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Abstract Mudflow is a common phenomenon in mountainous area. A lot of researches had simulated debris 

flows with mudflow. However, either numerical analysis or approximate solutions needs a fundamental 

solution to work with. In the present paper, we focused on the analytical solutions of fluid mud by using the 

Bingham fluid model. By using the fact that boundary layer is thin, the solutions of steady uniform flow can be 

constructed on an inclined rectangular channel. The results can be expressed as function of depth ratio between 

shear layer to whole layer and Bingham number. The limiting cases for narrow channel and wide one can be 

discussed by changing the depth width ratio. The solutions on wide channel are the same as other research.  

Keywords Mud Flows, Bingham fluid model, Steady Uniform Flow. 

 

 

 

 

1. Introduction 

Mud flows is one of several forms of debris flows, and it can be triggered by landslide, torrential rains, or 

volcanic eruptions. The characteristic feature is plastic-like behavior, and the shear stress must exceed the yield 

stress to drive the fluid flowing. Some analytical solutions with a yield stress had been studied. Liu and Mei 

(1989) had provided theories for slow flow in a thin layer on an inclined plane. Balmforth and Craster (1999) 

had discussed the lubrication theory for fluid flowing down an inclined plane. Mei and Yuhi (2001) extended 

the approximate theory of Liu & Mei (1989) from two to three dimensions for a thin layer of Bingham fluid 

flowing down an open channel of finite width. But there is no analytical solution given for a steady uniform 

flow in finite width rectangular channel.  

 

 

2. Formulation 
2.1 Long Wave Approximation 

We consider a three-dimensional laminar flow of mud flowing down a rectangular channel inclined at the angle 

  with respect to the horizontal. In the standard rectangular channel as shown in Fig. 1 (a), the order of width 

and depth are the same. The x -axis coincides with longitudinal axis along the channel bottom.  The y -axis 

is in the transverse direction and the z -axis is perpendicular to both the x - and y -axis as shown in Fig. 1(a).  

The governing equations are the continuity equation and momentum conservation equations. Following 

long-wave expansions, the equations of motion are approximated as follows: 
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where , ,u v w  are velocity components in , ,x y z  directions, and p  is the pressure, t  is the time,   is the 

fluid density, g is the gravitational acceleration. With zero pressure at the free surface, the pressure at a 

distance z  above the bed is obtained from (4) as 

 ( )cosp g h z   . (5) 

Substituting Eq. (5) into Eq. (3), we can obtain / 0h y   . This relation implies the flow depth does not 

vary in y -direction. Considering steady uniform flow in x direction, with / 0u x   , continuity eq. 

becomes 
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Substituting Eq. (5) into Eq. (2), the momentum equation can be reduced to  
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because flow depth remains the same for uniform flow. In this work, constitutive law of Bingham fluid is used 

to approximate muddy flows as follows 

 00 ,   E    , (8) 
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where ijE and ij are the rate-of-strain tensor and stress tensor respectively, 0  is the yield stress, and   is the 

dynamic viscosity. Because of the constitutive relation, the flow can be separated by yield stress as shown in 

Fig. 1(b), (c). In general, one can regard the 0   region as shear layer and regard the 0   region as 

plug layer where there is no strain rate in site according for Eq. (8). 

 

 
 

 

Fig. 1 (a) Standard Rectangular Channel, (b) x z direction profile, (c) y z direction profile. 

 

In Fig. 1(b), (c), z b  is the bed, ly b , ry b  are the side banks, and no-slip condition is used along all 

solid boundary.  z   indicates the yield surface (the interface between shear layer and plug layer) near bed, 

and ly  , ry   are also the yield surface near the side banks. On the yield surface, all values must be 

continuous.  From the constitutive law, the strain rate is equal to 0 at the yield surface z  , ly  , ry  , 

so 
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At the free surfacez h , there are the kinematic boundary condition (KBC)  

(a) (b) (c) 
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and dynamic boundary condition (DBC) 

 0zx    at z h . (13) 

 
2.2 Thin Shear Layer Approximation 

In order to understand the relation between the shear layer’s thickness and flow depth, we use the following 

scales for the problem 

 ( )x O L , ( )y O D , ( )z O H , ( )y O D  , ( )z O H  , (14) 

where the subscript   means in the shear layer. From Table 1, one can estimate the scale L  to be (100 )O m , 

D  to be (10 )O m  by gully width, and H  to be (10 )O m . 

 

Table 1. Characteristics of debris flow caused by Typhoon Herb (1996) in the Chenyoulan 

stream watershed, Taiwan. (Data from Jan and Chen, 2005) 

Location Debris flow type Gully width ( )m  

Alluvial Fan Gully slope 

Max.  

length 

( )m  

Max. 

width 

( )m  

Average 

depth 

( )m  

Initiation 

(degree) 

Transportation 

(degree) 

Deposition 

(degree) 

Junkengkou Bouldery 5 310 95 4 33.7 16.0 16.0 

Junkengqiao Cobble-gravely 5 228 130 4 25.2 12.0 9.1 

Xinyizhongxin Cobble-gravely 4 95 60 3 23.1 18.0 6.0 

Sangfengqiu Cobble-gravely 5 76 95 3 34.6 16.0 7.0 

Fengqiu Bouldery 9 400 570 5 27.4 18.0 5.7 

Tongfu Muddy 6 95 230 3 27.2 17.8 8.5 

Longhua Muddy 6 250 190 4 28.6 15.0 15.0 

Shenmu Cobble-gravely 12 800 90 4 29.3 11.2 7.4 

 

The scale of velocity in x -direction is ( )OU  and Eq.(1) provides the scale for the other velocity component 

as 

 ( )u OU , ( )
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v O
L

 , ( )
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L

  (15) 

In Liu and Lai (2000), the shear layer’s thickness in z -direction can be estimated by the balance of bottom 

pressure gradient and shear stress in the x -momentum equation of shear layer as  

 
cos
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
 

 , (16) 

In the field, a typical length scale 100L m , depth scale 10H m , velocity scale 5 /U m s , and 

cos 1   can usually be observed. So we use the scale values and take datum in Arattano et al. (2007) into Eq. 

(16) as shown in Table 2, we find that the scale of thickness of shear layer is about 0.1m  for low dynamic 

viscosity, and is about 1.5m  for high dynamic viscosity. Comparing with flow depth scale ( 10H m ), the 

result implies that the order of the shear layer’s thickness is negligible to the leading. The thickness of side 

shear layer is estimated in the same way. Applying the characteristics of the thin shear layer, we can divide the 

flow region into three parts; plug flow region, shear layer region near bed, shear layer region near side banks as 

shown in Fig. 2. 
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Table 2. Scale estimate of thickness of shear layer. (* Data were obtained by numerical simulation.) 

Torrent Aspect 
Length 

( )m  

Width 

( )m  

Depth 

( )m  

  

( )Pa s  

  

 3kg m  
Reference 

H


 

( )m  

H H  

(%)  

Faucon stream Muddy 500* NA 10-20* 50 2000 Remaître et al.(2005) 0.35 3.54 

Anhui Dam 

(21.7m hight) 
Mud/Debries flow 1210 210-580 NA 2.1 1600 Jin&Fread(1999) 0.08 0.81 

Aberfan Dam 

(37m hight) 
Mud/Debries flow 600* NA 9* 958 1800 Jin&Fread(1999) 1.63 16.31 

Rudd Creek 
(30m hight) 

Mud/Debries flow 350* 30-230 0.6-3.7* 958 1600 Jin&Fread(1999) 1.73 17.30 

 
Fig. 2 (a) Plug layer region, (b) Shear layer near bed, (c) Shear layer near side bank. 

 
2.3 Plug Layer Region  

Due to thin shear layer, the governing equations can be estimated the same as Eq.(6), (7), and Eq. (12), (13) are 

used on free surface. In all yield surfaces, the continuation of velocity is applied, and the stress is equivalent to 

yield stress by constitutive law. By applying Eq. (11), Eq. (7) can be reduced to 
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Integrating Eq.(17) with respect to the cross section for plug region (from z   to z h , and from 

ly   to ry  ), we obtain 
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Then applying Eq. (13), and 0zx   at z  , 0yx   at ly  , 0yx    at ry  , Eq. (21) 

gives 
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At the initiation of mud, b  , l lb  , r rb   due to the shear layers do not exist, so Eq.(19) gives 
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The above equation is the balance condition between shear stress and yield stress, and the fluid muds will start 

to flow as the shear stress lager than yield stress, so the starting relation can be obtained as follows 
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and provide us a threshold for examining if the fluid mud is flowing or not. 

 

2.4 Shear Layer Region near Bed 
The thickness of shear layer near bed can be proved is less than depth, i.e. it is less than width as well. 

Therefore, the governing equation must be re-estimated by method of order magnitude. The Eq. (6), (7) can be 

re-estimated as 

(a) (b) (c) 

163



 0
v w

y z

 
 

 
, 

Scale: ( ) ( )
U HU
O O
L H L

  (22) 

 
1

sin yx zxu u
v w g
y z y z

 




                    
,  

Scale: 
2 2

( ) ( )
U HU
O O
L H L

             
2 2

( ) ( )
U U

O O
D H

 
 

   (23) 

because shear layer depth is much less than the width scale, so Eq. (22), (23) in the leading order is 
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where the stress zx  can be expended as 
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The boundary condition on the bottom is no-slip condition, and Eq. (11) in the leading order gives 
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By applying the no-slip condition on bed, Eq.(27) gives 0w  , and Eq. (25) can be deduced  
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By applying the constitutive law, we know the 0zx   at z  , so one can integrate Eq. (28) from bed 

(z b ) to yield surface ( z  ) and obtain the bottom shear stress as 

 0 ( )sinb g b       , at z b . (29) 

Then substituting Eq. (26) to Eq. (28) gives 
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Applying Eq. (27) and no-slip condition on bed, Eq. (30) gives velocity distribution inside the bottom shear 

layer as 
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2.5 Shear Layer Region near Side Banks 

The Eq. (6), (7) can be re-estimated the same way as in the previous section 
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so Eq. (32), (33) in the leading order gives 
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where the stress yx  can be expended as 
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The boundary conditions on side banks are no-slip condition, and Eq. (11) in the leading order gives 
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, at ly  , ry  . (37) 

Using the no-slip condition on side banks, Eq. (34) gives 0v  , and Eq. (35) can be deduced 
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Due to the 0yx   at ly   and 0yx    at ry  , the shear stress on bank of left side and right 

side can be obtained respectively as below 
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Then substituting Eq. (36) to Eq. (38) gives 
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Applying Eq. (37) and no-slip condition on side banks, Eq. (41) gives velocity distribution inside the shear 

layer near left side and right side respectively as follows 
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3 Discussion of solutions 
3.1 Rearranging the solutions 

The velocity of plug layer should be a constant and the same result should be derived from Eq. (31), (42) or 

(43). Applying continuation of velocity on yield surface, we obtain 
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where the subscript p  means plug layer. Eq. (44) gives 

 l l r rb b b         . (45)  

So shear layer thickness is the same along all solid boundary. Substituting   for all boundary layer thickness, 

Eq. (19) becomes 
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Using Eq.(44), (45), velocity profiles inside the shear layers can be rewritten as  
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Likewise, the stress on bottom and side banks (Eq. (29),(39),(40)) can be rewritten as 

 0 sinb g       , at z b , (50) 

 0 sinl g       , at ly b , (51) 

 0 sinr g        , at ry b . (52) 

 
3.2 Important parameters 
We define the non-dimensional parameters as below 
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where   is a depth to width ratio of the rectangular channel.   is the Bingham number, which is a measure 

of the yield stress relative to the horizontal pressure gradient acting over the thickness of the fluid. When   

approaches zero, the fluid can be considered as Newtonian fluid. Then, Eq. (21) and (46) can be written as 
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Considering the steady uniform flow with constant depth in rectangular channel, one can let 1
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. By the Eq. (44), the order of velocity in x - component can be estimated as 
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By applying Eq. (57), (58), Eq. (44) gives 
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where * p
p

u
u

U
 . In Eq. (56), (57), (59), one can shift the value of   briefly to obtain the starting condition, 

thickness of shear layer, and plug layer’s velocity. Some cases can be shown as the following table. 

 

Table 3 Cases on different   
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2
   * 1 2

H

H
     

 2*
1 2

2pu


  

narrow channel 1   
1




  * 1
H

H
     

 2*
1

2pu


  

 

In Eq. (56), one can find the starting condition is associated the channel’s shape with Bingham number. If the 

channel is much wider, the fluid is much easier to start flowing. However, if the Bingham number   

approaches zero, the fluid can be seen as Newtonian fluid. Therefore, the starting condition only can be 

accepted for 0  . In Table 3, the wide channel’s solutions can be compared to Liu and Mei (1989), the 

thickness of shear layer and the velocity of plug layer are the same under steady uniform flow. 

 

 

5 Conclusion 
In this study, the Bingham constitutive law is used to model the mud flows, and we derive the solutions of 

steady uniform flow in an inclined rectangular channel. The velocity profile for rectangular channel with depth 

to width ratio of order unity is derived. The solutions on wide channel are verified to be the same as Liu and 

Mei (1989). The boundary shear layer thickness is found to be the same along all solid boundaries and 

regardless of the depth to width ratio. The mud can start to flow only if a starting condition based on Bingham 

number is satisfied. The solutions can provide a basis for further studies on instability problem or verification 

of numerical experiments. 
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