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Abstract

A successful magnetically confinement of plasma requires the understanding and control
of turbulence and transport over a vast range of scales, e.g. from large scale MHD
fluctuations to micro-scale drift wave turbulence such as the ion (electron) temperature
gradient (ITG/ETG) modes, as well as the interaction between those scales, the energy
transfer mechanism, and dissipation of energy through stable modes. This thesis is thus
devoted to the numerical study of the cross-scale interaction between the ITG instability
and a static magnetic island based on a gyrokinetic model.

As a powerful tool to study the multiscale turbulence and interaction, a massive
parallel gyrokinetic code, named gkc++ , has been developed first using C++/Cilk+ to
handle the huge computational requirements of evolving the five dimensional phase space
as an initial value problem (IVP).

Regarding the code’s application, the role of stable modes in a mode coupled gyroki-
netic system is investigated. The Landau damping in collisionless discretized gyrokinetic
Vlasov simulations is known to originate from the phase-mixing of marginally stable
Case–van Kampen (CvK) eigenmodes, which leads to a recurrence phenomenon. Using
eigenvalue analysis, we show that a collisionality βc has a strong damping effect on the
CvK eigenmodes. Further, we find that there exists a critical collisionality at which
the CvK eigenmodes are damped down to the analytically estimated Landau damping
rate, then a Landau eigenmode consistent with Landau’s theory emerges and the recur-
rence phenomenon disappears. We discover that the critical collisionality depends on
the resolution in velocity space, i.e. a higher (lower) resolution requires a lower (higher)
collisionality. In addition, we address whether the stabilization effect of Landau damped
stable modes is properly evaluated in a coupled Vlasov-Poisson ITG system, e.g. where
the coupling arises from an external vortex flow. It is shown using a reduced model that
the stabilization effect of the mode coupling between unstable and stable modes works
properly and is not influenced whether Landau damping arises through phase mixing of
the CvK eigenmodes or a true Landau eigenmode.

Third, the linear properties of the short-wavelength ITG modes were studied using an
integral code. The short wavelength ITG mode was confirmed to exist over a wide range
of parameters. In multiscale turbulence simulations using the gkc++ code including
a static magnetic island, it is found that a small magnetic island stabilizes the ITG
mode by inducing poloidal coupling between unstable and stable modes which enables
the dissipation of energy. However, larger islands have a strong destabilization effect
through the formation of new rational surfaces. Most importantly, this destabilization
effect is mainly caused by the short-wavelength ITG mode due to a resonance effect
(double-ITG formation), which is found to originate from its smaller mode structure
width and thus is more sensitive to rational surface formation due to the finite-size
island.
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1 | Introduction

Probably the biggest challenge in the 21st century is to reduce and cope with the impact
of global warming which is caused by the emission of CO2, and to establish a carbon
free energy supply.

A majority of the energy currently consumed is provided through the burning of fossil
fuels such as coal, oil and gas. However, it has been found that the emission of carbon
dioxide is affecting earth’s climate and leads to a rise in the average global temperatures.
Current studies predict that without drastic measures, the average temperatures will
rise by more than three degrees by the year 2100, which will endanger the habitats
of mankind and many other species, who cannot adapt quick enough to the changing
climate conditions. Reducing the emission of greenhouses gases has so far demonstrated
to be of very limited success. With the exponential growth of the economies of the less
industrialized countries to adopt the living standards of the “western world” and their
energy demand to rise by the same level — most of it provided by fossil fuels — CO2

emission is likely to increase. Hence, the search for alternative and cheap energy supply
becomes even more urgent

Renewable energies such as wind, solar and wave energy have shown to be successful
to partially replace fossil fueled based energy production. However, to close the gap and
completely substitute fossil fuels, nuclear energy production has to be considered as a
serious alternative. However, fission based nuclear energy production showed a strong
decline in the aftermath of the Fukushima disaster. A promising solution on the horizon
is nuclear fusion. Nuclear fusion is a very promising technology which is considered to
be safe, with a practically unlimited fuel supply and - in contrast to nuclear fission - safe
in operation.

1.1 | Natural occurring fusion processes

Life on earth depends on our sun. The sun’s light heats the earth to temperatures where
water remains mostly liquid and provides an energy source which is used by plants for
photosynthesis. Each second the sun releases a tremendous amount of energy in the form
of light ( 4 × 1026J) which equals 500 000 years of the total energy consumption of the
human population (1× 1021J). But how does the sun produces its energy ? The answer

3



4 Chapter 1: Introduction

Figure 1.1: Picture of our sun in the visi-
ble spectra taken at February 28, 2013 [im-
age credit : NASA]. The sun is a hot glow-
ing ball of gravitational bound plasma with a
surface temperature of 6000K. The energy
is produced in the sun’s core, where the tem-
perature reaches up to 15.2 Million Kelvin,
allowing the ions to overcome the electro-
static repulsion and the fusion of hydrogen
into helium. It is estimated that the sun’s
fusion process has lasted for over 4.6 billion
years and will continue to do so for another
5 billion years.

to this question wasn’t found until von Weizsäcker (1937) and von Weizsäcker (1938).
Our sun shown in Fig. 1.1 mainly consist of ionized hydrogen particles (97%) with a
fraction of ionized helium particles. At the sun’s core, the temperature and density
is large enough so that the hydrogen ions are fast enough to overcome the repulsive
electrostatic force between each other and come close enough to form a diproton. In
most cases, the diproton quickly decays again into separate protons, however, within a
very small likelihood the weak nuclear force triggers the β+ decay of one proton into a
neutron and forms a deuteron given by the following reaction process

1
1H + 1

1H → 2
1D + e+ + νe + 0.42 Mev , (1.1a)

e− + e+ → 2γ + 1.02 MeV , (1.1b)

where 1
1H is the ionized hydrogen and 2

1D denotes a deuteron, an isotope of the hydrogen
consisting of a proton and neutron, νe is an electron neutrino and e+ is the positron
which is formed during the β+ decay of the diproton. Once a deuteron is produced, the
following reaction process which is know as the proton-proton-chain I is much faster as
it is governed by the strong nuclear force, namely

2
1D + 1

1H → 3
2He + γ + 5.49 MeV , (1.2a)

3
2He + 3

2He → 4
2He + 21

1H + 12.86 MeV , (1.2b)

where He is helium nuclide. Overall light elements are fused into heavier elements with a
large release of energy through radiation and kinetic energy of the nuclides. This fusion
reaction process releases an energy, which for 1g of hydrogen equals the burning energy
of 74 tons of coal.

The sun is not the only star which gets its energy from the fusion process, indeed all
the stars in the universe are powered by fusion processes, although the fusion process
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may be different depending on the size of the sun and age, e.g. once the hydrogen is
nearly depleted, the sun’s core does not produce enough energy to counterweight the
gravitational pull, the core contracts and heats up. If temperature rises to around 42
Million Kelvin, helium burning starts, where helium fuses into fluorine. However, once
again the helium is depleted, the core contracts again and fluorine burning is started.
One might think that this process continues infinitely, however, this is not the case. The
yield from fusion of hydrogen is far larger than the fusion of helium, due to the increased
electrostatic repulsion of the double-charged helium. The limit, where energy is gained
through fusion is reached for iron 56

26Fe, for heavier elements, fusion requires energy while
fission becomes beneficial.

1.2 | The sun in a bottle

The first known man made fusion was achieved Nov 1, 1952 at the Eniwetok Atoll,
namely the ignition of the first hydrogen bomb. In order to achieve fusion the hydrogen
bomb uses a staged approach, where an initial nuclear fission bomb is ignited. The
radiation pressure from the fission bomb compresses and heats up a lithium / deuterium
mixture and provides the neutrons that are absorbed by the lithium and trigger a fission
reaction of the lithium into tritium. The tritium then fusions with the deuteron to
helium releasing a large amount of energy.

However, achieving a controlled nuclear fusion for non-military usage proved to be
much more difficult. The sun achieves the condition suitable for the sustained fusion
process through its immense size, which compresses the gas through the gravitational
force, thus leading to a high temperature and density at the center. On earth, we
have to rely on an other mechanism to confine the plasma. However, we cannot simply
confine the plasma in a closed box, as we face the problem that no material is known,
which is capable of withstanding the immense pressure and temperature required for the
fusion process over a long time. Instead, in the study of magnetically confined plasmas,
the property, that a hot gas loses its electrons and becomes ionized is exploited. Ionized
particles follow magnetic field lines, which are constructed in such a way that the particles
are trapped and any contact with the machine’s wall is avoided.

Various configurations have been developed, where the most popular ones being the
Tokamak, the Stellarator, and the Heliotron. In the Tokamak outer coils generate a
toroidal magnetic field in a donut shape configuration. Additionally, a transformer is
placed in the center of the Tokamak to induce a current in the plasma, which creates
an inner magnetic field which compresses the plasma through a pinch effect. However,
compressing the plasma by the magnetic field is similar to squeezing a balloon — it tries
to escape in various direction — leading to an instability. Lawson (1957) showed that a
successful operation of the Tokamak for energy generation depends approximately only
on plasma triple product given by the confinement time τc, the plasma density ne and



6 Chapter 1: Introduction

Figure 1.2: Improvement of the plasma triple
product in over three decades shows an expo-
nential growth similar to the famous Moore’s
law known in computer science [image credit :
EFDA]. Lawson showed that a self-sustaining fu-
sion reaction (so-called burning plasma) requires
the plasma triple product to exceed neTτe >
1021keVs/m3. A further improvement of the
plasma triple product will come from a new gen-
eration of fusion machines such as the now being
built ITER Tokamak in Cadarache, France.

the temperature Te. Although the first experiments were promising, the plasma triple
product was many orders of magnitude smaller than is required to achieve fusion.

During the period of more than 50 years scientists improved their understanding of
magnetic plasma confinement and steadily increased the triple product. However, ev-
ery increase of the temperature and/or density most often came along with new in-
stabilities, which had to be understood and controlled which made progress a tedious
task. In Fig. 1.2 the progress of the triple product is shown for over more than half a
century. Improvements in plasma confinement theory, better numerical modeling, and
better/larger experiments increased our understanding of a confined plasma and allowed
the increase of the plasma triple product. It is anticipated that for the next generation
machines, such as ITER, finally we will be able to have a positive net energy balance,
where the energy output from the fusion inside the plasma is larger than the energy
injected to heat the plasma. The next machine on the road map, the ITER sketched in
Fig. 1.3, is a next experimental Tokamak device, build by an international collaboration
between nine participating countries. The goal of ITER is to show the viability of nu-
clear fusion for electricity production. If the experiments will be successful, it will open
the way for DEMO, a hypothetical Tokamak, whose goal is to show the viability of the
Tokamak for industrial scale electricity production. However, still many hurdles have to
be taken before we benefit from electricity produced through fusion inside the Tokamak.
One remaining major hurdle are turbulences on various scales and their interaction with
each other, which strongly increases heat and particle transport from the hot plasma
core to the cooler plasma edge and thus drastically reduces fusion efficiency and the
achievable fusion triple product.
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Figure 1.3: Sketch of the ITER Tokamak ves-
sel [image credit : ITER Organization (2011)].
The hot plasma is magnetically confined in the
torus shaped chamber. The toroidal magnetic
field is produced through superconducting coils.
In the center of the torus is the solenoid — the
primary coil — where an increasing current
is driven to induce a current in the secondary
coil: the plasma. Further, various heating and
diagnostics systems are shown.

Figure 1.4: Leonardo da Vinci impres-
sions on turbulence. We find a broad scale
of eddy sizes. Small eddies are moved by
larger eddies, which feed along the larger ed-
dies. Smaller eddies are moved by large ed-
dies and small eddies, however have no in-
fluence on the larger eddies. Even smaller
eddies are finally influenced by shear (and
in some cases bulk) viscosity.

1.3 | Turbulence

Turbulence is described as “the most important unsolved problem of classical physic”
by the famous theoretician Richard Feynman. Turbulence can be observed in many
aspects of everyday life, such as river (wind) flow or boiling water. Leonardo da Vinci,
the famous polymath in the Renaissance period, was one of the first who characterized
turbulence, when he observed how water from a pipe drops into a pond. He sketched
his observation (see in Fig. 1.4) and described his impression of turbulence as:

The small eddies are almost numberless, and large things are rotated only
by large eddies and not by small ones, and small things are turned by both
small eddies and large.

What Leonardo da Vinci described is now known as a hierarchy of eddies and the dissi-
pation of energy through an energy cascade. Here, the energy injects at the large scales
and forms large eddies, such large eddies feed small eddies, these small eddies feed even
smaller eddies, and so on, until the energy is finally dissipated away by viscosity. Tur-
bulence has the further properties: imagine a ball thrown into the pond. The ball will



8 Chapter 1: Introduction

follow the motion of large eddies. However, on a smaller scale, the ball’s motion will
look randomly, chaotic and non-determinant. This property makes a general theory of
turbulence difficult to obtain, and limits it to a statistical description.

Turbulence also arises inside the plasma in the Tokamak, which shares many simi-
larities to fluids. The origin of plasma turbulence is many fold, e.g., in the Tokamak,
plasma is not static but is differentially rotating in the toroidal and poloidal directions.
If the gradient of the angular velocities is large enough, the Kelvin-Helmholtz instability,
which is a classic hydrodynamics instability, is excited and leads to turbulence.

The temperature and density gradients from the plasma core to the plasma edge leads
to another instability, the so-called temperature gradient instability, which arises on very
small scales of the order of mm for the ions and sub-mm order for the electrons and
is thus termed micro-scale instability. The micro-scale turbulences is accompanied by
a turbulent transport of heat and particles from the hot and dense center region of the
plasma to its cooler and less dense outer edge. The heat and particle flow attributed
to turbulent transport are of many orders of magnitude larger than a simple diffusion
process would suggest – with a bad impact on plasma confinement performance. Thus,
the understanding of turbulent transport and its reduction or suppression is crucial for
a successful Tokamak operation.

Studying the plasma turbulence originating from the temperature gradient instabili-
ties inside the Tokamak is a very challenging task because unlike fluid turbulence, the
plasma in the core region of the Tokamak is mainly collisionless and assuming a Gaussian
velocity distribution is not justified. To investigate the plasma turbulence accurately, it
is insufficient to evolve moments of the phase space distribution, such as density, mo-
mentum, and energy; but the phase space distribution itself has to be evolved in order
to accurately account for kinetic effects of the plasma such as finite Larmor radius and
Landau damping. However, to investigate these microscale turbulences, we need an
advanced theory; and the name of this theory is gyrokinetics.

1.4 | Outline of this thesis

This thesis studies the microscale turbulences that arises from the ion and electron
temperature gradient in magnetically confined fusion plasmas using a massive parallel
gyrokinetic simulation code. The outline of the thesis is the following :

• In chapter 2 we outline the derivation of the gyrokinetic Vlasov equation and the
gyrokinetic Poisson’s and Ampere’s equation.

• In chapter 3 we describe the discretization of the gyrokinetic equation system
and discuss the various modules of the numerical solver gkc++ developed during
this PhD study. As the computations require a massive parallelization effort, we
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present the parallelization methods and their benchmarks obtained on state-of-
the-art supercomputers.

• In chapter 4 we discuss Landau damping in the linearized, discretized gyrokinetic
Vlasov-Poisson equation system. We find that the discretized collisionless system
can not reproduce certain damping characteristics properly, as the collisionless
Landau damping originates from the phase-mixing of semi-stable Case-van Kam-
pen eigenmodes which restricts damping within a finite recurrence time. The ad-
dition of a small collisionality through the Lenard-Bernstein operator damps the
recurrence and for a large enough collisionality, recurrence disappears and Landau
damping arises through an eigenmode of the equation system itself. Finally, we
investigate whether the stabilization mechanism through linear mode-coupling of
stable and unstable modes is affected by the Landau damping mechanism: phase-
mixing in the collisionless case or a Landau eigenmode in the (weak) collisional
case.

• In chapter 5 we study the linear properties of the ion and electron temperature
gradient instability by solving numerically the gyrokinetic dispersion relation in
the two-dimensional sheared slab geometry in form of a nonlinear eigenvalue prob-
lem. Multiple branches of the solution are investigated including the so-called
short-wavelength instability. The difference between the case with adiabatic and
kinetic electrons is emphasized and parameter scans are performed to understand
the influence of the electron temperature gradient and electron mass on the ion
temperature gradient instability. Finally, we investigate nonlinear properties by
solving the gyrokinetic equations as an initial value problem using the gkc++ code.

• In chapter 6 we investigate the multi-scale interaction between the ion temper-
ature gradient and a static magnetic island. The magnetic island triggers the
geometrical coupling between the modes of the ion temperature gradient leading
to its stabilization. However, we find that once a critical island width is exceeded,
the short-wavelength region of the ion temperature gradient is strongly destabi-
lized. The destabilization mechanism is elucidated using a minimal model and we
deducted that the destabilization mechanism shares similarities to the reversed-
sheared slab excitation. For the nonlinear ion temperature gradient evolution, we
observe a drastically increase of heat flux due to the magnetic island perturbation.

• In chapter 7 we conclude our research efforts and give several suggestions for the
extension of this research.

• In the appendix we derive the analytical solution of the dispersion relation and
benchmark it with gkc++ to confirm its correctness.

The author wishes a pleasant read.





2 | The gyrokinetic Vlasov–Maxwell equations

A magnetic confined fusion plasma inhibits various instabilities over a wide range of
spatial and temporal scales. An overview of the most important instabilities and their
spatial-temporal location in the Tokamak is shown in Fig. 2.1. The largest spatial scale is
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Figure 2.1.: The instabilities in a Tokamak plasma spans multiple order of magnitudes in the
spatial and temporal scales. Understanding these instabilities, and their interaction between them
is crucial for a successful operation of a Tokamak [adapted from Idomura et al. (2006)].

the machine size scale length l ∼ a, on which the slowly evolving magneto-hydrodynamics
(MHD) instabilities takes place with a time scale of the order of the resistive time scale
ω ∼ ωr. These large scale MHD instabilities are changing the general topology of the
equilibrium field through the reconnection of the magnetic field lines, which leads, e.g.,
to kink modes or the formation of magnetic islands. The next major spatial scale, termed
micro-scale, is the scale of the ion temperature gradient instability (ITG), which is of a
relatively low frequency (diamagnetic frequency) ω ∼ ω?i and with a spatial scale which
is of the order of the gyro-radius of the ions l ∼ ρi. This ITG instability is assumed to
be the dominant contribution to the anomalous heat fluxes observed in Tokamaks. At
the same spatial scale l ∼ ρi, but with a frequency of the order of the gyro-frequency

11
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of the ions Ωi, is the instability which arises from the gyro-motion of the ions along the
equilibrium field lines. This scale is of special interest for heating the plasma through
the ion cyclotron resonance heating (ICRH). Similar to the ITG, the electrons inhibit an
instability which is called the electron temperature gradient (ETG) instability, however,
its spatial scale is an order of the ion-electron mass ratio (

√
mie ∼ 40 for a hydrogen

plasma) smaller l = ρi/
√
mie compared to the ions, and its (real) frequency is larger

by ωe = −ωi
√
mie. As the ITG, the ETG is thought to contribute significantly to the

anomalous fluxes.

A successful operation of a Tokamak requires the control of all the instabilities and
turbulences involved from the various spatial-temporal scales. However, tracking the
evolution of instability in the whole spatial-temporal scale in a numerical simulation is
not feasible for a machine size simulations as the required computational cost is of many
orders of magnitude larger than is feasible today. Thus models have to be developed in
order to decouple various scales from each other, but by still keeping the most important
physics. Here, we are mainly interested in studying the evolution of micro-instabilities
such as the ETG and the ITG. However, the electrons and ions are performing gyro-
motion along the guiding field, which is on the fast-time scale, while the ITG/ETG
instabilities themselves are rather slowly evolving low-frequency instabilities. Thus, we
seek a perturbation theory, which removes the fast time scale from the gyro-motion but
which still keeps the important physical effects from the finite gyro-radius attributed to
the gyro-motion. This is done by the gyro-averaging procedure.

2.1 | The gyro-averaging procedure

In order to derive the gyrokinetic equations, we use a so-called gyro-averaging procedure,
which decouples the fast gyro-motion of the electrons and ions and describes the time
evolution of their gyro-centers instead as shown in Fig. 2.2, where we exploit the so-
called gyrokinetic ordering, which is normally satisfied in a Tokamak core plasma. The
gyro-averaging procedure consists of several steps, which are shown in Fig. 2.3. The
main assumptions are, e.g., Brizard and Hahm (2007), that a magnetized plasma obeys
the following orderings,

ω

Ωi
∼ φ1

φ0
∼ |A1|
|A0|

∼ ∇B0

B0
∼ O(ε) ,

ρ

l
∼ O(1) , (2.1)

for a smallness parameter ε � 1. The first term, states that the frequency of interest,
e.g., the drift frequency, is small compared to the frequency of the gyro-motion Ωi. The
second and third term state that the perturbation of the electrostatic potential φ1 and
magnetic field line fluctuations A1 are small compared to the equilibrium quantities,
such as the guiding field A0. The fourth term states that the gradient of the guiding
field is small compared to the equilibrium magnetic field. However, we allow fluctuations
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b0

(a) Gyro-motion over field line

b0

(b) Evolution of gyro-rings

Figure 2.2.: Gyrokinetics removes the gyro-angle dependence and instead threads the evolution
of gyro-rings [adapted from Görler (2009)]. The gyro-ring size will depend on µ, while the speed
of motion along b0 on v‖ coordinate.

perpendicular to the guide field with a length scale l to be O(1) over the gyro-radius
ρ. This is considered as the usually gyrokinetic ordering. We note however that many
of these orderings have been relax over the time, for example, to investigate plasmas
including a strong E×B shearing flow by Miyato et al. (2009), the inclusion of centrifugal
and Coriolis forces arising from plasma rotation by Peeters et al. (2009), or relaxing
ω/Ωi, in order to included the effects of the cyclotron motions of the ions/electrons
to investigate ICRH in so-called high-frequency gyrokinetics investigated by Kolesnikov
et al. (2007).

Once a plasma satisfy the gyrokinetic ordering, the gyro-averaging procedure can
be applied to remove the gyro-angle dependency and thus the fast time scale from
the Vlasov–Poisson equation system. The modern formulation of the gyro-averaging
procedure was pioneered by Cary and Littlejohn (1983) and Hahm (1988) and is based on
the Lie transform method. The general strategy follows a two-step approach. In the first
step, we start from the single-particle Lagrangian in an electromagnetic field and perform
a coordinate transformation of the particle Lagrangian into guiding-center coordinates,
where we absorb the gyro-angle in O(1) by a proper choice of the gauge function S.
In the second step, we apply the Lie transform method to transform into gyro-center
coordinates, where the O(ε) terms of the single-particle Lagrangian are now included but
approximated by their averaged quantities over one gyro-motion, see Fig. 2.2. Finally
we use the Euler–Lagrange equations to derive the gyrokinetic Vlasov equation.
Please note that for the derivation of the gyrokinetic equation system, for Sec(2.2) -
Sec(2.5), we will closely follow the procedure as given by Dannert (2006) with only minor
notational differences.
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Single Parti-
cle Lagrangian

One-form

Guiding cen-
ter one-form

Equilibrium one-form Perturbed one-form

Gyro-center one-form

Equations of motion

Coordinate transformation

gyro-phase average Lie transformation

Euler-Lagrange equations

Figure 2.3.: Outline of the gyro-averaging procedure to derive the gyrokinetic Vlasov equations
[adapted from Görler (2009)].

2.2 | The single-particle Lagrangian

A non-relativistic particle in a magnetic field can be described through its Lagrangian
in the particles coordinates x given by

L =

[
mv +

q

c
A(x)

]
· ẋ︸ ︷︷ ︸

sympletic part

−
[

1

2
mv2 + qφ(x)

]
︸ ︷︷ ︸

Hamilotonian part

, (2.2)

where q is the particles charge and m its mass, and φ is the electrostatic potential and A
the magnetic vector potential. Once the Lagrangian is known, the equations of motion
can be found by taking the variations of L,

S = δ

∫
L dt+ dS = 0 . (2.3)

Note that the Lagrangian exhibits a gauge freedom dS due to the fact that adding a
term dS to the Lagrangian leads the action integral Eq.(2.3) invariant, as it is only
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dependent on the endpoints and not a specific path taken. This fact will be later used
in the derivation. In the next step, we absorb the factor dt by creating a one-form γ,
which is defined by γ = γζdz

ζ , where we we use Einstein’s sum convention (meaning we
sum over equal indices of covariant and contravariant components). The one-form of the
Lagrangian in (2.2) is given by

γ =

[
mv +

q

c
A(x)

]
· dx−

[
1

2
mv2 + qφ(x)

]
dt . (2.4)

Once the one-form is formed, the equations of motion can be obtained from the Euler–
Lagrange equations, see Cary and Littlejohn (1983), given by(

∂γξ
∂ζ
−
∂γζ
∂ξ

)
dzξ

dt
= 0 . (2.5)

The importance of the Lagrangian formulation is its independence on the coordinate
system, e.g., the equation of motions do not change by a coordinate transformation
from one choice of a generalized coordinates system to an other choice of generalized
coordinate system. This is manifested by the fact that the action integral in Eq.(2.3) is
itself just a scalar. Due to this invariance, we can write

γµdz
µ = ΓµdZ

µ . (2.6)

Our goal is to find a coordinate system, where our original one-form γ, which includes
all spatial and temporal scales, transforms into a simpler Γ, which does not include the
fast time scale from the gyro-motion.

2.3 | The guiding-center one-form

In the magnetic fusion core plasma, the particles are performing gyro-motion along the
strong magnetic guide field B = ∇ × A. Assuming only small perturbation in the
perpendicular direction, we transform into a more appropriate coordinate system in
order to simplify the Lagrangian L defined in Eq.(2.4). This coordinate system we wish
to transform into is the so-called guiding-center coordinate system shown in Fig. 2.4.
The transformation rules from z = (t,x,v) → Z =

(
t,X, v‖, µ, θ

)
are given by

X = x− ρa , v‖ = b(x) · v , (2.7a)

µ =
mv2
⊥

2B(x)
, a(θ) = (e1 cos θ − e2 sin θ) , (2.7b)

where X is the guiding center coordinate, v‖ is the velocity along the equilibrium
magnetic field line unit vector given by b, such that B = |B| · b(x). The gyro-radius
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Figure 2.4: Sketch of the guiding-center
coordinate X, which maps the particle
coordinates (x,v) to the guiding-center(
X, v‖, µ, θ

)
. Note that a · b0 = 0.

b0

X

x
r

=
ρ
r

ρ is defined by ρ = v⊥/Ω(X), where Ω is the gyro-frequency given by Ω = qB/m.
µ = mv2

⊥/2B0 is the first adiabatic invariant and θ is the gyro-angle. The guiding-center
coordinate system is spanned by (e1, e2,b), where e1, e2 are orthogonal unit vectors
and b is the unit vector in the direction of the guiding field. The inverse transformation
from Z =

(
t,X, v‖, µ, θ

)
→ z = (t,x,v) is given by

x = X + ρ(X)a(θ) , v= v‖b + v⊥c(θ) , (2.8a)

c(θ) = −e1 sin θ − e2 cos θ , (2.8b)

where we used the gyro-kinetic ordering (2.1) assuming only a slow variation of the
background magnetic field.

2.3.1 | Transforming the equilibrium quantities

The transformation of the particle coordinate one-form γ given in Eq.(2.4) to the guiding-
center one-form Γ is achieved by applying the transformation for scalar quantities in
Eq.(2.6).

Γζ = γξ
dzξ

dZζ
, (2.9)

for ζ = (t,x,v). For the first variable t, we note that the do not transform the time

Γt = γt = −1

2
v2
‖ − µB(X)− eφ(X) (2.10)
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Dannert (2006) gives following result for the transformed one-from in Z,

ΓX = γX
dzx

dZX
= mv +

q

c
A(X)−A(X) · a(θ)

µ

B(X) v⊥(X)
∇XB(X) , (2.11a)

Γv‖ = γX
dzx

dZX
= 0 , (2.11b)

Γµ = γX
dzx

dZµ
=

A(X) · a(θ)

v⊥(X)
, (2.11c)

Γθ = γX
dzx

dZθ
=

mv2
⊥

Ω(X)
+ A(X) · c(θ)

q

c

v⊥
Ω(X)

, (2.11d)

where the transform over dzζ=v‖ vanishes, as the particle coordinates one-form γ is
independent of dv. We now introduce the gyro-angle averaging over θ, which states the
average value over one gyro-motion, defined by

Ã =
1

2π

∫ 2π

0
A
(
X, v‖, µ, θ

)
dθ , (2.12)

where A is an arbitrary variable in guiding-center coordinates. Using the gyro-angle
averaging on the one-form in (2.11) gives,

Γ̃X = mv‖b +
q

c
A(X) , Γv‖ = 0 , (2.13a)

Γ̃µ = 0 , Γ̃θ =
mv2
⊥

Ω
, (2.13b)

where the oscillating terms a(θ) and c(θ) drop out to due averaging. Using the gyro-
averaging Thus our zeroth-order one-form in guiding center coordinates

(
X, v‖, µ, θ

)
has

the form

Γ̃0 =
(
mv‖b +

q

c
A
)
· dX +

µB

Ω
dθ −

[
1

2
mv2
‖ + µB + eφ

]
dt , (2.14)

which is now independent on the gyro-angle θ.

2.3.2 | Transforming the perturbed quantities

When deriving Γ̃0, we assumed that the change in the fields (φ,A) within one gyro-
radius is small and can thus be neglected. Now we also take perturbations into account,
by expanding φ = φ0 + φ1 and A = A0 + A1 such that φ1 ∼ ε and A1 ∼ ε and
assuming a vanishing background electric potential φ0 = 0. Thus our one-form in particle
coordinates is written as γ = γ0 + γ1 +O(ε2) with

γ0 =
(
mv +

q

c
A0 (x)

)
· dx− m

2
v2 dt , (2.15)

γ1 =
q

c
A1(x) · dx− q

c
φ1 dt . (2.16)
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The transformation of γ0 → Γ0 has been accomplished in the previous section and is
thus unchanged. Transforming the first order one-form γ1 into guiding-center coordinates
gives

Γ1 =
q

c
A1 · dX +

A1 · a
v⊥

dµ+
mv⊥
B0

A1 · c dθ − eφ1 dt . (2.17)

The first-order one-form Γ1 now includes oscillatory terms through the c dθ component.
Simply using the average over the gyro-motion (2.12) is not allowed, as for the gyrokinetic
ordering (2.1) we assumed the gradients of the perturbed quantities to be of O(ε). Thus,
in order to remove the oscillatory term, we will thus make use of the Lie transform
method.

2.4 | Transformation into the gyro-center coordinates

We seek for a transformation which removes the gyro-angle (θ) dependence in Γ1 in
Eq.(2.17). This best done using the Lie perturbation method1 which gives a well defined
procedure on how to transform our guiding-center one-form Γ1 into a gyro-center one-
form Γ̄1 which is independent of the gyro-angle θ. As the zeroth-order one-form Γ0

1An individual Lie transform is defined as the near-identity transform Tn and its inverse T−1
n which

can be written in the form

Tn = exp

(∑
n

εn

n!
Ln

)
or T−1 = exp

(
−
∑ εn

n!
Ln

)
, (2.18)

where Ln is the Lie derivative and ε� 1 is a small parameter of the problem. We can combine many
individual Lie transforms into a Lie transform which can be written as

X̄µ = TXµ , (2.19)

with T = . . . T3T2T1 and Xµ the guiding-center coordinate system and X̄µ the Lie transformed gyro-
center coordinate system. The guiding-center one-form Γ = ΓµdX

µ for example transforms under
the Lie transform according to the rule

Γ̄ = T−1Γ + dS . (2.20)

to the gyro-center one-form Γ̄ and dS is once again the gauge function. The operator Ln acts on
one-forms as

(Lnγ)µ = gσn

(
∂γµ
∂zσ
− γσ
∂zµ

)
. (2.21)

where gµn is the generator of the Lie transform Tn, which satisfies ∂Xµ/∂εn = gµn (X) and Γ = ΓµdX
µ,

where Γ is the one-form in gyro-center coordinates Γ = ΓθdX
θ, and Xθ is the new coordinates. The

choice is the generating function g is completely arbitrary, so with gµn and Sn we have 2N + 1
components to bring Γn to the desired form. But we have to be aware of that whatever we choose
for gµn and Sn, it will later affect the polarization equation for φ and A‖. By expanding Γ =
exp (−εLg)γ + dS using γ = γ0 + εγ1 + ε2γ2 + . . . and the expansion of the exponential coefficient
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in the guiding-center coordinates in Eq.(2.14) does not include any dependence on θ,
the zeroth-order one-form in the gyro-center coordinates is equal, i.e. Γ̄0 = Γ0. The
transformation rule for the Lie transform to transform Γ1 into Γ̄1 is given by

Γ̄1ζ = Γ1ζ − gξ1
(
∂Γ0ζ

∂Zξ
−
∂Γ0ξ

∂Zζ

)
+
∂S1

∂Zζ
, (2.23)

where Γ1 is our perturbed one-form, Γ0 our zeroth-order one-form and gξ1 our Lie genera-
tors and ζ =

(
X, v‖, µ, θ

)
. We now have to find our generators gξ so that the dependence

of the gyro-angle is removed. We do not transform time, thus our generator for the time
is given by gt1 = 0. Previous calculation leading to Eq.(2.13a) showed that the terms
Γ0v‖ = 0 and Γ0µ = 0. For Γ̄1θ, Γ̄1µ and Γ̄1v‖ Dannert (2006) showed that by applying
Eq.(2.23), we get

Γ̄1θ =
mv⊥ (X, µ)

B0
A1 (X + r) · c(θ)− gµ1

mc

q
+
∂S1

∂θ
, (2.24a)

Γ̄1µ =
A1 (X + r) · a(θ)

v⊥ (X, µ)
+ gθ1

mc

q
+
∂S1

∂µ
, (2.24b)

Γ̄1v‖ = gX1 ·mb +
∂S1

∂v‖
. (2.24c)

If we choose our generators gµ1 , gθ1 and gX1 equal to

gµ1 =
q

mc

(
mv⊥
B0

A1(X + r) · c +
∂S1

∂θ

)
, gX1 · b0 = − 1

m

∂S1

∂v‖
, (2.25a)

gθ1 = − q

mc

(
A(X + r) · a

v⊥
+
∂S1

∂µ

)
, (2.25b)

we get Γ̄1θ = Γ̄1µ = Γ̄1v‖ = 0 for the corresponding gyro-center components. Finally,
we need to calculate the one-form components Γ1,X and Γ1,t. The gyro-center one-form
Γ1,X can be calculated to

Γ̄1X =
q

c
A1 (X + r) +

q

c
gX1 ×B?

0 − g
v‖
1 mb0 +∇S1 , (2.26)

−εLg = L0 + εL1 + ε2L2
2 + . . . , we can break up Γ into its orders which gives.

Γ̄0 = dS0 + Γ0 , (2.22a)

Γ̄1 = dS1 + Γ1 − L1Γ0, , (2.22b)

Γ̄2 = dS2 + Γ2 − L1Γ1 + ( 1
2
L2

1 − L2)Γ0 , (2.22c)

Γ̄3 = · · · , (2.22d)

where we already fixed dS0 to reduce the gyro-angle dependence by one-order. So the first order the
GC coordinates and GY coordinates are equivalent.
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where we defined the extended vector potential A?
0 and extended magnetic field B?

0 as

A?
0 = A0 +

mc

q
v‖b , B?

0 = ∇×A?
0 , (2.27)

to simplify. If we choose

g
v‖
1 =

1

mB?
0‖

(q
c
B?

0 · ˜A1 (X + r) + B?
0∇S1

)
, (2.28a)

gX1 = − 1

B?
0‖

(
b0 × ˜A (X + r) +

1

m

∂S

∂v‖
B?

0 +
c

q
b0 ×∇S1

)
, (2.28b)

where ˜A1 (X + r) is defined as (respectively for φ)

˜A1 (X + r) = A1 (X + r)− 〈A (x + r)〉 , (2.29)

Eq. (2.26) simplifies to Γ̄1X = 〈A1 (X + r)〉, where 〈 〉 denotes that A is gyro-averaged
using the operator defined in Eq.(2.12) and includes only the oscillatory part. The only
remaining term is the one-form of the time component Γ̄t, which is given by

Γ̄1t = Γ1t − gX1
∂Γ0t

∂X
− gv‖1

∂Γ0t

∂v‖
− gµ1

∂Γ0t

∂µ
− gθ1

∂Γ0t

∂θ
− ∂S1

∂t
. (2.30)

Dannert (2006) argued that the derivatives ∇S, ∇‖, ∂v‖S, ∂tS can be dropped as they
are of the order of O(ε), except for ∇θS, which is of the order of O(1). If we choose the
gauge function to

∂S1

∂θ
=

1

Ω

(
q ˜φ(X + r) +

1

B0‖

(
b0 × ˜A1(X + r)

)
· ∇(µB0)

−
qv‖

c

B?
0‖

B?
0‖

˜A1(X + r)− q

c
˜A1(X + r) · u⊥

)
,

(2.31)

all oscillating terms in Eq.(2.30) are canceled through the gauge function and we arrive
at

Γ̄1t = −e 〈φ(X + r)〉+
q

c
〈A(X + r) · u⊥〉 . (2.32)

Combining the Γ̃0 and Γ̃1 terms together, gives the gyrokinetic one-form,

Γ̃0,1 = Γ̃0 + Γ̃1 =
(
mv‖b0 +

q

c
A0 (X) +

q

c
〈A1〉

)
· dX +

µmc

q
dθ

−
(

1

2
mv2
‖ + µB0 (X) + q 〈φ1〉 −

q

c
〈A1 · u⊥〉

)
dt .

(2.33)

Note that the equilibrium quantities are taken at the gyro-center X, while the perturbed
quantities are taken at the position X + r.
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2.5 | The gyrokinetic Vlasov equation

Liouville’s theorem states that the phase-space over the trajectory is conserved, so that

df

dt
= 0 , (2.34)

which for our gyro-center coordinates system (X, v‖, µ) results in

∂f

∂t
+ Ẋ · ∇f + v̇‖

∂f

∂v‖
+ µ̇

∂f

∂µ
= 0 . (2.35)

The derivatives of each coordinate can be obtained by solving the Euler–Lagrange equa-
tions (2.5) to get the equations of motion, namely(

∂γξ
∂ζ
−
∂γζ
∂ξ

)
dzξ

dt
= 0 . (2.36)

The calculations were done in detail by Szepsi (2012), thus we only present his results
here :

Ẋ : Ẋ = v‖b0 +
B0

B?
0‖

(vχ + vD) , (2.37a)

θ : v̇‖ =
Ẋ

mv‖

[
q 〈E〉 − µ∇

(
B0 +

〈
B1‖
〉) ]

, (2.37b)

µ : µ̇ = 0 , (2.37c)

v‖ : θ̇ = Ω− q

mc
∂µ

(q
c

〈
A1‖

〉
v‖ − q 〈φ1〉 − µ

〈
B1‖
〉)

, (2.37d)

where we introduced the common definition of the electric field E = −∇〈φ〉−b0c
−1∂t

〈
A1‖
〉
,

and the generalized velocity vD = vC + v∇B0 , with the following definitions:

vc =
v2
‖

Ω
(∇× b0)⊥ Curvature drift , (2.38a)

v∇B0 =
µ

mΩ
b0 ×∇B0 (equilibrium) grad-B drift , (2.38b)

and vχ = vB1⊥ + vχ + v∇B1‖ , with

vB1⊥ =
〈B1⊥〉
B0

v‖ streaming along B1⊥ , (2.39a)

vχ = − c

B2
0

∇χ×B0 generalized E×B drift , (2.39b)

v∇B1‖ =
µ

mΩ
∇b0 ×

〈
B1‖
〉

(perturbed) grad-B drift , (2.39c)
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where we introduced the generalized fields given by

χ = 〈φ〉 −
v‖

c

〈
A1‖
〉

+
µ

q

〈
B1‖
〉

. (2.40)

We note that from µ̇ = 0, we see indeed that µ is indeed an adiabatic invariant in
gyrokinetics. The gyrokinetic Vlasov equation (2.35) with the terms can be applied to
geometries consistent with the gyrokinetic ordering. As throughout this thesis we will
restrict ourselves to the slab geometry, all terms arising from the curvature or magnetic
field gradients vanishes, i.e. vc = v∇B0 = 0. Also, as we do not take perturbations of
the parallel magnetic field component into account, we set B1‖ = 0 and B0/B0‖ ∼ 1.
The simplified gyrokinetic Vlasov equation for slab geometry then takes the form

∂f

∂t
= −

(
v‖b0 + vχ

)
∇f −

(
v‖b0 + vχ

)
· q 〈E〉 ∂f

∂v‖
. (2.41)

2.5.1 | The δf equation in local slab geometry

To simplify our equation system, we note that the transport time scales are long com-
pared to the turbulence fluctuations, so that we can separate the distribution func-
tion f into a static Maxwellian part f0 and a perturbed, time-dependent part f1, i.e.
f1/f0 ∼ O(ε), so that f = f0 + f1. This procedure is known as the δf split. The
Maxwellian is given by

f0(X, v‖, µ) =
n(X√

2πmT (X)
3 exp

(
−mv‖

2 − 2µB0

2T (X)

)
, (2.42)

which is assumed to only have radial (X) dependence. For our local setup investigated
here, we assume a radial narrow flux-tube, where the density n and temperature T can be
assumed constant, however, we will keep the corresponding gradients. To overcome the
problem calculating the time derivative ∂tA1‖ on the right-hand side of the Vlasov equa-
tion, a so-called canonical momentum approach is used, where a modified distribution
function g1 and an additional auxiliary variable G1 are defined,

g1 = f1 −
q

T
v‖
〈
A1‖
〉

, G1 = g1 + qχf0 . (2.43)

The time derivative is now absorbed in the left-hand side of the Vlasov equation, which
results in

∂g1

∂t
= vχ · ∇f0 + vχ · ∇G1 + v‖b0 · ∇G1 +

b0

m
· q 〈E〉 ∂f1

∂v‖︸ ︷︷ ︸
O(ε)

. (2.44)
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Where from now on the parallel nonlinearity is neglected as in the usual gyro-ordering
it is of O(ε), however, it needs to be included in order to monitor the energy conserva-
tion of the gyrokinetic equation system as discussed by Brizard (1989). Using the δf
approximation on Eq.(2.41) gives for the Maxwellian term

∇f0 =

[
∇n
n

+

(
mv2
‖ + 2µB0

2T
− 3

2

)
∇T
T

]
f0 , (2.45a)

∂f0

∂v‖
= −

mv‖

T
f0 , (2.45b)

∂f0

∂µ
= −B0

T
f0 . (2.45c)

Defining ωn = ∇n/n and ωT = ∇T/T . The δf Vlasov equation is given by

∂f1

∂t
=− c

B0

[
ωn + ωT

(
mv2 + 2µB

2T
− 3

2

)]
∂χ

∂y
f0︸ ︷︷ ︸

vχ·∇f0

+ v‖
∂G1

∂z︸ ︷︷ ︸
v‖b0·∇G1

+
c

B0

(
∂χ

∂x

∂G1

∂y
− ∂χ

∂y

∂G1

∂x

)
︸ ︷︷ ︸

vχ·∇G1

,

(2.46)

where the last terms is the so-called E × B nonlinearity. For the normalization of the
equation to make it suitable for numerical simulations the reader is referred to Dannert
(2006).

2.6 | The field equations

To close the Vlasov equation (2.44), we have to determine the perturbed fields φ1 and A1‖
from the field equations. Poisson’s equation (Ampere’s equation) connects the zeroth-
order moment (first-order moment) of the distribution function f1 to the corresponding
field φ1 (A1‖). However, as Poisson’s equation and Ampere’s equation are formulated in
the particle coordinates x, but our distribution function f1 is defined in the gyro-center
coordinates X̃, we need to employ first the Lie transform method to pull-back the distri-
bution function from the gyro-center coordinates X̃ to the guiding center coordinates X.
A spatial ring-average operator δ is then used to link the particle coordinates x of the
field equations to the guiding-center coordinates X. The procedure is shown in Fig. 2.5.
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Field equations x fσ(X̃, v‖, µ)

Field equations (X)

Pull-back (Lie transform)
fσ(X,V) = T ?fσ( ˜X, v‖, µ)

Ring average
δ (X + r− x)

Figure 2.5.: The field equations have to be first formulated in guiding center coordinates. Using
the inverse Lie transform, the gyro-center phase-space function is transformed from gyro- to
guiding-center coordinates.

Figure 2.6: Schematic description of
the δ(X + r − x) function : density
of the guiding center expressed through
densities on the particle coordinates
[adapted from Scott (2006)].

x

X

r

2.6.1 | Poisson’s equation

The electric potential is calculated using the non-relativistic Poisson’s equation (in cgs-
units),

∇2φ(x) = −4π
∑
σ

qσnσ(x) , (2.47)

where qσ is the charge of the species σ and nσ is the number density. All variables in
above equation are evaluated at the particle coordinates x. Following Fig. 2.5, we first
transform above equation to the guiding center coordinates we employ the spatial ring
average δ(X + r − x) operator, has the meaning shown in Fig. 2.6. The density is the
zeroth/zeroth-order moment of the distribution function, with dZ = dX dv‖ dµdθ, we
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get

nσ(x) =

∫
fσ(x,v) dv (2.48a)

=
B0

mσ

∫
δ(X + r− x)fσ(X, v‖, µ, θ)dZ . (2.48b)

Note that the integral is over the whole phase-space, however, the ring-average operator
acts only on X. The additional term B0/mσ arises from the Jacobian of the transform.
Here, we used f(X, v‖, µ, θ), but as we used for the Vlasov equation the phase space

distribution is defined at the gyro-center coordinates f(X̃, v‖, µ, θ), we have to transform

from X̂→ X. This is done using the Lie transform:

fσ(X, v‖, µ) = fσ(X̃, v‖, µ) + gζ1
∂

∂ζ
fσ(X̃, v‖, µ) . (2.49)

The sum over the Lie generators is of the order of ε, thus we apply again the δf split
and keep terms only up to order ε. The transformation part now only involves the
Maxwellian part f0 given in Eq.(2.45) and its derivatives in Eq.(2.42). Using our previ-
ously calculated Lie generators in Eq.(2.25a-c) and Eq.(2.28) and neglecting any radial
variation of the Maxwellian part, we get

gX1
∂f0σ

∂X
= O(ε2) , gµ1

∂f0σ

∂µ
= − 1

T

(
qφ̃− qv‖

〈
A1‖
〉)
f0σ , (2.50a)

g
v‖
1

∂f0σ

∂v‖
= −q

v‖

T

〈
A1‖
〉
f0σ , gθ1

∂f0σ

∂θ
= 0 , (2.50b)

where last term dropped as ∂f0/∂θ = 0. Thus Eq.(2.49) results in

f(X) = f(X̃)− q

T
(φ1 − 〈φ1〉) f0 , (2.51)

where
〈
A1‖
〉

cancels out and we replaced the oscillating part with its original definition

φ̃ = φ(X + r)− 〈φ(x + r)〉. Using now Eq.(2.47) with Eq.(2.49) and Eq.(2.48a) gives

n(x) =
B0

m

∫
δ(X + r− x)

{
f(X) +

q

T
[φ (X + r)− 〈φ (X)〉] f0

}
dZ . (2.52)

Finally the integral term has to be evaluated. The first term only depends on spatial
coordinate variables and can be directly integrated, which gives the averaged density
over the gyro-ring as

〈n〉 =
B0

m

∫
δ(X + r− x) f1 (X) dX dv‖ dµ dθ . (2.53)
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The second term, φ (x), can also be directly integrated to get

B0

m

q

T

∫
δ(X + r− x) φ1 (X + r) f0 dX dv‖ dµdθ =

qn0

T
φ(x) , (2.54)

where n0 is the equilibrium density. The last part is gyro-averaged potential 〈φ (X)〉,
which is is a function of X and µ and the integration gives does get gyro-averaged again
over a Maxwellian background,

〈〈φ〉〉 =
B0

m

∫
δ(X + r− x) 〈φ1 (X)〉 q

T
f0 dX dv‖ dµ dθ (2.55a)

=
B0

m

∫
δ(X + r− x) 〈φ1 (X)〉 q

T
f0 dX dµ dθ , (2.55b)

where in the last step we integrated over the parallel velocity v‖. Plugging above deriva-
tion into Poisson’s equation (2.47) and denoting the corresponding f1 to each species by
σ results in the gyrokinetic Poisson’s equation

λ2
D∇2φ = −

∑
σ

[
〈nσ〉+ φ− 〈〈φ〉〉σ

]
(2.56)

where we defined the Debye length by λ2
D = T/

(
4πn0q

2
)
. In the case when ion dynam-

ics are investigated, we can usually assume λD ≪ 1, and the left-hand side becomes
negligible, in that case, above equation is also known under the name quasi-neutrality
condition.

2.6.2 | Ampère’s equation for A1‖

For the Ampère’s equation, we follow a similar procedure as for Poisson’s equation.
Ampere’s equation is given by (in cgs-units)

∇2A− 1

c2

∂2A

∂t
= −4π

c
j , (2.57)

where A is the magnetic vector potential. For Ampere’s equations the perpendicular
currents j⊥ are usually much smaller than the parallel currents j‖, thus they are usu-
ally neglected (however, it may become important for spherical Tokamaks). The time
derivative can be neglected due to gyrokinetic ordering (low frequency).

∇2
⊥A1‖ =

4π

c

∑
σ

j‖σ (2.58a)

=
4π

c

∑
σ

qσ

∫
v‖fσ (x,v) dv . (2.58b)
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Again, we use the ring-average operator, and the Lie back transform, to get j1‖,σ from

f(X̃, v‖, µ),

j1‖,σ =
B0

mσ
qσ

∫
δ (X + r− x) v‖

[
fσ (X,V) + gζ1

∂

∂ζ
fσ (X,V)

]
dZ (2.59a)

=
B0

mσ
qσ

∫
δ (X + r− x) v‖fσ (X,V) dZ , (2.59b)

where we performed the δf split and found that the terms of the form v‖f0σ are anti-
symmetric in v‖ and thus drop out. Also we assumed no background current from the
Maxwellian. Performing the remaining term in integral (2.59a) gives the gyro-averaged
parallel current

〈
j1‖,σ

〉
=
B0

mσ
qσ

∫
δ(X + r− x)v‖f(X,V) dZ (2.60)

such that the Ampere’s equation (2.58a) is given by

∇2
⊥A1‖ = −4πB0

c

∑
σ

qσ
mσ

〈
j1‖,σ

〉
. (2.61)

2.7 | The gyro-averaging operator in Fourier space

The gyro-averaging e.g. for the variable φ(x) can be directly calculated using in Eq.(2.12).
However, after a numerical discretization of the grid, we face the problem that while φ(x)
is part of our computational grid, φ(x+ r) may lie outside. Lee (1987) and Lin and Lee
(1995) suggested therefore that in the case of k2

⊥ . 2, we can use use a 4-point averaging
routine, with a computational cost of O(N), to calculate the gyro-averaging, where the
double-average term is calculated using weighted averages.

For the case we are also interested in short-wavelength phenomenon k⊥ > 2, Nishimura
et al. (2006) and T. Görler et al. (2011) showed that it is advantageous to setup a
gyro-averaging matrix using a finite element basis with Hermite interpolation functions.
The matrix entries can be calculated beforehand without having to know the value of
φ(x). The gyro-averaging is then obtained by a simple matrix-vector product, with a
computational cost of O(N2).

For the case of local simulations with a homogeneous background and a periodic radial
and poloidal domain, we can calculate the gyro-average analytically using following
identity:

〈φ(x)〉 =
1

2π

∫ 2π

θ=0
dθ φ(x) =

1

2π

∫ 2π

θ=0
dθ φ(X + r) . (2.62a)
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Transforming into Fourier space gives

〈φ(k)〉 =
1

2π

∫ 2π

θ=0
dθ

∫
k

dk φ(k) · eik(X+r) (2.63a)

=
1

2π

∫ 2π

θ=0
dθ

∫
k

dk φ(k) · eikXeik·r , (2.63b)

using the usual rule of the scalar product r · k = |r||k| cos θ = ρk⊥ cos θ, with the

definition of k⊥ =
√
k2
x + k2

y results in

〈φ(k)〉 =
1

2π

∫
k

dk φ(k) · eikX
∫ 2π

θ=0
dθ eiρk⊥ cos θ (2.64a)

=

∫
k

dk φ(k) · eikXJ0(λ) , (2.64b)

with λ = ρk⊥. After performing the Fourier back transformation, we get the gyro-
averaged variable in real space. Here, J0 is the Bessel function of the first kind2 shown
in Fig. 2.7a. The gyro-averaging effect on a randomly chosen variable φ(x) is shown
in Fig. 2.8. The double-average over the Maxwellian background can be also expressed
analytically in Fourier space, where the derivation can be found in Szepsi (2012),

〈〈φ(x)〉〉 =

∫
k

dk φ(k) I0(b)e−b · eikX ∼
∫
k

dk φ(k)
b

1 + b
eikX , (2.67)

where b = ρ2
tσ[k2

x + k2
y and I0 is the modified Bessel function. The latter term shows

the Padé approximant which is often used to reduce computational cost as discussed by
Scott (2006). The dependence is shown in Fig. 2.7b.

2.8 | The Lenard–Bernstein collisional operator

Fusion plasmas are essentially collisionless on the timescales relevant within the δf for-
mulation. However, for numerical reasons a Lenard–Bernstein (LB) operator, as given

2 One of the possible definition of a Bessel function of the first kind can be found in Abramowitz and
Stegun (1964):

Jn(z) =
i−n

π

∫ π

0

dθ eiz cos θ cos(nθ) , (2.65)

with n = 0 and substituting above equation with θ′ = θ − π

1

π

∫ 2π

π

dθ eiz cos θ =
1

π

∫ π

0

dθ′ eiz cos(θ′−π) =
1

π

∫ π

0

dθ′ e−iz cos θ′ = J0(−z) , (2.66)

Finally, noting the symmetry property of the Bessel function J0(−z) = J0(z) we get the desired
result.
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(a) Bessel J0 (b) 1− Γ0

Figure 2.7.: The left figure shows the dependence of the J0, where the dashed line shows its
asymptotic expansion with J0(z) ∼ z−1/2. The right figure shows 1−Γ0 used for double-averaging.

by Lenard and Bernstein (1958),

CLB = βC
∂

∂v‖

[
v‖f1 + v2

0

∂f1

∂v‖

]
, (2.68)

is introduced, where v0 is the mean square velocity of the species. The collisionality βc
is usually chosen small, to not influence the simulation results. The LB operator does
conserve the particle number density, however it does not conserve momentum and en-
ergy. For long-time simulations however, we can introduce correction terms as suggested
by Shinsuke Satake and Sugama (2008); Satake et al. (2008) in order to guarantee con-
servation of energy and momentum. Note, that this collisional operator does not take
any gyro-motion into account. A gyro-phased averaged Lenard-Bernstein operator can
be found in Clemmow and Dougherty (1969). Also the LB operator is restricted to col-
lisions in the parallel velocity space, however, a more advanced Lorentz operator which
takes collision in v‖ and µ into account should be included in order to study neoclassical
effects.

2.9 | Observables

Experiments do not have a direct access to the distribution function f1σ, but can measure
the radial particle Γσ and heat χσ fluxes of a species σ. In numerical simulations,
these quantities, given in particle coordinates x, are obtained from the moments of the
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(a) Original Potential (b) Ring average for ρ = 1 (c) Ring average for ρ = 3

Figure 2.8.: Effect of gyro-averaging for a random potential for various gyro-radii. A smoothing
effect is observed for the ring average.

distribution function

Γσ(x) =

∫
v(x)f1σ(x,v) d3dv , (2.69a)

χσ(x) =

∫
1

2
mσv

2vxf1σ(x,v) d3v . (2.69b)

However, our distribution function is given in gyro-center coordinates X̃. Thus — similar
in deriving the field equations — we have to transform from gyro-center coordinates to
particle coordinates. A general rule for calculating the corresponding moments from the
gyro-center distribution function was given by Görler (2009) and Lapillonne (2009). The
moments relevant for the calculation of the electrostatic heat and particle fluxes are then
given by

M00 = π

(
2B

m

)∫
B?

B0
〈f1〉dv‖ dµ− n0B0

T 2
0

qσ [φ1 − 〈〈φ〉〉] , (2.70)

M20 = π

(
2B

m

)∫
B?

B0
〈f1〉 v2

‖dv‖ dµ− n0B0

T 2
0

v2
Taqσ [φ1 − 〈〈φ〉〉] , (2.71)

M02 = π

(
2B

m

)2 ∫ B?

B0
〈f1〉µdv‖ dµ− n0B0

T 2
0

(
2B0

m

)
qσ

[
φ1 −

∫
〈φ〉µe

µB0
T0 dµ

]
.

(2.72)

The corresponding electrostatic heat fluxes in shearless slab geometry are given by

Γσ =
∂φ1

∂y
M00 , χσ = −∂φ1

∂x
(M20 +M02) . (2.73)

Note that the moments on right-hand side of the field equations would be equivalently
given by the M00 for the Poisson’s equation, and M10 moments for Ampere’s equation.
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Figure 2.9: Flux
surfaces and field
lines of a circular
shaped Tokamak.
Note that the safety
factor is usually
different for each
flux surfaces.

2.10 | Brief introduction to Tokamak geometry

The first machines scientist used to try to achieve fusion plasma, where the so-called
magnetic mirrors. There, a strong guide field is produced by multiple coils, with a
stronger magnetic field at the ends. By conservation of the first adiabatic this should in
principle confine the plasma. However, it was quickly realized that a so-called loss-cone
instability limited the confinement performance. In order to circumvent the loss-cone
instability, the magnetic field tube is bended so that its ends met. The charged particles
would follow the field lines until their lines attach to themselves. During this movement,
however, the ∇B drift will push them outwards, which led to a loss of confinement. Thus
a transformer is used to induce a current inside the plasma (inductive current drive),
which produces an additional poloidal magnetic field. Both fields combine, so that the
resulting magnetic field is tilted as shown in Fig. 2.9. When we now follow the magnetic
field line, then on average, the particle will spent half their time on the outboard side of
the plasma, where the ∇B drift would push them out of the plasma. But the particles
will spent the other half of their revelation time on the inward side, where the ∇B drift
would push them outward — or in this case into the plasma. With this setup the ∇B
drift could be successful compensated, and a confinement established. This setup is
known as a Tokamak. The tilt of the magnetic field lines is quantized through the safety
factor given by

q(r) =
1

2π

∮
1

R

Bφ(r)

Bp(r)
ds , (2.74)

where Bφ is the poloidal component of the magnetic filed and Br its radial component,
For some specific values of q(rrs) = N/M , where N is the number of poloidal turns and
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Figure 2.10: Un-
wounded flux surfaces
from the Tokamak
shown in Fig. 2.9.
The length is given
by Lz = 2πR and the
width by Ly = 2πr.
The angle of the field
line is given by the
safety factor q = m/n.
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M the number of poloidal turns, the magnetic field lines will connect to themselves. This
may drive instability, such as magnetic reconnection, as a small magnetic perturbation
of field lines, will reach back after M turns and may result in self-amplification. Another
important factor is the shearing rate defined by ŝ = (r/q)(dq/dr), where we need to
assure that ŝ > 1 in order to avoid ideal MHD instabilities such as kink modes.

Simulating a whole torus with a resolution up to the ion or even electron gyro-radius
will be far too expensive. Thus, a common approach is to restrict the simulation domain
to one specific field line tube and align the coordinate system to the magnetic field
lines. Multiple approximate geometries using this approach exist, for example, the s−α
geometry, or even more advanced geometries obtained directly from MHD calculations,
which do take elongation and triangularity into account such as discussed by Burckel
et al. (2010). Here, we will use more simpler geometries, such as the two-dimensional
sheared and shearless slab geometries.

2.10.1 | Simplified three dimensional geometries

In Fig. 2.10 an unwounded flux surface is shown. The length of the flux surface is given
by Lz = 2πR, where the width is given by Ly = 2πr. Note that for a large-aspect ratio
Tokamak ε = r

R � 1 toroidal effects can be neglected. If we neglect the curvature and
shearing of the magnetic field line are neglected, we get the shearless slab geometry,
where the magnetic field is simply given by B0 = ẑ. The parallel wavenumber is then
simply given by

k‖ = B · k =

 0
0
1

 ·
 kx

ky
kz

 = kz . (2.75)
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x

y

z

By

Figure 2.11: Sketch of a two-dimensional
sheared slab geometry (adapted from Fitz-
patrick). The plasma is homogeneous in the
toroidal z-direction. Also the radial bound-
aries are assumed to be perfectly conducting
walls. The red line denotes the rational sur-
face. Blue lines denote the strength of By.
We have also periodicity in y-direction.

2.10.2 | Two-dimensional sheared slab geometry

When we are close to a rational surface, we can write the magnetic field as B0 = [ẑ + ŝŷ],
so that the parallel wavenumber, which points along the magnetic field line is given by

k‖ = B · k =

 0
ŝx
1

 ·
 kx

ky
kz

 = ŝxky + kz . (2.76)

From the turbulence structure, we know that kz � 1, and thus we can additionally
drop the z-dependence. Thus we end up with a geometry, with a structure as sketch in
Fig. 2.11. Note, that we have an x-dependence of the shearing rate, where the location
of the rational surface is at x0. In the sheared slab geometry, the drift-waves become
preferable unstable along the ration surface.

2.10.3 | Two-dimensional constant-θ geometry

In the constant θ-geometry, we assume a homogeneous plasma in the z-direction, where
the magnetic field has a constant angle θ to the z-direction (B0 = [ẑ + θŷ]) so that the
parallel wavenumber is given by

k‖ =

 0
θ
1

 ·
 kx

ky
kz

 = θky , (2.77)

where the kz term drops out due to homogeneity assumption. This geometry was used,
e.g., by Nakata et al. (2011) to study the properties of the ETG turbulence.
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3 | Numerical implementation of the gkc++ solver

The nonlinear gyrokinetic equation system can not be solved analytically except for the
most simplified cases. A numerical solution procedure has to be employed, where the
gyrokinetic equations discussed in Sec. 2.5.1 and Sec. 2.6 are discretized and the time
evolution of the distribution function is numerically integrated. In the following sections
we will describe the internals of the GyroK inetic C ode gkc++ which was developed by
the author during this PhD which will then be employed in Ch. 5 and Ch. 6 to study
the multi-scale interactions in magnetically confined plasmas.

3.1 | Solver internals

The gyrokinetic equation system is solved as an initial value problem (IVP), where we
choose a small perturbation f1σ(t = 0) which is then integrated in time. For a numerical
simulation code, it is crucial to benchmark the obtained numerical result to analytical
results in order to confirm the correct implementation of the terms and to investigate
the effect of the numerical discretization. For example, the phenomenon arising from
the discretization of the parallel velocity space will be discussed in chapter 4 and in
the appendix A, the gkc++ code is benchmarked to a simplified analytical solution to
confirm its correctness and normalizations.

3.1.1 | Numerical grid

The distribution function f1σ(x, y, z, v‖, µ; t) is a continuous function of the three spatial
variables (x, y, z), two velocity variables (v‖, µ), and the continuous time (t), with either
one or more species σ. While the spatial dimensions have a finite extend given by the
lengths x ∈ [−Lx/2, Lx/2], y ∈ [0, Ly], z ∈ [0, Lz], the extend of the velocity variables
v‖ ∈ (−∞,∞) and µ ∈ [0,∞) is infinite. In all cases, we need to take the boundary
conditions into account, which either may be periodic, i.e. f1(0, . . . ) = f1(Lx, . . . ), zero,
or other any other boundary.

gkc++ is a Vlasov type solver, which solves the gyrokinetic equation system on a fixed
grid. For a numerical solution, the distribution function has to be discretized to include

37
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only a finite number of points in each dimension, namely

f1σ(xn, yn, zn, v‖, µm; tl) , (3.1)

such that the values of the f1σ are only known at the points xn (and respectively for
the other dimensions). With an increase of the number of discretization points, that
is by increasing the resolution, the simulation should become more exact, however, the
computational requirements also increases with the number of grid points N . Because
of that, N is chosen a small as possible but still large enough to resolve the physics. By
doubling the resolution, i.e., N ′ = 2N , the physical quantities, such as the observables
given in Sec. 2.9, should be comparable, which is then known as a converged solution. In
principle, we are free to choose our discretization method of each domain, however, this
will have a large affect on the way derivatives are calculated, as well as the numerical
accuracy. With an optimized choice, it is possible to find a converged solution at a
minimal computational cost. In the following, we will describe the choice made for
the gkc++ code to discretized the distribution function. Unless otherwise stated, these
domains are chosen to be periodic.

Radial and toroidal discretization

For the discretization of the spatial dimensions in x and z, we choose an equidistant
grid. In this case, the continuous radial variable x is then the discretized into a discrete
and finite number of points xn, according to the rule

xn = −Lx
2

+
Lx
Nx
· n , where n = 0, 1, . . . , Nx − 1 , (3.2)

and Lx is the length of the radial dimension with a total of Nx discretization points. The
z dimension is dealt with the same way. We note again that Nx should be chosen large
enough such that the physical process is captured well and similar results are obtained
with increased resolutions. Note that for Nx →∞, we should capture all physical effects,
however, there are few exceptions to that, for example, even for Nx →∞, we still have
a countable set, and as such a continuum cannot be represented. The choice of Nx will
also influence our numerical error, which arises when calculating derivatives.

Discretization of poloidal direction

In all cases investigated here, the poloidal direction is periodic with no variations of
the background magnetic field line along the y direction. Thus we choose to directly
evolve Fourier methods in order to simplify the calculation of the derivatives along the
y direction. The transform from a real space variable to the Fourier space, is given by
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the discrete Fourier transformation (DFT),

A(x,m) =

Ny−1∑
yi=0

A(x, yi)e
iky(m)y , with ky(m) =

2π

Ly
·m , (3.3)

where ky is the corresponding poloidal wavenumber and m denotes the poloidal mode
number. Note that we used a summation instead of an integral, which implies an equidis-
tant discretization. Here, m is a non-negative integer, which accounts for the fact that
our variables are real quantities (Im{f1σ(x, y, . . . } = 0) thus it is sufficient to evolve only
positive modes, as the negative modes can be obtained by taking the complex conjugate
of the positive modes A(x, ky) = A(x,−ky)?. This effectively reduces the computational
cost by half. We sum up to m = Ny/2 + 1 which corresponds to the so-called Nyquist
frequency and represents the highest frequency which can be represented on this regular
spaced grid in Fourier space. However, as A(x,m) is complex, the information content
is equivalent. The advantage of the Fourier method is the simplicity in calculating the
derivatives, which becomes a simple multiplication in Fourier space given by

∂yA(x, y)→ ikyA(x, ky) . (3.4)

Directly using the Fourier transformation rule Eq.(3.3) would result in a computational
complexity of the order of O(N2), as the transform includes two summations. However,
Cooley and Tukey (1965) showed that for a array of the size N = 2n, the computational
complexity of the Discrete Fourier transform can be reduced to O(N logN), by applying
a procedure called now the Fast Fourier Transformation (FFT). Subsequently, the condi-
tion on the size of N was relax, so that most state-of-the-art FFT implementations such
as the implementation used for gkc++ , Frigo and Johnson (2005), are O(N logN) for
arbitrary sizes of N . The implementation by Frigo and Johnson (2005) additionally sup-
ports SIMD optimization, multi-threading capabilities, and distributed parallelization
through MPI, making it the best choice for high-performance applications.

Parallel velocity integration v‖

For the dimensions x, y, and z, we use an equidistant discretization for the parallel
velocity. However, in contrast to the spatial dimensions, which are of finite size, the
velocity dimensions are not. Still, we can apply a lower/upper cut-off at ±Lv for the
parallel velocity space dimension by noting that our background Maxwellian decays

exponentially (∝ exp
[
v2
‖/v

2
te

]
). If the cut-off length Lv, is chosen large enough, so that

f0(±Lv) ≪ 1, and such that the wings will have negligible contributions. With the
finite cut-off length ±Lv, we use Eq.(3.2) to equidistantly discretize the parallel velocity
space.
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In order to solve the field equations described in Sec. 2.6, e.g. Poisson’s equation, we
have to integrate over the velocity space of the distribution function f1σ(X, v‖, µ). Here,
for the equidistant parallel velocity dimension, the rectangle rule is used. It is given by∫ Lv

v=−Lv
f(v‖) dv‖ ≈

Nv−1∑
n=0

∆v f(vn) ,with ∆ v =
2Lv
Nv

. (3.5)

Although the rectangle rule is only a first order method,

∫ Lv

v=−Lv
f(v‖) dv‖ ≈ ∆v

Nv−1∑
n=0

f(vn+1) + f(vn)

2
= ∆v

Nv−2∑
n=1

f(vn) +
f(−Lv) + f(Lv)

2
,

(3.6)

the values at the cut-off f(−Lv) ≪ 1 and f(Lv) ≪ 1 are negligible, such that it
effectively becomes the second order trapezoidal rule. We could use a higher order
integration scheme for the parallel velocity direction, however, that would require a
non-equidistant discretization, which is not recommended as this would increase the
complexity of calculating the derivatives in the collisional operator.

Perpendicular velocity integration µ

In contrast to the parallel velocity dimension, the dimension for µ ranges from µ ∈ [0,∞),
with limµ→∞ f0(µ) = 0, but f0(µ = 0) 6= 0. Thus using an equidistant discretization
with the rectangle rule Eq.(3.5) would require a very large number of mesh points Nµ

to give acceptable results. However, as µ is an adiabatic and neoclassical effects are
neglected (collisions in µ), we can take advantage of the fact that no derivatives in the
µ direction appear in the equations and thus a higher order integration scheme, such
as the Gaussian quadrature, can be chosen. The general rule for Gaussian quadrature
(shifted and rescaled) is given by∫ Lµ

0
f(µ) =

Lµ
2

∑
n

wnf

(
Lµ
2
µn +

Lµ
2

)
, (3.7)

where wn are the weights, µn are the nodes and Lµ is the perpendicular velocity cut-off,
chosen such that f0(Lµ) ≪ 1. The weights and nodes are free to choose, however,
we can choose them to increase the integration order (which in the optimal case is
equivalent to the number of discretization points in case of a smooth function). Slight
modification of Eq.(3.7) exits with different choices of wn and µn such as the Gauss-
Legendre, Gauss-Radau and Gauss-Lobatto integration schemes with weights and nodes
shown in Fig. 3.1a. A benchmark simulation shows the superiority of the Gaussian
integration scheme, which gives already convergent results with Nµ = 8 and Lµ = 9
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(a) Nodes / Weights (b) Growth rates

Figure 3.1.: The nodes and weights for several integration rules is shown in the left figure for
the rectangle, Gauss-Legendre and Gauss-Radau. The right figure shows the linear growth rates
obtained for the test case (A), see Tab.(3.2), using Nµ = 8. The Gaussian integration schemes
quickly convergence in contrast to the first order rectangle method.

compared to the rectangle rule, which requires Nµ ≥ 64 to give convergent results of
the linear growth rates as shown in Fig. 3.1b. Differences between Gauss-Legendre,
Gauss-Radau and Gauss-Lobatto are negligible for the case investigated here.

3.1.2 | Calculation of derivatives using finite differences

Apart from the poloidal direction (calculating the derivative in Fourier space is a mul-
tiplication which does not exhibit any errors), for the other directions, the derivatives
have to be calculated using a finite number of points. One of the simplest discretization
stencil for a first derivative for an equi-distant discretized grid is e.g. the second-order
central-differences (CD-2) stencil given by

∂A

∂z
= Az;z =

An−1 −An+1

2 ∆z
≡ (2∆z)−1 [−1 0 1] , (3.8)

where the last term shows the corresponding stencil notation. A summary of the various
finite differences stencils used in gkc++ for the discretization of the derivative operator is
shown in Tab. 3.1. In general, we can distinguish different stencils by certain properties
such as the cut-off error, phase, and gain errors. The gain error of a stencil denotes
the damping of a pure sinusoidal wave depending on the its wavenumber as shown in
Fig. 3.2a. Another crucial error is the so-called mapping as shown by Pueschel et al.
(2010). For example, assuming a Fourier mode A ∝ Â exp (−ikζζ) of the second-order
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Name Derivative Order Stencil

Upwind Difference 1 (∂x) 1 (ε) (ζ)−1 [ −1 1 0
]

Upwind Difference 1 (∂x) 3 (ζ)−1 [ −1 1 0
]

Central Difference 1 (∂x) 4 (12ζ)−1 [ −2 8 0 −8 2
]

Central Difference 2 (∂2
x) 4

(
12ζ2

)−1 [ −1 16 −30 16 −1
]

Hyper-diffusion Term 4 (∂4
x) 2

(
12ζ2

) [
−1 16 −30 16 −1

]
Table 3.1.: Finite difference stencils used in gkc++ for an equidistant discretized grid. The
usage of higher order (more accurate) stencils is desirable, however, a wider stencil increases the
computational cost and the number of ghost cells to be used at the boundaries.
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Figure 3.2.: Left figure shows the numerical gain, while the right figure shows the mapping
of high-k components to low-k components for the CD-2, CD-4, CD-6 and 6th order compact
stencil. Higher order methods reduces the impact of gain and mapping, however, with an increase
of computational cost.

central-difference stencil in the ζ dimension (∂ζ = (2∆z)−1 [1, 0,−1]), leads to

∂A

∂ζ
= ikzA =

A(ζ + ∆ζ)−A(ζ −∆ζ)

2∆ζ
=

sin (kζ∆ζ)

kζ∆ζ
ikζA ≡ h(ζ)ikζA , (3.9)

where h(ikζ) is an undesirable mapping function and thus leads to undesirable growth
in the high-k region (which would especially introduce a large error for the poloidal
direction). The mapping for various stencils are shown in Fig. 3.2b. Pueschel et al.
(2010) showed that the mapping effect can be reduced by including a small hyper-
diffusive term, however, in general, higher-order discretization stencils are favorable as
they have have better error properties, however, higher order stencils are usually wider
and thus we have to provide more ghost cells for the boundaries and the computational
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cost increases as well. For future improvements, it may be fruitful to use more advanced
schemes, such as the implicit discretization (compact stencils) given by Lele (1992),
the IDO-CF scheme suggested by Imadera et al. (2009) or the multi-moment scheme
suggested by Kawano et al. (2011), in order to minimize the discretization errors.

3.1.3 | Time step integration

The left-hand side of the gyrokinetic Vlasov’s equation (2.44) includes the time derivative
of the perturbed distribution function. Like for the spatial discretization, we need to
discretize the time derivative in order to evolve f1σ(t) in time as an initial value problem
(IVP). A simple method for the time discretization is the Euler forward method, which
is given by

f t+∆t
1σ − f t1σ

∆t
= Lσ

(
f t1σ
)

+Nσ
(
f t1σ
)

+ Cσ
(
f t1σ
)

, (3.10)

where f t1σ is the value at the current time t, f t+∆t
1σ is the value at a later time given

by t + ∆t and ∆t > 0 is the time step size. With this discretization, we can choose a
random initial perturbation f1σ(t = 0) at the initial time t = 0 and evolve f1σ in time
using Eq.(3.10) with a predefined ∆t until a maximum time tmax is reached. However,
the Euler forward time discretization scheme will in most cases (Im(ω) > 0) produce
growing non-physical oscillations in f1σ for ∆t > 0, which leads to a numerical overflow
(floating point exceptions). In order to prevent this situation, similarly to the discussion
of spatial derivatives in Sec. 3.1.2, we have to make use of more elaborated time integra-
tion schemes to guarantee numerically stable simulations. As with spatial discretization,
time discretization schemes have different truncation error and different stability regions.
The various time integration schemes can be roughly divided into two classes: explicit
and implicit time discretization schemes.

Explicit time discretization

Explicit time integration schemes are given by

U t+1 = U t + I(t, U t, U t−1, . . . )∆t, , (3.11)

where U is the variable to integrate, t the time step, I is the time integration scheme
which itself may use k time integration sub-steps. The right-hand side only depends on
the current and previous time steps, thus makes it an explicit scheme. The methods
implemented into gkc++ are the third-order and fourth-order Runge-Kutta methods
described in the next section.
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The Runge-Kutta scheme

For most simulations we advance the time using the fourth-order accurate Runge-Kutta
method (RK4), which can be found in most text books about numerics. The RK-4
method is a multi-step scheme with four integration sub-steps given by

f
tn+1

1σ = f tn+∆t
1σ = f tn1σ + 1

6∆t (k1 + 2k2 + 2k3 + k4) , (3.12a)

with the coefficients given by (subsequently the 1σ term is dropped for readability)

k1 = f(tn) , k3 = f(tn + 1
2∆t, fn + 1

2∆tk2) , (3.13a)

k2 = f(tn + 1
2∆t, fn + 1

2∆tk1) , k4 = f(tn + ∆t, fn + ∆tk3) . (3.13b)

Each of the four sub-steps requires the evaluation of Vlasov-Poisson system (and the
storage of corresponding variables). Alternatively, we can also use the third-order Runge-
Kutta method (RK-3), given by

ftn+1 = ftn+∆t = ftn +
1

6
∆t (h1 + 4h2 + h3) (3.14)

with the coefficients given by

h1 = f(tn) , h3 = f(tn + ∆t, fn −∆tk1 + 2k2∆t) ,

h2 = f(tn + 1
2∆t, fn + 1

2∆tk1) . (3.15a)

For the RK-3 method, only three evolutions and storage variables are required for the
time integration.

Stability consideration of explicit time integration methods

The explicit time integration schemes presented (Euler forward method, the RK-4 and
RK-3 methods) are restricted to certain stability considerations such as the maximum
stable time step size ∆t. A necessary condition for numerical stability is that all eigen-
values ω of the (linear) gyrokinetic system lie within the stable region of the time inte-
gration scheme. Following Karniadakis (2007), the stability of the RK-4 method can be
investigated by examining the equation dU

dt = λU . For each sub-step, e.g., X1 = λUn,
X2 = λ(Un + 1

2λU
nδt), . . . and thus for the total time step we get,

Un+1 = Un + 1
6δt [X1 +X2 + 2X3 +X4] (3.16a)

= Un
[
1 + λδt+ λ2∆t2

2 + λ3∆t3

6 + λ4∆t4

24

]
︸ ︷︷ ︸

G

. (3.16b)

The inner bracket is the growth factor G, which is required to be G ≤ 1 to avoid the

growth of numerical oscillations. Using µ = λ∆t, we get 1 +µ+ µ2

2 + µ3

6 + µ4

24 = eiθ, with
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Figure 3.3: Stability region of the Euler for-
ward, RK-2, RK-3 and RK-4 time integration
method. The solid line with Re(λ) = 0 di-
vides the systems into systems which are sta-
ble (λr < 0) and systems which exhibit in-
stability growth (λr > 0). Higher order in-
tegration schemes have a larger stability re-
gion. In contrast to the Euler forward and
RK-2 method, the stability region of the RK-3
and RK-4 method also extends into the posi-
tive real plane which makes them suitable for
studying system which exhibits growth such as
the ion temperature gradient instability.

θ ∈ [0, 2π]. The stability region |µ(θ)| ≤ 1 can then be numerically determined and is
shown in Fig. 3.3. The eigenvalues of the (linear) discretized gyrokinetic equation system
can be computed by gkc++ when run as an eigenvalue solver, as described in Sec. 3.1.7.
However, knowing only the largest absolute eigenvalue max(|ω|) is usually sufficient for
an approximation of the maximum stable time step size, which can be found using, e.g.
the power iteration. In case of the gyrokinetic equation which investigate an instability
growth, some eigenvalues with Re(ω) > 0, such that the Euler forward and the second
order Runge-Kutta method (RK2) are unconditionally unstable and employing them will
generate numerical oscillations leading to an error. The stability region of the RK-3 and
RK-4 extends into the positive real plane and thus should be stable for reasonable chosen
time steps.

Although the time integration error is larger compared to RK-4. Note that the stability
region of the RK-3 method is smaller compared to the RK-4 method as shown in Fig. 3.3.
Thus the maximum linear stable time-step for the RK-3 method is about 30% smaller
than that for the RK-4 method, which makes up for its numerical cost. As shown
later, this changes for nonlinear simulations where the maximum stable time-step is
additionally restricted by the CFL condition.

Implicit time discretization

For an implicit discretization, not only the values of the current and previous values
need to be known, but also value of the next time step Un+1 appears on the right-hand
side of

Un+1 − Un−k

∆t
= F (t, Un+1, Un, Un−1, . . . ), , (3.17)
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The advantage of implicit methods is that they are often unconditionally stable, however,
we need to solve equations such as Un+1 = F (Un), which requires the inversion of the
gyrokinetic operator. Using the matrix-free implicit integration procedure as provided
by Balay et al. (2012), Eq.(3.17) can also be computed through an iteration procedure
without explicitly setting up the matrix F . Unfortunately, although we can choose larger
time-steps for implicit integration procedures, it is far from outweighing does not by far
outweighing the time required for one individual time step.

3.1.4 | The Courant-Levy-Friedrich (CFL) condition

The Courant-Levy-Friedrich (CFL) conditions is a fundamental tool governing the stabil-
ity of numerical solutions of differential equations using explicit time integration schemes.
Namely the CFL condition restricts the maximum time step to ensure stability; for the
one-dimensional advection equation, we denote

CFL =
Lv∆t

∆v
, (3.18)

where Lv is the maximum velocity, ∆v is the grid step, and ∆t is the time step. In
order to assure stability of the time integration scheme it is found empirically that
CFL < 1/2 has to be fulfilled (better estimation for the CFL which do also take the
spatial discretization scheme into account exists, however, the difference is only minor).
For the case of a linear gyrokinetic simulation, the maximum time step is restricted by
the parallel motion along the field line given by

∆tlin =
∆v

Lv
· CFL , (3.19)

where Lv is the cut-off velocity and Lz is the length of the toroidal domain with Nz the
number of discretization points. However, once nonlinear effects become important, the
E ×B drift velocity generally further restricts the time step:

∆tnl = max

(
∆y

∂χ/∂x
,

∆x

∂χ/∂y

)
· CFL . (3.20)

The simulation time step has to be chosen such that always ∆t ≤ min (∆tnl,∆tlin).

Benchmark of time integration method

Here, we compare the time-integration of the third order Runge-Kutta (RK-3) with the
fourth order Runge-Kutta (RK-4) method to get an idea of the calculation cost. The
computational cost for a simulations with a setup Lx = 64, Ly = 64 and Nx = 256, Ny =
128 with θ = 1, ηi = 5 is shown in Fig. 3.4a. In Fig. 3.4a the time step size ∆t over
the simulation time is shown. The RK-4 time step method does support a large time
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step due to its larger stability region as shown in Fig. 3.3, however it does not outweighs
the increased computational cost as shown in Fig. 3.4b, where the RK-3 method is
more efficient. In the nonlinear region, the time step is restricted by the stricter CFL

(a) Time step size ∆t vs t (b) Wall clock time tW vs t

Figure 3.4.: Comparison between explicit RK-3 and RK-4. We find that RK-4 is the superior
compared to RK-4 in the linear region. In the nonlinear where time step sizes are comparable,
RK-3 performance 30% faster. The heat flux is comparable with fluctuations within a small
margin, however diverges for longer time period, due to larger integration error of the RK-3
scheme. Variables are the time step size ∆t, the simulation time ts, and the wall clock time tw.

condition, thus the RK-3 method is faster, however, its higher time integration error is
visible and this overall makes the RK-4 method more preferable. We note that we find
a large jitter for linear simulations from the simulations time vs. wall clock time over
time, which needs some further investigations.

3.1.5 | Solving the field equations

The gyrokinetic equation system is an integro-differential system consisting of the Vlasov
equation and the fields equations. The solution of the field equations including the gyro-
averaging is basically a three step procedure outlined in Fig. 3.5. For the numerical so-
lution, the distribution function needs to be Fourier transformed in x domain using the
FFT algorithm f1σ (x, ky, . . . )→ f1σ (kx, ky, . . . ) so that the gyro-averaging can be per-
formed using the Bessel function and the field equations solved. A back transformation of
the gyro-averaged field quantities is finally required, i.e., 〈φ (kx, ky)〉σµ → 〈φ (x, ky)〉σµ.

Back-transform
〈f1〉 → f1σ

Poisson’s equation
ρ → φ

Gyro-average
φ → 〈φ1〉

Figure 3.5.: Solving the field equations is in general a three step procedure, here shown for φ.
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In order to calculate the gyro-averaged fields, we use the Bessel function of the first
kind J0. The Bessel function is a so-called special function, which is not provided by
the standard libraries of the majority of programming languages such as Fortran or
C++. The CPU of itself provides only efficient operators for multiplications, addition
and subtraction, while divisions, square roots, exponential and trigonometric functions
are usually implemented through iteration methods. More complicated functions, such
as these special functions have to be implemented as an external library call. Com-
putation of these special functions employs asymptotic expansions, recurrence relations
and interpolation methods for calculations. An algorithm for the computation of Bessel
functions J0 and I0 can be found in Zhang and Jin (1996). For gkc++ , we employ the
freely available SPECFUN library as provided by Cody (1993). As the calculation of
J0 and I0 is computationally expensive, it may be beneficial to pre-calculate their (con-
stant) values at the initialization phase of the simulations instead of calculating them in
every time step.

3.1.6 | The Vlasov equation

After calculating the gyro-averaged fields 〈φ〉σµ,
〈
A1‖
〉
, all terms on the right-hand side

of the Vlasov equation Eq.(2.44) are known and can be solved:

∂f1σ

(
x, ky, z, v‖, µ

)
∂t

= Llin +NE×B + CLB +Khyp +KKr . (3.21)

The linear terms Llin and CLB are discretized using fourth-order central differences for the
x, z and v‖ directions. The latter two terms, Khyp and K are only included for numerical
reasons. The hyper-diffusion operator Khyp is included to reduce (numerical) stencil
errors, when calculating the derivative of the toroidal direction z to damp erroneous
small scale fluctuations, as discussed by Pueschel et al. (2010). The Krook operator
K(x) is used to damp eventual non-physical fluctuations in the vicinity of the radial
boundaries and is given by KKr = −κ(x)f1σ, where κ(x) is only non-zero close to the
boundaries. The NE×B term is the nonlinear term, which requires special care to fulfill
the mode-coupling relations, as will be discussed below.

Pseudo-spectral approach

Note that as discussed in Sec.(3.1.1), we evolve Fourier modes in the poloidal direc-
tion. Thus, when we consider the multiplication of two variables A(x, ky), B(x, ky), the
multiplication rule is given by:

∑
k′′=k+k′

Ĉ(x, k′′y)e−ik
′′
y y =

(∑
k

Â(x, ky)e
−ikyy

)(∑
k′

B̂(x, ky)e
−ik′yy

)
. (3.22)
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k1

×k2
=

k′ = k1 − k2

k′′ = k1 + k2

Aliasing problem

Figure 3.6.: A quadratic nonlinearity coupled both modes an produces new modes given by
k = k1 ± k2. The largest frequency the grid can resolve is the below the Nyquist frequency given
here by kymax = Ny/2. If a nonlinearity produces wave above the Nyquist frequency the grid
cannot resolves it anymore and it get mapped back, here, k′y = 3− 2 = 1 and k′′y = 3 + 2 = 5 ≡ 3.
This aliasing problem causes numerical oscillations leading to non-physical results and thus has
to be avoided.

In order to calculate the above product, the right-hand size is expanded and a mode-
matching condition k′′ = k′ + k is used. Note that, although we only evolve positive
modes (k′′ ≥ 0) as the variables A(x, y) are real on the right-hand side (as A(x, y) and
B(x, y) are real variables), negative modes, which are given by the complex conjugates
of the positive modes, have to be also included in the mode coupling relations. As
can be seen, calculating the sum requires an operation count of the order O(N2). In
contrast to that, the calculation the multiplication of A(x, y) and B(x, y) in real space
only requires O(N). It is thus advantageous to transform the variables back to real space
A(x, ky), B(x, ky)→ A(x, y), B(x, y) using the Fast Fourier transformation, perform the
multiplication in real space and back-transform. The computational cost will be then
reduced to O(N log(N)).

However, in the above case we will find that modes appear with wavenumbers k′′max =
kmax+k′max, which cannot be resolved on the grid anymore. For a better understanding,
we consider a discrete mesh of length L with N points. The highest wave number which
can be produced is the Nyquist frequency of kmax = π(N/L). If two variables A and
B consist of only one wave with kA and kB, the Poisson bracket produces a new wave-
wave k = kA ± kB due to coupling. The mode kA + kB ≤ kmax can be represented on
the finite grid, but not kA + kB > kmax. This case leads to a so-called aliasing effect.
When directly calculating the mode-coupling relation in Eq.(3.22), we ignore modes with
k > kmax. However, in the case of the calculation in real space aliasing appears as shown
in Fig. 3.6.

The usual anti-aliasing scheme is to zero-pad the size of A(x, ky) by a factor 3/2,
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perform the multiplication in real space and after the back-transform we neglect the
padded values. However, anti-aliasing can only be applied to the y direction while the
x direction would still suffer from aliasing effects, producing non-physical numerical
oscillations.

The Morinishi scheme

Due to the aliasing problem calculating the non-linear Poisson bracket [χ, g] is not trivial.
Arakawa (1966) succeeded to design a numerical scheme which conserves the momentum
and the kinetic energy (namely the L1 and the L2 norm). As shown by Morinishi et al.
(1998) this successfully avoids the numerical problems arising from aliasing. Although
mainly used in hydrodynamics, Idomura et al. (2007) successfully applied the Morinishi
scheme in plasma turbulence simulations, and it is now used by e.g. Imadera (2011). The
Morinishi scheme is based on following idea: the Poisson bracket equation has following
identity,

[A,B] =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x
=

∂

∂y

(
∂A

∂x
B

)
− ∂

∂x

(
∂A

∂y
B

)
, (3.23a)

= α

(
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x

)
+ (1− α)

(
∂

∂y

(
∂A

∂x
B

)
− ∂

∂x

(
∂A

∂y
B

))
.

(3.23b)

where α can be an arbitrary real value. Although analytically identical, Morinishi found
that for α = 1

2 , the numerical scheme conserves momentum and energy when central
difference is used to discretized A and B. In the discretized equation system using CD-4
discretization for a variable A in the equidistant discretized dimension x and y, Ax;x,y is
given by[

∂A

∂x

]
x,y

= Ax;x,y =
8 (Ax+1,y −Ax−1,y)− (Ax+2,y −Ax−2,y)

12∆x
, (3.24)

with the usual definition of an equidistant grid discretization, e.g. ∆x = Lx/Nx. The
Poisson bracket for [A,B] is calculated by

Ξyx = 8 ((Ay;x,y +Ay;x+1,y)By,x+1 − (Ay;x,y +Ay;x−1,y)By,x−1)

− ((Ay;x,y +Ay;x+2,y)By,x+2 − (Ay;x,y +Ay;x−2,y)By,x−2)
(3.25)

Ξxy = 8 ((Ay;x,y +Ay+1;x,y)By+1,x − (Ay;x,y +Ay−1;x,y)By−1,x)

− ((Ay;x,y +Ay+2;x,y)By+2,x − (Ay;x,y +Ay−2;x,y)By−2,x)
(3.26)

This results

[A,B] =
Ξxy

24∆x
+

Ξyz
24∆y

. (3.27)
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The nonlinearity is calculated in real coordinates, thus a Fourier transformation has to
be applied. Thus allows again calculating the nonlinearity within O(N log(N)) time.
A similar procedure can be applied to calculate the parallel nonlinearity Nv‖ . We note
that in contrast to simple derivation and multiplication, nonlinear simulations using the
Morinishi scheme require the usage of an additional boundary cell (so-called extended
boundaries).

3.1.7 | Eigenvalue solver

When the linear part of the right-hand side of the gyrokinetic equation system is written
as a linear operator Lgk and we assume a harmonic time dependence f1σ ∝ exp (−iωt)
for the left-hand side, the equation system takes the form of an eigenvalue equation given
by

−iωf1σ = Lgk · f1σ , (3.28)

where ω is the corresponding eigenvalue. The time integration as an initial value problem
allows us to find only the most unstable eigenmodes of the gyrokinetic operator. By
solving the eigenvalue problem itself, we can find not only the most unstable eigenmode,
but further sub-dominant eigenmodes as shown by Roman et al. (2010) and Merz et al.
(2012). However, directly setting up the gyrokinetic matrix is not practical due to its
size, thus Roman et al. (2010) proposed to extract the eigenvalues by applying a matrix-
free iteration method employing the Krylov-Schur method as provided by Hernandez
et al. (2003, 2005).

However, in case we are only interested in performing initial value simulations, e.g.
for the nonlinear case, instead of solving the whole eigenstate, we can easiliy find the
maximum absolute eigenvalue |ω|max, from which we can estimate the maximum linear
time step ∆t by as shown by Fig. 3.3. ωmax can be found using the power iteration
method, however, we found that using the Krylov-Schur is more robust and shows a
better convergence compared to the simpler power iteration method.

3.2 | Benchmarking

Although C++is a very powerful and feature rich language, it lacks proper methods to
handle large multi-dimensional statical and/or dynamical allocated arrays in contrast
to Fortran-90 and later Fortran standards. For efficient simulations, we employ the
following strategy: we use external, well optimized libraries such as FFTW by Frigo and
Johnson (2005), HDF-5 by The HDF Group (2000-2013), PETSc [Balay et al. (2012)],
and elemental by [Poulson et al. (2013)]. Second, we use the Cilk plus extensions for
C++which features so-called array notation. This extension allows multi-dimensional
array handling in C++en par with Fortran-90 and allows improved vectorization support
and thus a better exploitation of the CPU resources.
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Here, we will study the numerical solution of three base cases, termed Case (A), Case
(B) and Case (C) in more detail. Thus here we present the general parallelization idea,
for the following three scenarios shown in Tab.(3.2)

Case A B C

Type
Electro-static
(two-dimensional)

Electromagnetic ITG-ke
(two-dimensional)

Electrostatic
(Sheared Slab)

Nx 256 256 256
Ny 65 65 65
Nz 1 1 32
Nv‖ 48 48 48

Nµ 16 16 16
Nσ 1+(adiab) 2 1 + adiab

βc = 1× 10−4 βc = 1× 10−4 βc = 1× 10−4

Table 3.2.: Three base scenarios to be used in benchmarking gkc++ . Case(A) is important
mainly for Ch.(5), while Case(B) is important for Ch.(6), where we include a static electromag-
netic perturbation and include kinetic electrons. The Case(C) is relevant for benchmarking the
code. The simulation domain is chosen in such a way to represent a well converged case.

3.2.1 | Profiling

In order to understand where the majority of the computational time is spent, we perform
a functional profiling for our three cases. Profiling can be enabled through compiler
options. Thanks to this tool, after the numerical solution is completed, a log is generated
showing the computational time spent in individual procedures. Knowing the hot path
of the simulation code allows concentrating the effort on a better optimization of the
computational most intensive routines. In Fig. 3.7, we show a sunburst diagram, where
the inner layers call the outer layers. We see that for all cases the calculation of the Vlasov
equation is the most demanding part (which is not surprising as it involves calculations
in a five-dimensional array) . Inside the Vlasov function itself, the majority of the time
is spent in the Fourier transformation (forward and backward) when calculating the
Morinishi scheme. The other half is spent calculating the finite difference stencil of the
Morinishi scheme. Calculating the fields is less than 20% of the computational time, of
which again about half time time is used for solving the field quantities, while the other
half is spent in the gyro-averaging procedure.

3.3 | Parallelization

The evolution of the gyrokinetic phase-space function is a demanding task due to its
five-dimensionality and the usual high resolution requirement in order to resolve the
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Figure 3.7.: Results of profiling of the gkc++ code for the cases (A-C) are shown in a sunburst
diagram. The angle of the circle segment corresponds to the fraction of the total computational
time spent. Inner layers corresponds to low hierarchy, upper layer to higher hierarchy. All cases
show that the majority of the time is spent within the Vlasov solver, where roughly two thirds of
the total computational time is spent on calculating nonlinearity.

physical phenomenon. This makes the use of parallelization crucial, where the problem
to solve is divided into smaller chunks, each of them being solved on a different CPU.
However, these CPUs have to be synchronized and boundary data has to be shared,
which introduces an overhead limiting the scalability, as described by Amdahl (1967)
and is now known as Amdahl’s law.

3.3.1 | Overview over state-of-the-art computer architecture

In order to achieve a good scalability, a knowledge of the computer system is essential
in order to exploit all the parallelism provided by the system. In Fig. 3.8, we show a
schematic graph of a state of the art computer architecture referred to as cc-NUMA
system(cache-coherent non uniform memory access). The computation itself is done
within the CPU core. Each core has its own cache (Level 1 and Level 2 caches), where
the computational data is temporarily mirrored from the main memory. The core can
access data from the Level 1 cache usually within a very few instructions cycles. The
ideal situations is where all the computational data fits inside the L1-cache, such that
the CPU can quickly access the data and perform computation. However, usually the
size of the L1-cache is relatively small, the data does not fit into the L1-cache, a heuristic
is used to pre-fetch the data into the L1-cache before it is used. In case the heuristic
was not able to provide the required data, a cache-miss occurs. The data has to be
fetched either from the Level 2 cache (where the CPU is on a wait state for a couple of
dozen cycles). In the worst situations, data has to be fetched from the main memory
which takes around two orders of magnitude longer, during which the CPU has to wait.
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Figure 3.8.: Outline of a state-of-the-art cc-NUMA system. Computational units are organized
in a strong hierarchical fashion. Sharing date through lowest hierarchy, such as CPU cores,
is much faster and with much lower latency, than sharing between higher hierarchies, such as
computational nodes or racks. Simulation codes have to be optimized to take the hierarchical
structure into account.

Finally, for inter-node communication, data is exchanged between different nodes using
the relatively slow network interconnect.

3.3.2 | Inter CPU parallelization (vectorization)

Modern CPU cores are able to process multiple data within one instruction, which is re-
ferred to as SIMD (Single Instruction, Multiple Data). These CPU can have usually four
or more double precision SIMD lanes which allows to process data in parallel as shown in
Fig. 3.9. Exploiting SIMD parallelism is crucial in order to achieve a high performance.
In ideal cases, the compiler is able to exploit the SIMD lanes. Practically, hints about
data alignment and data inter-dependence have to be provided to the compiler using
pragmas to allow vectorization.

In Fig. 3.10, we show the achieved floating point performance versus the peak per-
formance. The information was obtained by making use of so-called hardware counters,
which measures the number of floating point operations performed, as provided e.g. by
Browne et al. (2000). We find that for the Case (A) we have achieved over 40% of the
peak performance of the CPU core. This value can be considered as good. By counting
vectorized floating point operations vs. non-vectorized operations, we could confirm that
most operations are indeed vectorized.
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SIMD Lane #3
SIMD Lane #2
SIMD Lane #1
SIMD Lane #0

Core #0

Input Data

Output Data

Instructions

Figure 3.9: Paralleliza-
tion using SIMD. A CPU
core can exploit SIMD
parallelism when a single
instruction is applied to
multiple data streams at
once and thus increasing
the overall performance of
the computation.

Figure 3.10: Single threaded
performance. The measured
peak performance (showed as
red line) was found to be
GFLOPS=9.0 using an opti-
mized benchmark tool (dou-
ble precision). The average
performance for multiple time
steps is shown for difference
values of decomposition. The
performance is stable over a
wide range of grid sizes. Good
performance was obtained with
40% of the peak performance.
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Computational loop with n=[0,1,2,...,15] work units

Thread #0 Thread #1 Thread #2 Thread #3

Figure 3.11.: Visualization of loop parallelization with OpenMP. The workload, here shown as
blocks, is divided evenly (assuming static scheduling) between four threads, each of them usually
runs on a separate CPU core. In the best case scenario, only a quarter of the time is required to
proceed the loop. However, usually, the CPU cores share common resources which can limit ideal
scalability.

3.3.3 | Inter-node parallelization (OpenMP)

The processing units inside the node share a common memory, which is referred to as
shared memory systems. This shared memory can be used for synchronization of CPU
units inside the node. Board (2008) is a compiler extension which simplifies the creation
of individual programming threads which are synchronized at specific points. OpenMP
provides constructs in order to share work within one program between various treads
by compiler pragmas. The most common usage is loop parallelization, where work of
the loop is divided between different threads such as shown in Fig. 3.11. OpenMP
is implemented using threads, where every time the code enters an OpenMP section,
threads are created, the section is processed in parallel, and after the loop finishes,
threads are destroyed. This thread creation and destruction requires time and thus limits
the parallelization rate if loops are too small. Also, threads usually share a common
resource, such as main memory bus, where scalability may be limited to due limited
bandwidth. In order to assure an efficient parallelization rate, we create the threads
before the main loop is entered and synchronize them at few specific points. For the cases
(A) we show the corresponding parallelization rate for a strong scaling using OpenMP
in Fig. 3.12. We find that we achieve a good scaling of about 80% for up to 4 threads.
For 8 threads the parallelization efficiency drops to 50%, where using more threads
does not further improve the performance of the program anymore which may lie of
not parallelized sections such as the Fourier solver, communication overhead, as well as
memory bound of the computation.

3.3.4 | Intra-node parallelization (MPI)

Forum (1993) (Messaging Passing Interface) is an interface which provides a mechanism
to exchange messages between different instances of the same program, where each in-
stance can be distinguished by a unique rank id. This enables us to decompose each
dimension of our multi-dimensional domain into smaller chunks as shown in Fig. 3.13.



Section 3.3: Parallelization 57

(a) Speedup vs Thread number (b) Efficiency vs Thread number

Figure 3.12.: OpenMP scaling vs thread numbers for cases (A) and (C). Both cases show very
similar scaling characteristics : A good scaling up to four threads (η ∼ 80%), increasing the
thread count further, shows a strong saturation, where a maximum speedup of 4 is achieved,
suggesting a bandwidth limitation for Nth > 4.

In contrast to the serial version, we now have to additionally update the boundary
points between the chunks themselves. Note that the finer we divide our domain into
smaller chunks, the more the boundary becomes dominant. During the boundary com-
munication, the CPU cannot continue the numerical communication (unless advanced
methods such as overlaying communication-computation are employed). This introduces
an overhead, which reduces the achievable parallelization efficiency. Note that we do not
decompose over the poloidal direction as we evolve Fourier modes directly which would
introduce a large communication overhead when performing the calculations of the non-
linear the Vlasov equation. Here, we show the scaling of the parallelization in dependence
of the numbers of MPI instances. We have to distinguish between strong scaling (con-
stant problem size) and weak scaling (increasing problem size) - here, we only discuss the
strong scaling. The number of ghost cells depends on the stencil width. In our case, we
have two ghost cells in the z direction, but have three ghost cells (extended ghost cells)
for x-direction to avoid a second boundary exchange when calculating the nonlinearity.

Domain decomposition in x-direction

The strong scaling for the decomposition in the x dimension for our previously defined
three problem cases A-C is shown in Fig. 3.14. We find a good scaling for all cases
with around 70% efficiency for up to 16 MPI instances. This good scalability is rather
surprising as the calculation of the field equations as well as gyro-averaging are performed
in Fourier space, which requires (x, ky) → (kx, ky) → (x, ky). During these Fourier
transformations, the data has to be transposed, which is done using the communication
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Figure 3.13.: Sketch of the MPI decomposition using four instances for the dimension z. The
decomposition splits the computational domain into smaller chunks in the expense that commu-
nication overhead increases through boundary exchange, e.g. ghost cells (GC), with increasing
decompositions.

Figure 3.14.: Parallelization with grid decomposition over the x-dimension. Left figure shows
speedup over decomposition number. The right figure shows the corresponding parallelization
efficiency. A satisfactory scalability of η ∼ 60% is found for Nx = 16 for a Case(A). Case (C)
exceeded the memory limit and thus we could not shows the scalability beyond 4 MPI instances.
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Figure 3.15.: Parallelization with grid decomposition over z-dimension. Left figure shows
speedup over decomposition, the figure on the right shows the corresponding efficiency. Only
Case (C) included the z-dimension. Scaling is favorable as the gyro-averaging and field equa-
tions are not influences by this decomposition. Only boundary exchange for the Vlasov part is
necessary Efficiency is η ∼ 60% for 8 instances, from where we found saturation.

intensive (slow) MPI Alltoall transformation. Indeed scalability decreases when electro-
magnetic effects are taken into account, as an additional field has to be transposed which
additionally increases the communication overhead.

Domain decomposition in z-direction

The scaling in z-direction is shown in Fig. 3.15. Here, only Case C is shown, as A and B
are two-dimensional in the field quantities and thus cannot be decomposed in z-direction.
Decomposition in z dimension is efficient as gyro-averaging as well as the field equations
themselves are independent on the z direction in our field-aligned coordinates, as we
neglected λDk‖ ≪ 1 in the Poisson’s equation, thus essentially only the boundaries for
the finite difference stencil in the parallel direction have to be communicated for the
boundary conditions.

Domain decomposition in v‖-direction

In Fig. 3.16 the decomposition along the v‖-dimension is shown. Parallelization is less ef-
ficient for a large CPU number. This comes comes not as a surprise as the field equations
depend only on the moments of the phase-space function and thus the field equations
cannot be efficiently parallelized for the field equations as well as gyro-averaging pro-
cedure. Thus a large path cannot be parallelized which results in a bad scalability.
However, as shown above the major part of the computational time is spend within the
Vlasov part, thus a satisfying parallelization is obtained for up to 4 CPUS.
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Figure 3.16.: Parallelization with grid decomposition over v‖-dimension. Left figure shows
speedup over decomposition, the figure on the right shows the corresponding efficiency. Decom-
position efficiency is bad, as the v‖ decomposition is only effective for the Vlasov part, while
gyro-averaging and field equation solution are essentially serialized. A good parallelization effi-
ciency is achieved up to Nv‖ = 2, from where it drops of quickly. Case (C) exceeds memory limit
as in the x− decomposition.

Domain decomposition in µ-direction

In Fig. 3.17 the decomposition over the adiabatic constant µ is shown. We have generally
a favorable scaling, as no boundaries have to be exchanged (neo-classical are neglected).
However, similar to the v‖ decomposition, the field equations depend on the velocity
moments, and thus parallelization of the field equation solver is limited for Nµ decom-
position. However, this can be overcome by directly solving the field equations and
gyro-transformation of the fields within the same solution step.

Domain decomposition in σ-direction

Finally, in Fig. 3.18 the decomposition over the species (σ) is shown. The scaling is
very similar to Fig. 3.17. And indeed behaviour is similar as usually collisions between
different species are neglected and thus no boundary exchange is required.

3.3.5 | Hybrid-parallelization

Finally to optimize scalability for a given problem, we do not only decompose in one
dimension, but we decompose in various dimensions in order to find the best scalabil-
ity. In Fig. 3.19, the hybrid-parallelization is shown (loop decomposition and domain
decomposition) is shown. Here, we note that the strong scaling is dominated by com-
munication overhead. With our hybrid simulations scenario it is possible to hide the
communication overhead by using the master thread for communications and the slave
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Figure 3.17.: Parallelization with grid decomposition over µ-axis. Left figure shows speedup
over decomposition, the figure on the right shows the corresponding efficiency. For the µ de-
composition, The Vlasov part, as well as the gyro-averaging part are parallelized, only the field
solution are serialized. Scalability is satisfactory up to a decomposition of Nµ = 4 for Cases (A)
and (B), while scaling is more favorable for Case (C), with good scalability up to Nµ = 8.

Figure 3.18.: Parallelization with grid decomposition over σ-axis for Case(D) for Nσ. Left figure
shows speedup over decomposition, the figure on the right shows the corresponding efficiency. For
the µ decomposition. Scalability is very similar to the decomposition of Nµ, only the field equation
part is serialized.
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Figure 3.19.: Strong scaling efficiency for hybrid parallelization for cases (A)-(C). Each
Cases(A) to (C) are shown from top to bottom. The best decomposition for a specific num-
ber of cores is shown as a tuple of the form Nx : 1 : Nz : Nv‖ : Nµ − Nth. We found that
the scalability is very sensitive to the chosen decomposition. For medium range CPU numbers,
n ∼ 64, x and µ decomposition gives best scalability.
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thread can perform different calculations. Additionally, we note that strong scaling rule
(same problem size) is usually replaced by weak scaling (increasingly larger problem
size), which usually shows a much better scaling.

3.4 | Summary

The outline of the numerical solution procedure of the gyrokinetic equation system was
given. This included among others: the discretization stencil, calculation of the linear
and nonlinear terms and the time integration scheme. The importance of the CFL
condition as a stability parameter was stressed out, as well as the dynamical adjustment
of the time step to simulate with the maximum stable time step. The gyrokinetic code
gkc++ , which was developed during this PhD, was introduced. For an investigation of
multi-scale turbulences in gyrokinetics, the code was parallelized to be used on shared
memory and distributed computer systems. Three use-cases are discussed, benchmarked
and optimized to ensure the codes scalability over a wide range of parameters.





4 | Eigenvalue analysis of damping in the Vlasov–

Poisson system

In this chapter, we will systematically investigate the characteristics of stable modes
originating from kinetic damping in an unsheared slab geometry by comparing two ap-
proaches, i.e., a gyrokinetic Vlasov simulation as an initial value problem (IVP) and the
corresponding numerical eigenvalue analysis in a discretized velocity space that is the
same as in the IVP. Especially, we investigate if the stabilization effect through stable
modes is properly evaluated beyond the recurrence time, which is unavoidable in ki-
netic simulations using the Vlasov approach as pioneered by Cheng and Knorr (1976),
in a linearly mode-coupled system. In a gyrokinetic plasma, unstable modes such as
the ion temperature gradient modes (ITG) coexists with stable Landau damped modes.
In turbulent simulations, the steady-state spectrum after saturation is determined by
the balance between the energy source and the sink which corresponds to unstable and
stable modes. Also, stable modes can become nonlinearly excited and act as a means
of dissipation as discussed by Hatch et al. (2012) and Terry et al. (2006). However, if
these stable modes are correctly reproduced is still not yet answered yet. By the end of
this chapter, will will confirm that the stabilization mechanism of linear mode coupling
works indeed beyond recurrence time.

4.1 | Overview of Landau damping

Assuming a non-magnetized, collisionless plasma with ions and electrons, which is ho-
mogeneous in the x- and y direction, the time evolution of the distribution function fi,e
of the ions (i) and electrons (e) can be described by the Vlasov–Poisson equation system,

∂fσ
∂t

+ v‖
∂fσ
∂z

+
q

m

∂φ

∂z

∂fσ
∂v

= 0

Vlasov’s equation

, ∇2φ = 4πρ = 4π
∑
σ=i,e

qσ

∫
fσ dv‖

Poisson’s equation

, (4.1)

where φ is the electrostatic potential and the derivatives in x and y dropped out due
to homogeneity. For further analysis, we assume a static, fixed ion and electron back-

65
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ground f0 with a small, time-dependent perturbed part f1 and neglect the nonlinear
contributions from ∂vf1. In the view point of the electrons, the ion mass is large, thus
we further assume immobile ions (mi →∞) such that the Vlasov equation does not have
to be solved for the ions. Skipping the index for x and y, the perturbed distribution
function is given by fe(z, v). Finally, we assume the parallel direction to be periodic,
which allows us to use a Fourier expansion in the spatial dimension f1 ∝ exp (ik‖z) and
φ ∝ exp (ik‖z), so that the reduced Vlasov–Poisson equation system is then given by

∂f1

∂t
= −vik‖f1 − qe

me
ik‖φ∂vf0 , k‖

2φ = −4πqe

∫ ∞
v‖=−∞

f1 dv‖ . (4.2)

We can choose now an initial f1 and integrate above equation in time as an initial
value problem (IVP). We explicitly note that the IVP does not posses any singularity and
can be solved using numerical integration such as described by Cheng and Knorr (1976).
However, prior to the time where computers became available, scientist relied on analytic
solutions of which we would like to given an overview by revisiting the derivations for the
Landau damping. For a more general overview on Landau damping the reader is referred
to Ryutov (1999). In the following, we will skip the parallel sign in

(
v‖, k‖

)
→ (v, k) to

improve readability. Assuming a Fourier expansion in time f1 ∝ exp (−iωt), the Vlasov’s
equation (4.2) can be written as

−iωf1 = −vikf1 −
qe
me

ikφ∂vf0 → f1 = −
qe
me
φ∂vf0

v − ω/k
, (4.3)

which is then plugged into the Poisson’s equation to give

1 +
ωpe
k2

∫ ∞
v=−∞

∂vf0

v − ω/k
dv = 0 , (4.4)

where in the last step the Poisson’s equation was used in the left-hand side to get the
dispersion relation and defined the electron plasma frequency as ωpe = 4πq2

e/me. Above
equation has a singularity for the resonant position at ω/k‖ = ζ, where the integrand
becomes infinite. To calculate this term, we may first assume v � ζ, and expand the
integral in powers of k, such that

1

v − ζ
= −1

ζ

(
1

1− v/ζ

)
= −1

ζ

[
1 + v/ζ +

(
v

ζ

)2

+

(
v

ζ

)3

+

(
v

ζ

)4

+ . . .

]
. (4.5)

Using above expansion in Eq.(4.4) up to second order and assuming f0 to be a Maxwellian
given by f0 = (1/

√
πv2

te) exp
[
−v2/v2

e

]
, where ve is the thermal velocity of the electrons

defined by vte =
√

2T/m, the even contributions drop out due to symmetry which results
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in ∫ ∞
v=−∞

∂vf0

v − ζ
dv =

∫ ∞
v=−∞

∂vf0

(
−1

ζ

[
1 +

(
v

ζ

)
+

(
v

ζ

)2

+

(
v

ζ

)3
])

dv (4.6a)

=
1

ζ

∫ ∞
v=−∞

f0

(
1

ζ
+

2v

ζ2
+

3v2

ζ3

)
dv (4.6b)

=
1

ζ2
+

3v2
te

ζ4
(4.6c)

where in the second step we integrated by parts. With this approximation the dispersion
relation in (4.4) is given by ω2−ω2

pe−3ω2
pek

2v2
te/ω

2 = 0, which is known as the Langmuir
dispersion relation, which frequency is pure real.

4.1.1 | Vlasov’s approach

The equation system (4.2) was investigated by Vlasov (1938), who studied the effect of
an electrostatic wave inside the plasma. Vlasov suggested, to use the Cauchy principal
value defined by

P.V.

∫ ∞
v=−∞

∂vf0

v − ζ
dv = lim

ε→0+

[∫ ζ−ε

−∞

∂vf0

v − ζ
dv +

∫ ∞
ζ+ε

∂vf0

v − ζ
dv

]
, (4.7a)

to calculate the singular integral. However, also in this case, we find that the dispersion
relation predicts a frequency ω which is pure real.

4.1.2 | Landau’s approach

Landau (1946) argued that using the principal value to calculate the singular integral
is not justified. Instead, the Laplace transform should be used to regard Eq.(4.2) as
an initial value problem with an initial perturbation of f1(t = 0) at the initial time
t = 0, where the initial perturbation is assumed to be entire (e.g. can be expressed as a
convergent power series). The Laplace transformed equation with t ≥ 0 is given by

L{f1(v, t)} =

∫ ∞
t=0

f1(v, t)e−st dt = f̃1(v, s) , (4.8)

where s is the so-called complex frequency variable. The inverse Laplace transformation
is given by

L−1
{
f̃1(v, s)

}
=

1

2π

∫ ∞+iσ

s=−∞+iσ
f̃1(s, t)est ds = f1(v, t) , (4.9)

where the integration is along the real plane and the real variable σ needs to be chosen
such that iσ is larger than the imaginary part of all singularities of f1(s, t) in the com-
plex plane. Note that for σ = 0 the Laplace inverse is identical to the inverse Fourier
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Figure 4.1: Complex plane and
contours applied. Contour of the
inverse Laplace transform L−1 is
shifted to σ′ to ensure quick decay,
however, C2 needs to be changed to
include poles from the new contour.
Singularities are dots. [Adapted
from Stix]

Im

Re

C1

σ

σ′

C2

transform. Loosely following Froese (2005), the Laplace transform of the derivative is
given by

L
{
∂f1

∂t

}
= sf1(v, s)− f1(v, 0) , (4.10)

with f1(v, 0) is the initial part, such that the Laplace transform of Vlasov’s equation
(4.2) is given by

(s+ ikv) f1(v, s) + qe
me
ikφ∂vf0 = f1(v, 0) . (4.11)

After rearranging for f1(v, s) and inserting into Poisson’s equation, we arrive at

k2φ = −ωpeφik
∫ ∞
−∞

∂vf0

s+ ikv
dv − 4πqe

∫ ∞
−∞

f1(v, 0)

s+ ikv
dv . (4.12)

Simple rearrangements and using the definition of the electric field given by E = −ikφ
yields

E(k, s) =

4πqe
k i

∫∞
v=−∞

f1(v,0)
s+ikv dv

1− iωpe
k

∫ ∞
v=−∞

∂vf0

s+ ikv
dv︸ ︷︷ ︸

D(k,s)

=
A

D(k, s)
, (4.13)

where D(k, s) is the dispersion relation and the initial perturbation denoted by A arises
only as a scalar. To get the time evolution, we need to perform the inverse Laplace
transform. Although, we can choose σ large enough to ensure that all singularities are
below Im(sn) < σ. Landau’s approach was to shift the integration contour C1 below
them, and integrate over a modified contour C2 as shown in Fig. 4.1. The integral along
both contours will be equivalent as long as all singularities between C1 and C2 are taken
into account. The advantage is that we can push C2 arbitrarily small such that its
horizontal contributions can be made negligible small in the long-time limit for large t
as only the uppermost pole will be significant.
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Im
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Figure 4.2: Landau
contour deformation
CL and analytic con-
tinuation. [Adapted
from Stix]

Here, again the singular integral appears, but instead of using the principal value
integral, we integrate the integral over a complex contour to avoid the singularity. The
integral involving the dispersion relation has singularities at v = ζ. The integral is given
by the

D (k, s) = k2 + ωpeik

∮
C1

∂vf0

s+ ikv
dv (4.14a)

= k2 + ωpeik

[
2πi

∑
Res

{
vf0

s+ ikv

}]
. (4.14b)

For the inverse Laplace transformation all singularities needs to be taken into account.
However, for the long time limit, i.e., t→∞, only the least damped will remain

lim
t→∞

= es1t
iA

D(k, s)
. (4.15)

To get the time evolution of φ, we thus need to know the position of the poles of D(k, s),
using Cauchy’s residues theorem. However, we shifted our integration contour for the
inverse Laplace transform, such that we need to deform our integration contour to a new
Landau contour and use analytic continuation, as shown in Fig. 4.2.

D(k, s) = 1− 1

k

∮
C

1

s+ ikv

−v√
2π

exp

(
−−v

2

2v2
t

)
(4.16)

having infinitely zeros ( s
kvt

), we need to find using s = −iω.
We found that E(k, t) will be determined from the uppermost pole of E(k, s) and the

poles from E(k, s) are determined from the zeros in the denominator in Eq.(4.13). The
Landau dispersion D(k, s) = 0 can then be obtain through integration along the contour
CL shown in Fig. 4.2, which gives

D(k, s) = 1 +
ω2
p

k

∮
CL

∂vf0

v − ζ
dv (4.17a)

= 1−
ω2
p

k2

[
P.V.

∫ ∞
−∞

∂vf0

v − ζ
dv + iπ

∂f0

∂v

∣∣∣∣
v=ζ

]
. (4.17b)
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The imaginary term is given, assuming f0 being a Maxwellian, by

iπ
∂f0

∂v

∣∣∣∣
v=ζ

= −i 2πω

k
√
πv2

te

exp

[
− ω2

k2v2
te

]
. (4.18)

We can neglect the thermal correction in the multiplicative factor such that ω2 ∼ ω2
p,

however need to keep it in the exponential factor. The principal value is calculated by
assuming weak damping and a large phase velocity, such that v � ζ as in Eq.(4.6a), to

D(k, s) = 1 +
ω2
p

k2
− i

2πω3
p

k3
√
πv3

te

exp

[
− ω2

k2v2
te

]
. (4.19)

In contrast to Vlasov’s derivation, the dispersion relation obtained by Landau has a
negative imaginary part and an electrostatic wave inside a collisionless plasma is damped.

4.1.3 | The plasma dispersion function

For the derivation using the Landau’s approach, we had to make two assumption, namely
assuming weak damping, to justify the contour integration, and the fluid approximation
to expand the denominator of. Both assumptions can be dropped in case we make
directly use of the plasma dispersion function Z, see Ap.(A.1), with ζ = ω/vtek, the
dispersion relation is given by

Z(ζ) =
1√
π

∫ ∞
u=∞

e−u
2

u− ζ
du → 1 + k2 + ζ Z(ζ) = D(ω, k) = 0 . (4.20)

The residual of of the dispersion relation over the complex plane is shown |D(ω, k)| = Res
in Fig. 4.3 for k = 1 and vte = 1. Only where the residual vanishes, a solution of the
dispersion relation is found. We find multiple solutions ωn, where D(ωn, k) = 0, however,
in most case only the least damped value is of interest as it dominates the solution in
the long time (as the other modes are damped away mode quickly).

4.1.4 | Case and van Kampen’s approach

Our derivation of the Landau damping problem is yet incomplete. Namely, although
we know the time evolution of the electrostatic potential φ, we do not know the time
evolution of the distribution function f1 itself — as φ itself corresponds only to the
zeroth moment of f1. On the other hand, when the time evolution of f1 is known, the
evolution of φ can be easily determined from Poisson’s equation. This point was stressed
out by van Kampen (1955), who studied the eigenmodes of the Vlasov–Poisson equation
system shown in (4.2).
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Figure 4.3: Residual of
|D(ω, k‖)| = Res on the complex
plane. |D(ω, k‖)| has multiple
zeros as indicated by the arrows,
where the residual vanishes.
For the linear Landau damping
problem, only the solution with
lowest decay rate will be dominant
after the initial (or transient)
phase. Note that the dispersion is
symmetric along the real axis, as
Z(ω) = Z(−ω).

Using following definitions: f1(x, v, t) = f̂1(v)e−iωt+ikx, η(v) = ω2
e
k2

∂f0
∂v , and ζ = ω/k,

and substituting the electrostatic potential in Vlasov’s equation using Poisson’s equations
gives the following eigenvalue equation:

(v − ζ) f̂1,ζ(v) = η(v)

∫ ∞
−∞

f̂1,ζ(v
′) dv′ . (4.21)

As discussed by Nicholson (1983), the eigenfunctions of above eigenvalue equation are
given by

f̂1,ζ(v) = P.V.

[
η(v)

v − ζ

]
+ δ (v − ζ)

[
1− P.V.

∫ ∞
v=∞

η(v′)

v′ − ζ
dv′
]

, (4.22)

where the δ is Dirac’s δ function and the principal value (P.V.) is defined by

P.V.

(
1

v − ζ

)
=

{
1
v−ζ v 6= a

limx→a±
1
v−ζ v = a

. (4.23)

That the singular eigenfunction f̂1,ζ solves indeed Eq.(4.21) for any real ζ can be eas-
ily confirmed by plugging it back. Interestingly, the eigenvalue spectra is a continuum
of marginally stable (ω has only real part) velocity space eigenmodes. These eigen-
modes are termed Case–van Kampen eigenmodes. As ω′ is pure real, no damping of the
electrostatic potential is found if only one eigenmode is considered. So how a damp-
ing can be achieved? The whole concept of the singular eigenmodes is physically a bit
counter-intuitive as a finite number of particles cannot reside within an infinitesimal
small area (as assumed by the δ function). Also, a single eigenmode cannot be “phys-
ical”, as stated by Nicholson (1983), as strictly speaking the δ functions violates the
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small perturbation assumption used for linearization. Nevertheless, even with a singular
eigenfunction, smooth functions can be reproduced once a band of CvK eigenmodes is
taken into account such that f1 is given by

f1e
ikz = eikz

∫ ∞
ω=−∞

c(ω)f̂1,ω e
−iωt dω , (4.24)

where c is a perturbation coefficient. The distribution function f1 is obtained from the
integral over the continuum of eigenfunctions, namely Nicholson (1983) gives

f1(x, v, t) = eikxη(v) P.V.

∫
c(ω)e−iωt

v − ζ
dω +eikzk e−ikvtc(ω = kv)

− k eikz−ikvt c(ω = kv) P.V.

∫ ∞
−∞

η(v′)

v′ − v
dv′ ,

(4.25)

plugging f1 into Poisson’s equation yields

φ(x, t) =
4πe

k2
eikz

∫ ∞
v=−∞

e−ikvtc(ω = kv) dv , (4.26)

such that the time evolution of the potential is define by band of CvK eigenmodes which
are phase-mixing.

The equivalence of Landau’s approach and the approach of van Kampen was shown
by Case (1959). Also, Case (1959) showed that the spectrum has additionally, not
only a continuous part, but also a discrete part in case of a non-Maxwellian plasma.
The discrete part is important once f0 is non-Maxwellian, such as for the bump-on tail
instability, see Denavit (1985) and Shoucri (1979) for a general overview, where Simon
and Rosenbluth (1976) showed that an unstable eigenmode (Im(ω′) > 0) and is complex
conjugate arises from the discrete part of the spectrum. This point has been additionally
verified by Bratanov (2011) in case of a magnetized plasma in present of temperature
and density gradients. The eigenmodes of the Vlasov-Poisson systems are then given by

g(v, t) =
∑
i

aie
−kvtfi(v) +

∫
A(v)eikvtfv(u) dv , (4.27)

so that the time evolution of the electric potential is

φ(t) =
4

k2

{∑
i

aie
ikvt +

∫
A(v)eikvt dv

}
, (4.28)

where A(v) is the continuous part and ai is a possible discrete part.
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4.2 | Derivation of the simplified gyrokinetic equation sys-
tem

We now extend our study of Landau damping to the gyrokinetic system. Our simulation
domain is a periodic two-dimensional slab configuration in a domain (x, y), where (x, y)
is the radial and poloidal coordinate as described in Sec.(2.10.3). The constant magnetic
field B0 has a constant angle θ to the homogeneous z-direction, i.e., B = B0 (ẑ + θŷ),
where θ � 1. As before, we perform the δf split, where the ion distribution function
f is split into an equilibrium part f0 and the perturbed time dependent part f1, i.e.
f = f0 + f1 and electrons are adiabatically treated. Physical quantities are normalized
as (

kx
ρti
,
ky
ρti
,
v‖

vti
,
µB0

miv2
ti

,
tvti
Ln

,
θLn
ρti

)
→

(
kx, ky, v‖, µ, t, θ

)
, (4.29a)(

f0vti
n0i

,
f1Lnvti
ρtin0i

,
φeLn
vti

)
→ (f0, f1, φ) , (4.29b)

where n0i is the ion equilibrium density, vti =
√
Ti/mi the ion thermal velocity, ρti =

vti/Ωi the ion thermal gyro-radius, Ti the ion temperature and Ωi = eB0/mic the gyro-
frequency and (kx, ky) the wavenumber in (x, y) direction, respectively. The equilibrium
part is given by f0 = 1/

√
2π exp (−v2

‖/2) exp (−µ) and the perturbed time dependent
part f1, so that f = f0 + f1. We expand all spatial dimensions in Fourier harmonics as
for the guiding-center perturbed distribution function with frequency ω

f1(x̄, v‖, µ, t) ∝
∑
k⊥

f1,k⊥ × exp (ikxx̄+ kyȳ − ωt) , (4.30)

and the potential φ(x̄) in guiding-center coordinates and the gyro-averaged potential
〈φ(x̄+ ρ̄)〉 in gyro-center coordinates

φ(x̄, t) =
∑
k⊥

φk⊥ exp (ikxx̄+ kyȳ − ωt) , (4.31)

〈φ(x̄+ ρ̄, t)〉 =
∑
k⊥

J0(k⊥ρ̄)φk⊥ exp (ikxx̄+ kyȳ − ωt) , (4.32)

where x̄ and ρ̄ are the guiding-center coordinates and the Larmor radius, so that x̄+ ρ̄
represents the particle coordinate. The z-dependence drops out due to the homogene-
ity, so that the parallel wavenumber reduces to k‖ = θky. The normalized linearized
gyrokinetic equation system is given by

∂f1,k⊥

∂t
= −iky

[
1 +

ηi
2

(
v2
‖ + 2µ− 3

)]
J0(λ)φk⊥f0

− iθkyv‖ (f1,k⊥ + J0(λ)φk⊥f0) + CLB , (4.33)
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where ηi ≡ LT /Ln is a parameter defined by the temperature gradient scale length
LT ≡ |∂ lnTi/∂x| and the density gradient scale length Ln ≡ |∂ lnni/∂x|, and J0 is

the zeroth order Bessel function of the first kind and λ =
√

2µk2
⊥. CLB is the Lenard-

Bernstein Lenard and Bernstein (1958) type collision operator defined as

CLB = βc
∂

∂v‖

(
∂f1,k⊥

∂v‖
+ v‖f1,k⊥

)
, (4.34)

where βc is the normalized collisional frequency. The Vlasov equation is coupled to the
Poisson equation given by

[(
1− Γ0(k2

⊥)
)

+ 1
]
φk⊥ =

∫ ∞
−∞

dv‖

∫ ∞
0

dµ J0(λ)f1,k⊥ , (4.35)

where k2
⊥ = k2

x+k2
y. Here, Γ0(k2

⊥) = I0(k2
⊥)e−k

2
⊥ , where I0 is the modified Bessel function

of the first kind.

For further simplification, we assume the distribution in the perpendicular velocity
direction µ to be Maxwellian, so that the total distribution can be expressed as fk⊥ =[
f0(v‖) + f1,k⊥(v‖)

]
e−µ. Then the integration over µ can be performed analytically in

Eq.(4.33) and Eq.(4.35) using the identities,∫ ∞
µ=0

J0 (λ) e−µ dµ = e−k
2
⊥/2 , (4.36a)∫ ∞

µ=0
µJ0 (λ) e−µ dµ =

(
1−

k2
⊥
2

)
e−k

2
⊥/2 . (4.36b)

This leads to a modified gyro-averaging operator in the form of φ̄k⊥ = exp
(
−k2
⊥/2

)
φk⊥ .

This reduced equation system has the advantage of removing the perpendicular dimen-
sion from the system, while finite Larmor radius (FLR) effects are still kept up to the
first order as was used, e.g., by Watanabe and Sugama (2002). Finally, the reduced
gyrokinetic equation system we will study is given by

∂f1,k⊥

∂t
= −iky

[
1 + 1

2ηi

(
v2
‖ − k

2
⊥ − 1

)]
φ̄k⊥f0

− iθkyv‖
(
f1,k⊥ + φ̄k⊥f0

)
+ CLB , (4.37)

and Poisson’s equation for the electric potential takes the form

[(
1− Γ0(k2

⊥)
)

+ 1
]
φk⊥ =

∫ ∞
−∞

dv‖ f1,k⊥e
−k2⊥/2 . (4.38)

In the following, v‖, φk⊥ and f1,k⊥ are written as v, φ, f1 for simplicity.
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Using a Laplace transform with respect to time and integrating over velocity space in
the collisionless limit, we obtain the dispersion relation given by

2− Γ0

(
k2
⊥
)

+

e−k
2
⊥

{
1 +

ηi√
2θ
ζ +

1√
2θ

[
1− ηi

2

(
1 + k2

⊥
)

+ ηiζ
2 +
√

2θζ
]
Z(ζ)

}
= 0 , (4.39)

where ζ = ω/
√

2θky. The velocity integral is calculated using the Fried-Conte plasma

dispersion function defined as Z(ζ) = i
√
πe−ζ

2
(1 + erf (iζ)). For more details, the reader

is referred to the appendix (A.3). Fixing ηi, θ and kx, we use Müllers root finding
algorithm to get the complex frequency ω for each poloidal mode ky. In general, the
dispersion relation exhibits infinite number of modes.

4.3 | Damping in discretized Vlasov simulations

Here, we solve the gyrokinetic equation system, i.e. Eq.(4.37) and Eq.(4.38), as an initial
value problem (IVP). A fourth order Runge-Kutta time integration scheme is used and f1

is equidistantly discretized in velocity space with endpoints at vmax = ±7 using typically
Nv = 128 points. The collisional operator CLB is included using a fourth order central
difference stencil for the discretization of the first and second velocity space derivatives.
For the two discretization points at the left and right boundaries of f1(v) we use two
ghost cells set to zero. The fixed time step is set to ∆t = 0.05 such that the CFL
condition (|vmaxθky ·∆t < 1/2) is fulfilled for ky < 3. The other physical parameters are
ηi = 6, θ = 0.3 and kx = 0, where it is noticed that kx = 0 provides the largest growth
rate of all possible kx. In the IVP, the initial perturbation in velocity space can be freely
chosen, such that we first investigate how the linear mode behaves by the choice of the
initial condition. We consider two cases for the initial condition : the first one is the
random noise multiplied with the Maxwellian given by f1 ∝ Rf0, where R represents
uniform random numbers in the domain [−1, 1], and the second initial perturbation is
proportional to the Maxwellian f1 ∝ f0.

The results in the collisionless case are given in Fig. 4.4a and 4.4c which illustrate
the time evolution of six poloidal modes, for the different initial velocity distributions
mentioned above. The growth rate spectrum for each initial condition and different
poloidal modes is shown in Fig. 4.5, together with the theoretical calculations (solid
line) as a reference. In the case of the random noise, i.e. Fig. 4.4a, the unstable modes,
i.e. ky ≤ 1.6, show an exponential grow with growth rates consistent with the theoretical
dispersion relation in Fig. 4.5. However, the poloidal modes with ky > 1.6, which should
have negative growth rates according to the analytical solution, show no growth nor
damping, exhibiting a marginal behavior with small amplitude fluctuations. This feature
is also shown in Fig. 4.5 using rectangular markers, which results from the analysis in
the time interval t = [25, 50]. On the other hand, choosing the Maxwellian as the initial
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(a) Random Noise, βc = 0 (b) Random Noise, βc = 2× 10−3

(c) Maxwellian, βc = 0 (d) Maxwellian, βc = 2× 10−3

Figure 4.4.: Time evolution of poloidal Fourier modes of the electrostatic potential |φ| of the
IVP solution for different initial perturbation and collisionalities, i.e. (a) f1 ∝ Rf0, βc = 0; (b)
f1 ∝ f0, βc = 0; (c) f1 ∝ Rf0, βc = 2× 10−3 and (d)f1 ∝ f0, βc = 2× 10−3.
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Figure 4.5: Linear
growth rates of the most
unstable mode obtained
from the analytic solution
(line), from the IVP
with Maxwellian (M) and
the IVP with Random
(R) initial perturbation
and different collisional
frequencies βc.

perturbation, the modes with ky > 1.6 show damping at the beginning consistent with
the analytical results as seen in Fig. 4.5. However, in later time, the mode reaches back
to its initial value and the behavior is repeated, exhibiting a so-called recurrence, as seen
in Fig. 4.4c. Note that the recurrence is known to be common for damped modes in the
discretized numerical simulation of the Vlasov–Poisson system as discussed by Canosa
et al. (1974), Knorr (1973) and Knorr and Shoucri (1974).

Now, we include a small collisionality given by βc = 2 × 10−3 in Eq.(4.33). In the
case of the random noise for the initial distribution which corresponds to Fig. 4.4b,
unstable modes with ky ≤ 1.6 are almost same as in the collisionless case, suggesting
that collisionality is weak enough so that it does not affect the linear growth rates.
However, the higher modes with ky > 1.6, which show marginal behavior in the absence
of collisionality, i.e., Fig. 4.4a, turn to be damped with the rate consistent with the
theoretical values as shown in Fig. 4.5. When these modes are damped to a certain
level, they turn to be almost constant values in time, which we considered to result from
numerical round-off errors. In the case of a Maxwellian initial perturbation, see Fig. 4.4d,
the damping characteristics for ky > 1.6 are almost the same as those in Fig. 4.4c,
however the recurrence phenomena is found to disappear, showing same characteristics
as Fig. 4.4b. It is noted that the inclusion of a small collisionality, i.e. βc = 2 × 10−3

in this case, play a role in diminishing the recurrence. In the subsequent sections, we
investigate the underlying physical mechanism leading to those prominent characteristics
observed in Fig. 4.4, i.e. the role of the initial condition and also of collision for damped
modes in gyrokinetic simulations.
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4.4 | The discretized gyrokinetic operator

In order to understand the marginal characteristic of the damped modes in the colli-
sionless case, as shown in Fig. 4.4a, we reformulate the gyrokinetic integro-differential
equation system as an eigenvalue problem. As in the derivation of the analytic solution,
a harmonic time dependence f1 ∝ exp (−iωt) is assumed. Then Eq.(4.37) and Eq.(4.38)
can be written as

−iωf1 = Lky f1 , (4.40)

where Lky is the linear gyrokinetic operator for the poloidal mode with wavenumber
ky given by Eq.(4.44). To obtain a numerical solution, the velocity space continuum is
discretized using Nv number of points, where a cutoff velocity is chosen at Lcut-off = ±Lv
and the velocity perturbation outside the range is assumed to be zero for f0 and f1. This
is a valid approximation, as long as Lv is chosen enough large so that

∫∞
Lv
f0(v)dv ≪ 1.

Using equidistant points to discretize the velocity space, we get

v = . . . , 0, 0,

(
−Lv,−Lv +

2Lv
Nv

,−Lv +
4Lv
Nv

, . . . ,+Lv

)
, 0, 0, . . . . (4.41)

Note that the discretization of the velocity space into Nv points requires that the
Maxwellian f0 and the perturbed distribution function f1 are also discretized with Nv

points. The Vlasov equation in Eq.(4.37) is written as

∂f1,k⊥;n

∂t
= −iky

[
1 + 1

2ηi
(
v2
n − k2

⊥ − 1
)]
φ̄k⊥f0;n − iθkyvn

(
f1,k⊥;n + φ̄k⊥f0;n

)
,

(4.42)

where the gyro-averaged electric field φ̄ is calculated using Eq.(4.38)

φ̄k⊥ =
exp

(
−k2
⊥
)

2− Γ0

(
k2
⊥
) Nv−1∑
m=0

f1,k⊥;m∆v . (4.43)

Here, φ̄ is now calculated as a weighted sum over f1 (in this case the rectangle rule)
with ∆v = 2Lv/Nv. The linear discretized gyrokinetic operator, e.g. the right-hand side
of Eq.(4.42), for the Vlasov–Poisson integro-differential system Eq.(4.37) and Eq.(4.38)
can then be obtained as a Nv ×Nv matrix by using Eq.(4.43) in Eq.(4.42) to get

Lk⊥;nm = −iky

(
θvnδnm +

[
1 + 1

2ηi
(
v2
n − k2

⊥ − 1
)

+ θvn
]
f0;n ·

e−k
2
⊥∆v

1− Γ0

(
k2
⊥
)) . (4.44)

The Lenard-Bernstein collisional operator (4.34) is discretized using fourth-order finite
difference stencils as given in Tab.(3.1).
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With the now derived gyrokinetic operator, Eq.(4.42) can be formulated using a
matrix-vector notation as,

∂

∂t
f1,k⊥ = Lk⊥f1,k⊥ . (4.45)

In order to solve the problem as an initial value problem, we can discretize the time
derivative using e.g. the Euler forward method and evolve an initial perturbation f1,t=0

in time, by performing vector-matrix multiplication according to (note that ∆t has to
be enough small to guarantee numerical stability),

f t+∆n
1,k⊥

= f t1,k⊥ + Lk⊥ · f
t
1,k⊥

∆t . (4.46)

However, only the most unstable (the one with the highest growth rate) will be domi-
nating the solution after an initial time. This can bee seen as subsequent multiplication
of the Lk⊥ with f1,k⊥ will only let the most unstable eigenvector dominant.

Information about all modes can be extracted by calculating all eigenvalues of the
linear operator, which have the form

−iωf1,k⊥ = Lk⊥f1,k⊥ . (4.47)

Numerically, the eigenvalue can be calculated once the matrix Lk⊥ is given, by using
an eigenvalue solver as provided LAPACK, i.e. Anderson et al. (1990). Additionally
we confirm that by using a matrix-free eigenvalue solver, e.g. SLEPc, where the linear
operator Lk⊥ does not have to be calculated but only the matrix-vector product Lk⊥ ·
f1,k⊥ in order to extract the eigenvalues and eigenvectors. Note that as in the solution
of the IVP, the operator Lky(Nv ×Nv) is discretized. The linear operator Lky with the

size Nv×Nv has Nv complex eigenvalues wn and corresponding eigenfunction f̂n, where
n = {0, 1, . . . , Nv − 1}. This is in contrast to the analytic dispersion relation, which
gives an infinite number of solutions (the Landau roots) ω for a given ky mode and
the solution as an IVP, which in the long time limit gives only one solution (the most
unstable mode).

4.5 | Eigenvalue analysis of the gyrokinetic operator

The eigenvalue spectra with equivalent parameters as in Fig. 4.4 is shown in Fig. 4.6a for
ky = 0.4, and in Fig. 4.6b for ky = 2.2, in the collisionless case (βc = 0). For the unstable
mode with ky = 0.4, an eigenvalue corresponding to the Landau mode, which is verified
by comparing it’s complex frequency to Landau’s solution obtained analytically from
the dispersion relation, as shown by square markers, exist as expected. Additionally,
a damped mode with the exact opposite growth rate but identical frequency appears.
This mode is identified as the corresponding time reversed solution and numerically
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(a) Eigenvalue spectra for ky = 0.4 (b) Eigenvalue spectra for ky = 2.0

Figure 4.6.: Eigenvalue spectra of gyrokinetic equation system for the case of (a) ky = 0.4
and (b) ky = 2.2. Landau’s solution is shown using square marker. In case (a) the unstable
ITG mode arises as complex conjugate pairs and the corresponding eigenfunction is shown in
Fig. 4.7a. One of the CvK eigenfunctions (marked by a circle) is shown in Fig. 4.7b. In the case
of (b), no damped ITG mode can be found and the spectra consist of only CvK eigenmodes.

results from solving a pure real matrix, where all eigenvalues arise in conjugate pairs.
Interestingly, besides the two eigenmodes related to the ITG mode, e.g. Fig. 4.7a, it
can be seen in Fig. 4.6a that there exist many eigenmodes along the real axis with zero
growth rate. The number of such mode is found to be Nv − 2 (Nv the number of mesh
points in velocity space). The typical structure of an eigenfunctions is shown in Fig. 4.7b,
which exhibits singular structure. These modes are considered to the discretized Case–
van Kampen (CvK) eigenmodes as discussed in Sec. 4.1.4, with additional contributions
due to the temperature gradient and gyro-averaging procedure.

On the other hand, for the stable setup with ky = 2.0, only marginal stable eigenval-
ues are found, while no eigenvalue exists which corresponds to the analytical solution
of Eq.(4.39), as shown by the squared marker in Fig. 4.6b. Interestingly, this is contra-
dictory to the analytic solution of Eq.(4.39), but agrees well with the solution from the
IVP, which shows a marginal behavior with zero growth rate for the stable modes with
ky ≥ 1.6 as shown in Fig. 4.4a.

4.6 |Mechanism of collisionless Landau damping

The time evolution of the IVP generally depends on the initial condition as shown in
Fig. 4.4a and 4.4c. For instance, if we chose a CvK eigenfunction as an initial condition
in velocity space, which is numerically extracted using the eigenvalue solver, the per-
turbation is found to result in no growth and no damping for both stable and unstable
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(a) ITG eigenmode (b) CvK eigenmode

Figure 4.7.: Eigenfunction of the ITG mode (a) and random CvK eigenfunction (b) for ky = 0.4.
Each corresponding eigenvalue is shown by square and circle marker in Fig.3(a).

poloidal modes. On the other hand, when a Maxwellian distribution is chosen as initial
perturbation, a damped wave is found to be reproduced as shown in Fig. 4.4c, although
all eigenmodes obtained from the eigenvalue solver are still marginally stable as found
in Fig. 4.6b. To clarify the reason why a Maxwellian distribution leads to a damping,
we decompose the Maxwellian initial perturbation in terms of the eigenmodes of Lky
referred to as f̂n,

f1(v, t = 0) ≡ f0(v) =
∑
n

cnf̂n . (4.48)

Note that the eigenvectors f̂n are not orthogonal to each other, so that a linear equation
system has to be solved to get the corresponding coefficient cn. Once these coefficients
are determined, the eigenfunctions can be evolved similar to the IVP, but without the
need of any time integration scheme using

f1(v, t) =
∑
n

cne
−iωntf̂n , (4.49)

where ωn is the eigenvalue with its corresponding eigenfunction f̂n. At t = 0, the initial
Maxwellian perturbation is obtained for f1 per construction. In Fig. 4.8, we show the
time evolution of the field amplitude for ky = 1.8. For a random noise perturbation
(dashed line), damping is not observed, which is consistent with Fig. 4.4a. On the other
hand, for the Maxwellian perturbation (solid line), a damping is reproduced, while the
electrostatic potential suffers from the recurrence, as is observed in the IVP in Fig. 4.4c.
The time scale of the recurrence can be estimated by Trec = 2π/∆ωi(= 2π/θky∆v). The
damping rate we obtained during period of the recurrence time, is the same as that
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Figure 4.8: Time evolution
of the electrostatic potential
|φ| with ky = 2 for a ran-
dom perturbation (solid line)
and Maxwellian perturbation
(dashed line) obtained by evolv-
ing the eigenvectors of Lky .

predicted by Landau’s theory, i.e. the value marked by the rectangular in Fig. 4.6b.
However, the eigenvalues are not exactly equidistant, thus after the recurrence time the
original state as t = 0 is not obtained. Thus, we can confirm that the damping observed
in Fig. 4.4c is not the result from a Landau eigenmode with an eigenvalue ωL in the
form φ ∝ eiωLt, but from the phase mixing of the CvK eigenfunctions in the discretized
Vlasov–Poisson system.

4.7 |Matrix in Fourier–Hermite basis

The collisionless gyrokinetic Vlasov equation (4.37) in constant-θ geometry is slightly
rearranged to

i

θky

[
∂f1,k⊥

∂t

]
= αφ̄k⊥f0 + βv2

‖φ̄k⊥f0 + v‖
(
f1,k⊥ + φ̄k⊥f0

)
, (4.50)

with the definitions α = θ−1
[
1 + 1

2ηi
(
−k2
⊥ − 1

)]
and β = θ−1 1

2ηi, where we first assume
CLB = 0. For further analysis we transform into the Fourier–Hermite basis by expanding

f1 ∝ g(u) =

∞∑
n=0

anhn(u) exp (−u2) , (4.51)

where hn are the (modified) Hermite polynomials as given by de Souza-Machado et al.
(1999). Our definition of the Hermitian polynomials hn differs slightly from the general
“physicist” Hermite polynomials Ĥ by an additional scaling term

hn = Ĥn
1√√
π2nn!

. (4.52)
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Figure 4.9: Shown are the first
four (modified) Hermite func-
tions with exponential weight, i.e.
gn(u) = hn(u)e−u

2

.

The advantage of this modification is that the (modified) Hermite functions keep the
orthogonality directly under the exponential weight w(u) = exp(−u2),∫ ∞

u=−∞
hn(u)hm(u) e−u

2
du = δnm , (4.53)

in contrast to the classical definition which has non-favorable large scaling terms on the
right-hand side. The first four terms are given by

h0 =
1√√
π

, h1 =
1√√
π

1√
2
u , (4.54a)

h2 =
1√√
π

1√
8

[
4u2 − 2

]
, h3 =

1√√
π

1√
48

[
8u3 − 12x

]
, (4.54b)

and shown in Fig. 4.9. Further terms can be obtained by using the (modified) recursion
relation,

hn+1 = u

√
2

n+ 1
hn −

√
n

n+ 1
hn−1 . (4.55)

Inserting the Hermite expansion (4.51) into the right-hand side of Eq.(4.37), where
we first assume CLB = 0 gives and substitute v‖ =

√
2u, and noting that in this case

f0 = 1√
π
h0e
−u2 , gives for the Poisson equation with an adiabatic electron response

φ =
√

2
e−k

2
⊥

2− Γ
(
k2
⊥
) ∫ ∞

u=−∞
g du =

√
2

e−k
2
⊥

2− Γ
(
k2
⊥
)a0︸ ︷︷ ︸

φ̄

1√√
π

= φ̂ h0 , (4.56)
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where we used the orthogonality relation. The Vlasov equation is then given by

i

θky

∂g

∂t
= αφ̄h0e

−u2︸ ︷︷ ︸
T1

+ 2u2βφ̄h0e
−u2︸ ︷︷ ︸

T2

+ +
√

2uφ̄h0e
−u2︸ ︷︷ ︸

T3

+
√

2ug︸ ︷︷ ︸
T4

. (4.57)

For a further simplification, we multiply by hm and integrate over u. The first term T1

gives

T1 = φ̂α

∫ ∞
u=−∞

hmh0e
−u2 du = φ̂α δm,0 , (4.58)

where the other terms vanishes due to the orthogonality condition. The second term
and third term are calculated by applying the recursion relation. Using the recursion
relation on T4, shows that in contrast to the other terms no closure can be achieved.
Taking all terms together, and assuming a harmonic expansion for g ∝ exp (−iωt), we
get again the form of an eigenvalue equations,

ω



a0

a1

a2

a3

a4

a5
...


=
θky√

2



αφ̂+ βφ̂ 1

1 + φ̂ 0
√

2

βφ̂
√

2 0
√

3
√

3 0
. . .

√
4

. . .

. . .





a0

a1

a2

a3

a4

a5
...


, (4.59)

where a is a vector whose n-th component is the Hermite functions of n-th order. Note
that for a numerical simulations, we have to cut at a specific aN−1, such that only a
finite number of (modified) Hermite functions are included.

For the case with finite collisionalities, the velocity space derivatives in the Lenard-
Bernstein operator are calculated from the recursion relation given by ∂hn

∂u =
√

2nhn−1.
Which after a lengthly calculation the Lenard-Bernstein operator in Hermite basis simply
given by

C̃LB = −βc
(

0 i 2i 3i 4i . . .
)T

. (4.60)

4.7.1 | Landau damping in Fourier–Hermite basis

The gyrokinetic operatorHky in Fourier–Hermite basis has the advantage that the matrix
shown in Eq.(4.59) has a tridiagonal structure (compared to the dense matrix Lky in
Fourier basis), so that the dynamics can be described by the energy transfer among
neighboring Hermite modes. In Fig. 4.10, the time evolution of the amplitude an for the
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(a) Maxwellian H0 (b) Random

(c) Hermite H32 (d) Evolution of |a0| component

Figure 4.10.: Time evolution of the amplitude an for the Hermite basis component for (a)
Maxwellian, (b) random noise and (c) 32th order Hermitian (H32) initial perturbation. (d)
shows the time evolution of a0 for different initial perturbation corresponding to (a), (b) and (c).
The time evolution estimated from Landau’s theory is also shown as a reference. Time evolution
of a0 is shown together with the theoretical Landau damping rate.
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Hermite basis component is shown for an initial perturbation given by 4.10a Maxwellian,
4.10b random noise and 4.10c 32th order Hermite function for ky = 1.8 and βc = 0. In
case of the Maxwellian initial perturbation, i.e. Fig. 4.10a, where only the a0 component
is finite at t = 0, the transport of the perturbation from low order Hermite modes,
starting at a0 = 1, to modes of higher order is observed. The time evolution of the
corresponding electrostatic potential is shown in Fig. 4.10d

Thus the damping through the phase-mixing of the eigenmodes in velocity space is
found to correspond to the increase of the mode number in velocity space described in
the Fourier–Hermite basis and to the energy transfer into higher order moments of the
phase space function. For the case of a random noise perturbation, i.e. Fig. 4.10b, all
Hermite modes are simultaneously excited, so that the transport from low order modes
to those of high order is mixed with that from higher order to lower order Hermite
modes. As a result, the directionality of the energy transport as shown in Fig. 4.10b,
which is the origin of collisionless damping is diminished. As shown in Fig. 4.10c, when
the initial perturbation is only given by the a32 Hermitian component, the energy is
found to evolve in both directions : to higher and lower mode number, which results
from the tridiagonal structure of the matrix. It can be seen that the energy is cascaded
from the a32 component to that of the a0 component and evolves again towards the
higher order an components as observed in Fig. 4.10a. In order to see the dynamics
clearly, we investigated the time evolution of only the a0 component, which corresponds
to the electrostatic potential, for the three cases of initial perturbations as shown in
Fig. 4.10d. The value estimated by Landau’s theory is also shown. The damping due to
phase mixing and recurrence phenomenon can be seen clearly.

4.8 | Role of the Lenard-Bernstein collision on the recur-
rence

To study the effect of collision on the recurrence, we investigate the long time behavior
of the electrostatic potential in the case of ky = 1.8 for different collisionalities βc as
shown in Fig. 4.11. In the collisionless case (βc = 0), the recurrence phenomenon can
be seen as in Fig. 4.4c, where the instantaneous damping rate before each recurrence is
given by γrec. Note that γrec has roughly the same value as that of the Landau damping
calculated from the dispersion relation, i.e. γrec ∼ γLD. In the case of βc = 5× 10−4, a
similar recurrence phenomenon is observed as shown in Fig. 4.11. However, the potential
is found not to reach back completely to the initial value after the recurrence as in the
case of βc = 0, but to be damped by a certain level. This feature is repeated, so that the
envelope, which connects the points where the potential reaches back to the maximum
value in each recurrence event, shows a damping as illustrated by a thin line. We define
the damping rate to be γ?. Note that the damping rate of the envelope is smaller than
that which takes place during the recurrence, i.e. γ? > γrec. The damping rate γ? is found
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Figure 4.11.: Evolution of electric potential for βc = 0, 2×10−4, 5×10−3. For a small βc, Landau
damping occurs by phase mixing, however, the recurrence phenomenon is damped. For higher βc,
a real eigenmode appears. The damping due to other eigenmodes is shown as a reference (dotted
blue = βc = 1× 10−3, dotted red : 5× 10−2).

to increase as βc increases until it becomes the same value as γLD, i.e. γ? ∼ γLD, which
takes place at βc = β?c . Here, in this case, β?c is given by β?c ∼ 2.1× 10−3. Interestingly,
even if βc exceeds β?c , the feature of the damping is not changed as seen in the case of
βc = 5×10−2. Namely, the damping rate is less influenced by the collisionality and fixed
to almost same value as γLD.

In order to understand this behavior of the IVP for the collisional case, here use again
our eigenvalues analysis as in Sec.4.5, but now including the collisionality βc > 0. The
eigenvalue spectra for ky = 1.8 for various collisionalities are shown in Fig. 4.12. The
arrow corresponds to the growth rate of the majority of the CvK eigenmodes. In the
collisionless case (βc = 0), all eigenvalues are aligned on the imaginary axis corresponding
to zero growth rates as shown in Fig. 4.6b. A low collisionality has a strong influence
on the damping rate of CvK eigenmodes, which are now mostly damped as shown by
the shift of the arrow in Fig. 4.12a with βc = 5× 10−4. The damping rate indicated by
the arrow is similar to γ? up to βc < β?c , which was discussed in Fig. 4.11. Interestingly,
once the arrow exceeds the damping rate predicted by Landau’s theory due to increased
collisionality, one of the CvK eigenmodes changes its structure into that of a Landau
damped mode, as can be seen that the eigenvalue of the CvK mode coincides with that of
the Landau damped ITG mode as shown by square marker in Fig. 4.12b. Note that these
features are consistent with those discussed in Fig. 4.11, where the damping rate is fixed
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(a) βc = 5× 10−4 (b) βc = 2× 10−3

(c) βc = 5× 10−3 (d) βc = 1× 10−1

Figure 4.12.: Eigenvalue spectra for ky = 1.8 and various collisionalities. The arrow represents
the majority of the collapsed CvK eigenmodes. Once βc is chosen large enough, a true eigenmode
of the ITG damped wave appears. An even larger collisionality is required to resolve the stronger
damped Landau roots.
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to that of the Landau damped mode once βc > β?c . Finally, when the collisionality is
chosen to be too large, exceeding β?c , the Landau damping itself is affected by the collision
and a collisional damping of the ITG wave becomes apparent as seen in Fig. 4.12d. Note
that in this case the damping rate is reduced compared to that of the Landau damping.
This is considered to originate from the ceased resonant interaction between particle and
ITG wave due to the scattering by the collision, which weakens the damping effect.

In Fig. 4.13, we investigate the damping rate γ with respect to βc for different res-
olutions in velocity space Nv for a damped mode with ky = 1.8 based on the same
eigenvalue analysis as in Fig. 4.12. The theoretical damping rate is calculated using the
dispersion relation Eq.(4.39) neglecting the collisional effect. The dashed lines represent
the damping rate of the majority of the CvK eigenmodes along the real frequency ωr as
indicated in Fig. 4.12 using an arrow. Here, we defined this damping rate by γCvK. In the
case of a low velocity space resolution, i.e. Nv = 32 (green color), for low collisionality
with βc ≤ 10−3, the damping rate of the CvK mode is almost γ ∼ 0 and depends weakly
on βc. However, as βc increases, γCvK increases significantly exceeding the theoretical
Landau damping rate. On the other hand, around the collisionality β?c that exceeds the
Landau damping rate γLD, the Landau eigenmode emerges as discussed in Fig. 4.11 and
Fig. 4.12, which is marked by dot(•) in Fig. 4.13. The Landau damped eigenvalue that
corresponds to the Landau damping is less affected by the collisionality as also discussed
in Fig. 4.11, so that the eigenvalue is almost constant for the further increase of βc. For
very large collisionalities, i.e. βc ≥ 10−1, the Landau damping rate itself is changed due
to the termination of the resonant interaction as γ deviates from γLD. As the velocity
space resolution increases, the collisionality which is required to damp the CvK eigen-
modes exceeding γLD is reduced, so that a smaller collisionality is enough to resolve the
Landau damped eigenmode. Note that in the limit of a high velocity space resolution,
e.g. Nv → ∞, the critical βc tends to zero, i.e. βc → 0. Although CvK eigenmodes
above the arrow exist, their real frequencies are large and thus their perturbation in the
IVP is negligible. Thus we conclude that for a high resolution in velocity space, a broad
range of collisionalities is available in order to resolve the ITG damped mode as a true
eigenmode.

The results observed in Fig. 4.13 provides a guideline in performing gyrokinetic sim-
ulations, so that the damping of the ITG mode can be properly reproduced. Namely,
for a given velocity space resolution Nv, we can find a critical collisionality β?c above
which the majority of the CvK eigenmodes are damped stronger than the theoretical
Landau damping rate, and the damped ITG mode can be reproduced (note that this
discussion here refers only to the least damped Landau mode). It is also interesting to
note that the effect of smaller collision βc < β?c is numerically of less importance because
the observed damping is not the true damping of a ITG eigenmode, but from that of the
CvK eigenmodes. However, the effect of collision larger with β > β?c is physical, since it
represents the damping effect from the true Landau damped eigenmode. It is also noted
that β?c depends on ky, so that when ky becomes larger, the corresponding β?c increases.
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Figure 4.13.: Growth rates of ITG mode (ky = 1.8) for different collisionality and resolu-
tions compared to Landaus analytical solution. If collisionality is large enough a Landau damped
eigenmode appears, as indicated by the dot, which is less sensitive on collisionality than the CvK
eigenmodes.

Therefore, in order to keep β?c a higher velocity space resolution Nv is necessary.

The dynamics sensitively depend on the collisionality βc for a given Nv, so that the
accuracy of the numerical method for treating the Lenard-Bernstein operator Eq.(4.34)
is important. In order to address this problem, we compare the present numerical
method, i.e., the discretization using the fourth order central-difference method with
that of using a Fourier expansion method in velocity space to calculate the derivatives.
Fig. 4.14 illustrates the results for the case of Nv = 128 and βc = 6 × 10−3, where the
collisionality is larger than β?c , i.e. βc > β?c , so that some of the CvK eigenmodes changed
already to Landau damped ITG eigenmodes. It can be seen that the Landau damped
eigenmode and the majority of the CvK mode show a good agreement between the two
methods, suggesting that the results in Fig. 4.13 can be justified. We see differences
only for CvK eigenmodes which damping rate is larger than those of the majority of
the CvK eigenmodes. However, these highly damped modes are expected to have little
influence on the damping dynamics, since modes with small damping rate dominate the
phenomena.

4.8.1 | Effect of diffusive term

The Lenard-Bernstein collisional operator induces a diffusion in velocity spaces which
leads to a collapse of the Case–van Kampen modes and if chosen large enough, the
appearance of a Landau eigenmode. Bratanov et al. (2013) found that the collapse of
the CvK eigenmodes is not only triggered by a diffusivity, but by any even order hyper-
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Figure 4.14: Eigenvalue spectra
with Nv = 128 and βc = 6 ×
10−3. We compare the discretiza-
tion of the LB-operator using fourth
order central differences (CD-4)
with a Fourier method, where the
derivatives are directly calculated in
Fourier space.

diffusive term. This is confirmed in Fig. 4.15. The effect of the Krook operator, shown
in Fig. 4.15a, is that it shifts the growth rate of all eigenvalues, and they become stable.
Further we investigate the case with n = 2 (regular diffusion) and n = 4, n = 6 the
hyper-diffusion cases. The eigenvalue spectra is shown in Fig. 4.15b-d. The growth of
the gyrokinetic mode remains the nearly the same, thus meaning that in contrast to the
Krook operator, the effect on the physical modes is small. Interestingly, for higher order
diffusivity less collisionality βc is required to damp the CvK eigenmodes.

4.9 | Landau damping in Fourier–Hermite basis with colli-
sionality

We add a finite collisionality βc for the gyrokinetic operator Hky in Fourier–Hermite
basis (4.59 including the Lenard-Bernstein collisional term given in (4.60). Parameters
are chosen as in Sec. 4.7.1, and the βc = 5 × 10−4 in the weak collisional case. The
corresponding eigenvalue spectra is shown in Fig. 4.16a. The initial perturbation is
chosen to a Maxwellian, and the system is integrated in time. The time evolution for
a few selected time steps is shown in Fig. 4.16. At t = 0, only the h0 is perturbed, for
t > 0, the energy is transfered to higher order Hermite polynomials. The collisionless
(solid) and weak collisional case (dashed lines) are similar for t = 10. However, close to
the recurrence time, we find that the (weak) collisionality is able to dissipate the energy
and thus successfully avoids the reflection. For the collisionless case, as already discussed
in Fig. 4.7.1, at the recurrence time, a reflection at the cut-off Hermite function sets in,
where energy dissipation is lost due to the lost of directionality.
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(a) Krook operator (βc = 3× 10−1) (b) Diffusion operator (βc = 2× 10−3)

(c) Hyper-Diffusion ∂4
v‖ (βc = 2× 10−5) (d) Hyper-Diffusion ∂6

v‖ (βc = 2× 10−7)

Figure 4.15.: Eigenvalues spectra using various orders of diffusion. A higher order diffusivity
requires less collisionality to collapse the CvK eigenmodes. The square markers indicate the
Landau roots. (ky = 1.8, θ = 0.3).
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(a) Eigenvalue spectra (b) Time evolution in Hermite basis

Figure 4.16.: Landau damping in Fourier–Hermite basis. Solid lines is the collisionless case,
dashes lines for the weak-collisional case. The time evolution between collisionless and weak-
collisional is (quasi)-identical until the recurrence time, where the perturbation gets aliased and
reflected. The weak-collisional is capable of dissipating the small-scale oscillations and thus re-
currence is avoided.

4.10 | The role of the CvK eigenmodes in poloidal mode cou-
pling

We have identified two processes in reproducing damping, one is the phase mixing in
the collisionless or weak collisionality regime where βc < β?c and the other is the Landau
damped eigenmode in the regime where βc > β?c . Note in the former case that the
damping rate averaged over a long time scale exceeding the recurrence time is different
from that of the Landau damping as discussed in Fig. 4.11, although the damping rate
during each recurrence is the same as that of the Landau damping. Here, a question
arises whether the role of the kinetic damping due to linearly stable/damped modes
properly works for the unstable modes in the presence of coupling which connects two
modes.

In order to address this problem, we consider a poloidally coupled system consisting of
three modes, i.e. a linearly unstable mode with k′y, a stable mode with k′′y (k′y < k′′y) and
an externally imposed tertiary mode with kex, where a spatial coupling relation among
three modes, i.e. k′y + kex = k′′y , is satisfied. This is considered to be a minimum model
of the ITG dynamics in the presence of a magnetic island or a vortex flow as discussed
by Wang et al. (2009). Following the idea of the vortex flow, we introduce a potential
as a tertiary mode given by

φex = εg(x) sin (kexy) =
−iε
2
g(x)

(
eikexy − e−ikexy

)
, (4.61)
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where g(x) is the radial profile and ε represents the amplitude. The potential is included
into the gyrokinetic equation Eq.(4.37) through the Poisson bracket1, which takes the
form

∂f1,k⊥

∂t
= −iky

(
1 + 1

2ηi

[
v2
‖ − k

2
⊥ − 1

])
φ̄k⊥f0 − iθkyv‖

(
f1,k⊥ + φ̄k⊥f0

)
− [φex, f1,k⊥ ]k⊥ + CLB .

(4.62)

In the absence of coupling in Eq.(4.62), i.e. ε = 0, the most unstable radial wave number
is found to be kx = 0. Here, we consider the mode with kx = 0 for f1,k⊥ even in the
presence of the coupling assuming that the coupling in Eq.(4.62) is weak. The radial
profile is assumed to be g(x) ∝ x, so that ∂xφex has no radial dependence. Then, we
obtain the following equations for the ITG mode with wave numbers k′y and k′′y as

∂f1,k′y

∂t
= −ik′y

(
1 + 1

2ηi

[
v2
‖ − k

′2
y − 1

])
φ̄k′yf0 − iθk′yv‖

(
f1,k′y + φ̄k′yf0

)
+ CLB

(4.63a)

− ε

2
(k′y + kex)f1,k′y+kex ,

∂f1,k′′y

∂t
= −ik′′y

(
1 + 1

2ηi

[
v2
‖ − k

′′2
y − 1

])
φ̄k′′y f0 − iθk′′yv‖

(
f1,k′′y + φ̄k′′y f0

)
+ CLB

(4.63b)

+
ε

2
(k′′y − kex)f1,,k′′y−kex .

The last terms in Eq.(4.63a) and Eq.(4.63b) originates from the linear poloidal coupling
with the neighboring modes. Note that only one coupling pair is retained in Eq.(4.63a)
and Eq.(4.63b) neglecting those from k′y − kex and k′′y + kex in order to see the dynamics
in the simplest case.

Assuming the time dependence of exp (−iωt), Eq.(4.63) is cast as

−iω
(
f1,k′y

f1,k′′y

)
=

[
Lk′y Ck′′y

Ck′y Lk′′y

]
︸ ︷︷ ︸

Lk′y,k′′y

(
f1,k′y

f1,k′′y

)
, (4.64)

where Lk′y and Lk′′y are the linear gyrokinetic operator given in Eq.(4.44) of the uncoupled
modes. Ck′y and Ck′′y are the off-diagonal cross-coupling terms which originate from the

external vortex flow given by Ck′y = 1
2εk
′
yI and Ck′′y = −1

2εk
′′
yI, where I represents the

N ×N identity matrix, so that Ck′y and Ck′′y are the diagonal matrices. In the absence of
coupling, i.e. ε = 0, we get 2N (not degenerated) eigenvalues, where each N eigenvectors
corresponding to those for Lk′y (Lk′′y ) have no contributions from Lk′′y (Lk′y), respectively.

1 Poisson brackets with the definition [A,B] = ∂xA∂yB − ∂yA∂xB.
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However, once coupling becomes finite, i.e. ε > 0, a global mode is formed, where each
eigenvector of Lk′y ,k′′y has now contributions from both Lk′y and Lk′′y . Here, we choose
k′y = 1.3 and k′′y = 1.8 and kex = 0.5, respectively. This gives following mode coupling
relation as shown in Fig. 4.17.

Unstable ITG mode
f1,k′y with k′y = 1.3

Stable ITG mode
f1,k′′y with k′′y = 1.8

Vortex flow
kex = 0.5

Figure 4.17.: Sketch of the mode coupling triad between the unstable mode with k′y, the stable
mode with k′′y and the tertiary mode kex.

Figure 4.18 shows the eigenvalues of the coupled system Lk′y ,k′′y with ε = 0.15 for (a)

the collisionless case (βc = 0) and (b) collisional case (βc = 2 × 10−3). The two square
markers in Fig. 4.18(a) and (b) represent the growth rates for the uncoupled unstable
and stable modes calculated from the dispersion relation Eq.(4.39), respectively. In
Fig.(4.18)(a), one unstable global mode and its complex conjugate solution can be seen
as well as the marginally stable CvK eigenmodes which appear on the real axis. On the
other hand, no stable eigenmode is found similar to the discussion in Sec.(4.8). Here, it
should be noted that the reduction of the growth rate takes place even when the stable
damped eigenmode does not exits. On the other hand, in the collisional case, once the
collisionality exceeds the critical value β?c as in Fig.(4.18(b), in addition to the unstable
mode which growth rate is also reduced as in Fig.(4.18(a), a damped global eigenmode
appears as seen in Fig. 4.18(b) which damping rate is reduced from that of the uncoupled
case (square marker 2). The reduction of the unstable mode is considered to result from
the energy transfer from unstable mode to stable mode through the tertiary mode. From
the comparison between Fig. 4.18(a) and (b), it can be seen that even if the damped
mode does not exist as an eigenstate in the collisionless or weak collisional case with
βc < β?c , a damping and/or energy dissipation for the unstable mode through the mode
coupling with the tertiary mode is persisted.

In order to see the characteristics of the unstable and stable modes, we investigate
the growth rate of the unstable and stable modes with respect to βc in Fig.(4.19). In
the case without coupling, i.e. ε = 0, as βc increases, the growth rate of the unstable
mode keeps an almost constant value up to βc ∼ 10−2, whereas the CvK eigenmodes
are damped down to β?c . Then, a new stable eigenmode appears at βc ∼ β?c , which is
also less affected for the increase of βc up to βc ∼ 10−1 as seen in Fig. 4.19. Note that
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(a) βc = 0 (b) βc = 2× 10−3

Figure 4.18.: Eigenvalue spectra of the coupled poloidal modes with k′y = 1.3 and k′′y = 1.8 for
the collisionless and weak collisional case with ε = 0.15. The Landau solutions for the uncoupled
modes are shown using square markers.

Figure 4.19: Growth rate of
the coupled mode for differ-
ent collisionality with ε =
0, 0.10, 0.15. The lines denoted
with γk′y and γk′′y correspond
to Landau’s solution of the un-
coupled modes for k′y and k′′y
respectively. We see that the
growth rate of the stable global
mode is sensitive on collision-
ality, in order to collapse the
CvK eigenmodes. The unsta-
ble global mode however is not
sensitive to collision.



Section 4.10: The role of the CvK eigenmodes in poloidal mode coupling 97

the feature is essentially same as that in Fig. 4.13, where only a single damped mode is
discussed. In the case with coupling, i.e. ε = 0.1, the growth rate is reduced as discussed
in Fig. 4.18(a) which is the case of βc = 0, and is also less affected for the increase of
βc up to βc ∼ 10−2. The CvK eigenmodes also show a similar tendency. However it is
found that the damping rate after the damped eigenmode appears decreases from that
of the Landau theory as discussed in Fig.(4.18b). The damping rate for βc > β?c is also
found to be less affected as the case of ε = 0. As the coupling effect becomes large, i.e.
ε = 0.15, the growth rate for unstable mode becomes smaller, whereas the damping rate
for the stable modes for βc > β?c is also smaller. Thus it is found that the stabilization of
the unstable eigenmode takes place without depending on whether the stable eigenmode
exits, which results from the collisionality.

Here, we investigate the eigenfunctions in velocity space in the case without coupling
(ε = 0) in Fig. 4.20 and with coupling in Fig. 4.21. Note that we use same parameters
as above, except the velocity resolution is increased to Nv = 512. Each case includes
unstable and stable modes for βc = 0 and βc = 2 × 10−3, and the unstable and sta-
ble modes consist of the eigenfunctions (f1,k′y , f1,k′′y ), respectively. In the case without
coupling (ε = 0) and also without collision (βc = 0), i.e. Fig. 4.20(a’)/(a”), (c’)/(c”).
For the unstable, f1,k′y shows a global extent in velocity space, both for the real and
imaginary part, which is a typical ITG structure while the contributions from f1,k′′y is
zero, since there is no coupling. On the other hand, the stable modes shows a localized,
spiky structure in f1,k′′y exhibiting a typical CvK mode, while the contributions from

f1,k′y is zero. In the collisional case with βc = 2× 10−3 which is larger than the critical
value β?c , the unstable mode (b’) shows almost same structure, while the stable mode
(d”) changes the structure to that of the eigenmode with extend in velocity space.

In the case with coupling (ε = 0.15), but without collision (βc = 0), i.e. Fig. 4.21 (e)
and (g), for the unstable mode, f1,k′y is almost same as Fig. 4.20(a’) while the contribution
from the stable mode become effective so that the f1,k′′y exhibits a global structure as
seen in Fig.(4.21e”). On the other hand, for the stable mode (g’/g”), a spiky structure
also appear for f1,k′y due to the coupling. In the collisional case with βc = 5× 10−3, i.e.
Fig. 4.21, the unstable mode is almost same as Fig. 4.21(f’) and (f”) where those for the
stable modes (h’/h”) are change to a Landau eigenmode with finite extent as Fig. 4.21
both for f1,k′y and f1,k′′y . These features in eigenfunction structure in velocity space is
consistent with the results in Fig. 11 and Fig.12.

Finally, in Fig. 4.22 the time evolution of the electrostatic potential in the initial
value problem with a random initial perturbation is shown. In case of (a) and (b),
the uncoupled system (ε = 0) is shown for the individual modes with k′y = 1.3 (solid)
and k′′y = 1.8 (dashed). For the collisionless case in (a), the stable mode cannot be
resolved unless collisionality is large enough as in (b). However, with poloidal coupling,
i.e. ε = 0.15, the stabilization effect of k′y is found to be same for the collisionless case
shown in (c) and the collisional case (βc = 5× 10−3) shown in (d).
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Figure 4.20.: Eigenvectors of the global mode in the form of (f1,k′y , f1,k′′y ) for the collisionless

case (upper plots) and collisional case (lower plots) with βc = 2 × 10−3 and no coupling, i.e.
ε = 0. A large resolution of Nv = 512 has been chosen to show the singular structure of the CvK
eigenmodes.
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Figure 4.21.: Eigenvectors of the global Landau eigenmodes in the form of (f1,k′y , f1,k′′y ) for

βc = 0 and βc = 2× 10−3 with a coupling parameter ε = 0.1.
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Figure 4.22.: Solution of the IVP with ε = 0.15 and k′y = 1.3 (solid) and k′′y = 1.8 (dashed),
with the corresponding Landau solutions (dotted). Without coupling (ε = 0), the stable mode can
only be resolved with large enough collision, see βc = 0 (a) and βc = 5×10−3 (b). With coupling,
i.e. ε = 0.15, the growth rate of the coupled global mode is independent on the collisionality, see
(c) with βc = 0 and (d) with βc = 5× 10−3.
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4.11 | Summary

We investigated the characteristics of marginally stable and damped modes, based on a
gyrokinetic Vlasov simulation and also an eigenvalue analysis. In the absence of colli-
sions, we found that the time evolution of the electrostatic potential of the stable ITG
modes strongly depends on the initial perturbation in velocity space. Namely, in the case
with random noise perturbation, the stable ITG modes ascribed to high poloidal mode
numbers do not show damping, but do exhibit a marginal behavior with small-amplitude
fluctuations. In the case with Maxwellian perturbation, damping of the electrostatic po-
tential is observed with a damping rate as predicted by the Landau theory. However,
the electrostatic potential is subject to recurrence beyond which the simulation becomes
ambiguous. Based on the eigenvalue analysis, we have confirmed that such a behav-
ior results from the appearance of the CvK eigenmodes that show marginal stability
with different real frequencies, and resultant phase mixing. We found that such CvK
eigenmodes are very sensitive to collisional dissipation. Namely, finite collisional dissipa-
tion leads to damping of the CvK eigenmodes. Once the CvK eigenmodes are damped
down to the rate predicted by the Landau theory, a normal mode corresponding to the
eigenstate appears. Consequently, the recurrence phenomenon is suppressed so that the
simulation beyond the recurrence time becomes valid. The required critical collision-
ality β?c to reproduce the Landau eigenmode crucially depends on the number of grid
points used. Namely, higher (lower) resolution in velocity space generally requires lower
(higher) collisionality in order to reproduce the true eigenmode. Once the collisionality
βc exceeds β?c , i.e., βc > β?c , the damping rate becomes constant, as is predicted by
the Landau theory, and not influenced by the collisionality. As βc increases, dissipation
becomes so large that collisional damping arises physically. Thus, only a limited range of
collisionality can be chosen to reproduce the Landau damping a Landau eigenmode. To
investigate the validity of the energy transfer from unstable ITG modes to stable modes
through mode coupling, we studied a system with two poloidal modes, i.e., one unstable
and the other stable, coupled by a vortex flow which corresponds to a tertiary mode.
Using the above model, we showed that the growth rate of the unstable global mode is
reduced independent on the collisionality. We concluded that the energy transfer from
unstable modes to stable modes through linear mode coupling can be properly repro-
duced without depending on whether damping results from the phase mixing subject
to recurrence or the Landau damping. Namely, the effect of Landau damping in the
simulation including such coupling characteristics and associated energy transfer can be
justified even in the collisionless limit.



5 | Investigation of ITG and ETG turbulences

In the Tokamak, we find many types of drift wave instabilities, which are collective
plasma oscillations driven by the electrostatic force to ensure a quasi-neutrality of the
plasma. Note that a plasma is charge neutral, however, charge imbalances on a small
scale are nevertheless possible. In the beginning, it was thought that density gradient
drift waves are always unstable in slab geometry, as shown by Pearlstein and Berk
(1969), and were thus termed universal instabilities. However, subsequent analysis by
Ross and Mahajan (1978) and Chen et al. (1978) found that the linear instability arises
through an erroneous treatment of the plasma dispersion function and showed that the
universal modes are either damped or marginally stable. However, it is still speculated by
Hirshman and Molvig (1979) and Beasley et al. (1983), that turbulence destabilization
through diffusive electrons would drive the universal mode unstable close to the rational
surface. Recently, Chowdhury et al. (2010) showed that the universal drift mode can
become unstable and may contribute to the particle transport.

Finally, trapped electrons may excited another drift wave instability, namely the trapped
electron modes as discussed by Dannert and Jenko (2005), however, as in our slab ge-
ometry ∇‖B0 = 0, it does not arise here.

Nowadays, the destabilization of drift waves through the temperature gradient, is
thought to be responsible for the large, “anomalous” heat transport from the hotter
inner core plasma to the cooler outer edge plasma observed in the Tokamak. In this
chapter we will thus study the characteristics the of ion/electron temperature gradient
drift waves using the gyrokinetic equation system derived in Ch. 2 and numerically solve
it using either the gkc++ solver as described in Ch. 3 for the nonlinear case or by solving
the dispersion relation in the linear case.

5.1 | The ion temperature gradient mode

The mechanism of the destabilization of the temperature gradient mode can be best
understood in the fluid model as given by Cowley et al. (1991) and sketched in Fig. 5.1.
In a Tokamak device, a large temperature gradient in the radial direction from the
inner, high-density and hot core to the low-density and cooler, outer edge plasma. A
small density perturbation, which originates from random fluctuations at the location of
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Figure 5.1.: A simplistic picture of the excitation of an temperature gradient drift mode in slab
geometry through the interplay of temperature gradient and E×B drift and pressure force.

x = 0 produces an electric field at the origin of the coordinate system. The equilibrium
field together with the E×B drift parallel to the temperature gradient, induces an inflow
of cold plasma. This inflow cools the perturbation such that its pressure decreases and
allows the inflow of hot, high-density plasma with a larger pressure, and leads to an
increase of the density of the perturbation. We reach, the original state, where the
initial perturbation is amplified and shifted (or drifted) upwards. This self-amplification
leads to an exponential growth of the drift wave until nonlinear effects become important.

5.1.1 | Adiabatic electron approximation

A neutral plasma consist of positively charged ions, such as the hydrogen nuclei, and
the negatively charged electron species. For a numerical calculation however, the com-
putational requirements are very demanding; thus by using the so-called adiabatic ap-
proximation for the electrons, a scale-separation is exploited and the electrons are only
modelled to save computational resources. The gyrokinetic Poisson’s equation (2.56) for
a plasma consisting of an ion and an electron species, i.e. σ = {e; i} with ne = ni = 1
(and Te = Ti = 1, and qi = −qe = 1), is given by

λ2
Dk

2
⊥φ+

∑
σ

(1− Γ0(bσ))φ =
∑
σ

qσπB0

∫ ∞
µ=0

∫ ∞
v‖=−∞

J0(λσ) f1σ dv‖ dµ . (5.1)

For the study of the ITG, our reference length scale ρref is given by the ion gyro-radius
ρi. As me/mi � 1, we can assume the electrons to be massless (me → 0), so that be ∼ 0
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and λe ∼ 0 and thus Γ0(be) ∼ 1 and J0(λe) ∼ 1. Additionally, we can safely assume
λD = 0; to get the quasi-neutrality equation given by

(1− Γ0(bi))φ = πB0

∫ ∞
µ=0

∫ ∞
v‖=−∞

J0(λi) gi dv‖ dµ− n1e , (5.2)

where we directly integrated over µ and v‖ for the electron species. Finally, we assume a
force-balance between the pressure (mainly generated by the electrons) and the Lorentz
force, given by

∇p = qe

(
−∇φ+

v

c
×B

)
→ ∇‖p = −qe∇‖φ , (5.3)

where the motion due to drift was neglected and only parallel components are taken into
account. Finally, the pressure can be estimated by p = neTe and using ne = n0e + n1e

gives n1e ∝ (qe/Te)φ. The new relation for n1e is then used to replace n1e on the right-
hand side of Eq.(5.2), such that the quasi-neutrality condition becomes independent on
n1e. Now, we do not need to solve the Vlasov equation for the electron species anymore,
therefore the time step of the simulation is not restricted by the thermal velocity of the
electrons.

However, the limit of massless electrons me → 0 also implies an infinite thermal
velocity vth,e = ∞, thus any electrostatic perturbation along the magnetic field line is
immediately balanced out by the electrons (short-circuited). To account for this effect,
the adiabatic response is modified by φ − 〈φ〉FS. Here, FS denotes the flux surface
average, which is the average of the electrostatic potential along the magnetic field line.
The quasi-neutrality condition for the ITG with an adiabatic electron response is then
given by (assuming Ti = Te = 1)

(1− Γ0(bi))φ+ (φ− 〈φ〉FS)︸ ︷︷ ︸
electron contributions

= πn0B0

∫ ∞
µ=0

∫ ∞
v‖=−∞

J0(λi) gi dv‖ dµ . (5.4)

5.1.2 | Linear study

Instead of directly performing simulations as an initial value problem; for linear inves-
tigation we solve the dispersion relation in the two-dimensional sheared slab geometry
by integrating the Vlasov’s and the Poisson’s equation over the velocity space v‖ and
µ (however, special care has to be taken to keep the gyro-averaging terms and radial
dependence). A so-called integral equation code therefore been developed, where the
complex frequency of an ITG mode can then be found by solving a nonlinear eigenvalue
problem given by L(ω) = 0, the structure of the matrix L is described in more detail
in the appendix (A.4). The (numerical) solution of the dispersion relation has the ad-
vantage that all branches of the ITG (stable and unstable) can be extracted. This is in
contrast to solving the linear equations as an initial value problem, where only the mode
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with the largest growth rate dominates the solution in the long-time limit. Note that for
the integral over the velocity space, we use the plasma dispersion function, which has an
infinite number of roots, such that we can expect the solution of the dispersion relation
to have infinite many stable branches as well. For an initial investigation, we choose
ŝ = 0.2 and ηi = 5 as the physical parameters and Nx = 512 for the numerical parame-
ter. The dispersion relation is solved with the procedure outlined in Fig. 5.2. We extract
the six most unstable branches, shown in Fig. 5.3, where (a) shows the frequencies and
(b) shows the growth rates over the poloidal wavenumber ky. We find various branches
of the drift wave, which can be separated into the standard ITG region ky . 1 and the
short-wavelength (shw) ITG region ky & 1. Two unstable branches (green and blue) are
found for ky < 1 — the standard ITG instabilities. However, a further destabilization
of the drift wave (black line) is observed for larger wavenumbers with ky > 1, which is
the so-called short-wavelength ITG instability and is found to be unstable over a wide
region, i.e. ky ∼ 2 − 10. Interestingly, the short-wavelength destabilized mode, is also
found to exist in the standard region, where it is just a stable mode. However, around
ky = 0.8 the mode becomes destabilized and increases its growth rate until ky ∼ 1.2
where it becomes unstable. The short-wavelength ITG instability represents one of the
sub-ion gyroradius instability and is for example not found in gyrofluid simulations, as
finite Larmor radius effects are only approximately included as described by Dorland
and Hammett (1993). Further branches are found (yellow, red, cyan) which are stable
over the wavenumbers investigated.

The mode structures (eigenfunction) at ky = 0.5 of the four most unstable eigenmodes
in the standard region are shown in Fig. 5.4. The two unstable branches are shown in
(a) and (b). The most unstable mode B1 has a Gaussian shape, while the first sub-
dominant mode B2 is more extended and tilted. The stable modes B3 and B4 are shown
in (c) and (d), respectively. Both stable modes have a broader structure compared to
the structures of the unstable modes and their oscillatory character increases. This
behaviour is quite consistent with Weber type equations quantization in the fluid limit
with Hermite function type structures l which is valid for ky � 1, see e.g. Idomura et al.
(2000). The mode structures of the two most unstable modes in the short-wavelength
region at ky = 2.5, B3 and B4 are shown in Fig. 5.5. In contrast to the structure of
the modes B3 and B4 at ky = 0.5 shown previously, their mode structures at ky = 2.5
becomes very narrow and approximately Gaussian, and only extends to less than half
the size compared to eigenstructure at ky = 0.5.

5.1.3 | The short-wavelength ITG instability

The short-wavelength ITG (shw-ITG) instability was put into focus by Smolyakov et al.
(2002), who investigated the linear destabilization of the drift waves in shearless slab
geometry and find that for certain parameter regions, the ITG mode (with adiabatic
electrons) is unstable for kyρi > 1. While the main ITG branch is the most unstable
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Figure 5.2.: Flow diagram for solving the dispersion relation in the non-local, two-dimensional
sheared-slab geometry. The dispersion relation requires the solution of a nonlinear eigenvalue
problem (det |L(ωn)| = 0) that is solved iteratively. We start from a fixed poloidal wavenumber
ky, e.g. ky = 1, and choose an initial ωn=0 for the complex frequency. Note that ωn=0 needs to
be close to the solution in order to converge. A root finding algorithm – here we used Müllers
method – is used to converge the minimum absolute eigenvalue to zero, as in this case and the
eigenvalue problem is solved. Once the root is found, we set the search for the root at the position
k′y = ky + ∆ky with ∆ky � 1 and use the previous ω as the new initial guess. As the dispersion
relation is an analytic function and thus L is analytic, the new solution is usually found within
a few iterations.
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(a) Frequency

B1

B2

B3

B4

(b) Growth rates

Figure 5.3.: Analytic solution of the dispersion relation for ηi = 5 and ŝ = 0.2. Various
branches are shown of which three of them are unstable. The unstable branches for ky < 1 are
refereed to as standard-ITG mode, the unstable branch with ky > 1 is the short-wavelength ITG
branch.

branch with its peak growth rate around kyρi ∼ 0.5, after becoming stable around
kyρi ∼ 1, the short-wavelength ITG mode with kyρi > 1 becomes unstable.

Smolyakov et al. (2002) insights triggered follow up investigations confirming the exis-
tence the shw-ITG also in the non-local, two-dimensional sheared slab geometry by Gao
et al. (2003). Gao et al. (2005) pointed out that the short-wavelength ITG mode is not
a distinguished mode by itself, but a continuation of the standard ITG mode. This claim
is verified in Fig. 5.3b, where the unstable shw-ITG branch (black line) is found to exist
in the std-ITG region ky ∼ 0.5 as well although being stable there. Here, we note that
there is a fundamental difference between the slab geometry and the toroidal geometry,
where the drift modes are not destabilized by the parallel ion compressibility but by the
magnetic curvature. Due to this reason, the shw-ITG mode was considered to be only
a slab mode. Gao et al. (2005) and Gao et al. (2005) found that short-wavelength ETG
and ITG, respectively, also exists in the toroidal geometry. However, Hirose et al. (2002)
showing toroidicity has a stabilizing effect, which however was relaxed by Chowdhury
et al. (2009) who showed that the shw-ITG mode does couple with trapped electrons
and becomes unstable over a wider parameter region of the toroidal configurations.

We note that due to the homomorphism between the ETG and ITG in the linear case,
the same behavior holds true for the ETG and ITG for investigations of the std-ITG
mode with kyρi ∼ 0.5. However practically, this is only valid for kyρi < 1, for larger
poloidal mode numbers, e.g. for an ITG mode the adiabatic assumption breaks down so
that kinetic effects of the electron become important. On the other hand, for an ETG
wave, adiabatic ion response is valid even for kyρe > 1, however, as will be discussed
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(a) B1 at ky = 0.5 (b) B2 at ky = 0.5

(c) B3 at ky = 0.5 (d) B4 at ky = 0.5

Figure 5.4.: The eigenmode structures of the first four most unstable branches B1 − B4 at
ky = 0.5 are shown for ŝ = 0.2 and ηi = 5 (with the phase of the modes are chosen to zero).
A1, A2 and A4 have a mirror symmetric eigenstructure, while A3 has an anti-symmetric mode
structure.
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(a) B3 at ky = 2.5 (b) B4 at ky = 2.5

Figure 5.5.: Eigenmodes of the first two most unstable branches at the short-wavelength region
are shown for the parameters ŝ = 0.2 and ηi = 5 at ky = 2.5. Compared to the two most
unstable modes at the standard region Fig. 5.4a and Fig. 5.4b, the eigenmode structures of B4

and B3 are very narrow. Interestingly, although the difference between (a) and (b) are small,
their eigenfrequency differs largely.

later, a finite Debye length has to be taken into account which leads to a damping of
the short-wavelength mode.

5.1.4 | Parameter scan over ηi

To improve our understanding of the ITG destabilization, we perform a parameter scan
with a fixed magnetic shear ŝ = 0.2, and a varying ion temperature gradient ηi, to
study the destabilization rate γ over the poloidal wavenumbers ky ∈ [10−1, 10]. Only
the growth rate of the most unstable branch (at the specific ky) is shown in Fig. 5.6. We
find that the ITG mode is not excited for a temperature gradient below ηi < 2. For an
increasingly large ηi, first the standard ITG region gets destabilized. Once ηi exceeds
a value of ηi & 3, the short-wavelength region also gets destabilized. For an ηi ∼ 5 the
dispersion relation exhibits the classical double-hump behavior, see Fig. 5.3b, where one
peak is attributed to the std-ITG region, the other peak is attributed to the shw-ITG
mode. For large ηi > 7, the ITG is also unstable for wavenumbers exceeding ky > 8.
This destabilization arises from the same branch that destabilizes the region ky ∈ [1.2, 8].
Finally, it is interesting to note that the stable gap between, i.e. 1 < ky < 1.4, is found
to be persisted throughout the temperature gradients investigated.

5.1.5 | Parameter scan over ŝ

Here, we fix the temperature gradient to ηi = 5 and investigate the growth rate depen-
dence on the magnetic shear ŝ over ky ∈ [10−1, 10]. The resulting growth rates of the
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Figure 5.6: The ITG growth
rate of the most unstable
branch over ηi and ky ∈
[10−1, 10] for a fixed magnetic
shear of ŝ = 0.2. The ITG
mode is stable for a temper-
ature gradient ηi < 2. For
ηi > 2, the standard ITG re-
gion (ky < 1) gets destabilized,
once the temperature gradient
exceeds ηi & 3, the sub-ion gy-
roradius short-wavelength ITG
region gets destabilized, too.
The region between 1 < ky <
1.4 is stable independently of
the temperature gradient and
clearly separates the standard-
and short-wavelength.

most unstable branch for the parameter scan (ŝ, ky) are shown in Fig. 5.7. We find that
a strong magnetic shear has a stabilizing effect on the ITG mode. Although, the influ-
ence of the magnetic shear on the standard region and short-wavelength region differs
greatly: a large magnetic shear only weakly stabilizes the standard ITG mode, but the
shw-region is much more sensitive on the magnetic shear, and is completely suppressed
for ŝ & 0.4. From this threshold, the linear growth rates at ky = 2.5 strongly increases
as the magnetic shear decreases. For ŝ . 0.1, we find that the growth rates of the
short-wavelength region of the ITG exceeds the growth rates of the standard region. In
the short-wavelength region, we again find two humps, with a first peak at ky ∼ 2 and
the second at ky ∼ 8, originating from the same branch. For small magnetic shears,
ŝ . 0.1 both peaks merge. Again, all branches between 1 < ky < 1.5 are stable and
thus clearly separate the standard-ITG region and the shw-ITG region. The reason
of this stabilization gab that is also observed in shearless slab simulations is yet to be
understood.

5.1.6 | Quasi-linear heat flux estimates

To estimate the contributions of each unstable branch to the electrostatic heat flux
transport in the nonlinear region, we calculate the quasi-linear heat flux contributions
of the ITG mode over its poloidal wavenumber. The quasi-linear heat flux estimates are
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Figure 5.7: ITG growth rate
of the most unstable branch
over ŝ and ky with a fixed
temperature gradient of ηi =
5. A large magnetic shear
has a stabilizing effect on the
ITG mode. We find also that
the short-wavelength region is
more sensitive on ŝ than the
standard region. Namely, for
a magnetic shear ŝ & 0.3
the short-wavelength instability
is suppressed, while for lower
magnetic shears, the short-
wavelength region is strongly
destabilized such that for ŝ .
0.1, the linear growth rates of
the shw-ITG mode exceeds the
growth rates of the standard
ITG mode.

calculated from

Qql,ky =
∑
kx

|
γky

k2
x + k2

y

φ(kx, ky)| , (5.5)

where γky is the growth rate of the ITG branch with the poloidal wavenumber ky and
its mode structure is given by φ(kx, ky), where kx is the corresponding radial Fourier
mode. Both, the growth rates and the mode structures are obtained from the integral
code described in Fig. 5.2.

Using ηi = 5 and ŝ = 0.2, with the dispersion relation shown in Fig. 5.3, we calculate
the contributions to the heat flux using Eq. 5.5 for the unstable branches as shown in
Fig. 5.8b. Note the choice of the axes, which are chosen in such a way that the area below
each contribution is proportional to the contribution to the total heat flux. As discussed
before, the standard region of the ITG includes two unstable branches at ky = 0.5,
namely B1 and B2. Both are expected to contribute to the heat transport. Although
both have a similar growth rate at around ky ∼ 0.3, the quasi-linear heat transport
predicts that the B1 branch has a substantially larger contribution to heat transport.
We can understand this point by investigating the mode structure of both branches: the
eigenstructure of the dominant B1 branch (blue line) is a smooth Gaussian as shown in
Fig. 5.4a, while the sub-dominant mode (green line) in Fig. 5.4b, is stronger oscillatory
and tilted which results in a reduced contribution.

For the first sub-dominant mode B1 of the ITG in the standard region, we find a
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(a) Quasi-linear heat flux contribution for the un-
stable part of each branch.

(b) Total quasi-linear heat flux

Figure 5.8.: Quasi-linear heat flux contributions of the ITG mode with ηi = 5 and ŝ = 0.2.
Left figure shows the separated contributions of each unstable part of the branches. The dom-
inating contributions is from the dominant ITG mode. With the first sub-dominant and the
short-wavelength region having are equally contributing. The sub-dominant mode shows a dis-
continuity due to symmetry change. Right figure shows the summed contributions per ky, the
standard region contributes majority to quasi-linear heat flux.

discontinuity in the quasi-linear heat transport estimates at around ky ∼ 0.45. As the
growth rates are smooth, the discontinuity can only be explained in a sudden change
of the corresponding mode structure. Indeed, we confirm that the mode structure of
B2 changes at the discontinuity from an anti-symmetric mode structure at ky = 0.45,
see Fig. 5.9a, into a symmetric mode structure, see Fig. 5.9b. at ky = 0.47. We ruled
out that this rather surprising results originates from a failed converges of the inverse
iteration algorithm to extract the mode structure, as the eigenvalue was obtained to
a very good accuracy and while both growth rates of B1 and B2 are same, their real
frequency part is clearly different. However, this result needs to be verified by running
gkc++ as an eigenproblem solver as described in Sec. 3.1.7.

The contribution from the short-wavelength region to the heat flux is found to be
similar to the contribution from the first sub-dominant mode in the standard region.
Although the mode structure at the short-wavelength region is narrow and ky large
suggesting small contributions, it is destabilized over a wide region. Because of that its
integrated contribution is comparable to the contribution of the first sub-dominant mode
B1. The total heat flux over all unstable branches is shown in Fig. 5.8a. We find that
the majority of the heat flux (∼ 85%) is transported by the standard-ITG mode due to
the combined contributions of both unstable branches at the std-ITG region. Compared
to that, the short-wavelength contributions are rather small but still substantial.
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(a) Mode structure of B2 at ky = 0.45 (b) Mode structure of B2 at ky = 0.47

Figure 5.9.: Eigenmode structure of the first sub-dominant branch B2 in the standard ITG
region. At ky ∼ 0.5, the eigenmode structure of the electrostatic potential changes its symmetry
from an anti-symmetric mode structure (left figure) to a mirror-symmetric mode structure (right
figure). This results in the discontinuity observed in the quasi-linear heat flux estimates.

5.2 | The electron temperature gradient mode

The electron temperature gradient is a microscale instability at the order of the electron
gyro-radius ρe. It contribution to the anomalous heat flux obtained by quasi-linear
estimates, see Sec. 5.1.6, is by

√
mie =

√
mi/me ∼ 40 smaller than the contribution

from the ITG. However, Jenko et al. (2000) found by nonlinear gyrokinetic simulations
that the ETG may also substantially contribute to the heat flux by developing streamer
like structures (elongated vortexes), and increasing the heat flux to comparable values
as those from the ITG. However, as experimentalists are not able to resolve the electron
scale, this finding can not be verified yet.

5.2.1 | Adiabatic ion response

As in Sec. 5.1.1, we seek a scale separation between the ions and electrons through an
adiabatic approximation to simplify analysis and simulations. Poisson’s equation (2.56)
for a plasma consisting of ions and electrons, σ = {i, e} is given by

λ2
Dk

2
⊥φ+

∑
σ

(1− Γ0(bσ))φ =
∑
σ

πB0

∫ ∞
µ=0

∫ ∞
v‖=−∞

J0(λσ) gσ dv‖ dµ . (5.6)

Here, we focus on the evolution of ETG, so that the spatial scale length of interest is
of the order of the electron gyro-radius (xref, yref) ∼ (ρe, ρe). As the mass of the ions
is over an order of magnitude larger than the mass of the electrons (mie � 1), the ion
contribution at the left-hand side of Eq.(5.6) gives 1− Γ0(bi) ∼ 1. As λi � 1 results in
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J(λi)� 1, the ion contribution at the right-hand side can be neglected. The simplified
Poisson’s equation for a investigation of the ETG with adiabatic electrons (ETG-ai) is
given by

λ2
Dk

2
⊥φ+ (1− Γ0(be))φ +φ︸︷︷︸

adiabatic ions

= πB0

∫ ∞
µ=0

∫ ∞
v‖=−∞

J0(λe) ge dv‖ dµ , (5.7)

where we assumed Ti = Te = 1. In the Poisson’s equation, the ion distribution function
does not appear anymore reducing the computation time. As the evolution of the ions
can be considered slow on time-scales relevant for the electron dynamics, the flux surface
averaging term, which is included for the ITG-ae, is not required for the ETG-ai.

We note however that in the linear case, there is no zonal flow generation and thus the
flux surface averaging term 〈φ〉FS gives no contributions, such that in the linear case,
the equation-system for the ITG-ae and the ETG-ai are identical up to normalization.
This changes however once the flux surface averaging term becomes effective, e.g. in the
nonlinear region, as the three-wave coupling of the nonlinearity condition produces a
zonal-flow from coupling of a Fourier mode with its complex conjugate ky = k′y− k̄′y = 0.

5.2.2 | Debye length effects λDe

Effects from a finite Debye length are usually neglected when investigating the ion species
as it is orders of magnitude smaller than the ion Larmor radius (λDe � ρi). This not
necessary holds true when investigating the electrons temperature gradient instabilities,
as for a realistic Tokamak plasma, the Debye length λDe is of the order of the electron
Larmor radius λDe ∼ ρe, as discussed in Wesson and Campbell (2004). The parameter
scan over the Debye length parameter λDe is shown in Fig. 5.10. Increasing the Debye
length is found to have a strong damping effect on the short-wavelength region of the
ETG, while the standard region is practically not influenced. This confirms the findings
of Zhe (2004).

5.3 | Nonlinear study of the ETG instability

We extend our analysis by including the E×B nonlinearity in the right-hand side of the
Vlasov equation and solving the gyrokinetic equation system as an initial value problem
using gkc++ . For an initial study, we use the following parameters: a magnetic shear
of ŝ = 0.4 and an electron temperature gradient of ηe = 5 with adiabatic ions. Random
noise is used as an initial perturbation f1 ∝ 10−7rf0 with r uniformly distributed in
[−1, 1], to perturb all finite modes excluding the zonal flow component. The time evolu-
tion of the mode power of the electrostatic potential φ over time is shown in Fig. 5.11a.
The corresponding instantaneous growth rates are also shown in Fig. 5.11b, where a



114 Chapter 5: Investigation of ITG and ETG turbulences

Figure 5.10: ETG growth
rate of the most unstable
branch over λDe and ky using
ηe = 6 and ŝ = 0.2. A small
Debye length of λDe ∼ 0.1
has effectively no effect on the
growth rate of the standard-
ETG and short-wavelength
region. Increasing the λDe
has practically no influence
on the standard ETG region,
however, the short-wavelength
region is strongly damped and
suppressed for λDe & 0.2.

(a) Time Evolution of Modes (b) Instant growth rates

Figure 5.11.: The time evolution of the electrostatic potential φ is shown in the left figure and the
right figure shows the corresponding instantaneous growth rates. The first seven poloidal modes
are shown using thick lines while larger modes are shown as thin green for better readability. We
can distinguish four phases: initial, linear, saturation, and turbulent.
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convolution with a Gaussian kernel was applied to smooth out the high frequency os-
cillations in order to give a better picture of the time evolution. We can distinguish
four phases: initial, linear, saturation, and turbulence. The random initial perturbation
perturbs unstable eigenmodes as well as sub-dominant eigenmodes. A small collision-
ality of βc = 2 × 10−3 was included, such that some of the stable eigenmodes can also
be resolved. The initial phase is mainly determined from the initial perturbation and
the evolution of individual eigenmodes (in velocity space). The electrostatic potential
at time t = 10 is shown in Fig. 5.12a, which is dominated by the initial random noise
perturbation. After the initial phase, t & 20, the most unstable eigenmodes are domi-
nating and show exponential growth. The time between 20 ≤ t ≤ 300 is the so-called
linear phase, which is dominated by the most unstable modes. Here, we found that the
m = 4 and m = 3 modes have very similar growth rates, thus the electrostatic potential
shows an interference pattern as shown in Fig. 5.12b. Even during the linear phase,
the nonlinear Poisson bracket transfers energy to more stable modes, however, first it
has negligible effect on the energy transferring mode. Once the energy transfer rates
become large enough saturation state sets it. In the saturation phase, around t > 280,
with an electrostatic potential shown in Fig. 5.12c the nonlinear term becomes impor-
tant, redistributing the energy to stable modes which get nonlinearly excited exhibiting
an exponential growth rate that exceeds the one of the linearly most unstable modes.
Also the zonal flow mode raises quickly. In the turbulent phase (t & 500), shown in
Fig. 5.12d, the turbulence is fully developed with an energy cascade and a quasi-steady
state is reached1.

In Fig. 5.12d we see elongated electrostatic fields in the poloidal direction. These
are the zonal flows (defined by φ(ky = 0)) and can only be generated through triad
mode coupling, either nonlinearly through the Poisson bracket or linearly through e.g.
a magnetic island as discussed in Ch. 6. These zonal flows, described in more detail
by Diamond et al. (2005), are crucial for the turbulence study as they may reduce heat
transport by “regulating the turbulence”.

5.3.1 | Convergence test on the heat flux

In order to study the ETG, we perform a convergence scan over the discretized dimen-
sions (x, y, v‖, µ). Our base case is Nx = 256, Ny = 64, Nv = 64, Nµ = 8. Convergence is
estimated by analyzing the electron heat flux χe, which is calculated from Eq.(2.73). In
the nonlinear case, the heat flux is stochastically fluctuating around a quasi-steady state
such that only the mean value can be given with errors bars showing the standard devi-
ation. The result of the convergence scan is shown in Fig. 5.13. For the velocity space
variables, we find that a surprisingly low resolution is sufficient to resolve the dynamics,

1Strictly speaking, in the two-dimensional shear slab geometry, which has neither heat inflow or outflow,
no quasi-steady state is reached and thus all nonlinear results presented here should be taken with
care
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(a) t = 10 (b) t = 250

(c) t = 375 (d) t = 800

Figure 5.12.: Contour plots of the electrostatic potential at t = 10, 250, 375 800. Physical
parameters are given by ŝ = 0.4 and ηi = 5. For the linear phase shown in (b), the modes with
m = 4 and m = 5 have very similar growth rates and perturbation strength, and thus we see an
interference structure in the electrostatic potential.
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Figure 5.13: Convergence study
for the electrostatic heat flux
for various resolution. Physical
parameters are chosen to ŝ = 0.4
and ηe = 5 and a box size of
(Lx, Ly, Lv, Lµ) = (48, 64, 4, 9)
with a base numerical reso-
lution of (Nx, Ny, Nv, Nµ) =
(256, 128, 64, 8). Increases the reso-
lution of each dimensions has only
slight increase or reduction of the
total heat flux thus this represents
already a convergent case. The
resolution in y dimensions shows to
be of spatial importance as it works
as a dissipation through energy
cascading. Nx seems to be already
well resolved. The value of Nµ
can be chosen relatively low, e.g.
Nµ ∼ 8, and give a well converged
case.

namely only about Nv = 32 discretization points in the parallel velocity dimension and
only four discretization points in Nµ are necessary to give comparable results. We find
that the base case chosen represents a well resolved case, as doubling the dimensions
gives similar results.

5.4 | Nonlinear study of the ITG

Although the electron heat transport may reach levels corresponding to the ion trans-
port, in the usual case, the ions provide the dominating heat flux contributions. In the
linear case, the ITG-ae and the ETG-ai are equivalent up to normalization. In the non-
linear phase however, the flux surface averaging term becomes important which generates
zonal flow, which is known to reduce heat flux through flow shearing. The electrostatic
potential in the nonlinear phase for ηi = 5 and ŝ = 0.2 is shown in Fig. 5.14a, and for
ŝ = 0.4 in Fig. 5.14a. Compared to the ETG-ai, we indeed find very strong zonal flow
levels.

5.4.1 | Comparing heat fluxes from ETG with ITG

In Fig. 5.15 the time evolution of the heat flux is shown for ηi,e = 5 and ŝ = 0.3.
The setup is identical except that for the ITG, we included the flux surface averaging
term. The linear evolution of both cases is equivalent. After the overshooting (due to
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(a) ŝ = 0.2, ηi = 5 (b) ŝ = 0.4, ηi = 5

Figure 5.14.: Contour plots of the electrostatic potential in quasi-steady state at t = 2000 for
the ITG. Physical parameters are ηi = 5 and ŝ = 0.2 (left figure) and ŝ = 0.4 (right figure). We
find a strong zonal flow excitation in contrast to the ETG case shown in Fig. 5.12d.

Figure 5.15: Heat flux χ for ηe,i = 5 and
ŝ = 0.3. The heat flux shows a strong over-
shooting until it stabilizes around t = 1500 to
a quasi-steady-state level. The heat flux of the
ETG-ai is usually larger than from ITG-ae, as
the zonal flow generation is larger for the ITG,
which reduced turbulent transport through flow
shearing.
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(a) Heat flux vs. ηi and ŝ (ITG) (b) Heat flux vs. ηe and ŝ (ETG)

Figure 5.16.: Time evolution of the heat flux χ vs magnetic shear ŝ for ITG-ae (left figure)
and ETG-ai (right figure). In the nonlinear region, the heat flux reaches a quasi steady-state.
Using a least-square fit, the averaged heat fluxes are estimated, where the error bars show the
corresponding standard deviations.

parametric decay) at t ∼ 400, saturation sets in where the ITG develops an increased
zonal flow, which reduces the heat flux due to shear flow to about half of the value of
the ETG case. In Fig. 5.16a, we show the heat fluxes obtained for the ITG, whereas in
Fig. 5.16b, the heat flux obtained for the ETG, vs the magnetic shear and temperature
gradient. We find that increasing the magnetic shear reduces the heat flux independently
on the temperature gradient. Also in these cases, we confirm that the flux-averaging term
reduces the heat flux levels due to an increased zonal flow.

5.4.2 | Short-wavelength contributions to heat flux

In our linear investigations of the ITG/ETG mode in Sec. 5.1.3, we found that the
short-wavelength region has linear growth rates comparable to the standard ITG region.
Although the quasi-linear heat flux estimates in Sec. 5.1.6 predicted heat flux contribu-
tion from the short-wavelength region smaller than from the standard region — it was
still substantial, with contribution up to 20% of the total heat flux. Thus we perform
nonlinear simulations to confirm or disproof the quasi-linear estimates. We choose ηi = 5
and ŝ = 0.2, 0.4, 0.7, where the case with ŝ = 0.2 is known to be linearly unstable in the
short-wavelength region. The turbulence spectra is shown in Fig. 5.17. The fluctuations
of the electrostatic potential are mainly in the standard ITG region. For wavenumbers
ky > 1, we have a strong damping of the fluctuations so we may assume that the heat
flux contributions for ky > 1 are small. To further confirm this assumption we show
the time averaged heat flux spectra in Fig. 5.18 and found that the contributions from
the short-wavelength ITG region are indeed negligible. These results suggests that the
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Figure 5.17: Averaged turbu-
lence spectra (of φ) for the ITG
between t = 1000−2000. Phys-
ical parameters are ηi = 5 and
ŝ = 0.2, 0.4, 0.7. The dashed
line corresponds to the zonal
flow level. A high zonal flow
level is found that exceeds the
level of other modes. No sig-
nificant peak is found where
the short-wavelength modes are
linearly unstable. For ky > 3
a flattening is found which can
be attributed to the remaining
aliasing originating from the
nonlinear term.

Figure 5.18: Averaged heat
transport vs poloidal mode ky
between t = 1000 − 2000.
The area between the curves
corresponds to the correspond-
ing heat flux contributions.
The main heat transport occurs
mainly from ky < 1, which
can be attributed to the stan-
dard ITG mode. The transport
through the short-wavelength
region for ŝ = 0.2, for which
quasi-linear estimated predicts
contributions between 1.5 ≤
ky ≤ 8, is negligible.
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ITG modes at the short-wavelength region are stabilized — where the most likely mech-
anism would be through shear flows generated from the zonal flows as discussed by Gao
et al. (2004). Recently, Chowdhury et al. (2012) also found no substantial heat flux
contributions from the ITG in the short-wavelength region in the toroidal configuration.

5.5 | The ITG with kinetic Electrons (linear case)

Including a kinetic electron species does increase the computational cost substantially,
when solved as an initial value problem, as not only an additional species has to be
advanced, but also the computational time step is significantly reduced by a factor of√
mie in order to guarantee numerical stability. For the linear study, we first use the

integral code developed to solve the dispersion relation, as it allows us to extract the
linear properties without depending on the choice of a time step.

5.5.1 | Parameter scan over mie

In numerical simulations, it is advantageous to reduce the ion-electron mass ratio mie in
order to increase the maximum numerically stable time step (due to the CFL condition),
as the maximum parallel velocity v‖ is proportional to

√
mie. However, we need to verify

that the dynamic itself is unaffected by this procedure. In Fig. 5.19, we show the growth
rates of the most unstable branch (at fixed ky) versus the ion-electron mass ratio mie,
and the poloidal wavenumber ky for a fixed ηe = 0 and ηe = 2. For the case with ηe = 0
in Fig. 5.19a, we find that the growth rates for mie < 800 are sensitive to the mass ratio.
For values above mie ≥ 800 the standard region of the ITG mode is almost independent,
while the stable short-wavelength region still shows a rather strong dependence on mie;
even for an hydrogen-electron mass ratio of mie = 1836. For the case of a non-zero
electron temperature gradient ηe = 2 as shown in Fig. 5.19b, we find that the std-ITG
mode as well as the shw-ITG mode only exhibits a weak sensitivity once the ion-electron
mass ratio exceeds mie & 800. A similar behaviour is found for an electron temperature
gradient of ηe = 5.

For a fixed poloidal mode ky = 0.3, and a fixed ion temperature gradient of ηi = 5, we
investigate the growth rates of the most unstable branch (at fixed ky) over various mie

and ηe = 0, 2, 5, 7. From Fig. 5.20a, we can confirm that with increasing mass ratios,
the growth rates with kinetic electrons converge to the case with adiabatic electrons.
However, convergence is reached only for unrealistically large mass ratios, i.e. mie > 105.
The reason is probably the resonance effect from the kinetic electrons at the rational
surface shown in Fig. 5.20b, where a strong peaking of the eigenfunction is found even
for mass ratios of mie = 2000 and ηe = 0.
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(a) ηe = 0 (b) ηe = 2

(c) ηe = 5

Figure 5.19.: Linear growth rates of the most unstable branch of the ITG mode over ky and
mie for ηe = 0, ηe = 2, and ηe = 5 for ηi = 5 and ŝ = 0.4. The growth rate of the standard
region converges for an ion-electron mass ratio of mie = 500 to acceptable values. The electron
temperature has a strong influence on the ITG mode itself, namely a larger ηe destabilizes the
ITG, moderately for the standard ITG region, strongly for the short-wavelength ITG region.
For example, while the short-wavelength region is completely suppressed for ηe = 0, it becomes
unstable once ηe ≤ 2 and reaches for ηe ∼ 5 linear growth rates comparable to the adiabatic case.
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(a) Growth rates vs ion-electron mass ratio (b) Eigenfunctions for ηe = 0

Figure 5.20.: (Left figure) Linear growth rates of the most unstable branch at ky = 0.3 and
ηi = 5 for different ion-electron mass ratios. A convergent case to the adiabatic solution is
only found for very large mass ratios. The resonance at the rational surface for the electrons
seems to be responsible for this reduction of the growth rate as can bee seen by the peaking of the
eigenfunctions.

5.5.2 | Parameter scan over ηe

Here, we investigate the linear growth rates for a varying electron temperature gradient
ηe and a fixed ion temperature gradient of ηi = 5. The result of this parameter scan
is shown in Fig. 5.21. The peak growth rate in the standard ITG region at kyρi ∼ 0.5
is only weakly sensitive to the electron temperature gradient. Namely, a larger ηe does
destabilize the ITG mode for both: the standard ITG region and the short-wavelength
region. We speculate that this difference originates from the resonance discussed in the
previous section, which weakens for increasing ηe. For example, in Fig. 5.21 we see
that for ηe = 2, the ITG growth rate at kyρi = 0.5 is already similar to the adiabatic
electron case, while for small ηe the short-wavelength region is stable. Destabilization
arises once the electron temperature gradient exceeds ηe & 2. However, it remains to be
checked if this statement holds when the mass of the kinetic electrons approaches zero,
i.e., mie → ∞. We can assume that for mie → ∞, the growth rates of the ITG in the
shw-region will also converge to the adiabatic case; as the std-region did in Fig. 5.20a
— but that remains to be checked.

5.6 | The ITG with kinetic Electrons (nonlinear case)

Here, we briefly study the nonlinear properties of the ITG turbulence including kinetic
electrons. The advantage of including kinetic electrons is that the flux surface averaging
effect is self-consistently included. Also, in contrast to the adiabatic electron case —



124 Chapter 5: Investigation of ITG and ETG turbulences

Figure 5.21: Maximum lin-
ear growth rates over ky and
ηe for an ITG drift-wave with
mie = 1836 using ηi = 5.
For ηe = 0 the growth rate
of the std-region of the ITG
is slightly reduced, while the
shw-region is completely stabi-
lized. For ηe = 2 also the shw-
region is destabilized, however,
growth rates comparable to the
adiabatic case are not reached
until ηe increases to η & 5.
We note that around ky ∼ 10
the shw-part of the ITG and
the std-ETG mode will coexist.
The possibility of an interac-
tion still needs to be verified.

where no ion particle flux can be observed as the density perturbation is always out-
of-phase by π/2 with the electrostatic potential — in the kinetic electron case, particle
fluxes can be observed for both, the ions and electrons.

5.6.1 | Parameter scan over mie

The scaling over the ion-electron mass ratio is shown in Fig. 5.22. Note that compared to
the adiabatic case, higher heat fluxes are observed. An increased ion-electron mass ratio
will effect the zonal flow production as a higher electron mass lowers its thermal velocity
and thus the flux surface averaging effect, which increases the zonal flow production,
is reduced. Here, we find that for mie > 400, heat fluxes seem to converge. The
difference between mie = 500 and a realistic ion mass ratio mie = 1837 is of the order
of. χi,mie=1837/χi,mie=500 = 1.1.

In Fig. 5.23, the ratio of the zonal flow energy φZF over turbulence energy φT is
shown for different values of mie. The dashed lines represents the value obtained from
the adiabatic case. We can confirm that the zonal flow energy in the case of kinetic
electrons is reduced, however, we do not find convergence to the adiabatic case when
increasing mie, as is found by Ishizawa et al. (2011) in local slab geometry, which we
conclude to be an effect of the deficiency of the two-dimensional sheared slab geometry.
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(a) χi over mie (b) χe over mie

Figure 5.22.: Ion heat flux χi and electron heat flux χe over the ion-electron mass ratio mie for
ηi = 5, ηe = 2 and ŝ = 0.4. Convergence is reached for mie ≥ 400, where the heat flux differences
are within the statistical error. Collisionality is chosen to βc,i = βc,e = 5× 10−4.

(a) Turbulence energy over zonal flow energy (b) Energy in zonal flow and turbulence

Figure 5.23.: Ratio of zonal flow energy φZF over turbulence energy φt for different ion-electron
mass ratio mie. Higher mass ratio increases zonal flow production from the flux surface averaging.
The dashed line in the left figure corresponds to the ratio obtained with adiabatic electrons.
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Figure 5.24: Comparison of
the nonlinear heat fluxes with
kinetic electrons for mie =
500 over ηe for the cases with
ηi = 4 and ηi = 5. The
dashes lines corresponds to the
adiabatic case. We find that
for ηe = 0, ion heat fluxes
are comparable to the adiabatic
case. For ηe > 0 heat flux in-
creases.

5.6.2 | Parameter scan over ηe

We study dependence of the heat flux on the electron temperature gradient. An initial
random noise perturbation is set f1σ ∝ 10−7 and the simulation is evolved up to tmax =
800. For the set of ion temperature gradients ηi = 5 and ηi = 4 and various ηe, the
ion heat flux χi is shown in Fig. 5.24. Heat fluxes obtained with adiabatic electrons
are shown using dashed lines. For ηe = 0, we find ion heat fluxes comparable to the
adiabatic case. For ηe = 2, however, the ion heat flux is already about twice as large as
that of the adiabatic case. Increasing to ηe = 5, we find that the heat fluxes obtained
using kinetic electrons once again strongly increase. This increase in heat flux for kinetic
electrons may be attributed to the increased linear growth rates as shown in Fig. 5.20a,
as well to the reduced zonal flow production.

5.6.3 | Large scale run

To investigate the kinetics of the electrons, we perform a high-resolution simulation,
where both, the ion (length) scale and part of the electron (length) scale is resolved.
Both, the ITG and the ETG are unstable for temperature gradients of ηi = 5 and ηe = 5,
respectively. The simulation time extends up to tmax = 500, where numerical parameters
are chosen to Nx,y,v‖,µ = (387, 256, 64, 8), Lx,y,v‖,µ = (42, 64, 4, 9), and a magnetic shear



Section 5.7: Summary 127

Figure 5.25: Contour plot of
the electrostatic potential at
T = 800. Resolution is
chosen high enough to re-
solve the electron scale. The
ITG dynamics dominants the
large scale fluctuations, how-
ever, close to the rational sur-
face we find profound small-
scale turbulences arising from
the electron-dynamics which is
shown in the zoom inset plot (a
high-pass filter was applied to
remove the large-scale fluctua-
tions).

of ŝ = 0.4. The ion-electron mass ratio is set to mie = 500. The contour plot at t = 800
is shown in Fig. 5.25. Additional to the large-scale fluctuations, we find substantial
small-scale fluctuations, which are shown using the zoom inset window. The small-scale
contributions are also visible in the turbulence spectra shown in Fig. 5.26 for the kinetic
simulation in (a), and in (b) for the corresponding adiabatic simulation for comparison.
The kinetic simulation shows a shallow slope kkin ∝ −0.7 for the turbulence spectra,
compared to the adiabatic case, which in contrast has a very steep slope kad ∝ −3.3. The
difference in the slopes between adiabatic simulation and kinetic simulation indicated
that saturation through zonal flows and cascading is changed one kinetic electrons are
included and ηe is large enough so that the ETG is excited.

5.7 | Summary

Linear properties of the ion and electron drift waves were studied by solving the dis-
persion relation given as a nonlinear eigenvalue problem. Assuming adiabatic electrons,
we found that the ion temperature gradient in sheared slab geometry includes many
unstable branches, some of which are even unstable for large wavenumbers, the so-called
short-wavelength ITG modes. We found that the short-wavelength ITG modes are linear
unstable over a wide parameter region. A vast amount of parameter scans were per-
formed to investigate the destabilization properties. Further, we extended our analysis
to investigate the case with kinetic electrons, which included two additional parameters:
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(a) ITG-ke (ηe = 5) (b) ITG-ae

Figure 5.26.: Turbulence spectra, kinetic electrons leads to flattening of the turbulence profile
for ηi = 5 and ηe = 5, showing clear electron kinematics.

the electron temperature gradient and the ion-electron mass ratio. We could confirm
the short-wavelength destabilization of the ITG also in the kinetic case and defined its
parameter dependence. We investigated the nonlinear properties of the adiabatic ETG
and ITG turbulence using the gkc++ code. Although the ETG and ITG mode are equiv-
alent in the linear region, the electron dynamics in the ITG leads to a short-circuit of
the flux surface and thus to an increase zonal flow production rate resulting in a reduced
heat flux. Further, we extended our nonlinear analysis to include also kinetic electrons.
We found that the ion heat flux strongly depends on the electron temperature gradient.
Namely a higher electron temperature gradient resulted in an increased ion heat flux.



6 | The ITG mode in presence of a static magnetic

island

Apart from microinstabilities, there are several instabilities on the machine size scale,
such as the magneto-hydrodynamic (MHD) instabilities. These instabilities can be
roughly categorized into ideal MHD instabilities, such as sausage and kink instabili-
ties, and resistive MHD instabilities, such as tearing modes. In ideal MHD, the topology
of the magnetic field is preserved due to frozen-in condition condition, however in resis-
tive MHD, magnetic reconnection is capable of modifying the magnetic field topology
enabling the access of lower energy states, see e.g. White (1986). The resistive MHD
instabilities include the tearing instabilities such as magnetic islands, which study and
understanding of magnetic islands is crucial for achieving a successful magnetic confine-
ment of the plasma.

During the formation of the magnetic islands, ITG turbulence is usually present —
thus this chapter is devoted to study the influence of a magnetic island on the ITG
turbulence.

6.1 | Basic properties of magnetic islands

Furth et al. (1963) found that tearing modes are driven by magnetic free energy, deter-
mined by the shape of the equilibrium current profile which leads first to a filamentation
of the current sheet and finally to the formation of magnetic islands. These magnetic
islands preferably develop at a rational surface (q = n/m), where a small perturbation
of the equilibrium magnetic field connects to itself after n poloidal turns leading to a
self-amplification. A simplified sketch of a magnetic island is shown in Fig. 6.1. The sep-
aratrix (dashed line) separates the inner closed flux surfaces from the outer flux surfaces.
As Hazeltine and Strauss (1976) argues, magnetic islands form an own set of nested and
closed flux surfaces, which extend in radial direction allowing particles to quickly cross
them. This leads not only to a temperature flattening but also to an increase of particle
and heat fluxes. As measured by Isayama et al. (1999) in the JT-60 Tokamak, mag-
netic islands can grow to substantial sizes, w ∼ 20ρi, strongly reducing the confinement
performance.

129
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Figure 6.1: Sketch of the
flux surfaces of a magnetic is-
land. The magnetic island
changes the topology of the
magnetic field, with charac-
teristics points being the O-
point, X-point and the sepa-
ratrix (dashed line). Is
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6.1.1 | Theoretical investigations

A possible explanation for the physical mechanism of reconnection leading to magnetic
island formation was suggested by Sweet (1958) and Parker (1963). The Sweet-Parker
mechanism works as follows: in a region with an opposite magnetic field direction, a
current sheet is formed by plasma pressure, where the magnetic field lines are diffusing
into it and reconnect. This processes is self-amplifying leading to exponential growth.
However, this model predicted very small reconnection rates such that Petschek (1964)
refined the model by proposing a shock front at the current layer which drives into the
diffusive region greatly increasing the reconnection rate.

In the slab geometry, such as investigated here, Furth et al. (1963) showed that the

linear growth rates of magnetic island formation are proportional to γ ∝ τ
−3/5
r τ

−2/5
A ,

where τR is the resistive timescale and τA the Alfvén timescale. Preferably, only the
long-wavelengths are excited, as shorter wavelengths require a stronger bending of the
magnetic field lines which is energetically less favorable. Finally, before saturation, the
magnetic island first changes from an exponential growth into an algebraic growth in
the quasi-linear state as described by Rutherford (1973) and then fully reconnects to a
steady state — or in some cases is subject to a secondary current sheet instability may
form as found by Loureiro et al. (2005).

6.2 | Numerical study of magnetic island formation

For the numerical study of the formation of magnetic islands in a two-dimensional
sheared slab geometry, we will briefly introduce the reduced MHD equation system.
After an outline of the numerical solution procedure is given, we will present numerical
results.
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6.2.1 | Introduction to the numerical code

At the rational surface, we can apply the resistive MHD equations in order to investigate
the formation of magnetic islands. The equation system to evolve the magnetic flux ψ
and the potential vorticity ω is given by

∂tψ = − [φ, ψ] + η∇2
⊥ψ , (6.1a)

∂tω = − [φ, ω] +
[
ψ,∇2

⊥ψ
]

+ ν∇2
⊥ (ω) , (6.1b)

where ψ is the magnetic flux, ω = ∇2
⊥φ is the potential vorticity, and φ is the kinetic

flow (or potential). For the derivation of the equation system, the reader is referred to
Strauss (1997) and Janvier (2011). For a finite resistivity η, reconnection may occur at
the rational surface which triggers the formation of a magnetic islands. Here, a viscosity
term ν is included in order to enhance the numerical stability of the simulations. The
viscosity ν is usually chosen small compared to the resistivity (ν � η), so that its
physical impact is negligible. To solve the reduced MHD equation system (6.1), the flux
ψ is split into the equilibrium part ψ0 and a perturbed part ψ1, so that ψ = ψ0 + ψ1.
No background kinetic flow is assumed, so that only the perturbed part φ0 is evolved,
i.e., φ = φ0. To account for the poloidal periodicity, φ0 and ψ1 are both expanded in
Fourier modes. The linear terms are advanced implicitly using a pseudo-spectral method
with a second-order central-difference stencil in radial direction. The Thomas algorithm
is applied for inversion in order to handle the stiffness of the equation system arising
from the diffusive timescale. The nonlinearity is solved using the triad mode matching
condition for the poloidal Fourier modes with finite differences in radial direction. Only
positive poloidal modes are evolved, as both φ and ψ are real fields. Negative modes,
which are needed in the triad mode matching condition are obtained from the complex
conjugate relation. Aliasing is avoided only in poloidal direction by neglecting modes
which exceeds the Nyquist limit.

6.2.2 | Simulation results

For this investigation, the grid size is chosen to Lx = 6 and Ly = 6.4, with a numerical
resolution of Nx = 4096 and Ny = 128. Resistivity and viscosity are given by η =
2.8× 10−4 and ν = 5× 10−5, respectively. A Harris sheet profile given by

ψ0 =
1

ŝ
log (cosh (ŝx)) , (6.2)

is chosen as the background magnetic flux, where ŝ = 1 is the magnetic shear at the
rational surface point (x = 0). This setup is unstable for a random noise initial per-
turbation, so that the flow energy (φ2) and flux energy (ψ2) grow exponentially in time
as shown in Fig. 6.2. The evolution of the poloidal Fourier modes for φ0 and ψ1 are
shown in Fig. 6.3. In the linear phase, we find only the m = 1 mode to be unstable.
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Figure 6.2: Time evolution of flow
energy (|φ2|) and flux energy (|ψ2|)
with an unstable setup resulting in
the formation of a magnetic island.
Magnetic reconnection at the ratio-
nal surface is self-amplifying and
thus exponential growth is observed
until t ∼ 550. Around t & 550 the
Rutherford regime is entered, where
exponential growth is replaced by an
algebraic growth. Saturation sets
in at t ∼ 600 and a full reconnec-
tion state is reached at t ∼ 1300.
Throughout the whole evolution, we
observe that the magnetic flux en-
ergy is dominating over the kinetic
flow energy.

(a) φ (b) ψ

Figure 6.3.: Time evolution of the Fourier modes of φ0 and ψ1. We find that in the linear
phase, the m = 1 mode is the only unstable mode. The other modes are excited nonlinearly
once the evolution enter the saturation phase. At the t = 2000, we reached the steady-state full
reconnection phase.
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(a) Kinetic flow eigenfunction φ̂0 (b) Magnetic flux eigenfunction ψ̂1

Figure 6.4.: Linear (normalized) eigenfunction of magnetic flow φ̂0 and magnetic flux ψ̂1 of
the unstable m = 1 mode at t = 500. The magnetic flow has a strong discontinuity at the
rational surface, which is also found in the first derivative of the magnetic flux. Note that without
normalization, the φ̂0 eigenfunction would be around one order of magnitude smaller than ψ̂1.

Once the Rutherford regime is reached, the nonlinear term transfers energy from the
unstable mode (m = 1) to stable modes and excites them to a finite value. Finally,
full reconnection is reached for t & 4000, where the magnetic island evolution shows a
steady-state. The normalized eigenmode for m = 1 for the magnetic flow is shown in
Fig. 6.4a and flux in Fig. 6.4b. Note that the magnetic flow has only an imaginary part,
while the magnetic flux has only a real component. As the real frequency (Re(ω) = 0)
is found to be always zero, this does not change throughout the simulation.

6.3 |Magnetic island influence on the ITG

Here, we study the cross-scale interaction between the ion temperature gradient and
a magnetic island. For our model, we assume a static magnetic island in its linear
phase, where the temperature collapse did not occur yet. In order to justify the static
assumption, we compare the timescales of both instabilities. As discussed in Fig. 2.1,
the magnetic island instability is governed by the resistive timescale τr ∝ 1/ωr, which
is much slower than the timescale governing the ion temperature gradient given by the
drift-frequency τ?i ∝ 1/ω?i. As τr � τ?i, the magnetic island is indeed static on a
timescale important for the ion temperature gradient evolution.

We note that similar setup were studied by Wang et al. (2009) in the two-dimensional
shear slab geometry and by Ishizawa and Diamond (2010) in cylindrical geometry. How-
ever, in both references, a gyrofluid simulation model was used which does not include
the short-wavelength mode, and as such, the effect of the short-wavelength destabiliza-
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tion is yet unclear.

6.3.1 | Inclusion of static magnetic perturbation

In Sec. 2.5.1, we derived the electromagnetic gyrokinetic Vlasov equation, where the
magnetic vector potential A1‖ was self-consistently calculated from Ampère’s equation.
In order to include the magnetic island as a static perturbation of the equilibrium geom-
etry, we prescribe a fix and time-independent A1‖. The connection between the magnetic
potential in gyrokinetics and magnetic flux used in the resistive MHD equations is simply
given by A1‖(x, y) = −ψ1(x, y). The magnetic flow from the island can be neglected as it
is an order of magnitude smaller than the magnetic flux. The nonlinear electromagnetic
Vlasov equation system in the two-dimensional sheared slab geometry is then given by,

∂g1σ

∂t
= −

[
1 + ηi

(
v2
‖ + 2µ

2
− 3

2

)]
∂χ

∂y
f0σ − [G1σ, χ]− ŝxv‖

∂ (φ1f0 + f1σ)

∂y
,

(6.3)

where the generalized potential χ = φ+σv‖ψ1 was used and φ is calculated from the gy-
rokinetic Poisson’s equation. For a static (time-independent) ψ1, the equation simplifies
to

∂f1σ

∂t
= −

[
1 + ηi

(
v2
‖ + 2µ

2
− 3

2

)]
∂
(
φ+ σv‖ψ1

)
f0σ

∂y
− [φ, f1σ]

− ŝxv‖
∂ (φ1f0σ + f1σ)

∂y
− v‖σ [ψ1, f1σ + φf0] ,

(6.4)

where the terms arising from the magnetic island are underlined. Note that we use f1σ

not g1σ on the left-hand side, as loading is not performed due to our static assumption.
Interestingly, we find a modification of the source term of the order O(1), which however,
we concluded does not affect the results. We find that the static magnetic island is
included through a Poisson bracket term (which in this case is linear). However, as
calculating the Poisson bracket involves two Fourier transformations (back and forward);
solving Eq.(6.4) is costly even for linear simulations. Thus in the next section we will
directly solve the Poisson bracket for the magnetic island using the triad mode coupling
condition.

6.3.2 | Expanding the ψ Poisson bracket

We found from the resistive MHD calculations that the magnetic island perturbation ψ1

is predominately a m = 1 instability as shown in Fig. 6.4b. The m = 1 mode corresponds
to a wavenumber k̄ = 2π/Ly, where the usual definition ky = 2π/Ly ·m is used. Thus
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the magnetic island has a following poloidal dependence, as given by Euler’s formula
eix = cos (x) + i sin (x), where ψ1(x, y) is pure real,

ψ1(x, y) = ψ̃1(x)
1

2

{
eik̄y + e−ik̄y

} [
≡ 1

2
ψ̃1(x)

(
eik̄y + c.c.

)]
, (6.5)

where ψ1(x) includes the radial dependence of the magnetic island and the latter part
its poloidal dependence. In order to avoid calculating the nonlinear bracket term, we
calculate the mode-coupling terms directly. The Poisson bracket for a general ψ1 is given
by ∑

k′y

ψ̃1e
ik′yy ,

∑
k′′y

Π eik
′′
y y

 (6.6)

=

∂x∑
k′y

ψ̃1e
ik′yy

 ·
∂y∑

k′′y

Π eik
′′
y y

︸ ︷︷ ︸
T1

−

∂y∑
k′y

ψ̃1e
ik′yy

 ·
∂x∑

k′′y

Π eik
′′
y y

︸ ︷︷ ︸
T2

.

where we used Π = f1 + φf0. We note that f0σ has neither x-dependence (local as-
sumption) nor y-dependence, and is only non-zero for the m = 0 mode. We now use the
fact that ψ1 has only components in the m = 1 (with the wavenumber k̄) and is time
independent, so that

∑
ky
ψ̃1e

ikyy = ψ̃1e
ik̄y + ψ1e

−ik̄y.

T1 =
{
∂xψ̃1

(
e+ik̄y + e−ik̄y

)}
·

∂y∑
k′′y

Π eik
′′
y y

 (6.7a)

=
{
ψ̃1,x

(
e+ik̄y + e−ik̄y

)}
·

∑
k′′y

(ik′′y)Π eik
′′
y y

 (6.7b)

= ψ̃1,x

∑
ky

(ik′′y)Π
{
ei(k

′′
y+k̄)y + ei(k

′′
y−k̄)y

}
, (6.7c)

and the second term T2 is given by

T2 =
{
∂yψ̃1

(
e+ik̄y + e−ik̄y

)}
·

∂x∑
k′′y

Π eik
′′
y y

 (6.8a)

=
{
ψ̃1ik̄

(
e+ik̄y − e−ik̄y

)}∑
k′′y

Πxe
ik′′y y

 (6.8b)

= ψ̃1ik̄
∑
k′′y

Πx

{
ei(k

′′
y+k̄)y − ei(k′′y−k̄)y

}
. (6.8c)
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To fulfill the mode-matching conditions given by ky = k̄+k′′y to connecting the appropri-
ate modes, we collect same mode numbers, thus the final equation for a magnetic island
with only a m = 1 mode is given by

∂fm1σ
∂t

= −

[
1 + ησ

(
v2
‖ − 2µ

2
− 3

2

)]
ikyφ

mf0σ − iky ŝxv‖ (fm1σ + φmf0σ)

+ iψ̃1,x

(
km+1
y Πm+1 + km−1

y Πm−1
)
− iψ̃

(
k̄Πm+1 − k̄Πm−1

) (6.9)

where the abbreviation, e.g. fm+1
1σ = f1σe

−i 2π
Ly

(m+1)y
was used.

Notes on the upper boundary

For a numerical simulations, we include only a finite number of poloidal modes, i.e., m =
{0, 1, 2, . . . , N}, where the highest mode number N is the so-called Nyquist frequency,
which has only real components and thus needs to be excluded from the calculations.
For the ∂tf

N−1
1σ mode, the magnetic island contributions are thus given by

∂fN−1
1σ

∂t
= . . .+ iψ̃x

(
kNy ΠN + kN−2

y ΠN−2
)
− ik̄ψ

(
ΠN −ΠN−2

)
(6.10a)

= . . .+ iψxk
N−2
y hN−2 + ik̄ψΠN−2 , (6.10b)

where the Nyquist contributions are neglected and the coupling is cut.

Notes on the zonal flow boundary

A second corner case arises, when calculating the zonal flow defined by the mode number
m = 0. The coupling term contributions are given by

∂f0
1σ

∂t
= . . .+ iψ̃x

(
k1
yΠ

1 + k−1
y Π−1

)
− ψ̃

(
k1
yΠ

1 − k−1
y Π−1

)
(6.11a)

= . . .+ iψ̃x
[
2k1

y Re(Π−1)
]
− ψ̃

[
2k1

y Im(Π1)
]

, (6.11b)

and we see that negative mode number appears. Although we evolve only positive
mode numbers, i.e. m ≥ 0, the negative mode numbers are obtained using the complex
conjugate relation. As the real (imaginary) term of fm=1

1σ oscillates with the global
frequency ωg, the zonal flow amplitude oscillates.

6.3.3 | Calculating the magnetic island width

From numerical simulations in Sec. 6.2.2, we obtained the magnetic flux eigenfunction
ψ̂1. We can multiply ψ̂1 by a constant, real scaling factor α to obtain ψ1 = αψ̂1 which
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Figure 6.5: The island width is defined by the
maximum separation of the separatrix along the
O-point. To obtained the real scaling factor of
the eigenfunction α for a specific island width w,
a root finding algorithm and the secant algorithm
is used to for the integration along the separatrix.
For small islands, w < 5 we find a strong sensi-
tivity on the perturbation factor. A linear scaling
law can be found for intermediate island widths
(10 ≥ w ≥ 25). While for very large islands, the
island width only weakly depends on the scaling
factor.

is subsequently used in the gyrokinetic simulation. However, there is no direct corre-
spondence between the scaling factor and the magnetic island width w, which is itself
given by the maximum separation of the separatrix. What we thus need is a function,
which gives us the scaling factor for a desired magnetic island width, i.e. Γ(w) = α.
The magnetic field is given by the equilibrium magnetic field of our two-dimensional
sheared slab geometry ψ0 = ŝx and the scaled magnetic flux eigenfunction ψ̂1 as shown
in Fig. 6.4b. First, the island width w for a given α is calculated by integrating along the
separatrix of ψ = ŝx + αψ1(x). Practically, we start close to the X-point at the radial
position (x, y) = (ε, 0) with ε� 1 and follow the magnetic field line using

w = f(α) = 2

∫ Ly/2

y=0
∇ψ(x, y, α) dy , (6.12)

until we reach y = Ly/2, where the integration is performed using trapezoidal rule.
Finally, to obtain the scaling factor α from a given island width w, the root of Γ(α) :
0 = f(α)− w has to be found. As the function Γ(α) is smooth and has a zero crossing,
we use the secant algorithm with α0 = 0 and α1 = 150 as initial guesses. The function
Γ(α) to get the island width w for a given scaling factor α is shown in Fig. 6.5 using
for ŝ = 0.4. Note that an approximate linear dependence for α is found only for island
widths between 10 < w < 25.

6.3.4 | Rational surface separation

As was pointed out by Wang et al. (2009), a critical island width exists, where new
rational surfaces appear, which may lead to a destabilization of the ITG mode. The
rational surface condition including a magnetic field perturbation by a magnetic island
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Figure 6.6: The perturbation of the equilibrium
magnetic field with the magnetic flux eigenfunc-
tion shown in Fig. 6.4b. For α = 0 only the equi-
librium rational surface exists at x0 = 0, a finite
alpha, α > 0, leads to a formation of new ratio-
nal surfaces at x around the O-point shown by
the dashed lines. The magnetic field is given by
ψ = 1

2 ŝx
2+αψ1, with ŝ = 0.4. For an increasing

scaling factor α the rational surfaces separation
enhances.

island is given by

k‖ = k ·B =

 kx
ky
kz

 ·


∂y

[
ψ̃ cos (k̄y)

]
ŝx+ ∂x

[
ψ̃ cos (k̄y)

]
1

 (6.13a)

= kz + ky ŝx︸ ︷︷ ︸
equilibrium

+ ky
∂ψ̃

∂x
cos (k̄y)− kxk̄ψ̃ sin(k̄y)︸ ︷︷ ︸
Island perturbation

= 0 , (6.13b)

where ψ̃ = αψ, ψ is the magnetic island eigenfunction and α is the scaling parameter
discussed in Sec.(6.3.3). For a further analysis, we neglect kz � 1 and investigate the
rational surface condition at the O-point, i.e. y = Ly/2 of the island, where cos(k̄y) =
−1. Also, the ITG mode usually satisfies kx � 1 and ky ∼ 1. With these approximations,
the rational surface condition in Eq.(6.13b) simplifies to

k‖ = 0 = ŝxky −
∂ψ̃

∂x
ky . (6.14)

Using ŝ = 0.4 and the numerically obtained magnetic island flux eigenfunction shown
in Fig. 6.4b, we apply a root finding algorithm on the above equation for a fixed island
width and investigate the convergence points for different initial guesses of x. In Fig. 6.6,
the radial position x versus the island scaling parameters α is shown, where the rational
condition is satisfied. We find that for small islands, i.e. α < 2, only one rational surface
exists, however, for larger islands, the rational surface branches and separates such that
for large islands, we find that up to three rational surfaces exists.
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(a) w = 0 (b) w = 6 (c) w = 10

Figure 6.7.: (Normalized) contour plots of electrostatic potential of the ITG in its linear phase
under the influence of a magnetic island perturbation with a magnetic island width of w = 0, 6
and w = 10. The magnetic island has a visible impact on the mode structure of the island.

6.4 | Linear study of ITG with magnetic island modification

In chapter (5), we studied the linear and nonlinear effects of the ion temperature gradient
and electron temperature gradient. In the following sections, we included the magnetic
island as a perturbation of the equilibrium and investigate its influence on the drift
waves.

6.4.1 | Linear dynamics with adiabatic electrons

First, we concentrate only on the linear dynamics of the drift wave and employ the
modified Vlasov equation (6.4) for simulations. As a base setup, we set the physical pa-
rameters to ŝ = 0.2 and ηi = 5 and assume an adiabatic electron response. The numerical
parameters are chosen to Lx,y,v‖,µ;t = (64, 64, 4, 9; 2400) and Nx,ky ,v‖,µ = (512, 65, 32, 8)
which is assured to be a converged case.

The magnetic island width is varied by scaling the flux eigenfunction ψ1 as discussed
in Sec.(6.3.3). The long time is required to ensure that the linear eigenstructure is fully
established and independent on the initial perturbation. A snapshot of the electrostatic
potential taken at t = 2400 is shown in Fig. 6.7. Fig. 6.7a corresponds to the original
ITG drift wave in the absence of the island (namely w = 0). In Fig. 6.7(b-d) the island
size is increased from w = 6, w = 12 to w = 16. This fact can be seen by the bending of
the poloidal magnetic field lines. We find that for increasing island width, the ITG drift
wave is modified, namely the magnetic island has a widening effect on the ITG mode
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Figure 6.8: Growth rates of elec-
trostatic potential for ŝ = 0.2 and
ηi = 5 for island widths of w =
0, 6, 12 and w = 18. For a non-
zero magnetic island width, geomet-
rical coupling leads to a global mode
formation with equal growth rates
and frequency. For small islands,
an initial stabilization effect is ob-
served. However, for large island
the destabilization effect dominates.

Figure 6.9: Frequency and
growth rates vs magnetic island
width for ηi = 5 and ŝ = 0.2.
An initial stabilization effect
is observed for small islands.
Medium large islands exist the
ITG mode which for very large
islands is back to smaller val-
ues.

structure. Qualitatively, the ITG structure is broadened at the O-point to about twice
the size compared to the case without the island (w = 0 case).

The growth rates of the ITG is shown in Fig. 6.8 for island widths of 0, 4, 8, 12 and 16.
For a magnetic island width of w = 0, which corresponds to the classical ITG drift wave
without an island, we find that the ITG mode at the standard region has its maximum
growth rate at ky ∼ 0.5, and at the short-wavelength region ky ∼ 2.5. For the case with
a finite magnetic island width, i.e. w > 0, we find that all poloidal modes have an equal
growth rate and frequency - as a direct consequence of the poloidal mode coupling; to
which we refer to as global mode formation. We find that the global mode formation has
a stabilization effect, as the growth rates of the global mode for w = 6 and w = 12 are
smaller than the peak growth rate of the ITG wave in the absence of an island. However,
for large island widths, the growth rate increases and becomes larger than the case with
w = 0. Thus we find a destabilizing effect for large magnetic island widths.

The growth rate of the electrostatic potential over the magnetic island width is shown
in Fig. 6.9 as dots. We find an initial stabilizing effect for island widths < 14, with a
stabilization of up to ∼ 10% for w = 14. This stabilization can be understood by a
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(a) w = 14 (b) w = 18

Figure 6.10.: (Normalized) contour plots of electrostatic potential for magnetic island widths
of w = 14 (left figure) and w = 18 (right figure). The rational surface separation leads to an
excitation of the short-wavelength part of the ITG at the O-point which dominants the mode
structure.

geometrical coupling of the poloidal modes. The most unstable mode, which determines
the growth rate of the electrostatic potential, can dissipate energy through stable modes.
As the coupling between the poloidal modes increases with an increasing island widths,
the stabilization effect becomes stronger until a critical width of w = 14 is reached.
For island widths > 14, we find a strong destabilizing effect, with a jump of the real
frequency from ωr ∼ −0.25 to ωr ∼ −0.4. The reason of this jump will be investigated
in the subsequent section.

In Fig. 6.10, similar to Fig. 6.7, the electrostatic potential for the island widths is
shown for the island widths of w = 14 in Fig. 6.10a and w = 18 in Fig. 6.10b. We find
that the mode structure of the electric potential is mainly concentrated at the O-point,
showing short-wavelength fluctuations.

The mode spectrum shown in Fig. 6.11 reveals that indeed for large island widths
most of the mode power is concentrated at short-wavelength scales, e.g. for w = 16
the peak of the mode spectrum is at ky ∼ 2.5, which coincides with the peak growth
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Figure 6.11: Mode spectrum of the
electrostatic potential for ky for is-
land widths of w = 2, 4, 8, 12. For
small islands widths the mode spec-
tra coincides with the linear peak
growth rate from the standard ITG
mode, for large islands, the peak of
the mode spectra shifts to the peak
growth rate of the short-wavelength
ITG mode.

rate of the short-wavelength ITG mode. For smaller islands, most of the mode power is
around ky ∼ 0.7, which is also the peak growth rate of the standard-ITG mode. Thus
we may conclude, that the global mode is driven by the most unstable linear mode.
For increasing island width, and thus with an increasing coupling strength (∝ w2), the
spectra becomes broader, which is explained by a more efficient energy transfer between
the poloidal modes. However, we also find that the slope at ky ∼ 2 is flat, which shows
that energy is less effectively dissipated. This could be understood as a contribution
from the short-wavelength ITG mode which is itself a free energy source. In the next
section, we will investigate the mechanism of the destabilization of the ITG mode in case
of a large magnetic island.

6.4.2 |Magnetic island destabilization mechanism

For a preliminary investigation of the destabilization mechanism of large magnetic is-
lands, we use a filter to separate the standard ITG region and the short-wavelength ITG
region. Our filtering function κ is defined by

∂f̃1

∂t
= κ(ky)

∂f1

∂t
, where


κ = 1 for ITG-org
κ = 1

2 + 1
2 tanh (ky − 1.3) for ITG-shw

κ = 1
2 −

1
2 tanh (ky − 1.0) for ITG-std

. (6.15)

The effect of the filtering on the growth rates without the magnetic island modification,
i.e. w = 0, can be seen in Fig. 6.12a and is as follows : for the ITG-org (the unfil-
tered case), filtering has no effect, while for the ITG-std the short-wavelength domain
is suppressed, allowing only unstable modes in the standard ITG region. For the case of
the ITG-shw, the standard ITG region is suppressed and thus only unstable modes are
found in the short-wavelength region, i.e. ky > 1.
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(a) Filtered growth rates (b) Growth rates vs island width

Figure 6.12.: Linear growth rates for three cases : the original case (ITG), a case with the
short-wavelength part suppressed (std-ITG) and a case with the standard part suppressed (shw-
ITG). Left figure shows the linear growth rates in the absence of an island. Right figure shows
the growth rates with increasing island width - only when the short-wavelength part is present, a
destabilization at w ∼ 14 is observed (right figure).

In Fig. 6.12b, we perform a parameter scan of the island width vs. the growth rate
of the electrostatic potential for all three cases. We find that the destabilization at
w ∼ 14, which is observed in the unfiltered case, is not found in the std-ITG case,
where the short-wavelength region is filtered out. For islands w < 30, we observe a weak
stabilization. For even larger island widths, the islands is found to have practically no
further influence on the ITG growth rates. For the case of shw-ITG, where only the
short-wavelength region is unstable, we find a strong destabilization at around w ∼ 8,
which exceeds the growth rates of the std-ITG case at w ∼ 12, which is very close
to the value observed in the ITG case. From these results, we can conclude that the
destabilization found in Fig. 6.9 does indeed arise from the short-wavelength region. In
the next section, we will investigate the mechanism of the destabilization.

6.4.3 |Minimal model for destabilization through shw-ITG mode

In order to understand the destabilization of the short-wavelength ITG mode observed
in Fig. 6.12b, a reduced model is proposed to analyze the response of the ITG eigenmode
structure to the static island. For simplicity, we fix the poloidal direction at y = 0 and
y = Ly/2, which corresponds to the X-point and O-point of the island, respectively.
This excludes the poloidal mode coupling from the island which arises from the island
poloidal structure in Eq.(6.9). The island’s magnetic flux ψ is now only related to the
Landau damping and parallel advection term, as k‖ = ky ŝx±kyψ̃x. The factor k‖, which
corresponds to the total By1 including the contribution from the magnetic island at the
X- and O-point is shown in Fig. 6.13. At the X-point, the island structure increases
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Figure 6.13: Perturbation of the
equilibrium field due to the mag-
netic island at the X- and O-point,
i.e., yX = 0 and yO = Ly/2, re-
spectively. The rational surface for-
mation at the O-point is clearly vis-
ible. The field structure at the X-
point has a strong increase in mag-
netic shear.

Figure 6.14: Growth rate of drift
turbulence at the island’s X- and
O- point for ky = 0.5 and ky =
2.5 modes. Rational surface separa-
tion at the O-point destabilizes the
std-ITG region, as well as the shw-
region. The onset of destabilization
for the shw-region is earlier com-
pared to the std-region.

the local shear near the rational surface. However, at the O-point, the island causes
two separated rational surfaces, which distance increases with the size of the island. For
the perturbed field at the X- and O-point, we evolve only a single poloidal mode, which
wavenumber corresponds to the peak growth rate of the std-ITG mode ky ∼ 0.5 and of
the shw-ITG mode ky ∼ 2.5. The growth rate dependence on the island width is shown in
Fig. 6.14. For the X-point equilibrium, the std-ITG mode is slightly destabilized, which
agrees well with the general behavior of destabilization for weak magnetic shear and
stabilization for stronger magnetic shears. The shw-ITG mode, however is very sensitive
to the increase of magnetic shear and quickly stabilizes. For the O-point equilibrium, we
find that the std-ITG mode is stabilized for small island widths due to the reduction of
local shear, however destabilized again for large island widths due to the separation of
rational surfaces. As the island width increases and crosses a critical value, the std-ITG
mode and also the shw-ITG mode are first destabilized, and then stabilized again, as
shown in Fig. 6.14. However, the critical island width for the shw-ITG mode is smaller
than the std-ITG. We can understand this underlying mechanism through the response
of the ITG eigenmode structures to the island. As shown in Fig. 6.13, for large islands,
the rational surface separation occurs, so that a so-called double ITG mode, similar to
the case found in the negative shear slab geometry by Li et al. (1998), with an increased
growth rate is excited. The corresponding eigenfunctions of the std-ITG and shw-ITG
modes are shown in Fig. 6.15. As the island width increases further, the double ITG
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(a) std-ITG (b) shw-ITG

Figure 6.15.: Eigenfunctions (absolute value) of the std-ITG mode for ky = 0.5 and shw-ITG
mode for ky = 2.5 for different island widths.

Figure 6.16: Instant growth rates of
various poloidal modes. For ŝ = 0.2,
ηi = 5 and w = 8. The forma-
tion of a global modes is formed. As
mode-coupling only coupled the neighbor-
ing modes, two coupling groups are found
(t ∼ 800), one for the standard ITG re-
gion the other for the short-wavelength
region - until the most unstable of them
is forming the global mode at t ∼ 1500.

modes are first destabilized as the rational surface separation increases. Finally, when
the separation is large enough, the double ITG mode structure also separates, so that
the mode structures are reduced back to the unstructured with a single rational surface,
as shown in Fig. 6.15, which is the reason why the growth rate decreases. As for the
difference of the critical island widths for the destabilization of the std-ITG and shw-ITG
mode, it may result from the narrow mode width of the shw-ITG mode, which matches
the small separation of the rational surface.

6.4.4 | Formation of global mode and zonal flow oscillations

Shown in Fig. 6.16 is the time evolution of the electric field energy for various modes for
an magnetic island of size w = 8. After an initial phase, the mode coupling induced by
the magnetic island forces all modes to grow with the same growth rate, including the
stable modes, leading to a so-called global mode formation. The relatively long initial
phase occurs because mode coupling is only working between two directly neighboring
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Figure 6.17: Time evolution of the
electrostatic potential for a selected num-
ber of modes for an island width of w =
8. Mode coupling of the m = 1 and
m = −1 mode induces by the island leads
to an oscillating zonal flow proportional
to the global drift frequency. The oscil-
lating zonal flow couples again with the
m = 1 inducing (weak) oscillations. The
oscillations strongly decreases with am-
plitude for higher mode numbers.

mode.

6.4.5 | Investigation the zonal flow oscillations

In Fig. 6.17, the time evolution of the electrostatic potential is shown for four poloidal
modes, i.e. m = (0, 1, 2, 5) between the time t = 1000 − 1100. A striking feature is
the oscillation of the zonal flow (the m = 0 poloidal mode). The oscillation frequency
is found to directly correspond to the frequency of the global mode. The origin of the
oscillations can be explained by investigating the coupling terms for the evolution of
the zonal flow as discussed in Sec.(6.3.2). The contour plots of the zonal flow for close-
by times are shown in Fig. 6.18. The zonal flow oscillation also affects other poloidal
modes through back-coupling such that, in principle, all poloidal modes are oscillating.
However, practically, the amplitude of the oscillations will quickly decrease for higher
mode numbers and for m > 5 it is hardly noticeable. A consequence of the zonal flow
oscillations is that strictly speaking a global eigenmode with a unique frequency ωg does
not exist. However, this is understandable, as the magnetic equilibrium is not invariant
in the translation in the y direction (as the magnetic island has a y dependence). There
might be the case, where multiple global eigenmodes exist and the inference between
them results in the observed oscillations. This question can be answered by running
gkc++ as an eigensolver. However, as the size of the eigenvalue spectra is of the order of
N ∼ 106 for a reasonable resolution, this is yet out of reach for present day computers.

6.4.6 | Parameter scan over ηi

We perform a parameter scan over ηi in order to gain a better understanding on the
impact of a static magnetic island under various conditions. Namely, using previous
setup, we investigate the growth rate of the electrostatic potential for different ηi = 3, 4, 5
vs the magnetic island width; shown in Fig. 6.19. We observe an initial stabilization
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(a) t = 1000 (b) t = 1010 (c) t = 1020

Figure 6.18.: (Normalized) contour plots of the zonal flow of the electrostatic potential for
t = 1000, t = 1010 and t = 1020. The zonal flow component is oscillating with the global drift
frequency (ŝ = 0.2, ηi = 5 and w = 8).

Figure 6.19: Growth rates γ of the elec-
trostatic potential over magnetic island
width w for ŝ = 0.2 and ηi = 5, 3, 2. A
initial stabilization effect is observed for
islands w ≤ 10. Destabilization is found
for larger islands, where destabilization
is stronger for larger temperature gradi-
ents ηi.
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Figure 6.20: Growth rates of electro-
static potential vs island width for ηi =
5 and ŝ = 0.2, 0.4, 0.6. Stabilization
is stronger for larger shear while the
short-wavelength is suppressed for larger
shear. Interestingly, we observe some
resonances, e.g., at w ∼ 5 for ŝ = 0.4,
which are found to originate from the
short-wavelength ITG.

effect, which is explained by the dissipation of energy enabled by poloidal coupling. In
this picture the most unstable mode can transfer energy to its neighboring modes, which
themselves transfer them to more stable neighbors until the stable modes can dissipate
the energy. This mechanism provides the stabilization observed for small islands w ≤ 10
in all three cases of ηi. Consistently, we find a destabilization for large islands, which is
strong for ηi = 5, however, the destabilization strength decreases for smaller temperature
gradient.

6.4.7 | Parameter scan over ŝ

Shown in Fig. 6.20 is the growth rate of the electrostatic potential, with a fixed tem-
perature gradient of ηi = 5 and various magnetic shears vs the magnetic island width
size w. Especially interesting is the strong resonance destabilization for large magnetic
shears around an island width of w = 5 for the case of ŝ = 0.4. In this case, we found by
investigating the mode spectra that this destabilization is driven by the short-wavelength
ITG mode. The exact mechanism of this resonance is yet to be understood.

6.4.8 | Importance of the flux-surface averaging term

In the previous chapter, we noted that in the linear case, the adiabatic ETG and the
ITG are equivalent within normalization, except in the nonlinear case where the Poisson
equation needs to be modified to account for the flux-surface averaging effect. How-
ever, as discussed in Sec.(6.3.2), the zonal flow can also be generated by the magnetic
island through poloidal coupling and may have an influence on the linear mode structure
through back-coupling. We compared thus two cases using adiabatic electrons: one with
and one case without the flux-surface averaging term modification included in Poisson’s
equation. We found not difference in the growth rates for magnetic island widths w ≤ 20,
so that we may conclude that the influence of the flux-averaging term on the zonal flow
is negligible.



Section 6.5: Analysis of ITG on magnetic island including kinetic electrons 149

Figure 6.21: Linear (global mode) growth rates
γ vs ion-electron mass ratio mie for ηi = 5,
ηe = 0 and ŝ = 0.4 with a magnetic island
width of w = 0 and w = 10. mie = ∞ de-
notes the results obtained using adiabatic elec-
trons. In the absence of the island, isothermal
kinetic electrons reduces the growth rate of the
ITG, thus we do not find convergence to the adi-
abatic case. This is confirmed by the solution
of the dispersion relation as obtained in Sec.5.5
(dashed line). For the case with the magnetic is-
land, a convergent case is reached for mie ∼ 800.

6.5 | Analysis of ITG on magnetic island including kinetic
electrons

For the ITG with adiabatic electrons and in the absence of an island, the flux-surface
averaging effect of the electrons is taken into account through a modification of the
Poisson’s equation (5.4). In the case with a non-zero magnetic island width however,
this modification term cannot be applied as the magnetic field lines are essentially curved.
We thus need to include a kinetic electron species in order to self-consistently account
for the flux-surface averaging effect. However, this comes with the expense that the
computational cost increases by two order of magnitudes even when the electron scale
is not resolved, as the large thermal velocity of the electrons restricts the maximum
numerical stable time step. Now, with kinetic electrons, our parameter space increases
by additional by two degrees of freedom, namely by the electron temperature gradient
ηe and by the ion-electron mass ratio mie = mi/me.

6.5.1 | Parameter scan over the ion-electron mass ratio (mie)

We set a fixed ion and electron temperature gradient, namely ηi = 5 and ηe = 0, and
investigate the growth rate of the ion temperature gradient for a fixed magnetic island
width of w = 0 and w = 10 vs the ion-electron mass ratio. The results are shown
in Fig. 6.21. First, we address the case in the absence of the magnetic island (red
circles). We find that increasing mie, increases the growth rate of the ITG mode. We
reach convergence for an mass ratio of around mie ∼ 1500. However, even for kinetic
electrons with a large mie = 4000, we do not find a convergence to simulations using
adiabatic electrons shown here at mie = ∞. To confirm that this discrepancy is not
an artifact of the velocity and/or spatial resolution, we additionally show the solution
of the dispersion relation (dashed line) obtained using the integral code as discussed in
Sec. 5.5 and in Fig. 5.19a. The dispersion relation shows growth rates comparable to the
kinetic gkc++ IVP solution from around mie ∼ 1500, thus validating our results. We
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(a) mie =∞ (b) mie = 400 (c) mie = 2000

Figure 6.22.: Electrostatic potential for mie = 400, 800 and mie = 2000 using ηi = 5, ηe = 0,
and ŝ = 0.4. The global mode structure shows a strong change from the adiabatic case (mie =∞)
shown in the left figure, to a mode structure exhibiting a vortex at the O-point once kinetic elec-
trons are included as shown in middle and right figure. We conclude that flux-surface averaging,
neglected in the adiabatic case, seems to be important to define the dynamics at the O-point.

assume that the difference between the adiabatic and kinetic cases follows from a phase-
delay response of the kinetic electrons to an electrostatic perturbation at the rational
surface. This resonance effect at the rational surface is most probably a failure of our
two-dimensional geometry model, where we assumed kz = 0; and needs to be checked
using a finite Lz.

For the case with a magnetic island width of 10: the growth rate of the magnetic island
is much larger than in the absence of the island. Most probably due to the fact that
the magnetic island breaks the resonance of the kinetic electrons at the rational surface.
Convergence is reached at mie ∼ 800. The corresponding contours of the electrostatic
potential are shown in Fig. 6.22. Figure (a) shows the adiabatic simulations, while (b)
and (c) are the kinetic simulation with mie = 400 and mie = 2000, respectively. For
small mass ratios (b), i.e., mie ∼ 400, the mode structure is found to extend along the
field lines. At the O-point, a large vortex structure is found, which we interpret as a clear
sign of a relatively strong influence of flux-surface averaging effect. The strong influence
of the flux-surface averaging effect at the O-point is not surprising, as the field lines are
closed around the O-point and any electrostatic fluctuation is short-circuited. The case
with mie = 2000 shows an even stronger averaging effect, which is understandable, as
the flux-surface averaging effect increases with increasing ion-electron mass ratios (as the
thermal velocity of the electrons increases). The change in the poloidal mode spectrum
for the kinetic electron case compared to the adiabatic electron case (shown in Fig. 6.11)
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Figure 6.23: Normalized poloidal mode spec-
trum for mie = 100, 400, 800 and mie = 2000.
Convergence is reached for mie ∼ 400. The
strong influence of the magnetic island structure
in the kinetic electron case is clearly visible in the
poloidal mode structure. Large scale structures
are dominating in the case with kinetic electrons,
in contrast to the case with adiabatic electrons
shown in Fig. 6.11, where usually the linear most
unstable mode was dominating the global mode
for w < 14.

Figure 6.24: Growth rates of the electrostatic
potential vs magnetic island width for varying
ηi, with ηe = 0 and mie = 800. Inclusion of
the magnetic island breaks the resonance at the
rational surface thus the growth rate increases.
For the case ηi = 7 shows an independence on
the growth rate for 2 ≥ w ≥ 10 suggesting that
small island have a negligible influence on the
growth rate. For w = 8 a destabilization is ob-
served, independent on the temperature gradient
investigated here.

is clearly visible compared to the kinetic case shown in Fig. 6.23.

6.5.2 | Parameter scan over ηi

We perform parameter scans over the ion temperature gradient ηi for a fixed electron
temperature gradient ηe = 0. The growth rates of the electrostatic potential for ηi = 4, 5
and ηi = 7 are shown in Fig. 6.24. In contrast to the case with adiabatic ions, a
stabilization effect cannot be found. We can attribute the destabilization for small
island widths ηi < 5 to a change of the electron dynamics, as the stabilizing effect of
the electron resonance at the rational surface weakens. For ηi = 7, we find an almost
constant region between 2 ≥ w ≥ 10, where the growth rate is approximately constant.
Assuming that this is the case, where no electron resonance takes place, we can conclude
that the magnetic island has only a very weak stabilizing effect as compared to the
adiabatic case, where stabilizing effect was much stronger, e.g., in Fig. 6.9. For an island
width larger then w > 10, we find a weak destabilization.
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Figure 6.25: Linear growth rates of
electrostatic potential vs magnetic island
width for varying ηe using ηi = 5 and
mie = 800. For the case without the
island, a resonance of the electrons at
the rational surface reduces growth rate.
For small island widths the resonance ef-
fect is reduced, such that the growth rates
quickly rises. For intermediate island
widths, a stabilization effect is observed
for ηe = 2 which for a critical island
width of w = 2 gets destabilized. Note
that for the case of ηe = 5, the ETG is
excited and dominated the global mode.

6.5.3 | Parameter scan over ηe

In Sec. 5.5, we discussed the dispersion relation of the ITG for the two-dimensional
sheared slab geometry in case of kinetic electrons. Namely, we found that a finite
electron temperature gradient ηe has a destabilizing effect on the ITG. Growth rates
comparable to the adiabatic case are found once ηe ∼ 2, which however, is also the
threshold where the ETG itself becomes unstable. For larger ηe, the ITG mode is only
weakly further destabilized, however, the ETG itself is very sensitive and strongly grows,
e.g., for ηe = ηi > 2, we expect growth rates to be γETG ∼

√
mieγITG. In Fig. 6.25,

we show the electrostatic potential growth rates vs the island width for three cases of
electron temperature gradients : ηe = 0, 2 and ηe = 5. For ηe = 2 a destabilization of
the global mode through the ETG mode is not found, as the maximum wave number
included in the simulations is much smaller than the peak growth rate of the ETG mode.
For intermediate island widths, a stabilization effect on the ITG is observed for ηe = 2,
which for a critical island width of w = 12 gets destabilized. For the case of ηe = 5, the
ETG is excited with a much larger growth rates such that linear estimated on the ITG
contributions are not possible when using an initial value code.

The contours of the electrostatic potential for ηi = 5 and ηe = 2 are shown in Fig. 6.26
for island widths of w = 8, 10, 12. In contrast to the isothermal electron case, a strong
vortex mode is not found for moderate island widths up to w ≤ 10. Showing that a finite
electron temperature gradient also has a large influence on the dynamics. Interestingly,
the destabilization of the ITG for island width w ≥ 10 coincides with the formation of
the vortex at the O-point — which gives a hint that the vortex mode itself may be the
responsible mechanism for destabilization. However, further analysis is necessary for a
final conclusion.
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(a) w = 8 (b) w = 10 (c) w = 12

Figure 6.26.: Contour of the electrostatic potential at t = 800 for the kinetic electron case
with mie = 800, ηi = 5 and a finite electron temperature gradient of ηe = 2. In contrast to
the isothermal electron case, a strong vortex mode is not found for moderate island widths up
to w ≤ 10. Showing that a finite electron temperature gradient also has a large influence on the
dynamics.

6.6 | Nonlinear analysis of ITG on magnetic island

Finally, we turn into the analysis of the nonlinear simulations including a magnetic island
perturbation. As already stated, kinetic electrons are crucial in nonlinear simulations
due to the flux-surface averaging effect. Here, we chose ηi = 5 and ηe = 5 in case of the
kinetic simulation. Although the linear phase will be dominated by the ETG, we know
from previous simulations that the ETG saturates at much smaller amplitudes, such that
nevertheless, we expect that the ion dynamics will dominate in the nonlinear phase. The
contour plot of the electrostatic potential is shown in Fig. 6.27. For the case without an
island shown in (a), we find a relatively strong zonal flow, close to the rational surface,
small-scale fluctuations can be seen, which most probably arises from the ETG. For an
island width of w = 4 and w = 8, we found a very strong and extended zonal flows.
This zonal flow may arises from the Poisson bracket of the magnetic island contribution,
which does increase zonal flow production. For the parameter set presented here, no field
perturbations of the electrostatic potential are found at the O-point. However, we note
that for some parameters, an extended and static (non-oscillating) vortex is found in the
center. Hornsby et al. (2010, 2012) discovered similar vortices in toroidal simulations,
which in contrast to ours, were oscillating on a long-timescale. Hornsby et al. (2010,
2012) concluded these oscillations stem from a similar mechanism as the geodesic acoustic
modes (GAM) oscillations. However, our as our simulations are restricted to the slab
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(a) w = 0 (b) w = 4 (c) w = 8

Figure 6.27.: Snapshot of the electrostatic potential φ at t = 1800 with ηi = 5 and ηe = 5. The
magnetic island leads to a strong generation of the zonal flow, which radially extends over wide
radial domain. We found that larger islands widths show an increased production of zonal flow.

geometry, this mechanism is not applicable and thus oscillations of the vortex mode are
not observed.

The heat flux over the magnetic island width is shown in Fig. 6.28. Here, we compare
the electrostatic heat flux obtained from simulations including adiabatic electrons, with
simulations including kinetic electrons. We find that the averaged heat flux strongly
increases with increasing island widths. The standard error of the average heat flux
estimates is shown using error bars. We speculated two reasons for this very strong
increase: First, the magnetic island excites the ITG even apart the rational surface and
thus effectively increasing the hear transport (this is relevant as in sheared slab geometry
a steady-state turbulence cannot be achieved). Second, the majority of the heat flux is
transported by lower mode numbers, suggesting that the island structure has a strong
influence on the transport characteristics itself. To confirm last point, we show the in
Fig. 6.29 the time-averaged heat flux spectra over the magnetic island width. As the
poloidal spectra, the heat flux spectra is qualitatively different between the adiabatic
electron case (a) and the kinetic electron case (b). Namely, the kinetic electron case is
much more sensitive to the island structure and shows that the majority of the heat flux
is transported by low-ky (large scale) modes and confirms by Hornsby et al. (2010). The
heat flux spectra of the ITG-ke is in contrast to the adiabatic case, where the majority
of the heat flux is transported at the linear most unstable wavenumber.
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Figure 6.28: Heat flux dependence (χi) vs the
magnetic island width (w) for the case with adi-
abatic electrons (mITG-ae) and the case with ki-
netic electrons with ηe = 5 (mITG-ke). A mag-
netic island strongly increases the ion heat flux,
mainly due to the extended turbulence width.
The heat flux in the case with kinetic electrons
is found to be substantially larger than from the
case with adiabatic electrons. The increase can
be understood from investigating the heat flux
spectra.

(a) adiabatic electrons (b) kinetic electrons

Figure 6.29.: Averaged ion heat flux (χi) contributions for various magnetic island widths (w),
for the case with adiabatic electrons (left figure) and the case with kinetic electrons (right figure).
For the case with adiabatic electrons, the main heat flux contributions peak around the mode with
maximum linear growth rates. For the case with kinetic electrons, heat flux contributions peak at
a scale comparable to the magnetic island structure, showing the island’s strong influence on the
dynamics.
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6.7 | Summary

We started our discussion with the formations of magnetic island through magnetic re-
connection and its numerical simulation. We obtained numerically the magnetic flux
eigenfunction which was used in our gyrokinetic simulations as a static perturbation of
our two-dimensional sheared slab geometry. The magnetic island introduced a geomet-
rical coupling between the ITG modes; and for large enough islands to the formation of
new rational surfaces. For the case of the linear ITG with adiabatic electrons: we found
that a small magnetic island has a stabilization effect on the ITG mode by allowing
unstable modes to dissipate energy through stable modes. For large islands, we found
that the destabilization through rational surface separation dominates. This destabiliza-
tion mainly originated from the short-wavelength region of the ITG. Using a minimized
gyrokinetic model, we found that the so-called double-ITG mechanism is the responsi-
ble mechanism for the destabilization which preferably destabilizes the short-wavelength
ITG modes due to their smaller radial eigenmode width. We continued our investiga-
tion by including kinetic electrons. A resonance of the kinetic electrons at the rational
surface which strongly reduced the growth rates of the ITG modes made comparison
with the adiabatic electron case difficult. Nevertheless, we could confirm qualitative
similarities concerning destabilization for large magnetic islands. The contour plots of
the electrostatic potential revealed however that the effect of the kinetic electrons and
the flux-averaging effect at the closed flux-surfaces at the O-point had a strong influ-
ence on the linear mode structure of the ITG. For the nonlinear case, to account for
the flux-surface averaging in presence of curved field lines, kinetic electrons are crucial.
We found that the magnetic island strongly increases the nonlinear heat fluxes and in
contrast to adiabatic simulations, the main heat flux was transported at spatial scales
comparable to the island.
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During the previous six chapters, the reader was introduced to many aspects of gyroki-
netic theory and its application. In the following two sections, the author would like to
to summarize the achievements made during this PhD study, and give an outlook about
possible extension of this research.

7.1 | Conclusion

Development of massive parallel gyrokinetic Vlasov code

As a powerful tool to study the multi-scale turbulence, an Euler-type gyrokinetic code,
named gkc++ , has been developed by employing C++/Cilk+ . This is the first gy-
rokinetic code using such an approach as known to the author. The computational
requirements are very demanding in the CPU time required for a multi-scale simulation
and the datasets which are produced during one simulation run. To tackle the former
issue, the author parallelized the code using MPI to domain decompose the numerical
grid and solve them on multiple computer nodes. Additionally, OpenMP is used for an
efficient in-node parallelization, and Cilk+ to guarantee an optimal vectorization. Such
efforts were crucial for the subsequent work in order to evolve the turbulent fluctuations
in the five-dimensional phase-space including an arbitrary number of species. To tackle
the data analysis, an interface to HDF-5 has been developed in order to efficiently output
the large multi-dimensional datasets. Furthermore, a frame-work using python (pyta-
bles/scipy) has been developed to analyse the obtained data sets. Finally, to guarantee
the correctness of the numerical code on one hand, and to distinguish between numerical
properties on the other hand, the dispersion relation of the linear gyrokinetic equation
system in the two-dimensional sheared-slab is solved as a non-linear eigenvalue problem
for benchmarking.

Clarification of the role of stable modes in a linearly
mode coupled discretized gyrokinetic system

Kinetic effects, such as Landau damping and/or the FLR effects play a crucial role in
determining the characteristic of the drift waves such as the ion temperature gradient
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mode. However, Landau damping in collisionless gyrokinetic Vlasov simulations origi-
nates from the phase mixing of marginally stable Case–van Kampen (CvK) eigenmodes,
which restricts damping to a finite recurrence time. It is thus questionable, whether
the stabilization effect through Landau damped, stable modes is correctly reproduced
in the nonlinear saturation state or a linearly coupled system. More specifically, it is an
interesting question whether the stabilization effect of stable modes is properly evaluated
in case where coupling between the modes arises through an external vortex flow. To
resolve this problem, the author investigated the characteristics of marginally stable and
damped modes, based on the gkc++ code and eigenvalue analysis. It was found that in
the absence of collision, the time evolution of the electrostatic potential of stable ITG
modes strongly depends on the initial perturbation in velocity space. Namely, in the
case with random noise perturbation, stable ITG modes were not damped, but exhibited
a marginal behavior with small amplitude fluctuations. On the other hand, in the case
of a Maxwellian perturbation, damping of the electrostatic potential was observed with
a damping rate as predicted by Landau’s theory. However, the electrostatic potential is
subject to recurrence beyond which the simulation becomes ambiguous. Based on the
eigenvalue analysis, it is confirmed that such a behavior results from the appearance of
the CvK eigenmodes which show marginal stability with different real frequencies, and
the resultant phase mixing between them. Note that the damping due to phase mixing
is not ascribed to a normal mode as an eigenstate. Furthermore, it is found that such
CvK eigenmodes are very sensitive to collisional dissipation. Namely, a finite collisional
dissipation leads to the damping of the CvK eigenmodes. Once these CvK eigenmodes
are damped down to the rate predicted by the Landau’s theory, we found that a normal-
mode corresponding to the Landau eigenmode appears. Consequently, the recurrence
phenomena is suppressed so that the simulations beyond the recurrence time became
valid. The required critical collisionality to reproduce the Landau eigenmode crucially
depended on the number of grid points used. Namely, a higher (lower) resolution in
velocity space generally required a lower (higher) collisionality in order to reproduce
Landau damping through an eigenmode. However, once collisionality was too large,
collisional damping arises physically. Thus only a limited range of collisionality can be
chosen in order to reproduce the Landau damping through an eigenmode. In addition, in
order to investigate the validity of the energy transfer from unstable ITG modes to sta-
ble modes through mode coupling, a minimal model was introduced, where two poloidal
modes, one unstable mode and one stable mode, are coupled by a tertiary vortex mode.
We found two different mechanisms for damping, i.e. damping due to the phase-mixing
of marginal CvK eigenmodes without collisional dissipation and Landau damping with
weak collision. Those two provide same growth rate up to the recurrence time. Using
the above model, we showed that the growth rate of the unstable global mode is reduced
independent on the collisionality. We concluded that the energy transfer from unsta-
ble modes to stable modes through mode coupling can be properly reproduced without
depending on whether damping results from the phase mixing subject to recurrence or
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Landau damping through an eigenmode in velocity space.

Discovery of the short-wavelength destabilization of the ITG
in the presence of a static magnetic island

The ITG mode is further destabilized at the short-wavelength region, which is found
in the gyrokinetic model — but not in the gyrofluid model. First, the existence of the
short-wavelength ITG mode was confirmed by applying an analytical approach as well
as by employing gyrokinetic simulations. A parameter scan revealed the dominance of
the short-wavelength ITG existing over a wide range of parameters and its sensitivity to
the destabilization through shearing effects and kinetic electron dynamics. Second, the
author considered the ITG instability with a static magnetic island. By using the more
accurate gyrokinetic equation system, which includes self-consistently the Landau damp-
ing and finite Larmor radius effects, the results obtained from the gyrofluid simulations
were be confirmed. Namely, a small magnetic island stabilizes the ITG mode by inducing
poloidal coupling between unstable and stable modes. However, it was found that the
stabilization effect is weaker in the gyrokinetic model, as gyrofluid simulations overesti-
mated the damping. Also, gyrokinetic simulations confirmed the destabilization of the
ITG mode due to the formation of new rational surfaces for large magnetic islands. How-
ever, in contrast to gyrofluid simulations, the destabilization effect was mainly caused by
the short-wavelength ITG mode due to a resonance effect (double-ITG mode). From a
reduced model, we deducted that the destabilization of the short-wavelength mode orig-
inated from its smaller mode structure width and thus it is more sensitive to rational
surface separation.

Study of multi-scale turbulences interaction
including a static magnetic island

In multi-scale turbulence simulation with a static magnetic island, kinetic electrons are
required, as the flux-surface averaging can not be modeled with an adiabatic electron
response. However, including a kinetic electron species increases the computational
requirement by more than one order of magnitude, as not only a further species needs to
be evolved, but also because the thermal velocity of the electrons strongly reduces the
maximum stable time step in the simulations. To properly calculate the effect of kinetic
electrons and also benchmark the simulation code, first, a careful parameter scan has
been performed to better understand the effect of kinetic electrons on the ITG instability
in the case without magnetic island. Second, for the case with a magnetic island, an
electrostatic vortex mode at the O-point of the island is found. It is identified that this
structure results from a flux-averaging effect accounted to the electrons, which is not
observed in simulations with adiabatic electrons. Furthermore, we observed a strong
increase of the heat flux for increasing island widths.
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7.2 | Extensions of this PhD study

“Every answer raises more questions” — and this study is no different. During a PhD
many interesting ideas or results are found but have to be abandoned due to time
restrictions. In the following some ideas are summarized for a continuation of the research
presented here:

7.2.1 | Chapter 3: Improving the gkc++ solver

The following research is proposed on this topic:

• Improvement of the hybrid parallelization scheme to hide MPI latencies by over-
laying communications with computations.

• Usage of accelerators such as GPUs. Cilk+ is specifically designed to exploit the ad-
ditional computing and parallelization capabilities provided by such co-processors.

• Replace the finite-difference stencils by more advanced stencils such as the IDO-CF
scheme suggested by Imadera et al. (2009).

7.2.2 | Chapter 4: Landau damping in the discretized system

The following research is proposed on this topic:

• Numerical study of the collapse of the Case-van Kampen eigenmodes for a finite
hyper-diffusivity or even more advanced gyrokinetic collisional operators such as
suggested by Abel et al. (2008) and Barnes et al. (2009).

• In collisionless damping, algebraic decay is found for non-entire functions as dis-
cussed by Xie (2013). However, it is questionable if algebraic decay is found for a
discrete Landau spectra. Some investigations were done on this Ng et al. (2004).

• Investigation of gyrokinetic turbulence and the influence of linear Landau damp-
ing characteristics: phase-mixing (with recurrence) or Landau damping through
discrete eigenmodes. This research would probably require rewriting gkc++ to use
Fourier-Hermite basis for parallel velocity space resolution.

• Investigate of the ITG saturation through stable eigenmodes by projecting the time
dependent solution of the nonlinear initial value problem onto the eigenmodes of
the linear system.

7.2.3 | Chapter 5: Short-wavelength destabilization of the ITG

The following research is proposed on this topic:

• Investigate the short-wavelength effects in toroidal geometry where trapped elec-
trons can excite it.
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• Investigate electromagnetic effects on the short-wavelength ITG mode, see e.g.
Gao et al. (2002).

• Role of short-wavelength effects in presence of impurities.

7.2.4 | Chapter 6: Interactions of ITG, ETG and magnetic island

The following research is proposed on this topic:

• Relaxation of the static island assumption by self-consistent investigating the cross-
scale interaction between a magnetic island and the ITG mode. A similar study
was done by Li et al. (2009) in the gyrofluid limit which remain to be extended
into the gyrokinetic framework.

• In cylindrical geometry, magnetic islands are known to rotate. Investigation of the
influence of a static magnetic island on the ITG in cylindrical geometry by also
taking the rotation of the island into account may provide interesting insights.

7.3 | Final remark

The author would like to thank the reader again for his interest in this topic. If this thesis
left some points unclear — or more information is requested, the author encourages the
reader to contact him.





A | Benchmarking the numerical code

In order to verify the numerical implementation of the gyrokinetic equation system, we
first introduce the plasma dispersion function and Bessel functions, which are later used
when deriving the analytic dispersion relation. Finally, we compare the analytic solution
from the dispersion relation with the numerical solution obtained from solving an initial
value problem using gkc++ .

A.1 | The plasma dispersion function

An integral which often arises in plasma physics, is the Fried-Conte plasma dispersion
function (PDF) Z given by

Z(ζ) =


1√
π

∫∞
−∞

exp[−u2]
u−ζ du Im(ζ) > 0

1√
π

∫∞
−∞

exp[−u2]
u−ζ du+ πie−ζ

2
Im(ζ) = 0

1√
π

∫∞
−∞

exp[−u2]
u−ζ du+ 2πie−ζ

2
Im(ζ) < 0

. (A.1)

For a numerical computation of the plasma dispersion function, it is convenient to use
the similarity to the complex error function given by

erf (x) =
2√
π

∫ x

0
exp[−t2] dt , (A.2)

as shown by Huba (2009) and which is often available from numerical libraries. The
plasma dispersion function is then given through the identity:

Z(ζ) = i
√
πe−ζ

2
[
1 + erf(ζi)

]
. (A.3)

The libraries themselves make use of e.g the two-pole approximation of the plasma
dispersion function for it’s calculation as discussed by Poppe and Wijers (1990). The
real and imaginary part of the plasma dispersion function in the complex plane is shown
in Fig. A.1. When using the identity (A.3) for a numerical computation of Z, we found
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Figure A.1.: The plasma dispersion function Z on the complex plane.

that for large values of Im(ζ), rounding error occur which result in a loss of precisions.
This can be avoided if the asymptotic expansion for |ζ| � 1 is used given by

Z(ζ) = i
√
πσe−ζ

2 − ζ−1

(
1 +

1

2ζ2
+

3

4ζ4
+

15

8ζ6
+ . . .

)

with σ =


0 ζi > 0
1 ζi = 0
2 ζi < 0

,

(A.4)

For small values of |ζ| � 1, we can the Taylor expansion around ζ = 0,

Z(ζ) = i
√
πe−ζ

2 − 2ζ

(
1− 2ζ2

3
+

4ζ4

15
− 8ζ6

105
+ . . .

)
. (A.5)

A very useful identity of the plasma dispersion functions when calculating terms of
the form

Zn(ζ) =
1√
π

∫ ∞
−∞

dζ
une−ζ

2

u− ζ
, (A.6)

can be obtained from recursion relations of the plasma dispersion function, which for
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n = 0, . . . , 3 gives

Z0(ζ) =
1√
π

∫ ∞
−∞

u exp[−u2]

u− ζ
du = Z , (A.7)

Z1(ζ) =
1√
π

∫ ∞
−∞

u exp[−u2]

u− ζ
du = 1 + ζ Z , (A.8)

Z2(ζ) =
1√
π

∫ ∞
−∞

u2 exp[−u2]

u− ζ
du = ζ + ζ2 Z(ζ) , (A.9)

Z3(ζ) =
1√
π

∫ ∞
−∞

u3 exp[−u2]

u− ζ
du =

1

2

[
1 + 2ζ2

(
1 + ζ Z(ζ)

)]
. (A.10)

Finally, a generalization of the PDF known as the incomplete plasma dispersion function
for semi-finite domain was discussed by Baalrud (2013).

A.2 | Notes on the Bessel functions used in gyrokinetics

The Bessel functions of the first kind arise when calculating the gyro-average in Fourier
space, and for an integer number n are defined by

Jn(x) =
i−n

π

∫ π

0
dθ eix cos θ cos(nθ) . (A.11)

Most important are the zeroth-order J0 and first-order J1 Bessel functions shown in
Fig. A.2a. The Taylor expansion for both functions is given by

J0(z) = 1− ζ2

4
+
ζ4

64
− . . . , J1(z) =

ζ

2
− ζ3

16
+ . . . , (A.12)

where we see the identity that J0
′(z) = − J1(z). The asymptotic expansion of Jα, for a

real number α is given by

Jα(x) =

√
2

πx
cos
(
x− απ

2
− π

4

)
(A.13)

gives so that

J0 =

√
2

πx
cos
(
x− π

4

)
, J1 =

√
2

πx
cos

(
x− 3π

4

)
. (A.14)

The decaying in leading order for large values is J0,1 ∝ x1/2. A fundamental integration
identity of the Bessel function is given by Abramowitz and Stegun (1964) is∫ ∞

x=0
x e−x

2
J2
n(αx) dx = 1

2e
−α2/2In

(
α2

2

)
. (A.15)
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(a) J0, J1 and exp functions (b) Γ0 and Γ1 functions

Figure A.2.: Plot of Bessel functions and Γ functions common in gyrokinetics.

If we substitute above identity with x =
√
µ, so that dx = 1

2
1√
µdµ gives∫ ∞

µ=0
e−µJ2

n(λ
√
µ) dµ = e−bIn (b) , (A.16)

which for n = 0 is used to simplify Eq.(A.23a). A similar integration identity can be
obtained, to simplify Eq.(A.23b), namely∫ ∞

x=0
x3e−x

2
J2
n(αx) dx = 1

2e
−α

2

2

[(
1− α2

2

)
In

(
α2

2

)
+

(
α2

2

)
I ′n

(
α2

2

)]
, (A.17)

defining b = λ2

2 which results in noting that I ′0 = I1, we get∫ ∞
µ=0

µe−µJ2
n(λµ) dx = e−b

[
(1− b) In (b) + (b) I ′n (b)

]
. (A.18)

A.3 | Dispersion relation in shearless slab geometry

The electrostatic gyrokinetic Vlasov equation for species σ in a three dimensional slab
geometry within the local approximation is given by

∂f1σ

∂t
= −

(
1 + ησ

[
mσv

2
‖ + 2µB0

2Tσ
− 3

2

])
∂ 〈φ〉
∂y

f0σ − v‖
(
∂f1σ

∂z
− qσ

∂ 〈φ〉
∂z

f0σ

)
,

where f0σ is the Maxwellian discussed in Eq.(2.42) and f1σ is the perturbed distribution
function. Transforming to Fourier space, the gyro-average over 〈φ〉 can be calculated
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by multiplying the Bessel function 〈φ〉 = J0(
√
λµ)φ, with the usual definition of µ

and λ. We assume a harmonic dependence on f1σ such that we can write as f1σ =
f̂1σ exp [−iωt+ ik · x] and φ = φ̂ exp [−iωt+ ik · x], so that (skipping the hat symbol
for readability), we get

(ω−v‖k‖)f1σ = −

(
1 + ησ

[
mσv

2
‖ + 2µB0

2Tσ
− 3

2

])
kyJ0(

√
λµ)−qσv‖k‖J0(

√
λµ)φf0σ .

After reordering we get

f1σ =

(
1 + ησ

[
mσv2‖+2µB0

2T − 3
2

])
kyJ0 − v‖k‖J0

ω − v‖k‖
φf0σ . (A.19)

The perturbation of the species σ is connected through the gyrokinetic quasi-neutrality
condition (assuming λD = 0) given by{∑

σ

q2
σnσ
Tσ

[
1− Γ0(bσ)

]}
φ =

∑
σ

qσ

∫ ∞
µ=0

∫ ∞
v‖=−∞

J0(λ)f1σ dv‖ dµ . (A.20)

Note again the back-transformation on the right-hand side of above equation required
an additional J0 factor. First, we assume now a two species plasma with an kinetic ion
species and adiabatic electrons and assuming Ti = Te = 1, ni = ne = 1 and qi = 1 for
simplicity, the quasi-neutrality condition becomes[

1− Γ0(bi) + 1
]
φ =

∫ ∞
µ=0

∫ ∞
v‖=−∞

J0(λi)f1i dv‖ dµ . (A.21)

Using Eq.(A.19) on the right-hand side of the above equation gives

2− Γ0 = −
∫ ∞
v‖=−∞

∫ ∞
µ=0

(
1 + ηi

[
miv

2
‖ −

3
2

])
kyJ

2
0 + ηikyµJ

2
0 − v‖k‖J2

0

ω − v‖k‖
f0σ dµdv‖ ,

(A.22)

First step we perform the integration over the first adiabatic constant µ. In the integra-
tion, two types of integrands arises which can be analytically calculated through integral
identities discussed in Sec. A.2, where∫ ∞

µ=0
J2

0 (
√
λµ)e−µ̂ dµ = e−bI0(b) = Γ0 , (A.23a)∫ ∞

µ=0
J2

0 (
√
λµ)e−µ̂µdµ = Γ0−b (Γ0−Γ1) , (A.23b)
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where Γ0 and Γ1 are defined as Γ0 = I0(b)e−b and Γ1 = I1(b)e−b, where I0 (I1) is the
zeroth (first) order modified Bessel function of the zeroth kind. With the above identities
and defining Γ01 = Γ0(b)− Γ1(b) and Λk⊥ = 2− Γ0(b), we arrive at

Λk⊥ = −
∫ ∞
v‖=−∞

(
1 + η

[
v‖

2 − 3
2

])
ky Γ0 +ηky [Γ0−bΓ01]− v‖k̂‖ Γ0

ω − v‖k̂‖
f0σ dv‖ . (A.24)

The next step is the integration over the parallel velocity v‖, where we make use of the

plasma dispersion function discussed in Sec.(A.1). Defining ζ = ω/k̂‖ we obtain

Λk⊥ =

{
−
(
1− η

2

) ky
k‖

Γ0 Z + η
ky
k‖
bΓ01Z − η

ky

k̂‖

(
ζ + ζ2Z

)
Γ0 + Γ0 +ζZ Γ0

}
φ , (A.25)

−
(
1− η

2

) ky
k̂‖

Γ0 Z + η
ky

k̂‖
bΓ01Z −

ky
k‖
η
(
ζ + ζ2Z

)
Γ0 +ζZ Γ0 + Γ0 +Λk⊥ = 0 , (A.26)

The dispersion relation is solved numerically using a numerically root finding algorithm
such as Muller (1956) method, Riddley, Newton iteration or Davies (1986) method. Note
that the convergence and the accuracy of the solution highly depends on the method
used, however, we found that Müllers method was the best choice in convergence radius,
stability and convergence speed.

A.3.1 | Comparison to the numerical solution

Figure A.3 shows the growth rate and frequency obtained from solving the dispersion
relation in Eq.(A.26). Physical parameters are chosen to η = 6, kx = 0 and k‖ = θky.
The numerical solution of the corresponding initial value problem obtained by using
gkc++ is shown by the dots. The numerical parameters, where chosen such that a
converged solution was obtained. We find that we can well reproduce the growth rates
and frequency of the unstable modes. The stable modes however, are not correctly
reproduced in the IVP, as a result of the discretization of the parallel velocity space as
discussed in Ch. 4.

A.4 | Dispersion relation in non-local geometry

The local approximation can only be applied for very simple magnetic field geometries,
with only limited application to a plasma in the Tokamak. A more realistic geometry is
the two-dimensional sheared slab geometry discussed in Sec. 2.10.2, where the parallel
wavenumber is given by k‖ = ŝxky. However, in this case the derivative in the parallel
direction has an x-dependence, while the gyro-averaged fields are calculated in Fourier
space. A Rayleigh-Ritz procedure is used to connect real space quantities with variables
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(a) Growth rates γ (b) Frequency ωr

Figure A.3.: Benchmark of gkc++ using full gyrokinetic dispersion relation with η = 6 and
kx = 0. We found very good agreement.

defined Fourier space. The theoretical outline of this procedure is given by Dong et al.
(1987) and Lee et al. (1987), with some further discussions in Gao et al. (2003) and
Idomura et al. (2000). From Zhe (2004): in the electrostatic case we get an integral
equation of the form,

λ2
Dφ+

∑
σ

qσTe
Tσ

{
1 +

∫
dk′

2π

∫
dx exp (i(k′ − k)x)Lσ

}
= 0 , (A.27)

where L(ω) is a complex, non-hermitian matrix given by Gao et al. (2003). Equation
(A.27) represents a nonlinear eigenvalue problem of the form L(ω)φ = 0, which is solved
using the procedure as outline in Fig. 5.2.

A.4.1 | Numerical benchmark for sheared slab geometry

Here we use following settings for the kinetic ion species ηi = 5 and ŝ = 0.2, while
the electrons are assumed to be adiabatic. For the theoretical dispersion relation the
integral code is used with Nx = 128, and the most unstable modes in the regime between
ky = 0.1 and ky = 10 are extracted. The resulting linear growth rates and frequencies
over the poloidal mode number are shown in Fig.(A.4), where the results obtained from
gkc++ are shown as dots. Note that by using the analytical solution, we find multiple
branches of the ITG mode, whereas the solution as an IVP does only resolve the most
unstable mode in the long time limit. We can observe this through the frequency jump,
which occurs for the low-ky ITG modes around ky = 0.1 and for the high-ky modes
around ky = 1.2. We find that the growth rates and frequencies are well reproduced
with the numerical solution procedure. The eigenfunctions from both approaches are
shown in Fig. A.5. Again, we find a good agreement.
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(a) Frequency ωr (b) Growth rates γ

Figure A.4.: Benchmark of gkc++ with an adiabatic electron species dispersion relation with
η = 6 and kx = 0. A good agreement is found.

(a) Reφ (b) Imφ

Figure A.5.: Comparing the eigenfunctions from the initial value code and integral code method.
We find a good agreement.
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