LSS. However, the solution is still better than the image of
HBP. Only in the exceptional condition that the damping parameter
is extremely large, the damped LSS converges to the HBP image.

In order to enhance the correlation of waveforms, the BP anal-
ysis often uses a local network. When we confine the observation
stations from 0◦ to 90◦ in the azimuth, the obtained images by both
BP and HBP becomes horizontally asymmetrical (Fig. 3), because
the traveltimes are different for source grids of the same depth (the
traveltime is longer for grids in the positive direction of the hori-
zontal axis.). Here, we kept the number of stations the same, that is,
the observation stations are four times denser than the previous case
(Fig. 2). Because an impulse slip was given at the point source, these
images also correspond to the model resolution matrix for the given
point source. Note that the model resolution matrix is independent
of observed data, but depends on the network geometry. As shown
in Fig. 3, if we use a local network, the resolution of the BP and
HBP images becomes worse. Larger false signals can be seen. On
the other hand, the resolution is still good for the case of a damped
LSS with a small damping parameter.

In terms of the model resolution matrix, as shown in Figs 2 and
3, the damped LSS is clearly superior to the BP and HBP images.
On the other hand, in order to obtain the damped LSS, we need
significantly higher computational power than in the BP and HBP
analyses. It is not easy to compute the inverse matrix of GT G, when
the number of model parameters are very large. Because of that, we
had to restrict the model fault area as shown by the dotted line in

Figure 2. Time-evolving images of BP (left-hand side), HBP (middle) and
a damped least-squares solution (right-hand side) on the vertical fault plane
due to an impulse strike-slip point source. The setting of the computation is
the same as in Fig. 1. Because an impulse slip was given at the point source,
these images correspond to the model resolution matrix (eqs 39–41) for the
given point source. The amplitude of each image is normalized so that the
maximum is 1. The black dots in the left-hand and middle columns at t = 0
represent the source location. In the diagrams of the right-hand column,
the dotted square represents the model fault area, only for which the model
parameters were estimated in order to reduce the computation task. In the
damped least-squares solution, a very small damping parameter was added
to avoid numerical instability due to computational errors.
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Figure 3. Time-evolving images of BP (left-hand side), HBP (middle) and
a damped least-squares solution (right-hand side) on the vertical fault plane
due to an impulse strike-slip point source. The distribution of observation
stations is confined from 0◦ to 90◦ in the azimuthal direction, although the
number of the stations is kept the same. Except the distribution of observation
stations, the figure is calculated in the same way as in Fig. 2. Because an
impulse slip was given at the point source, these images also correspond to
the model resolution matrix for the given point source.

Figs 2 and 3, in order to avoid the overburden of computation. If we
take the same model fault area as in the BP and HBP analyses, we
have to use a larger fault patch and a time step, which results in low
resolution of the solution. However, the resolution of the solution
would be still better than those of the BP and HBP images for most
cases. In the BP analysis, we can take a very small grid size, as in
the computation of Fig. 2. Because of that, it has been sometimes
considered that a higher resolution image can be obtained by BP.
However, the resolution of BP is not restricted by the grid size in
computation, but by the conditions of eqs (5) and (8) or (44). In
other words, the BP analysis is useful for a gigantic earthquake,
such as the 2004 Sumatra–Andaman earthquake.

Another important point of BP is that we do not need information
on Green’s functions. Without Green’s functions, we can obtain
a rough rupture image of earthquakes, which is an incomparable
advantage of the BP analysis. This simplicity, however, can be the
source of ambiguity in physically interpreting the BP image. As
described in Section 2, seismic waveform d is related to fault slip a
through a Green’s function G

dd
k (t) =

∑
l

(
av

l ∗ Gd
kl

)
(t), (46)

where the superscripts d and v denote displacement and velocity,
respectively (i.e. av

l represents slip velocity on the fault patch l).
The BP analysis usually uses velocity data for seismogram (e.g.
Yao et al. 2012). When we take time differential of eq. (46), there
are at least two candidates for the right-hand side:

dv
k (t) =

∑
l

(
aa

l ∗ Gd
kl

)
(t) =

∑
l

(
av

l ∗ Gv
kl

)
(t), (47)

where the superscript a denotes acceleration. If we consider a ho-
mogeneous elastic whole space with no attenuation, the Green’s
function for displacement waveform Gd

kl is like the delta function.
Hence, from a theoretical point of view, it may be consistent to in-
terpret the BP image as the slip acceleration on the fault. In practice,
however, the Earth has a free surface and is neither homogeneous
nor completely elastic. As shown in eqs (28) and (30), the Green’s
function in HBP is approximated to the delta function in BP. How-
ever, it is difficult to say which Green’s functions, Gd

kl or Gv
kl , is

approximated to the delta function. There can be other candidates.
The BP image seems to have physically intrinsic ambiguity: we
never know the BP image approximately represents slip velocity or
slip acceleration on the fault.

5 C O N C LU S I O N S

Although physically intrinsic ambiguity consists in the BP image,
which may represent slip velocity or slip acceleration, both the BP
and HBP images intend to represent slip motion on the fault under
the following two assumptions: (1) waveforms due to fault slips
other than the target source grid l are cancelled out each other and (2)
the stacked Green’s function (for BP) or the stacked autocorrelation
function of the Green’s function (for HBP) is like the delta function.
These conditions are mathematically expressed as follows:∑

k

ck Gk�(t + t p
kl ) ≈ δ(t)δ�l (BP) (48)

∑
k

c′
k

(
Gk� ×̂ Gkl

)
(t) ≈ δ(t)δ�l (HBP) (49)

where δ�l is the Kronecker delta. Because the autocorrelation func-
tion always has its maximum at t = 0, we can expect that HBP

 at K
yoto U

niversity L
ibrary on January 20, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


Back-projection imaging and inverse solutions 559

works better than BP, if we can reasonably estimate the Green’s
function.

In estimating the slip motion on the fault, the following expres-
sion is used for each method:

sBP = BT Cd (BP), (50)

sHBP = GT C′d (HBP), (51)

â = (GT E−1G + ε2I)−1GT E−1d (damped LSS). (52)

Because of that, the model resolution matrices for BP (BT CG) and
HBP (GT CG) are not close to the identity matrix, which results in
low resolution of the images (Figs 2 and 3). The conditions that
the model resolution matrix is approximated to the identity matrix
precisely echo the assumptions made in the analyses of BP (eq. 48)
and HBP (eq. 49).

The HBP image corresponds to the damped LSS with an ex-
tremely large damping parameter. The Green’s function in HBP is
further approximated by the delta function in BP (eqs 50 and 51).
In terms of the model resolution matrix, the damped least-squares
method is clearly superior to the BP and HBP methods.

On the other hand, the damped least-squares method requires
much larger computation, which gives the limitation of resolution.
In addition to this, information on Green’s functions and fault plane
is needed. In other words, these points are advantages of the BP
analysis.
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