

Presentation Content

- Background information (Nepal and Kathmandu Valley)
- Microtremor Survey
- Analysis and Results
- Predominant period distribution map
- Double predominant period
- Concluding Remarks

ed prediction of ground shaking in Kathmandu Valley of Nep

andey, M.R.	et al, 2001)	necuri	icu car	uiquako	G NISLULÀ NI MO	hai							
Date	Magnitude	Inten- sity	Lati- tude	Longi- tude	Epicenter dist. (Km)	Assumed PGA (gal)							
							1255/6/7	7.7(assumed)	Х	NA	NA	Near KTM	NA
							1408	NA	Х	NA	NA	Near KTM	NA
1681	7 (assumed)	IX	NA	NA	Near KTM	NA							
1810	NA	IX	NA	NA	NA	NA							
1833	7		28	85	38	137							
1833/8/26	7	Х	27	85	84	75							
1833/10/4	7	IX	27	85	151(Kalaiya)	47							
1833/10/18	7	VIII	27	84	India	NA							
1866/23/05	7	Х	27.7	85.3	Kathmandu	NA							
1869/7/7	7		28	85	45	121							
1934/1/15	8.4	IX-X	27.55	87	177 (North of Chainpur)	188							
1936/5/27	7	NA	28.50	83.5	199	38							
1954/9/4	6.5	NA	28.30	83.8	163	34							
1988/8/20	6.5		26.75	86.62	167 (Udayapur)	36							

Talking of Extremity * Transportation Roads, Bridges, Airports

- Urban roads
- Glacier Lakes
- Morain dam failure, debris flow, flooding
- Landslides
- Communication
- HospitalsSchools
- Schools
 Government Buildings (Presidential Palace, Singh Durbar, Ministry and Ministerial Department Buildings, etc.)

ment-based prediction of ground shaking in Kathmandu Valley of Nep

and so on

Building Structures

- Brick masonry.....Recently: Cement mortar, Old structures: Brick powder mortar, lime mortar, mud mortar
- Reinforced concrete.....RCC framed structure, Concrete block or brick masonry walls

licrotremor measurement-based prediction of ground shaking in Kathmandu Valley of Ne

Najor Problems

- Earthquake resistability of hospitals
- Secondary disaster (Fire, aftershocks, etc.)
- Evacuation space (not properly identified)
- Lifeline damage.....water pipeline (very old), power line, liquefaction-induced road damage, etc.

Microtremor measurement-based prediction of ground shaking in Kathmandu Valley of Nei

Earthquake Disaster Risk in Kathmandu Valley and Technical Studies

nt-based prediction of ground shaking in Kath

UNDP Study (Year 1992)

- An Integrated Study of Earthquake Disaster Mitigation in Kathmandu Valley by JICA (Year 2001)
 - Expected Earthquakes (Three cases)
 - Liquefaction Analysis/Prediction
 - Slope Failure Prediction
 - Lifeline Damage Prediction (Power line, Water pipeline, Roads, Bridges, Telephone line, etc.)
 - Building structural Damage Estimation
 - Human Death Estimation
 - Identification of Evacuation Path and Evacuation Space

Geotechnical Study Plan at Ehime University

- Geo-info Database Preparation and Application
- Microtremor Survey and Earthquake Motion Analysis/Simulation
- Installation of Earthquake Accelerometers, Data Acquisition
- Groundwater Flow Simulation
- Ground Subsidence Prediction, etc.

ndu Vallev of Ne

ent-based prediction of ground shaking in Kathmandu Valley of Nep **Concluding Remarks**

or measure

- Predominant period in the urban cores and peripheral settlements of the Kathmandu Valley varies from 0.15 to 2.05, and that the period gradually decreases from a higher value in the central part of the valley to a low value in the outskirts.
- The trend of period variation is found to follow the distribution of sediment depth in the valley.
- In the central part, tall buildings and long-span bridges are susceptible to ٠ damage, while it is opposite in the outskirts.
- The investigation results show that two amplified frequencies appear at about 20% of the measurement sites, which are mainly distributed in the central and the northern part of the basin ٠
- The first amplified frequencies vary from 0.5 Hz to 8.9 Hz, whereas the second amplified frequencies vary from 3.1 Hz to 7.5 Hz, in which most of them vary from 4 Hz to 6 Hz
- Depending on the area, especially in the central and northern part, the top 10-20 m of the sediment layer plays an important role in making the second resonant effect in the Kathmandu Basin

Thank you