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Introduction

Let V ω be a random field on Rd defined on a probability space

(Ω,P) and Hω
Λ be the restriction of the Schrödinger operator

−∆+ V ω to a cube Λ by a boundary condition.

Then, the estimate

P{dist(σ(Hω
Λ), E0) ≤ η} ≤ C|Λ|AηB,

with A ≥ 1 and B ≤ 1 is called a Wegner estimate, where E0 ∈ R,

η > 0, σ(Hω
Λ) is the spectrum of Hω

Λ and |Λ| is the volume of a

cube Λ. From the fact that P{dist(σ(Hω
Λ), E0) ≤ η} is dominated

by E[♯{σ(Hω
Λ)∩ [E0 − η, E0 + η]}] and E[♯{σ(Hω

Λ)∩ [E0 − η, E0 +

η]}]/|Λ| converges to the density of states (DS) as |Λ| → ∞, we

expect that A = B = 1 are the best exponents.

Wegner firstly obtained this estimate for the Anderson model

[15]. After that the estimate with general exponents A and B is

applied to the proof of the Anderson localization [3, 4, 13].

There had been many prior results on a Wegner estimate for

multidimensional and continuous Schrödinger operators with

Anderson-type random potentials V ω(x) =
∑

a∈Zd fω
a u(x−a) con-

sisting of single site potentials around fixed positions on the lattice

Zd [12, 1, 8, 13]. Among them, Combes, Hislop and Nakamura

obtained a bound with A = 1 and B < 1 which is arbitrar-

ily close to 1 for the Schrödinger operators with the Anderson-

type positive potentials by the method of the spectral shift func-

tion [2]. Kirsch and Veselić used this method to prove a bound

with A = 1 and B arbitrarily close to 1 for the negative potentials

V ω(x) =
∑

a∈S f
ω
a u(x−a) called generalized alloy type potentials

where the positions S of the impurities were fixed randomly on

Rd [9]. With the method of [9], the author proved a bound with
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A and B arbitrarily close to 1 at negative energies for Schrödinger

operators with negative potentials V ω(x) =
∑

a∈Ξω2 f
ω1
a u(x − a)

where Ξω2 is a Poisson point process independent of real random

variables fω1
a in [14]. We recall the work in the first part of this

paper.

These results on a Wegner estimate were obtained by the prop-

erty that the eigenvalues monotonously depended on the cou-

pling constants. Therefore, this method needs the property that

a single-site potential u has the definite sign. We next drop this

condition.

In 2002, Hislop and Klopp obtained a bound with A = 1 and

B arbitrarily close to 1 for the nonsign definite Anderson-type

potentials using Klopp’s vector field method [11] and the spectral

shift function method [7]. Applying their method and [9], we

obtain a Wegner estimate for the Schödinger operator with the

random potential V ω(x) =
∑

a∈Ξω2 f
ω1
a u(x− a) in the second part

of this paper, where u takes both positive and negative values. In

our estimates, the exponents A and B are only arbitrarily close

to 1. However this is the best result up to now.

In 2007, Germinet, Hislop and Klein proved the localization

for a Schrödinger operator with the random potential V ω(x) =∑
a∈Ξω u(x− a) defined by the Poisson point process Ξω, which is

more difficult problem than ours. The inequality corresponding to

the Wegner estimate for their proof of the localization is restricted

to η ∼ |Λ|−|Λ|ρ with ρ > 0. Therefore their exponent A depends

on |Λ| [5, 6].
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Part 1

Wegner estimate for a generalized alloy type potential

Abstract

W.Kirsch and I.Veselić proved a generalized Wegner estimate for Schröd-

inger operators with generalized alloy type potentials at negative energies for

each fixed position of impurities. In this paper, a similar estimate is proven

treating also the position of impurities as random variables.

1.1. Introduction

In this paper, we will give a Wegner estimate and state the

properties of the exponential localization of eigenfunctions for a

Schrödinger operator,

(1.1.1) Hω := −∆+ V ω(x) with V ω(x) := −
∑
i∈N

fω1

i u(x− ξω2

i ),

where u is a nonnegative continuous function with a compact

support, {fω1

i , i ∈ N, ω1 ∈ Ω1} are independently and identically

distributed random variables obeying the uniform distribution on

the interval [0, 1], and {ξω2

i , i ∈ N, ω2 ∈ Ω2} is a Poisson point

process independent of {fω1

i } with the Lebesgue measure as its

intensity. We write ω = (ω1, ω2). For any a ∈ Rd and L >0,

we set ΛL(a) = {x ∈ Rd : |xi − ai| < L/2 for 1 ≤ i ≤ d} and

ΛL := ΛL(0). For simplicity we assume supp u ⊂ Λ1.

The investigations of the localization of eigenfunctions of the

Schrödinger operators Hω were begun by P.W.Anderson [1]. It

has been discussed mainly about potential energies called alloy

type potentials as
∑

i∈Zd f
ω1

i u(x−i). Recently, Kirsch and Veselić

proved a general form of the Wegner estimate used to prove the

localization for the potential energies called generalized alloy type

potentials [8]. Since positions of impurities in the lattice are con-

sidered as random variables, these potential energies are regarded
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as a liquid crystal type. In [8], they proved the Wegner esti-

mate for each fixed position for impurities. In this paper, we will

prove the Wegner estimate treating also the position of impuri-

ties as random variables for a typical example of the generalized

alloy type potential energy defined in (1.1.1). Based on this esti-

mate we will next use the variable energy multiscale analysis [6]

to obtain the results on the Anderson localization as the strong

Hilbert-Schmidt dynamical localization.

The main theorem of this paper is the following:

Theorem 1.1.1. For any L > 0, let Hω
L be the restriction of

the operator Hω to L2(ΛL) under the Dirichlet boundary condition

and P ω
L be its spectral projection. Then we have the following: for

any 0 < β, ε < 1 and δ > 0, there exists Cβ,ε,δ > 0 such that

E[TrP ω
L ((E − η, E + η))] ≤ Cβ,ε,δL

(1+β)dηε,

for any L > 1, E < 0 and η > 0 satisfying E + 2η ≤ −δ.

Remark 1. We can prove Theorem 1.1.1 under weaker as-

sumptions on {fω1

i , i ∈ N, ω1 ∈ Ω1}. For example, it is enough

that the conditional probability of each fω1

i with respect to other

random variables has a bounded density as in Assumption 1

(iv) in [8]. However for the proof of localization by the multi-

scale analysis, we need extra assumptions on the correlations of

{fω1

i , i ∈ N, ω1 ∈ Ω1}. For example, it is enough that they are

independently and identically distributed. These extensions are

straightforward. Therefore we choose our assumption for the sake

of simplicity.

The organization of this paper is as follows. In Section 2 we give

the basic properties of the Schrödinger operators. In Section 3 we

prove the main theorem. In Section 4 we modify Germinet and
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Klein’s theory on the multiscale analysis. Finally, in Section 5

we state the results of Germinet and Klein’s theory on the strong

dynamical localization.

1.2. The basic properties of the Schrödinger

operators Hω

In this section, we will prove the essential self-adjointness of the

Schrödinger operators Hω based on Kirsch-Veselić [8].

Lemma 1.2.1. For any j ∈ Zd, let Lω(j) = ♯{i ∈ N|ξωi ∈ Λ(j)},
where Λ(j) = Λ1(j). Then, for almost all ω, there exists a finite

constant C(ω) such that

(1.2.1) Lω(j) ≤ ∥j∥2∞ + C(ω) for any j ∈ Zd,

where ∥j∥∞ := sup1≤i≤d |ji| for j = (ji)
d
i=1.

Proof. We require only showing that

(1.2.2) P{for infinitely many j ∈ Zd,Lω(j) > ∥j∥2∞} = 0.

In fact, when (1.2.2) holds, there exists some Ω′ ⊂ Ω such that P(Ω′)

= 1, and every ω ∈ Ω′ has a finite set Γ(ω) ⊂ Zd satisfying

Lω(j) ≤ ∥j∥2∞, for all j ∈ Zd \ Γ(ω).

Then, (1.2.1) holds with C(ω) = ♯{i ∈ N|ξωi ∈
∪

j∈Γ(ω)Λ(j)}.
On the other hand, by Chebyshev’s inequality, we have∑
j∈Zd

e−∥j∥2∞E(eLω(j)) ≥
∑
j∈Zd

e−∥j∥2∞ · e∥j∥2∞ ·P[ω|Lω(j) > ∥j∥2∞]

=
∑
j∈Zd

P[ω|Lω(j) > ∥j∥2∞].

Since E(eLω(j)) = e(e−1)|Λ(j)| = ee−1, the left hand side is domi-

nated by
∑

j∈Zd exp(−∥j∥2∞ + e− 1), which is finite.
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Therefore, we have
∑

j∈Zd P[ω|Lω(j) > ∥j∥2∞] < ∞, from which

we have (1.2.2).

□

Proposition 1.2.1. For almost all ω, the Schrödinger oper-

ator Hω is essentially self-adjoint on C∞
0 (Rd).

Proof. By Lemma 1.2.1, for almost all ω, we have finite constants

C1, C2(ω) such that

Vω ≥ −C1∥x∥2∞ − C2(ω)

(cf. [8]). Consequently, by Faris-Lavine theorem [10], Hω is es-

sentially self-adjoint on C∞
0 (Rd).

□

In the rest of the paper we denote the unique self-adjoint ex-

tension by the same symbol Hω .

By Proposition 1.2.1 and Proposition V.3.1. in [3], the measur-

ability of the self-adjoint operator Hω in ω is obtained. Moreover

{Hω}ω∈Ω is an ergodic family of self-adjoint operators. There-

fore, by Theorem (5.34) in [5], the spectrum σ(Hω) satisfies that

σ(Hω) = R for almost all ω.

1.3. The proof of the main theorem

In this section, we will prove the Wegner estimate, Theorem

1.1.1, using the method in [8] and the theory of the spectral shift

function.

By the method in [8], we have

Eω1[TrP ω
L ((E − η, E + η))](1.3.1)

≤ Eω1{
∑
j∈Λ+

L

1

δ

∫ 3η/2

−3η/2

dtTr[ρ(HL,j
0 − E + t)− ρ(HL,j

1 − E + t)]},
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In (1.3.1),Eω1 is the expectation with respect to the randomness

of ω1, Λ+
L = {k ∈ N|ΛL ∩ supp uk(· − ξω2

k ) ̸= ∅}, and ρ is

a smooth monotone increasing function satisfying 0 ≤ ρ ≤ 1,

ρ(t) = 0 for t ≤ −η/2, ρ(t) = 1 for t ≥ η/2 and ρ′/η−1 is bounded.

Moreover HL,j
0 and HL,j

1 are the operators obteined by replacing

fω1

j by 0 and 1, respectively, in the definition of Hω
L .

Now we use the following proposition on spectral shift func-

tions( [2] Theorem 2.1, [14] Chapter 8 §3 Theorem 3 and Theorem

6) :

Proposition 1.3.1. Let A1 and A0 be self-adjoint operators

such that A1 − A0 ∈ I1/p for p > 1, where I1/p is the family

of compact operators of the super trace class, which we define as

follows: we say that A ∈ I1/p if for some p > 1, |||A|||1/p :=(∑
j µj(A)

1/p
)p

< ∞, where µj(A) denotes the j-th singular value

of A.

Then, there exists some π(·;A1, A0) ∈ Lp(R) such that for ϕ ∈
C∞(Γ) where Γ ⊂ R : a compact interval which contains σ(A0)

and σ(A1),

Tr[ϕ(A1)− ϕ(A0)] =

∫
Γ

π(λ;A1, A0)ϕ
′(λ)dλ,

and

∥π∥p ≤ |||A1 − A0|||1/p1/p.

We set A1 = (HL,j
1 + Mω2

)−ℓ and A0 = (HL,j
0 + Mω2

)−ℓ where

Mω2
= 2 supx∈ΛL

∑
i∈N u(x − ξω2

i ) + 1. Then, by Proposition

5.1 in [2], A1 − A0 ∈ I1/p for any p > 1 and 2N + 1 ∋ ℓ >

dp/2 + 2. Moreover, for any J ∈ C∞
o (Rd), |||J × A

1/ℓ
k |||ℓ/p ≤

|||J × (−∆+ 1)−1|||ℓ/p < ∞ (cf. [11] Theorem 2.13 and Theorem

4.1) and the operator norms of A
1/ℓ
k , (∂/∂xi)A

1/ℓ
k , A

1/ℓ
k (∂/∂xi) and

(∂/∂xi)A
1/ℓ
k (∂/∂xj) are bounded by 1(k = 0 or 1 , 1 ≤ i, j ≤ d).
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Therefore |||A1 −A0|||1/p ≤ C, where C is independent of ω2 and

L.

Then noting σ(A1) and σ(A0) ⊂ [0, 1] we have

Tr[ρ(HL,j
0 − E + t)− ρ(HL,j

1 − E + t)]

= Tr[µ(A0)− µ(A1)](1.3.2)

=

∫
[0,1]

∂µ(λ)

∂λ
π(λ)dλ

≤ C
( ∫

[0,1]

|∂µ
∂λ

(λ)|p′dλ
)1/p′

,

where p′ is 1/p + 1/p′ = 1, µ(λ) = ρ((1/λ)1/ℓ − Mω2
− E + t)

and π is the spectral shift function for A1 and A0. By changing

the variable as λ = γ−ℓ we can show that the right hand side of

(1.3.2) is dominated by

sup
−η/2≤γ−Mω2

−E+t≤η/2

|γ|(1+ℓ)(p′−1)/p′[

∫
R

|ρ′(γ)|p′dγ]1/p′.(1.3.3)

We may assume that |E| ≤ Mω2
. In fact if

(1.3.4) − sup
x∈ΛL

|V ω(x)| > E + η,

it follows [E−η, E+η] ⊂ σ(Hω
L)

c. Since 2 supx∈ΛL
|V ω(x)| ≤ Mω2

and E + η < E/2, a sufficient condition for (1.3.4) is −Mω2
> E.

Thus [E − η, E + η] ∩ σ(Hω
L) ̸= ∅ implies |E| ≤ Mω2

. We here

note that the restriction |E| ≤ Mω2
does not affect the estimate

(1.3.1), since Mω2
is independent of ω1. Therefore, the first factor

of (1.3.3) is bounded by M
(1+ℓ)(1−1/p′)
ω2 .

By using also∫
R

|ρ′(γ)|p′dγ ≤
∫
R

|ρ′(γ)|dγ sup(ρ′)(p′−1),

we can show that the second factor of the right hand side of (1.3.3)

is dominated by η(1/p
′−1). Therefore, the second factor of (2.2.7)
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is dominated by

(1.3.5) η(1/p
′−1)M (1+ℓ)(1−1/p′)

ω2
.

Consequently, we obtain

E{TrP ω
L ((E − η, E + η))} ≤ E{

∑
j∈Λ+

L

η1/p
′
C1(Mω2

)N},

where N = (ℓ+ 1)(1− 1/p′). Since

Mω2
≤ C2

∑
k∈N

χΛ1
(x− ξω2

k ) + 1,

this is dominated by

E{
∑
j∈Λ

+
L

η1/p
′
( sup
x∈ΛL

2
∑
k∈N

χΛ1
(x− ξω2

k ) + 1)N}

≤ C3η
1/p′E{(♯Λ+

L)( sup
x∈ΛL

♯{i ∈ N|ξω2

i ∈ Λ1(x)}+ 1)N}.

By the Hölder inequality, this is dominated by

η1/p
′
E[(♯Λ+

L)
u]

1
u × E[( sup

x∈ΛL

♯{i ∈ N|ξω2

i ∈ Λ1(x)}+ 1)vN ]
1
v ,

for any u and v > 1 with 1/u+ 1/v = 1.

The first factor is dominated by

E[(♯{i ∈ N|ξω2

i ∈ ΛL+1})u]
1
u ≤ C4L

d,

and the second factor is dominated by

E[
∑

a∈ΛL∩Zd

( sup
x∈Λ1(a)

♯{i ∈ N|ξω2

i ∈ Λ1(x)}+ 1)vN ]
1
v

≤ E[
∑

a∈ΛL∩Zd

(♯{i ∈ N|ξω2

i ∈ Λ2(a)}+ 1)vN ]
1
v

≤ C5L
d/v.

By all these, we obtain the theorem.
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1.4. Multiscale analysis

In [6] Germinet and Klein gave the theory of the bootstrap

multiscale analysis in an abstract setting under several conditions.

In this section we show our model satisfies these conditions in a

weakened form. We use the following definitions in [4].

Definition 1.4.1. Given θ >0, E ∈R, x ∈ Zd, and L ∈ 6N, we

say that the box ΛL(x) is (θ, E)-suitable for ω if E /∈ σ(Hω
L,x) and

∥ ΓL,x(H
ω
L,x − E)−1χL/3,x ∥≤

1

Lθ
,

where Hω
L,x is the restriction of the operator Hω to L2(ΛL(x)) un-

der the Dirichlet boundary condition and, ΓL,x and χL,x are char-

acteristic functions of ΛL−1(x) \ ΛL−3(x) and ΛL(x) respectively.

Definition 1.4.2. Given m >0, E ∈R, x ∈ Zd, and L ∈ 6N,

we say that the box ΛL(x) is (m,E)-regular for ω if E ̸∈ σ(Hω
L,x)

and

∥ ΓL,x(H
ω
L,x − E)−1χL/3,x ∥≤ exp(−mL

2
).

Based on the paper by Fischer, Leschke and Müller [4], we will

give the initial length scale estimate under our setting. By the

Combes-Thomas estimate (Lemma A.1 in [4]) we have

(1.4.1) ∥ ΓL(H
ω
L − E)−1χL/3 ∥

≤
√
{(L− 1)d − (L− 3)d}(L/3)d

2(d+1)/4(πδ)(d−1)/2
(V ω

0 − E)(d−3)/4

×
(
1 +

d2

8δ
√
2(V ω

0 − E)

)
exp(−δ

√
2(V ω

0 − E))

for all E < V ω
0 := ess infx∈ΛL

V ω(x), where δ := (2L − 9)/6,

ΓL := ΓL,0, χL := χL,0, and Hω
L := Hω

L,0. To control V ω
0 , we use

the following:
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Proposition 1.4.1. For all η > 0, there exist finite positive

constants C1 and C2 such that

(1.4.2) P[ sup
x∈ΛL

|V ω(x)| > η] ≤ C1L
d exp(−C2η log η),

for any L ∈ N.

Proof. Noting that 0 ≤ fω1

i ≤ 1 and suppu ⊂ Λ1(0),

we have
P[ sup

x∈ΛL

|V ω(x)| > η] ≤ P[ sup
x∈ΛL

♯{i ∈ N : ξω2

i ∈ Λ1(x)} > η/||u||∞]

≤
∑

a∈ΛL∩Zd

P[ sup
x∈Λ1(a)

♯{i ∈ N : ξω2

i ∈ Λ1(x)} > η/||u||∞]

≤ LdP[sup
x∈Λ1

♯{i ∈ N : ξω2

i ∈ Λ1(x)} > η/||u||∞]

≤ LdP[L′
ω2

> η/||u||∞],

where L′
ω2

:= ♯{i ∈ N : ξω2

i ∈ Λ2}.
Since L′

ω2
obeys the Poisson distribution, for N ∈ N

P[L′
ω2

> N ] =
∞∑

n=N

e−2d 2
dn

n!
=

γ(N, 2d)

Γ(N)
,

where γ is the incomplete gamma function and Γ is the gamma

function. By estimating the integral representation of the gamma

functions, we obtain

P[L′
ω2

> N ] ≤ C1 exp(−C2N logN)

Using this formula, we obtain (1.4.2). □

By (1.4.1) and Proposition 1.4.1, we can prove the initial length

scale estimate as follows:

Proposition 1.4.2 (Initial length scale estimate). For all

L0 ∈ 6N and 0 < θ, there exists E0 < 0 such that

P{ω : ΛL0
is (θ, E)-suitable } > 1− 841−d for all E≤ E0.
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Proof. On the event V ω
0 > E, we set V ω

0 − E = ∆E where

V ω
0 := infx∈ΛL0

V ω. Then, by (1.4.1), we have

∥ ΓL0
(Hω

L0
− E)−1χL0/3 ∥

≤ C1 × L
d/2
0 (∆E)(d−3)/4 ×

(
1 +

3d2

2L0

√
2∆E

) exp(−C2L0

√
2∆E).

For this to be dominated by L−θ
0 for all L0 ∈ 6N, it should hold

that

L
(θ+d/2)
0 (∆E)(d−3)/4×

(
1+

3d2

2L0

√
2∆E

) exp(−C2L0

√
2∆E) ≤ 1/C1.

If we take C3 > 0 sufficiently large, then this inequality holds

whennever ∆E ≥ C3. Consequently, we have only to take E0 so

that

P[V ω
0 ≥ E0 + C3] ≥ 1− 841−d.

This is possible by Proposition 1.4.1.

□

The condition on the average number of eigenvalues is satisfied

in the following form:

Proposition 1.4.3 (Number of eigenvalues). For any com-

pact interval I, there exists a finite constant CI such that

(1.4.3) E[Tr[P ω
L (I)] ] ≤ CIL

2d for all L ∈ 2N.

Proof. We dominate the spectral projection by the heat semi-

group exp (−tHω
L) generated by Hω

L :

Tr[P ω
L (I)] ≤ ebTr[exp (−Hω

L)],
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where b = sup I. By Mercer’s theorem, we have

Tr[exp (−Hω
L)] =

∫
ΛL

exp(−Hω
L)(x, x)dx,

where exp(−Hω
L)(x, y), x, y ∈ ΛL, is the integral kernel of exp (−Hω

L).

By the Feynman-Kac formula [3], we have

exp(−Hω
L)(x, y) ≤

1

4π
exp(− inf

x∈ΛL

Vω(x)).

By Proposition 1.4.1, there is a finite positive constant C ′ such

that

E[exp(− inf
x∈Λ

Vω(x))] ≤ C ′Ld.

Consequently, we obtain (1.4.3). □

The random fields V ω(x)|ΛL(y) and V ω(x)|ΛL′(y′) are independent

if d(ΛL(y), ΛL′(y′))>1. This means that the condition on the

independence at distance is satisfied in our setting(cf. [13] p59

(IAD)). The Simon-Lieb inequality in our setting is as follows:

for all compact interval I, there exists γI ∈ (0,∞) such that for

all L, ℓ′, ℓ′′ ∈ 2N, y, y′ ∈ Zd which satisfy Λℓ′′(y) < Λℓ′(y
′) < ΛL,

and E ∈ I − σ(Hω
L)− σ(Hω

ℓ′,y′),

∥ ΓL(H
ω
L − E)−1χℓ′′,y ∥≤ γI(1 + sup

x∈Λℓ′(y
′)

|V ω(x)|)

× ∥ Γℓ′,y′(H
ω
ℓ′,y′ − E)−1χℓ′′,y ∥ × ∥ ΓL(H

ω
L − E)−1χℓ′,y′ ∥,

where Λℓ′(y
′) < ΛL(x) denotes Λℓ′(y

′) ⊂ ΛL−3(x). In the in-

equality in Germinet and Klein theory, the term sup |V ω(x)| does
not appear. However, this term sup |V ω(x)| is controlled in our

setting using Proposituion 1.4.1(cf. [13]). Now the conditions in

Germinet and Klein theory [6] are satisfied in a weakened form.

For this situation, their theory is extended as follows(cf. [13]):

Proposition 1.4.4 (Bootstrap multiscale analysis [6]). For

any δ > 0 and θ > 2d/ε, there exists L̃ ∈ 6N satisfying the
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following: if P[ω : ΛL is (θ, E0) − suitable] > 1 − 1/841d holds

for some L̃ ≤ L ∈ 6N and E0 ≤ −δ, then there exists δ0 > 0 such

that for any 0 < ζ < 1 and 1 < α < ζ−1, there exist L0 ∈ 6N and

mζ > 0 satisfying

[P[R(mζ , Lk, I(E0, δ0), x, y)] ≥ 1− exp(−Lζ
k)]

for any k ∈ Z+ and x, y ∈ Zd with ||x − y||∞ > Lk + 1, where

Lk+1 = [Lα
k ]6N := max{N ∈ 6N : N ≤ Lα

k} and I(E0, δ0) =

[E0 − δ0, E0 + δ0] ∩ (−∞,−δ], for an interval I, we set R(m, L,

I, x, y) := {ω : for all E ∈ I, ΛL(x) or ΛL(y) is (m,E)-regular}.
(see [13]).

Proof. This theorem is proven by extending the four theorems

in Section 5 in [6]. In the proof of Theorem 5.1, as in [13], we

require s satisfies

(p+ 2d)/ε < s and s < θ.

Moreover, in the definition of the event FL,ℓ in [6], we add the

condition on supΛL
|V ω| as follows:

FL,ℓ = {ω :there exist n (θ, E0)-non suitable boxes

{Λℓ(yi)}ni=1, where n ≥ S + 1, in CL,ℓ such that

dist(Λℓ(yi),Λℓ(yj)) > 1 for i ̸= j}

∪ {ω : dist(σ(Hω
ℓ′,x), E0) ≤ tL for some x ∈ Ξ′

L,ℓ

and ℓ′ = (7k + 2/3)ℓ (1 ≤ k ≤ S)}

∪ {ω : dist(σ(Hω
L,x), E0) ≤ tL}

∪ {ω : sup
ΛL

|V ω| ≥ logL},
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where

ΞL,ℓ := ΛL ∩ (ℓ/3)Zd ⊂ Zd,

CL,ℓ := {Λℓ(y) : y ∈ ΞL,ℓ,Λℓ(y) < ΛL},

Ξ′
L,ℓ := ΛL ∩ (ℓ/6)Zd ⊂ Zd.

The rest of the proof is same as in [6, 13].

□

For the application to the Anderson localization, we need also

conditions on the generalized eigenfunctions. These are also sat-

isfied in a form which is enough for our purpose(cf. [7], [13]).

1.5. Dynamical localization

In this section, we will state the results on the Anderson local-

ization obtained by the direct application of Germinet and Klein

theory [6] on the basis of the results of Section 1.4.:

Proposition 1.5.1 (Decay of kernel). We take a compact

interval I such that sup I ≤ E0, where E0 is the negative number

given in Proposition 1.4.2.

Then for all 0 < ζ < 1 there exists some Cζ, such that for all

x,y ∈ Zd,

E[sup
f∈G

|||χ1,xf(H
ω)Pω(I)χ1,y|||22] ≤ Cζ(exp(−||x− y||ζ∞),

where G is the set of all Borel measurable functions such that

∥ f ∥∞≤ 1 and Pω(I) is the restriction of the projection operator

of Hω to the energy region I.

From this, we obtain the following:

Corollary 1.5.1.

(1) (Strong Hilbert-Schmidt dynamical localization) We take

a compact interval I as in the last proposition. Then we
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have

E[sup
t

||||x|qe−itHω

Pω(I)χ0|||22] < ∞

for any q>0.

(2) (Semi Uniformly Localized Eigenfunction) We take a com-

pact interval I as in the last proposition. For any ϵ > 0

there exists mϵ and for a.e. ω there are constants Cϵ,ω, C̃ω ∈
(0,∞) and {xn,ω}n∈N ⊂ Zd, such that, if we let {ϕn,ω}n∈N
be the normalized eigenfunctions of Hω with energy En,ω in

I, we have

∥ χ1,xϕn,ω ∥2≤ Cϵ,ω exp{mϵ(log ||xn,ω||∞)1+ϵ}

× exp{−mϵ||x− xn,ω||∞}

and

||xn,ω||∞ ≥ C̃ωn
1/(4ν)

for any n ∈ N, x ∈ Zd and ν > d/4.

Acknowledgments. The author would like to express his grat-

itude to Professor N.Ueki for many helpful advices.
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Part 2

Wegner estimate for a nonsign definite generalized alloy type

potential

Abstract

P.D.Hislop and F.Klopp proved a Wegner estimate for Schrödinger operators

with nonsign definite potentials for each fixed position of impurities [12]. In

this paper, a similar estimate is proven treating also the position of impurities

as random variables.

2.1. Introduction

In this paper, we will give a Wegner estimate for a Schrödinger

operator,

Hω := H0 + V ω(x)(2.1.1)

with V ω(x) :=
∑
i∈N

fω1

i u(x− ξω2

i ) and H0 = −∆,

where u is a continuous function with a compact support and does

not have a fixed sign, {fω1

i , i ∈ N, ω1 ∈ Ω1} on some probability

space (Ω1, F1,P1) are independently and identically distributed

random variables with the probability density function h0 ∈ C1
0

such that P1(f
ω1

i ∈ dλi) = h0(λi)dλi satisfying supph0 = [m,m′],

and {ξω2

i , i ∈ N, ω2 ∈ Ω2} on some probability space (Ω2, F2,P2)

is a Poisson point process independent of {fω1

i } with the Lebesgue

measure as its intensity. We write ω = (ω1, ω2). For any y ∈ Rd

and L >0, we set ΛL(y) = {x ∈ Rd : |xi−yi| < L/2 for 1 ≤ i ≤ d}
and ΛL := ΛL(0). For simplicity we assume supp u ⊂ Λa and

∥u∥∞ = 1, where a > 0. As in [2, 22], we can prove the essential

self-adjointness and the measurability in ω of the Schrödinger

operator Hω, and that the spectrum σ(Hω) = R for almost all

ω. In the rest of this paper we denote the unique self-adjoint

extension by the same symbol Hω.
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We consider the approximation of Hω defined by the self-

adjoint operator

Hω
ΛL

:= H0 + V ω
ΛL
, V ω

ΛL
:=

∑
i:ξ

ω2
i ∈ΛL

fω1

i u(x− ξω2

i )

on L2(Rd) following Klopp [16] and Hislop and Klopp [12].

The main theorem of this paper is the following:

Theorem 2.1.1. For any δ > 0, q > 1 and arbitrarily small

ζ > 0, there exists a finite positive constant Cq,δ,ζ such that

(2.1.2) P{dist(σ(Hω
ΛL
), E0) ≤ η} ≤ Cq,δ,ζL

(1+ζ)dη1/q,

for L > 0, E0 < 0 and η > 0 satisfying η < δ/4 and E0+η < −δ.

Remark 1. We can prove Theorem2.1.1 for H0 = −△ + V ,

where V is a periodic non-random potential. However in this

paper, we will assume V = 0 for simplicity.

Remark 2. We can extend Theorem2.1.1 for more general

distributions of impurities’ positions {ξω2

i }. (see Remark 5, 6

below)

Remark 3. The initial length scale estimate, which is an im-

portant estimate together with a Wegner estimate to prove the

Anderson localization, holds in this case as in [22].

As one of the applications, we obtain the strong Hilbert-Schmidt

dynamical localization which is deduced in the same way as [22]

based on the main theorem.

Corollary 2.1.1. There exists E0 < 0 such that

E[sup
t

||||x|re−itHω

Pω(I)χ0|||22] < ∞
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for any r > 0 and any compact interval I satisfying sup I ≤ E0.

The estimate

(2.1.3) P{dist(σ(Hω
ΛL
), E0) ≤ η} ≤ CLAdηB,

with A ≥ 1 and B ≤ 1 as (2.1.2) is called a Wegner estimate.

From the fact that P{dist(σ(Hω
ΛL
), E0) ≤ η} is dominated by

E[♯{σ(Hω
ΛL
) ∩ [E0 − η, E0 + η]}] and E[♯{σ(Hω

ΛL
) ∩ [E0 − η, E0 +

η]}]/Ld converges to the density of states (DS) as L → ∞, we

expect that A = B = 1 are the best exponents.

Wegner [24] firstly obtained this estimate for the Anderson

model. After that the estimate (2.1.3) with general exponents

A and B is applied to the proof of the Anderson localization

[6, 8, 21].

There had been many prior results on a Wegner estimate

for multidimensional and continuous Schrödinger operators with

Anderson-type random potentials whose positions corresponding

to ξω2

i in equation (2.1.1) were fixed on the lattice [17, 3, 13, 21].

Among them, Combes, Hislop and Nakamura obtained a bound

as (2.1.3) with A = 1 and B < 1 which is arbitrarily close to

1 for the Schrödinger operators with the Anderson-type positive

potentials by the method of the spectral shift function [5]. Kirsch

and Veselić used this method to prove a bound as (2.1.3) with

A = 1 and B arbitrarily close to 1 for the negative potentials

called generalized alloy type potentials where the positions of the

impurities were fixed randomly on Rd [14]. With the method

of [14], the author proved a bound as (2.1.3) with A and B ar-

bitrarily close to 1 at negative energies for Schrödinger operators

with negative potentials V ω under the conditions that fω1

i ∈ [0, 1]

and u is negative and, showed the results of the localization [22].
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These results on a Wegner estimate were obtained by the prop-

erty that the eigenvalues monotonously depended on the cou-

pling constants. Therefore, this method needs the property that

a single-site potential has the definite sign. We would like to drop

this condition for this paper.

In 2002, Hislop and Klopp obtained a bound as (2.1.3) with

A = 1 andB arbitrarily close to 1 for the nonsign definite Anderson-

type potentials using Klopp’s vector field method [16] and the

spectral shift function method [12]. Applying their method and [14],

we obtain Theorem 2.1.1, which is a bound as (2.1.3) with A and

B arbitrarily close to 1. Theorem2.1.1 may not have the opti-

mal exponents of L and η for the Wegner estimate. However,

this is the best result that we are able to derive up to now. In

2007, Germinet, Hislop and Klein proved the localization for a

sign definite Poisson potential model without fω1

i , which is more

difficult problem than ours. The inequality corresponding to the

Wegner estimate for their proof of the localization is restricted to

η ∼ L−Lρ

with ρ > 0, for that reason the exponent A depends on

L [9, 10].

Remark 4. The best estimate of Wegner-type for continuous

Schrödinger operators with Anderson-type random potentials was

proved by Combes, Hislop and Klopp with A = 1 and B ≤ 1 [4].

This estimate was obtained by the method of the spectral averag-

ing mainly for Schrödinger operators with a nonnegative single-

site potential. It seems to be very difficult to extend this result

to a nonsign definite single-site potential with a randomly dis-

tributed position,
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Corollary 2.1.1 is obtained for the first time by treating the

positions ξ of the single-site potentials as random variables. This

is the different point from [14].

2.2. The proof of the main theorem

In this section, we will prove a Wegner estimate, Theorem

2.1.1, using the method in [12].

The resolvent RΛL
(E0, ω) := (Hω

ΛL
− E0)

−1 is written as

RΛL
(E0, ω) = (H0 − E0)

−1/2(1 + ΓΛL
(E0, ω))

−1(H0 − E0)
−1/2,

where ΓΛL
(E, ω) is a compact operator defined by (H0−E)−1/2V ω

ΛL

× (H0 − E)−1/2. Then, using the inequality ∥RΛL
(E0, ω)∥ ≤

δ−1∥(1 + ΓΛL
(E0, ω))

−1∥, we have

P{dist(σ(HΛL
), E0) ≤ η} ≤ P{dist(σ(ΓΛL

(E0, ω)),−1) ≤ η/δ}.

Consequently, we have only to show

P{dist(σ(ΓΛL
(E0, ω)),−1) ≤ κ} ≤ Cq,δ,ζL

(1+ζ)dη1/q,

where κ := η/δ.

We now apply Chebyshev’s inequality,

P{dist(σ(ΓΛL
(E0, ω)),−1) ≤ η/δ}

= P[Tr(P ω
ΛL
(Iκ)) ≥ 1] ≤ E[Tr(P ω

ΛL
(Iκ))],

(2.2.1)

where P ω
ΛL

denotes the spectral projection of ΓΛL
(E0, ω) and Iκ :=

[−1− κ,−1 + κ].

We will at first estimate the expectation of the right hand side

of (2.2.1) with respect to the randomness of ω1. This estimate

holds for any point processes. Then we will calculate its expec-

tation with respect to the randomness of ω2, only which Poisson

process affects(see (2.2.9)).
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We define Eω1 as the expectation with respect to the random-

ness of ω1 and ΓΛL
(E0, λ, ω2) as ΓΛL

(E0, ω) in which fω1

i for any

i ∈ {i ∈ N : ξω2

i ∈ ΛL} is replaced by λi for any λ = (λi)i:ξω2i ∈ΛL
∈

[m,m′]♯{i:ξ
ω2
i ∈ΛL}. By the method in [12], we have

Eω1[TrP ω
ΛL
(Iκ)](2.2.2)

≤ Eω1{
∫ 3κ/2

−3κ/2

d

dt
Tr[ρ(ΓΛL

(E0, ω) + 1− t)]dt}

=
∏
ℓ

∫ m′

m

h0(λℓ)dλℓ{
∫ 3κ/2

−3κ/2

d

dt
Tr[ρ(ΓΛL

(E0, λ, ω2) + 1− t)]dt},

where ρ is a nonnegative, smooth, monotone decreasing function

such that ρ(x) = 1 for x < −κ/2 and ρ(x) = 0 for x ≥ κ/2.

Since supp ρ is included in (−∞, κ/2], ΓΛL
(E0, λ, ω2) of the

right hand side of (2.2.2) is restricted to the spectral subspace

where the operator is smaller than (−1 + 2κ) which is negative.

Therefore, noting that ρ′ is negative,

d

dt
Tr[ρ(ΓΛL

(E0, λ, ω2) + 1− t)](2.2.3)

=
∑

j:Ej∈[−1−2κ,−1+2κ]

d

dt
ρ(Ej + 1− t)

≤
∑

j:Ej∈[−1−2κ,−1+2κ]

−Ej

−1 + 2κ
ρ′(Ej + 1− t)

=
−1

−1 + 2κ
Tr[ρ′(ΓΛL

(E0, λ, ω2) + 1− t)ΓΛL
(E0, λ, ω2)],

where {Ej}j∈N are the eigenvalues of ΓΛL
(E0, λ, ω2).

On the other hand, using the Hellmann-Feynman theorem [21]

and the equation∑
i:ξ

ω2
i ∈ΛL

λi
∂

∂λi
ΓΛL

(E0, λ, ω2) = ΓΛL
(E0, λ, ω2),
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we can show∑
i:ξ

ω2
i ∈ΛL

λi
∂

∂λi
Tr[ρ(ΓΛL

(E0, λ, ω2) + 1− t)]

=
∑

j:Ej∈[−1−2κ,−1+2κ]

{ρ′(Ej + 1− t) ·
∑

i:ξ
ω2
i ∈ΛL

λi
∂

∂λi
Ej}

= Tr[ρ′(ΓΛL
(E0, λ, ω2) + 1− t)ΓΛL

(E0, λ, ω2)].

(2.2.4)

By (2.2.3) and (2.2.4), we obtain

d

dt
Tr[ρ(ΓΛL

(E0, λ, ω2) + 1− t)]

≤ −1

−1 + 2κ

∑
i:ξ

ω2
i ∈ΛL

λi
∂

∂λi
Tr[ρ(ΓΛL

(E0, λ, ω2) + 1− t)].

By this estimate and the integration by parts with respect to

λi, the right hand side of (2.2.2) is less than or equal to

−1

−1 + 2κ

∑
i:ξ

ω2
i ∈ΛL

∫ 3κ/2

−3κ/2

dt{
∏
ℓ

∫ m′

m

h0(λℓ)dλℓ}(2.2.5)

× {λi
∂

∂λi
Tr[ρ(ΓΛL

(E0, λ, ω2) + 1− t)]}

≤ 2
((m′ −m)∥h̃0

′∥∞) ∨ h̃0(m
′)

(1− 2κ)

×
∑

i:ξ
ω2
i ∈Λ

∫ 3κ/2

−3κ/2

dt
∏
ℓ̸=i

∫ m′

m

h0(λℓ)dλℓ|Tr{D(i, E0,m, λ+
i )}|,

where h̃0(λ) is the function λh0(λ) and D(i, E0,m, λ0) is the op-

erator ρ(ΓΛL
(E0, λ, ω2)

m,i +1 − t) − ρ(ΓΛL
(E0, λ, ω2)

λ0,i + 1 − t).

We denote ΓΛL
(E0, λ, ω2)

ϖ,i for ϖ ∈ [m,m′] by the operator

ΓΛL
(E0, λ, ω2) with the fixed coupling constant λi = ϖ at the

i-th site, and λ+
i ∈ [m,m′] by the value of the coupling constant

λi where the maximum of |Tr{D(i, E0,m, λ0)}| is attained.
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Now we use the following proposition on spectral shift func-

tions ( [5] Theorem 2.1, [25] Chapter 8 §3 Theorem 3 and Theorem

6) :

Proposition 2.2.1. Let A1 and A0 be self-adjoint operators

such that A1 − A0 ∈ I1/p for p > 1, where I1/p is the family

of compact operators of the super trace class, which we define as

follows: we say that A ∈ I1/p if for some p > 1, |||A|||1/p :=(∑
j µj(A)

1/p
)p

< ∞, where µj(A) denotes the j-th singular value

of A.

Then, there exists some π(·;A1, A0) ∈ Lp(R) such that for

ϕ ∈ C∞(Γ) where Γ ⊂ R : a compact interval which contains

σ(A0) and σ(A1),

Tr[ϕ(A1)− ϕ(A0)] =

∫
Γ

π(λ;A1, A0)ϕ
′(λ)dλ,

and

∥π∥p ≤ |||A1 − A0|||1/p1/p.

We fix p > 1 and set A1 = (ΓΛL
(E0, λ, ω2)

λ+
i ,i)ℓ and A0 =

(ΓΛL
(E0, λ, ω2)

m,i)ℓ for any ℓ greater than dp/2+1, and Vi = (λ+
i −

m)R0(E0)
1/2u(x − ξω2

i )R0(E0)
1/2, where R0(E0) := (H0 − E0)

−1.

Then,

Veff := A1 − A0

=
ℓ−1∑
j=0

(ΓΛL
(E0, λ, ω2)

λ+
i ,i)ℓ−j−1Vi(ΓΛL

(E0, λ, ω2)
m,i))j

= (λ+
i −m)

ℓ−1∑
j=0

[J ℓ−j−1
i (R0(E0)V

λ+
i ,i

ΛL
)ℓ−j−1R0(E0)

1/2]∗

× ui[J
j
i (R0(E0)V

m,i
ΛL

)jR0(E0)
1/2],
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where J ∈ C∞
0 such that J(x)u(x) = u(x). We denote ui :=

u(x − ξω2

i ), Ji := J(x − ξω2

i ) and for ϖ ∈ [m,m′], V ϖ,i
ΛL

is the

potential VΛL
with the fixed coupling constant λi = ϖ at the i-th

site.

According to Proposition 12 in [18], for any τ ∈ supph0 and

r ∈ N,

(2.2.6) Jr
i (R0(E0)Ṽ

τ,i
ΛL

)rR0(E0)
1/2 =

N∑
α=1

{
r∏

β=1

Jα,β
i R0(E0)B

α,β
i },

where the bounded operators Jα,β
i are combinations of the deriva-

tives of Ji, and the operators Bα,β
i are the polynomials of the

bounded operators containing V τ,i
ΛL

.

Let s > d/2. Using the estimates of the norms in Theorem 4.1

of [20],

∥Jα,β
i R0(E0)∥Is ≤ ∥Jα,β

i ∥Ls(Rd)

∣∣∣∣∣∣∣∣ 1

|x|2 − E0

∣∣∣∣∣∣∣∣
Ls(Rd)

,

which is bounded by a constant independent of ΛL. The norms

of the operators Bα,β
i are estimated as follows:

∥Bα,β
i ∥B(Ls(Rd)) ≤ C|∥V τ,i

Λ ∥∞ + 1|γ

≤ C[ sup
x∈ΛL+a

♯(k ∈ N : ξω2

k ∈ Λ3a(x)) + 1]γ,

for some γ and C independent of ΛL. Therefore, we can obtain

the estimate of the norm of Veff as follows:

∥|Veff |∥1/p1/p ≤ C(ℓ− 1)[ sup
x∈ΛL+a

♯(k ∈ N : ξω2

k ∈ Λ3a(x)) + 1]γ
′
,

for some γ′.
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Noting supp ρ′(· + 1 − t) is included in Σ := [−1 − 3κ, 0), we

have

|TrD(i, E0,m, λi)|(2.2.7)

= |
∫
Σ

∂ρ(λ′ + 1− t)

∂λ′ π(λ′)dλ′|

≤ C[ sup
x∈ΛL+a

♯(k ∈ N : ξω2

k ∈ Λ3a(x)) + 1]γ
′

×
( ∫

Σ

|∂ρ
∂λ

(λ+ 1− t)|qdλ
)1/q

,

where q is the positive number such that 1/p+ 1/q = 1, and π is

the spectral shift function for A1 and A0.

By using also∫
R

|ρ′(γ)|qdγ ≤
∫
R

|ρ′(γ)|dγ sup(ρ′)(q−1),

we can show that the second factor of the right hand side of (2.2.7)

is dominated by κ(1/q−1).

Consequently, according to (2.2.2), (2.2.5), (2.2.7) and above

comments, we obtain

E{TrP ω
ΛL
(Iκ)} ≤ C1η

1/q(2.2.8)

×Eω2[♯(j ∈ N : ξω2

j ∈ ΛL){ sup
x∈ΛL+a

♯(k ∈ N : ξω2

k ∈ Λ3a(x)) + 1}γ′
].

For (2.2.8), using the Hölder inequality, we obtain

(2.2.9) E{TrP ω
ΛL
(Iκ)}

≤ C1η
1/qEω2[♯(j ∈ N : ξω2

j ∈ ΛL)
1+θ]1/(1+θ)

× Eω2[{ sup
x∈ΛL+a

♯(k ∈ N : ξω2

k ∈ Λ3a(x)) + 1}(θ+1)γ′/θ]θ/(1+θ),

for θ > 0.

Noting that the third factor of the right hand side of (2.2.9) is

bounded by CLd and the fourth factor is less than or equal to
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[
∑

e∈ΛL+a∩Z

Eω2[ sup
x∈Λ1(e)

♯(k ∈ N : ξω2

k ∈ Λ3a(x)) + 1](θ+1)γ′/θ]θ/(1+θ)

≤ CLdθ/(1+θ),

we obtain the theorem.

Remark 5. By (2.2.8), the main theorem holds for a model of

which the impurity position ξi(ω2) = ai+ yi(ω2) with a uniformly

bounded yi(ω2) as A=1 similarly to [12], where {ai : i ∈ N} = Zd.

Remark 6. Our proof of this paper needs only the Zd sta-

tionary property and the finite moments’ property for all orders

for the number of impurities in the finite cube. Moreover, if we

treat point processes with finite moments of some n > d/2, then

our results hold for A > 1 + γ′/n. The condition n > d/2 is

for the essential self-adjointness of our Schrödinger operators on

C∞
0 (Rd) [14].
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List of symbols

fω 2 random coupling constant

u 2 single site potential

ξω 6 random impurity site

(Ω,P), (Ωi,Pi) 6 probability space

Λ 2 cube in Rd

ΛL(a) 6 = {x ∈ Rd : |xi − ai| < L/2 for

1 ≤ i ≤ d} for any a ∈ Rd and L > 0

ΛL 6 = ΛL(0)

|ΛL(a)|, |Λ| 2 volume of a cube

V ω 2 random field

V ω
ΛL

22 =
∑

i:ξ
ω2
i ∈ΛL

fω1

i u(x− ξω2

i )

∆ 2 Laplacian of Rd

H0 21 = −∆

ΓL,x 13 characteristic functions of

ΛL−1(x) \ ΛL−3(x)

ΓL 13 = ΓL,0

χL,x 13 characteristic functions of ΛL(x)

Hω 6 random Schrödinger operator

Hω
L,x 13 the restriction of the operator Hω to

L2(ΛL(x)) under the Dirichlet

boundary condition

Hω
L 7 =Hω

L,0

Hω
ΛL

22 = H0 + V ω
ΛL

ΓΛL
(E, ω) 25 = (H0 − E)−1/2V ω

ΛL
× (H0 − E)−1/2

P ω
L 7 spectral projection of a self adjoint

operator Hω
L

P ω
ΛL

25 spectral projection of a self adjoint

operator ΓΛL
(E, ω)
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µj 10 j-th singular value of a compact

operator

|||·|||1/p 10 super trace norm of compact operator

for p > 1

I1/p 10 family of the super trace class which

has a finite super trace norm for p > 1

|| · ||p 10 Lp norm

π 10 spectral shift function
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