Microtremor measurement-based prediction of ground shaking in Kathmandu Valley of Nepal

Author(s)
Bhandary, Netra-Prakash

Citation

Issue Date
2012-10-08

URL
http://hdl.handle.net/2433/180417

Type
Presentation

Textversion
publisher

Kyoto University
Microtremor measurement-based prediction of ground shaking in Kathmandu Valley of Nepal

Netra P. Bhandary
Graduate School of Science and Engineering
Ehime University, JAPAN

Presentation Content
- Background information (Nepal and Kathmandu Valley)
- Microtremor Survey
- Analysis and Results
- Predominant period distribution map
- Double predominant period
- Concluding Remarks

Indian Plate

Kathmandu Valley
Pokhara

MCT: main central thrust
MBT: main boundary thrust
HFT: Himalayan front thrust

Active Thrust Faults

Nepal: Geology and Geomorphology

Earthquakes in Nepal and its Periphery
Major Earthquakes in Nepal Himalayan Region and Zone of Seismic Gap (Avouac et al., 2001)

When??

Talking of Extremity
- Transportation
 - Roads, Bridges, Airports
- Urban roads
- Glacier Lakes
 - Morain dam failure, debris flow, flooding
- Landslides
- Communication
- Hospitals
- Schools
- Government Buildings (Presidential Palace, Singh Durbar, Ministry and Ministerial Department Buildings, etc.)
 - and so on

Damage in the 1934 Earthquake

Ghantaghar and Kathmandu Durbar Square

Zone of seismic gap
Basic information (Kathmandu Valley)

- Three main cities: Kathmandu, Lalitpur, Bhaktapur
- Resident Population: About 5 million (estimated)
- Altitude: 1,300 (average)
- Estimated human death: 40,000 – 100,000
- Estimated Injury: 200,000
- Major Earthquake Recurrence Period: 80-100 years
- Minor Earthquake Recurrence Period: 10-20 years
- Less than 3 Richter Scale Earthquakes: Several times a year

Population Growth in Kathmandu Valley

- Population growth in Kathmandu Valley
- Source: Google Earth, www.google.com
- Rapid population increase
- 1964 Satellite image: Population: 309,000
- 2001 Satellite image: Population: 2.5 million
- 2010 Satellite image: Population: 1.1 million
- At Present: Old buildings/houses
- Slender buildings/houses (Improper design??)

Damage distribution in 1934 Earthquake in Kathmandu Valley

- Southern and eastern parts (Bhaktapur city area) were damaged very heavily than other areas of the valley

Legend
- Damaged Area
- Kathmandu
- Lalitpur
- Urban Area
- Damage Type
- Heavily Damaged
- Moderately Damaged

Rapid population increase

- Population: 1.1 million
- Urban Area
- Confluence point of Bagmati and Manohara rivers
- Airport
- Slender buildings/houses (Improper design??)
Vulnerable buildings with narrow streets

Historical Monuments (World Cultural Heritages)

- Seven World Cultural Heritage Sites in Kathmandu Valley
- Together with the environmental degradation and scenic deterioration following the urbanization, the earthquake disaster risk has increased greatly
- Disaster risk: Earthquake and Landslides

Pashupatinath Temple
Changunarayan

Bouddhanath Stupa
Swayambhunath Stupa

Formation of Kathmandu Valley

Fig. 3: Népal: geological cross-section in the Chaur app. (Sakai et al. 2002). A: Terai Group, B: Himalayan Group, C: Neokot Group, D: Khammar Group, E: Khammar Batholith, F: Kathmandu Basin-sediments, MHE: Main Fault, NHE: Main Boundary Thrust, NEHE: Main Central Thrust.
Building Structures

- Brick masonry: Recently: Cement mortar, Old structures: Brick powder mortar, lime mortar, mud mortar
- Reinforced concrete: RCC framed structure, Concrete block or brick masonry walls

Major Problems

- Earthquake resistability of hospitals
- Secondary disaster (Fire, aftershocks, etc.)
- Evacuation space (not properly identified)
- Lifeline damage: water pipeline (very old), power line, liquefaction-induced road damage, etc.

Earthquake Disaster Risk in Kathmandu Valley and Technical Studies

- UNDP Study (Year 1992)
- An Integrated Study of Earthquake Disaster Mitigation in Kathmandu Valley by JICA (Year 2001)
 - Expected Earthquakes (Three cases)
 - Liquefaction Analysis/Prediction
 - Slope Failure Prediction
 - Lifeline Damage Prediction (Power line, Water pipeline, Roads, Bridges, Telephone line, etc.)
 - Building structural Damage Estimation
 - Human Death Estimation
 - Identification of Evacuation Path and Evacuation Space

Geotechnical Study Plan at Ehime University

- Geo-info Database Preparation and Application
- Microtremor Survey and Earthquake Motion Analysis/Simulation
- Installation of Earthquake Accelerometers, Data Acquisition
- Groundwater Flow Simulation
- Ground Subsidence Prediction, etc.
Microtremor measurement-based prediction of ground shaking in Kathmandu Valley of Nepal

The Tenth International Symposium on Mitigation of Geo-disasters in Asia, MGDA, 2012.10.3-9, Japan

Geo-info Database

Borehole Data:
Boreholes for various purposes

Ground profile through A-B

Geological Strata of Kathmandu Valley Ground (Dubal et al. 2002)

Borehole Survey for Damage Prediction

Microtremor: vehicle movement, explosion, factory vibrations, etc.

Measurement
Data Analysis
Natural time period

H/V Spectrum
Natural time period estimation

Damage Prediction

Microtremor Survey Area

Kathmandu
Bhaktapur
Lalitpur

Legend
Kathmandu
Bhaktapur
Lalitpur
Urban Area

Microtremor Survey

MT Survey in Kathmandu Valley
Microtremor measurement-based prediction of ground shaking in Kathmandu Valley of Nepal

Location for MT Survey in KV

Device and Data

Microtremor data analysis

Analysis

Analysis Results

North-South Profiles

East-West Profiles
Microtremor measurement-based prediction of ground shaking in Kathmandu Valley of Nepal

The study area is divided into five different ranges of predominant periods, using natural break techniques, which regroups similar values together and represents the distribution properly.

<table>
<thead>
<tr>
<th>Predominant period range</th>
<th>Description of zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.11 s to 0.60 s</td>
</tr>
<tr>
<td>B</td>
<td>0.60 s to 0.80 s</td>
</tr>
<tr>
<td>C</td>
<td>0.80 s to 1.01 s</td>
</tr>
<tr>
<td>D</td>
<td>1.01 s to 1.30 s</td>
</tr>
<tr>
<td>E</td>
<td>1.30 s to 2.05 s</td>
</tr>
</tbody>
</table>

Seismic microzonation map of the study area

Profiles based on the predominant period of ground

Borehole data and microtremor analysis results
Multiple resonant frequency

- f_0: first resonant frequency of the site
- f_1: second resonant frequency of the site

Location of double peak H/V spectral ratio

- About 40% measurement points exhibit double peaks and mostly in the central and northern part of the valley.

Distribution of multiple resonant frequencies

- First resonant frequency f_0
- Second resonant frequency f_1

Amplitude of multiple resonant frequencies

- Amplitude of first resonant frequency A_0
- Amplitude of second resonant frequency A_1

Amplitude of the second resonant frequencies are found higher than the amplitude of the first resonant frequencies in some of the location.
Estimation of top soil layer thickness in the Kathmandu Valley

<table>
<thead>
<tr>
<th>SN</th>
<th>Borehole Location</th>
<th>Borehole ID</th>
<th>Average shear wave velocity (m/sec)</th>
<th>Average shear wave velocity upto 30 m depth for Kathmandu Valley (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>New Road BH1</td>
<td>188.87</td>
<td></td>
<td>246.87</td>
</tr>
<tr>
<td>2</td>
<td>Singha Durbar BH2</td>
<td>310.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Jawalakhel BH3</td>
<td>247.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Thimi BH4</td>
<td>254.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bhaktapur BH5</td>
<td>252.93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Average shear wave velocity based on JICA study for Kathmandu Valley (based on 5 PS logging sites) = 246.87 m/sec
- The second resonant frequency varies from 3.1 Hz to 7.5 Hz
- The depth of the top soil layer responsible for amplification of soil = 10 m - 20 m

Concluding Remarks

- Predominant period in the urban cores and peripheral settlements of the Kathmandu Valley varies from 0.1 s to 2.0 s, and that the period gradually decreases from a higher value in the central part of the valley to a low value in the outskirts.
- The trend of period variation is found to follow the distribution of sediment depth in the valley.
- In the central part, tall buildings and long-span bridges are susceptible to damage, while it is opposite in the outskirts.
- The investigation results show that two amplified frequencies appear at about 20% of the measurement sites, which are mainly distributed in the central and northern part of the basin.
- The first amplified frequencies vary from 0.5 Hz to 8.9 Hz, whereas the second amplified frequencies vary from 3.1 Hz to 7.5 Hz, in which most of them vary from 4 Hz to 6 Hz.
- Depending on the area, especially in the central and northern part, the top 10-20 m of the sediment layer plays an important role in making the second resonant effect in the Kathmandu Basin.