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1.1 Current status of global energy and its prediction 

The World Energy Outlook 2012 (WEO2012) of International Energy Agency (IEA) [1] suggested 

the New Policies Scenario of world energy, because the global energy map is changing by the 

resurgence in oil and gas production in the United States, the retreat from nuclear power in some 

countries, continued rapid growth in the use of wind and solar technologies and by the global spread 

of unconventional gas production. According to the outlook, global energy demand grows by more 

than one-third over the period to 2035 in the New Policies Scenario, with China, India and the Middle 

East accounting for 60% of the increase. The world population may have grown to 9 billion people, 

the emerging economies of Brazil, Russia, India and China may well be the world’s largest economies, 

and as their wealth increases, their energy demand will be added to the current increasing world 

demand. Existing supplies of fossil fuels are limited, with some already predicting that the peak of oil 

production has been reached. Added to this, over-dependence and over-use of these fuels has led to 

the detrimental global warming and climate change we experience today. 

BP Statistical Review of World Energy 2013 [2] announced that world primary energy 

consumption has increased, as shown in Fig. 1.1. With the assumed expansion of the global economy 

and an increase of the world’s population, more energy will be needed to satisfy growing demand for 

energy services.  

 

Fig. 1.1. The world primary energy consumption with historical data from 1987 to 2012. 
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1.2 The necessity of nuclear energy 

World-wide energy is currently depends on fossil fuels about 80% of all of the energy. With 

respect to global warming and energy depletion, each country has to make efforts to reduce the 

consumption of fossil fuels. The dramatic increase in world-wide demand for energy and its 

environmental problems are expected in nowadays and the future have stimulated international 

cooperation to consider how to meet future energy needs while reserving and improving the 

environment. This concern has led to nuclear energy and it is well described at Fig. 1.2 and 1.3. 

Although some governments—including Japan, Germany, Switzerland and Italy—have slowed or 

halted nuclear energy production as a result of the Fukushima accident, both EIA (Fig. 1.2) and IEA 

(Fig. 1.3) predict that overall production will likely expand since countries still face the same 

challenges over energy security and reducing global greenhouse gas emissions. In other words, both 

EIA and IEA estimate positive growth for nuclear energy in latest energy outlook report. These 

challenges highlight the important role that nuclear energy plays in providing domestic, carbon-free, 

base load electricity [3], because large amounts of energy can be produced with nuclear reactors 

without the anti- environmental effects accompanied by the use of fossil fuel products. Although 

renewable energy sources (solar photovoltaic, biomass, wind power etc.) may offer similar beneficial 

effects, concerns exist on economic efficiency and reliability when they are used for base-load power 

generation. The technology and economic reliability of nuclear energy have been demonstrated by the 

practical reactor operation throughout the world today.  

 

 

Fig. 1.2. Electricity generating capacity at U.S. nuclear power plants in three cases, 2011, 2025 and 

2040 (gigawatts), Source : Annual Energy Outlook 2013: with projections to 2040 by U.S Energy 

Information Administraion (EIA) 
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Fig. 1.3. World Primary energy demand by fuel in the New Policies Scenario, Source : World Energy 

Outlook 2012 of International Energy Agency (IEA) 

 

1.3 Nuclear energy systems 

1.3.1 Fusion reactors 

Nuclear fusion is one of promising options for generating large amounts of carbon-free energy in 

the future. If one sentence sums up the fusion reactor, it is “bringing the power of the sun to earth.” 

Because fusion is the process that heats the Sun and all other stars, where atomic nuclei collide 

together and release energy. To get energy from fusion, gas from a combination of types of hydrogen 

– deuterium and tritium – is heated to very high temperatures (100 million degrees Celsius). One way 

to achieve these conditions is a method called ‘magnetic confinement' – controlling the hot gas 

(known as a plasma) with strong magnets. Although many fusion reactor concepts have been 

developed, the most typical one will probably be Tokamak type [4]. For its advance and development, 

international cooperation was established to organize the international thermo-nuclear reactor (ITER) 

taken by China, the European Union, India, Japan, Korea, Russia and the United States. 

ITER project was focused on plasma science and technology and the mission did not include a 

complete set up of blankets for energy generation. A part of blankets will be assembled as a test 

blanket module (TBM). In BA program, welding and joining technologies were acknowledged as a 

prime technology of fabrication of TBM. In fusion reactors, two components are particularly 

important; the tritium-breeding blankets (TBB) and divertor. The TBB takes a role in extraction the 
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fusion energy. And it has to produce tritium for a self-sufficient operation. The divertor purifies the 

plasma by locally creating a magnetic configuration to evacuate the α-particles and impurities and 

also extracts fusion energy.  

 

1.3.2 Fission reactors 

The principal components of a nuclear reactor are the nuclear fuel, the moderator, the control rods 

and the coolant. There are many possible nuclear reactor sizes and configurations, with different fuel 

compositions, moderators, coolants and control mechanisms, all capable of allowing a nuclear chain 

reaction to be sustained and controlled. Many of these configurations have been investigated and 

studied in research programs or as prototype commercial plants, though only a few have been 

developed to the point of industrial maturity. The most successful reactor type is the Light Water 

Reactor (LWR), which uses ordinary water under high pressure as both the coolant and the moderator. 

LWRs come in two design configurations - the Pressurized Water Reactor (PWR) and the Boiling 

Water Reactor (BWR). 

 

1.3.2.1 Pressurized Water Reactor (PWR) 

Ordinary water is used as both coolant and moderator. The coolant is kept as high pressure (about 

15.5 MPa) to keep it as a liquid. It is contained within the pressure boundary formed by the reactor 

pressure vessel and piping in the primary coolant system, and is circulated through the core using 

powerful pumps. Heat is transferred within steam generators to a separate, secondary coolant circuit, 

where water is boiled to create steam. This steam drives the electricity producing turbine generators 

(Fig. 1.4). 

 

1.3.2.2 Boling Water Reactor (BWR) 

Ordinary water acts as both coolant and moderator, as in PWRs. The coolant is kept as a lower 

pressure that in a PWR (about 7 MPa) allowing it to boil as it absorbs heat from the reactor. The 

resultant steam is passed directly to the turbine generators to produce electricity as show in Fig. 1.4. 

While the absence of steam generators simplifies the design, the absence of a secondary circuit can 

result in some radioactive contamination of the turbine. 
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Fig. 1.4. The schematic diagram of the Pressurized Water Reactor (PWR) and Boiling Water Reactor 

(BWR) 

 

1.3.2.3 Generation IV reactors 

Technical design of nuclear power stations can be roughly divided on the generations of nuclear 

power stations, as shown in Fig. 1.5. First generation was developed in last century, more precisely in 

50’s and 60’s and this type of power stations is no longer in use, because these were early prototypes. 

Most operating commercial nuclear reactors world-wide are of Generation-II category. The 

Generation-III reactors have just started to be deployed, and Gen-III+ reactors are at the advanced 

stage of commercialization. While the current second and third generation nuclear power plant 

designs provide an economically, technically, and publicly acceptable electricity supply in many 

markets, further advances in nuclear energy system design can broaden the opportunities for the use of 

nuclear energy. Therefore, the Generation IV International Forum (GIF) has selected six concepts to 

develop in order to meet the technology goals for new nuclear systems; Gas Cooled Fast Reactor 

(GFR), Lead Cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), Sodium Cooled Fast Reactor 

(SFR), Supercritical Water Reactor (SCWR), Very High Temperature Reactor (VHTR). 
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Fig. 1.5. Generation of nuclear power system. 

 

1.4 Structural materials for nuclear reactor system. 

The foremost consideration in the successful development and deployment of advanced reactor 

systems is the safety, performance and reliability issues involving structural materials for both in-core 

and out-of-core applications. The structural materials need to endure much higher temperatures, 

higher neutron doses and extremely corrosive environment, which are beyond the experience of the 

current nuclear power plants.  

The main requirements for the materials to be used in advanced reactor systems are the following 

[6,7]: 1) The in-core materials need to exhibit excellent dimensional stability under irradiation, 

whether under stress (irradiation creep or relaxation) or without stress (swelling, growth). 2) The 

mechanical properties of all structural materials (tensile strength, ductility, creep resistance, fracture 

toughness, stiffness) have to remain acceptable after ageing, and 3) High degree of chemical 

compatibility between the structural materials and the coolant as well as with the fuel. In this regard, 

stress corrosion cracking (SCC) and irradiation assisted stress corrosion cracking (IASCC) are issues 

of important. These requirements have to be met under normal operating conditions, as well as in 

incidental and accidental conditions. 

The main candidate plasma facing materials for fusion power reactors are reported in table 1.1. 
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And, Table 1.2 summarizes the different classes of materials considered for each system of generation 

IV. As shown in Table 1.1 and 1.2, many of concepts for fusion and fission reactors adopt the 

pressurized and/or high temperature water as a coolant media because of its many advantages. On the 

other hand, the currently operation nuclear plants have experienced capacity losses due to corrosion 

damage to a number of components, and the most serious issue is the SCC of Boiling Water Reactor 

(BWR) coolant piping and reactor internals and PWR steam generator tubes.  

In both fusion and fission nuclear plants with water coolant systems, critical materials issues have 

included various forms of corrosion and stress corrosion cracking. These corrosion and SCC issues 

have had a significant impact on maintenance costs and safety operation of the plants. 
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Table.1.1 Main candidate materials for plasma facing and breeding blanket components [5] 

Function First wall Breeding blanket Divertor 

Plasma facing material 

W-base alloy,  

W-coated ODS steel,  

flowing liquid metal: Li 

- 

W-base alloy, W-coated SiCf/SiC 

flowing liquid metal: Li, Ga, Sn, Sn-Li 

Neutron multiplier material - Be, Be12Ti, Be12V, Pb - 

Tritium breeding material - 

Li, eutectic Pb-Li,  

Li-base ceramic material 

(Li2O, Li4SiO4, Li4SiO4, + 2.5 

wt.%SiO2, Li2TiO3, Li2ZrO3, 

LiAlO2) 

- 

Structural material 

RAFM steel, ODS steel, 

Vanadium alloy, SiCf/SiC 

RAFM steel, ODS steel, 

Vanadium alloy, SiCf/SiC 

ODS steel, W-base alloy 

Coolant - 

Water, helium,  

eutectic Pb-Li, Li 

Water, helium 
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Table. 1.2 Summary of materials considered for the different systems.[6] 

 SFR GFR LFR VHTR SCWR MSR 

Coolant Liquid Na He Lead alloys He Water Molten salt 

P (MPa) 0.1 7 0.1 7 24 0.1 

T (K) 625-825 755-1125 825-1075 875-1275 555-825 775-995 

Core structures Wrapper F/M steels 

 

Cladding Adv Aust & 

F/M steels 

F/M ODS 

Fuel & core 

structures 

 

 

SiCf/SiC 

composite 

Target, Window Cladding 

 

 

 

F/M steels ODS 

Core Graphite 

 

Control rods 

 

C/C SiCf/SiC 

Cladding & core 

Structures 

 

 

Ni based Alloys & 

F/M steels 

ODS 

Core 

Structure 

Graphite 

 

Hastelloy 

T (K) 665-975 875-1475 625-775 875-1875 625-895 975-1075 

Displacement 

dose (dpa) 

Cladding 200 60 = 90 Cladding~00 dpa, 

ADS/target~100 dpa 

7/25   
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2.1 Overview of oxide dispersion strengthened steels 

2.1.1 General 

Oxide dispersion strengthened (ODS) alloys typically consist of a high temperature metal matrix - 

such as iron aluminide, iron chromium, iron-chromium-aluminium, nickel chromium or nickel 

aluminide - with small (5-50nm) oxide particles of alumina (Al2O3) or yttria (Y2O3) dispersed within 

it. In order to make the second phase be uniformly distributed in the matrix metal, ODS steels are 

usually made by powder metallurgy method. Dispersion strengthening is one of the strengthening 

methods to introduce high number density of obstacles to dislocation motion. When the obstacles like 

compounds are distributed in the fine grains, the matrix of the alloys can be significantly improved in 

the strength and hardness, which may be accompanied by a slight loss of plasticity and toughness. 

When the particles become smaller and higher in the size and number density, respectively, the 

performance of the ODS alloys becomes better. 

 

2.1.2 History 

In 1916, the tungsten filament dispersed with thorium oxide (ThO2) was produced in Germany. In 

1919, the filament started to be used in the USA. In 1946, sintered aluminum powders (SAP) were 

developed to increase heat resistance of Al alloys. In 1962, ODS-Ni alloy with ThO2 (TD-Ni) was 

developed for application to turbine. After the development of mechanical alloying method by J.S. 

Benjamin, INCO, in 1970, the study on dispersion strengthened alloy processing made a great 

progress, and resultantly, dispersion strengthening coupled with solid solution hardening was achieved 

in so-called high temperature alloys. 

 

2.1.3 Fundamental 

The fundamental deformation properties of metals are determined by the behavior of dislocations, 

which are systematic line shape distortions introduced into the crystalline lattice. When the material is 

under stress, these dislocations can move to cause macroscopic strain. The dislocation motion can be 

impeded by irregularities of strain field in the crystal, such as in the form of grain boundaries, or in 

the form of impurities, which can act as 'pinning centers' or 'sinks' for the dislocations. The idea of 

deliberately introducing fine obstacles as the pinning species into the steel matrix was then taken up, 

and eventually led to the development of new steels with nano-scaled particles of transition metal 
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oxides (such as those of yttrium or chromium) dispersed in the matrix. Strengthening by the 

dispersion of ultrafine hard phases is the essence to improve the mechanical properties of materials 

under high temperature by hindering the dislocation motion at elevated temperatures. Generally, the 

following requirements have been imposed for dispersion strengthened particles: particles size should 

be as small as possible (less than 10 nm), particle spacing to achieve enough performance is in the 

range of several tens nm. In addition, the particles should be stable under high temperatures keeping 

the size be small by suppressing mutual agglomeration of the small particles. Phase stability of oxide 

particles is a critical for nuclear structural materials, because under irradiation, non-equilibrium 

condition is often generated to accelerate phase change. Thus, the ODS steels with fine and high 

number density of stable oxide particles have demonstrated high yield strength, high resistance to 

irradiation and thermal creep, as well as high corrosion resistance. This is one of the reasons why the 

ODS steels have been intensively researched in the world for the application to structural and cladding 

materials for next generation nuclear reactors. 

 

2.1.4 Oxide dispersion strengthened steels for nuclear applications 

An approach to elevate the limit service temperature of the ferritic steels, which has higher 

thermal conductivity and lower swelling than austenitic steels, is to disperse oxide particles in the 

ferritic steels. High strength at elevated temperatures of the ODS steels is due to the microstructures 

that contain a high density of small Y2O3 and/or TiO2 particles dispersed in the ferrite matrix. ODS 

steels are being developed and investigated for nuclear fission and fusion applications in Japan [1,2], 

Europe [3,4], and the United States [5]. 

The chromium content in the previous ODS steels is in the range of 9 ~19 wt. %, while content of 

the other alloying elements (Al, W, Mo, Nb, Ti, Zr etc.) are at a level of a few percent or less. The 

main oxide particles of the ODS steels were Y2O3 with a size smaller than 10 nm of diameter mostly 

added with up to 0.5 wt.% at most. Along with yttrium oxides, also used were the alumina and titania 

[6]. At present there is a great variety of ODS steels with different grades and types, as grouped 

according to developer countries: Belgium: DT2906 (Fe-13Cr–1.5Mo–2.9Ti–0.6 O2); DT2203Y05 

(Fe–13Cr–1.5Mo–2.2Ti–0.3O–0.5 Y2O3) USA: MA957 (Fe–14Cr–0.9Ti–0.3Mo–0.25Y2O3); 12CrY1 

(Fe–12.4Cr–0.25Y2O3); 12CrYWTi (Fe–12.3Cr–3W–0.39Ti–0.25 Y2O3) Europe: ODS EUROFER 

(Fe–9Cr–1.1W–0.2V–0.14Ta–0.3 (0.5) Y2O3) China: K7 (Fe – 13Cr – 1.1Ti – 0.2Mo – 2W – 

0.39Y2O3) Japan: Fe–9Cr–0.12C–2W–0.20Ti–0.35Y2O3, Fe–12Cr–0.3C–2W–0.3Ti–0.23Y2O3 
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9Cr-ODS steels developed for sodium-cooled fast reactor shells turned out to be unpromising for 

supercritical water cooled reactors (SCWR) and liquid bithmuth eutectic fast reactors (LBЕFR) due to 

high corrosion levels. For this reason, high Cr (up to 22 %) ODS steels with Al additives (up to 4.5 %) 

have been considered for the application to structural materials used in such a high corrosive 

environment [7]. 

The application of 9Cr-ODS steel to the cladding of SCWR and LFR is limited because of 

insufficient corrosion resistance of the steel [8,9]. Corrosion test results in supercritical pressurized 

water (SCW) and lead-bismuth eutectics (LBE) were referred to determine Cr and Al content. LBE 

has high solubility of nickel, iron and chromium, which are most important alloy elements in 

austenitic stainless steels, which is the reason of the difficulty to use nickel super alloys and iron-

based austenitic stainless steels as the structural materials for LBE cooled systems, especially at 

temperatures higher than 773 K [10-14]. Ferritic steels that contain only a small amount of nickel 

have been considered to be more adequate for LBE application. Above 873 K, however, the solubility 

of iron and chromium in LBE also becomes significantly larger. In order to prevent material from 

dissolving into LBE, alumina coating was often conceived. Without alumina coating, however, it is 

also considered that alumina film, which is spontaneously formed on the surface of the steel 

containing Al in solution, may suppress dissolution. Fig. 2.1 shows the appearance of ODS steel 

specimens after corrosion test in LBE with 10
-6

 wt.%O2 in solution for 10k hr at 923 K. The Al free 19 

wt%Cr-ODS steel dissolved into LBE markedly, while those of ODS specimens containing 4 wt.%Al 

almost completely kept the specimen shape, indicating much higher resistance to LBE corrosion. It is 

worth to noting that the corrosion resistance in LBE is independent of Cr concentration from 13 to 19 

wt.% in Al added ODS steels. The addition of Al is considered to be inevitable for structural materials 

to apply to LBE nuclear systems especially above 773 K. 

 

 

Fig. 2.1. The appearance of ODS steel specimens after corrosion test in LBE solved with 10
-6

 wt.%O2 

for 1 × 10
4
 h at 923 K. 
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As for the corrosion resistance in SCPW, the previous surveillance test results showed that nickel 

super alloys were preferable [15]. However, nickel alloys are rather susceptible to irradiation 

embrittlement as well as helium embrittlement [16]. Fig. 2.2 shows the weight gain after corrosion 

tests in SCPW (773 K, 25MPa) up to 1800 hr. The weight gain of 9Cr-ODS steel is much larger than 

16Cr-ODS steel, indicating that 9Cr-ODS steel is not adequate for application to SCWR. An EPMA 

and XRD analysis revealed that a thick Fe3O4 film was formed on the surface of 9Cr-ODS steel but 

not detected in the high-Cr ODS steels. It should be noted that the weight gain is much larger in 

SUS430 (16Cr) than in 16Cr-ODS steel. This clearly indicates that the oxide particles dispersion plays 

an effective role in the high corrosion resistance of ODS steels, since the corrosion resistance in water 

environment is mainly controlled by Cr concentration.  The corrosion resistance of ODS steels 

increases with chromium concentration. The effect of Al on corrosion resistance depends on Cr 

concentration. In 19Cr-ODS steel, the addition of 4 wt.%Al did not remarkably influence the 

corrosion resistance [9]. However, in 16Cr-ODS steel, the addition of Al improved corrosion 

resistance. The suppression of corrosion by Al addition in 16Cr-ODS steel is due to formation of very 

thin alumina film on the surface. In 19Cr-ODS steel, rather dense chromia film was observed on the 

specimen surface [17]. It is considered that 16 wt.%Cr is not large enough to form homogeneous and 

stable chromia on the whole specimen surface, while very thin alumina film covers the whole 

specimen surface of the ODS steel added with 4 wt.%Al. Thus, an addition of Al is effective to 

improve corrosion resistance of 16Cr-ODS steel but not in 19Cr-ODS steel. 

 

Fig. 2.2. Weight gain after corrosion tests in SCPW (783 K, 25 MPa) up to 1800 h. 
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Most serious problem of Al addition is a loss of strength. Fig. 2.3 shows the effects of Al addition 

on the tensile strength of the 19Cr-ODS steel, which clearly indicates that the Al addition significantly 

reduces the tensile strength, although the tensile strength of 16Cr-4Al-ODS steel is still much higher 

than a reduced activation ferritic steel, JLF-1.  

 

 

Fig. 2.3. The tensile strength of 19Cr-ODS steels with and without addition of Al as well as JLF-1 

steel. 

 

In order to investigate the mechanism of this reduction of strength by Al addition, TEM 

observations were performed, and it was revealed that the structure and dispersion morphology of the 

oxide particles were different between the steels with and without Al addition [18]. In the Al added 

steel, the average diameter of the oxide particles was about 7 nm but less than 3 nm in the Al free 

ODS steel. The number density of the oxide particles was reduced by almost one order of magnitude. 

The crystal structure of the oxide particle was also changed by the Al addition. As mentioned before, 

the fine oxide particles in the steel without Al addition were mainly pylochlore [19], while those in the 

steel with Al addition were mostly rather larger yttrium aluminum perovskites (YAP) and yttrium 

aluminum hexagonal (YAH) [20]. 
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Yttrium-aluminum oxide particles are not adequate for strengthening of ODS ferritic steels, while 

yttrium-titanium pylochlore is effective for strengthening. Although alumina and yttria are well 

known as thermally stable oxides, the possible other sort of fine oxide particles are searched for their 

application to strengthening of the ODS steels with Al and Y.  There are many stable oxide former 

elements, such as Y, Al, Ti, V, Ta, Nb, Hf, Zr, and so on. Table 2.1 shows the oxide formation energies 

of each alloy element at 1500 K. Among them yttria is familiar for ODS alloy production. The oxide 

formation energy is ranging widely from -520 for Nb to -995 kJ/mol O2 for Y at 1500 K. Since the 

formation energy of yttria and alumina is -995 and -800 kJ/mol O2, respectively, Hf and Zr may 

influence on the characteristics of oxide particles [21]. 

 

Table 2.1 The oxide formation energies of each alloy element at 1500 K [17]. 

 

 

The effects of a small addition of Hf and Zr on the strengthening were investigated for 16Cr-4Al-

Y2O3-ODS steel. Fig.2.4 shows the tensile strength at 973 K of each candidate ODS steel. 16Cr-4Al is 

a standard candidate ODS steel whose chemical compositions are 16Cr-4Al-2W-0.15Ti-0.35Y2O3. 

16Cr is 16Cr-ODS steel without Al addition, showing much higher strength than 16Cr-4Al. The 

extrusion temperature was 1423 K except for the steels without notification in the figure. The addition 

of small amount of Hf and Zr is very effective to increase the strength at 973 K. 
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Fig. 2.4. Effects of extrusion temperature and addition of minor elements on the ultimate tensile stress 

(UTS) of 16Cr–4Al ODS steel at 973 K. 

TEM observation revealed that the addition of Hf and Zr reduced and increased the size and the 

number density of oxide particles, respectively. Furthermore, the number density of grain boundary 

precipitates, such as carbides and oxides were increased remarkably by addition of Hf or Zr. Grain 

boundary precipitates are well known as obstacles for grain boundary sliding that is a typical 

deformation mode at elevated temperatures [22]. This effect also resulted in a significant increase in 

long term creep properties of the ODS alloy at 973 K, as summarized in Table 2.2. 

 

Table 2.2 Creep test results at 973 K of each candidate ODS steel. 

 

 

Thus, the positive effect of addition of Hf or Zr overcomes the negative effect of Al addition on 

high temperature strength. The Zr addition is more recommended than Hf addition in terms of neutron 

cross section area or neutron absorption. 
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In the process of additional alloying with zirconium or hafnium, dispersion of oxide yttrium 

particles shifts towards smaller sizes. High density of particles enriched in Ti, Y and O is observed. 

The mean size and concentration of oxide particles in initial and annealed samples of 12YW and 

12YWT ODS steels (alloyed with titanium) are also close to values of 2-3 nm at a high mean 

concentration. 

 

2.2 Supercritical water and supercritical water cooled reactor 

The use of supercritical water in power production has a history about as long as nuclear power: 

the first commercial ventures into fossil-fired supercritical power plants initiated in the 50s [23]. The 

idea of combining the supercritical water and nuclear reactor has surfaced periodically, and the 

supercritical water cooled reactor (SCWR) is one of the most promising Generation IV nuclear reactor 

designs. 

 

2.2.1 Supercritical pressurized water. 

The phase diagram of water is illustrated in Fig.2.5. As the pressure increases the boiling 

temperature rises also. At the pressure of 22.1 MPa the boundary between liquid and gas phase 

vanishes. This point at 22.1 MPa and 374 °C is called the critical point of water. At the critical point 

the specific heat of the water is the highest, consequently the absorbed heat is the maximum for a 

given amount of water. 

The operating ranges of SCWR along with conventional LWRs are also plotted in Fig. 2.5. While 

BWRs and PWRs operate at a pressure range where transition from liquid to vapor is possible, the 

operating pressure of the SCWR is high enough that there is no distinct phase transition from liquid to 

vapor. Since boiling alters the properties of water dramatically and the phase transition essentially 

occurs in BWRs, special attentions are demanded for the safety issues against the dry out of BWR and 

nucleate boiling crisis of PWR. At supercritical conditions (above 22.1 MPa, 374 °C) the complicated 

phenomenon of boiling is physically excluded. 
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Fig. 2.5 : Left: Phase diagram of water,  Right: Temperature-Entropy diagram of water 

 

The density of supercritical water has a strong function of temperature and pressure, as illustrated 

in Fig. 2.6. The difference in properties between supercritical water and normal water is most 

dramatic in the specific heat, as shown in Fig.2.7. Another relevant property difference is shown in 

Table 2.3, and it arises from the insolubility of inorganics in supercritical water, which raises the 

purity control requirements for the coolant. 

  

 

Fig. 2.6: Density changes in supercritical water as a function of pressure and temperature. From [24]. 
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Fig. 2.7: Thermal variation of physical properties of water 

 

Table 2.3. A comparison of some relevant properties of normal light water and supercritical light water. 

 

 

2.2.2 Supercritical water cooled reactor. 

SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-

through cycle. One SCWR system is shown in Fig 2.8. These systems may have a thermal or fast-

neutron spectrum, depending on the core design. SCWRs have unique features that may offer 

advantages compared to state-of-the- art LWRs in the following[25]: 

• SCWRs offer increases in thermal efficiency relative to current-generation LWRs. The efficiency 

of a SCWR can approach 44%, compared to 33–35% for LWRs. 

• A lower-coolant mass flow rate per unit core thermal power results from the higher enthalpy 

content of the coolant. This offers a reduction in the size of the reactor coolant pumps, piping, and 
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associated equipment, and a reduction in the pumping power. 

• A lower-coolant mass inventory results from the once-through coolant path in the reactor vessel 

and the lower-coolant density. This opens the possibility of smaller containment buildings. 

• No boiling crisis (i.e., departure from nucleate boiling or dry out) exists due to the lack of a 

second phase in the reactor, thereby avoiding discontinuous heat transfer regimes within the core 

during normal operation. 

• Steam dryers, steam separators, recirculation pumps, and steam generators are eliminated. 

Therefore, the SCWR can be a simpler plant with fewer major components. 

 

 

Fig. 2.8: The outline of a supercritical water cooled power plant. The power plant utilizes a direct 

steam cycle and, thanks to the properties of supercritical water, requires no steam driers or 

recirculation usually encountered in NPPs [26]. 
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2.2.3 Materials issues for SCWR 

As mentioned above, the supercritical water environment is unique and few data exist on the 

behavior of materials in SCW under irradiation and in the temperature and pressure ranges of interest. 

At present, no candidate alloy has been confirmed for use as either the cladding or structural material 

in thermal or fast spectrum SCWRs. Potential candidates include austenitic stainless steels, solid 

solution and precipitation-hardened alloys, ferritic/martensitic alloys, and oxide dispersion-

strengthened alloys. 

The fast SCWR design would result in greater doses to cladding and structural materials than in 

the thermal design by a factor of 5 or more. The maximum doses for the core internals are in the 10–

30 dpa range in the thermal design, and could reach 100–150 dpa in the fast design. These doses will 

result in greater demands on the structural materials in terms of the need for irradiation stability and 

effects of irradiation on embrittlement, creep, corrosion, and SCC. The generation of helium by 

transmutation of nickel is also an important consideration in both the thermal and fast designs because 

it can lead to swelling and embrittlement at high temperatures. The data obtained during prior fast 

reactor development will play an important role in this area.  

Although many of candidate materials have been selected based on satisfactory unirradiated 

properties and/or proven performance under irradiation, to meet these challenges, the R&D plan for 

the cladding and structural materials in the SCWRs focuses on acquiring data and a mechanistic 

understanding relating to the following key issues: corrosion and SCC, radiolysis and water chemistry, 

dimensional and micro structural stability, and strength and creep resistance.  

 

2.2.3.1 Issues for SCWR corrosion and SCC research 

The SCWR corrosion and SCC research can be focused on obtaining the following information: (1) 

Corrosion rates in SCW at temperatures between 280 and 620 °C (the corrosion should be measured 

under a wide range of oxygen and hydrogen contents to reflect the extremes in dissolved gasses), (2) 

Compositions and structure of the corrosion films as a function of temperature and dissolved gasses, 

(3) The effects of irradiation on corrosion as a function of dose, temperature, and water chemistry, (4) 

SCC as a function of temperature, dissolved gasses, and water chemistry, (5) The effects of irradiation 

on SCC as a function of dose, temperature, and water chemistry. 
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2.2.3.2 Water chemistry 

As for the SCWR water chemistry research issues, the followings are necessary: (1) The complete 

radiolysis mechanism in SCW as a function of temperature and fluid density, (2) The chemical 

potential of H2, O2, and various radicals in SCW over a range of temperatures (280–620 °C), (3) 

Recombination rates of various radicals, H2, and O2 in SCW over a range of temperatures (280– 

620 °C) (4) Effect of radiation type: neutrons, gammas, as well as flux on radiolysis yields, (5) 

Formation and reaction of other species by radiolysis processes, (6) Impurities introduced into the 

primary system. 

 

2.2.3.3 Dimensional and microstructure under irradiation 

The issues of irradiation effect on dimensional and microstructures are the followings: (1) Void 

nucleation and growth, and the effect of He production, on void stability and growth, and He bubble 

nucleation and growth as a function of dose and temperature, (2) Development of the dislocation and 

precipitate microstructure and radiation-induced segregation as a function of dose and temperature, (3) 

Irradiation growth or irradiation induced distortion as a function of dose and temperature, (4) 

Irradiation-induced stress relaxation as a function of tension, stress, material, and dose. 

 

2.2.3.4 Mechanical properties 

Mechanical properties, such as strength, embrittlement and creep resistance, can be addressed on 

the followings: (1) Tensile properties as a function of dose and temperature, (2) Creep rates and creep 

rupture mechanisms as a function of stress, dose, and temperature, (3) Creep-fatigue as a function of 

loading frequency, dose, and temperature, (4) Time dependence of plasticity and high-temperature 

plasticity, (5) Fracture toughness as a function of irradiation temperature and dose, (6) Ductile-to-

brittle transition temperature (DBTT) and helium embrittlement as a function of dose and irradiation 

temperature, (7) Changes in microstructure and mechanical properties following design basis 

accidents. 
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2.3 Basic damage mechanisms of stress corrosion cracking 

Stress corrosion cracking is a complex phenomenon driven by the synergistic interaction of 

mechanical (stress), electrochemical (environment) and metallurgical (materials) factors. BWR, PWR 

and SCWR components can suffer from SCC, which may have transgranular (through the grains: 

TGSCC) or intergranular (along the grain boundaries: IGSCC) morphology. 

Sometimes the modes are mixed or the mode switches from one to the other. IGSCC and TGSCC 

can occur in the same alloy, depending on the environment, the microstructure, or the stress/strain 

state. SCC usually propagates perpendicular to the principal tensile stress. Cracks can also vary in the 

degree of branching.  

All SCC has a brittle-like appearance, since cracks propagate with little or no macroscopic plastic 

deformation. An alloy affected by SCC does not usually display abnormal mechanical properties 

although this may be observed in certain classes of alloys; such as precipitation hardened stainless 

steels or as a result of irradiation damage. Many alloys are susceptible to SCC in at least one 

environment. However, SCC does not occur in all environments, nor does an environment that 

induces SCC in one alloy necessarily induce SCC in another alloy. 

SCC is usually divided into an initiation and a propagation phase. The initiation time can vary 

significantly and can be up to several decades. The propagation phase is often divided into two parts, 

a ‘slow’ propagation phase and a ‘fast’ propagation phase of which the latter is usually characterized 

by crack tip stress intensities, KI, exceeding a characteristic apparent threshold value in pre-cracked 

fracture mechanics type specimens known as KIscc. 

Perhaps the most critical factor concerning SCC is that three preconditions are necessary and must 

be present simultaneously. The elimination of any one of these factors or the reduction of one of these 

three factors below some threshold level can, in principle, prevent SCC. The three necessary 

preconditions are: 1) susceptibility (material); 2) tensile stress component (stress); 3) adequate 

aqueous environment (environment). 
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2.4 Review of stress corrosion cracking in hot water (BWR and PWR environments) 

2.4.1 SCC in BWR 

2.4.1.1 Material aspects 

There have been two major material factors that have contributed to IGSCC of austenitic alloys in 

BWR primary coolant systems: thermal sensitization and cold work. Historically, it is well known that 

austenitic stainless steels and nickel based alloys were sensitized to the occurrence of IGSCC by heat 

treatment to cause formation of grain boundary carbide accompanied by Cr-depleted grain boundaries, 

which was named as sensitization treatment. Consequently, the steels were then replaced with low 

carbon grades or stabilized grades. In recently, however, even low carbon or stabilized steels, IGSCC 

has also subsequently occurred in cold worked steel. 

Thermal sensitization may also occur in the heat affected zones (HAZ) of welds in austenitic 

alloys both during welding and also during stress relief heat treatments. Sensitization is again caused 

by the formation of chromium carbides (e.g. M23C6) on grain boundaries and a concomitant depletion 

of chromium on the grain boundaries and in the adjacent grains, as shown in Fig. 2.9. The reduction in 

chromium concentration adjacent to the grain boundaries, which may be as little as 2 % lower than the 

bulk concentration, gives rise to a reduction in passivity relative to the grains themselves and 

enhances IGSCC. 

 

 

Fig 2.9 Transmission electron microscope (TEM) image showing Cr carbide precipitates along a grain 

boundary and the zone of Cr-depletion [27] 
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Thermal sensitization can be counteracted by using either low carbon grades (type 304L or 316L), 

or by stabilized stainless steels (type 347 and type 321), in which the majority of the carbon is bound 

by appropriate amounts of a strong carbide former such as niobium or titanium. A combination of both 

low carbon content, and high stabilization ratio (e.g. Nb/C >13) may enhance the benefits. Similarly, 

alloy 600 and 182 have been modified with niobium additions to prevent thermal sensitization. 

Stainless steel castings and welds, which have a duplex phase of austenitic and ferritic structure, 

are not susceptible to thermal sensitization, because of the high diffusivity of chromium in the ferrite. 

Consequently, they are not susceptible to IGSCC in BWR systems. 

In low carbon and stabilized grades of stainless steel, IGSCC occurred even at non-sensitized 

condition. It has been shown that the susceptibility to IGSCC is enhanced by cold work imposed 

during fabrication process. Hardness levels of the cold worked area have been above 300 HV. In many 

cases, the initial cracking was found to be transgranular and then changed to intergranular mode. The 

initial transgranular cracking is often associated with a surface layer of cold work induced by grinding 

or other severe surface machining techniques. Failures have also occurred where the occurrence of 

IGSCC was attributed to the presence of severe cold working (e.g. cold bent piping). 

The mechanism by which cold work renders austenitic alloys susceptible to IGSCC is not fully 

understood and is still being investigated. It is possible that there is a synergistic interaction among 

deformation induced martensite, high residual stresses and localized deformation. 

For application to heat resistant steel, alloy X-750 has been commonly used in one of two heat 

treatment conditions. The alloy X-750 is a precipitation hardened alloy with similar contents of nickel 

and chromium as alloy 600. One heat treatment is known as equalized and aged (EQA), in which the 

material subjects a two-step thermal treatment: the first at 885 °C for about 24 hours followed by 

ageing at 704 °C for 20 hours, which causes to be susceptible to IGSCC under BWR conditions. The 

second heat treatment, which is known as high temperature annealing (HTA), is a single step ageing at 

704 °C for about 20 hours after solution annealing at 1093 °C for one to two hours. The main goal of 

HTA treatment is to precipitate the strengthening gamma prime phase, NiAl3, together with a fine and 

high number density of M23C6 carbide distribution at grain boundaries. In BWRs the HTA is more 

effective to reduce the susceptibility to IGSCC. 
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2.4.1.2 Environmental aspects 

IGSCC can occur in all grades and conditions of iron base stainless steel and nickel alloys if the 

requirements for environment and electrochemical corrosion potential (ECP) are conducive to SCC. 

However, from a practical point of view, the commonly agreed threshold for the possible occurrence 

of IGSCC in laboratory experimental results and field experience, is an ECP ≥ -230 mVSHE [28,29]. 

Under BWR normal water chemistry (NWC) conditions, the ECP is mainly influenced by the 

presence of oxidizing radiolysis products, O2 and H2O2, dissolved in the high temperature water. 

These environmental conditions are potentially suitable for the occurrence of IGSCC among other 

contributing factors; notably metallurgical factors such as grain boundary sensitization or cold work, 

that is, high strain field. The main oxidant is hydrogen peroxide which exists in transiently in direct 

cycle BWR systems, but decomposes quite rapidly to water and oxygen on out of core surfaces away 

from the radiation field. 

Other environmental conditions such as flow conditions, temperature and presence of impurities 

such as sulphate and chloride also influence the occurrence of IGSCC. 

 

2.4.1.3 Tensile stress aspects 

From a theoretical point of view, the role of tensile stresses is important for damaging or rupturing 

protective oxide films during both initiation and propagation of cracks. In the field, almost all SCC 

cases in BWR components occur in the vicinity of welds where the level of residual stresses produced 

by weld shrinkage is a very important factor having an impact on both crack initiation and crack 

propagation. For austenitic steels, SCC cracks propagate mainly through the heat affected zone (HAZ) 

of the base metal. For dissimilar welds, cracks are observed mainly in the weld metal alloy 182 (in 

some case propagating a short distance into the base material). Not only residual stresses but also cold 

work of the material can have pronounced effects on crack initiation and crack propagation. 

The stress level at the surface triggers the process of crack initiation and these stresses may be 

either applied or residual. Flaws and other surface imperfection can act as stress raisers increasing 

local stresses at the (near) surface. Thus, corrosion attack (pitting or intergranular corrosion) or 

fabrication/welding defects/imperfections can act as a starting point for SCC. Very high surface 

stresses may also result from cold work introduced by fabrication processes such as machining, 

grinding or other surface finishing operations. Cold work can allow local near surface residual stresses 



33 

 

to remarkably exceed the original yield strength of the bulk material. 

In contrast to crack initiation, the stress dependence of crack growth can be more easily quantified. 

Crack growth is driven by the sum of stresses due to operational and residual manufacturing stresses 

and SCC growth rates can be correlated with the local stress intensity factors KI. Compared to the 

base metal, the calculation of the stress-state in welds is more complex and residual stress 

measurements are much more difficult because of anisotropy of the weld metal microstructure. For 

mitigation of SCC by stress improvement, different processes have been developed to reduce surface 

stresses or introduce compressive stresses at the surfaces exposed to BWR coolant; e.g. improved 

welding techniques, post weld heat treatment and peening  

 

2.4.2 SCC in PWR 

2.4.2.1 Material aspects 

In contrast to a number of IGSCC occurrences of stainless steels in BWR, the same materials used 

in PWR have shown rather good performance, and the PWR-IGSCC has been mainly attributed to a 

combination of an inadvertent presence of oxygen trapped in stagnant regions and thermal 

sensitization and/or cold work [30]. However, nickel based alloys, particularly alloys 600, 132 and 

182, have proved to be susceptible to IGSCC in the normal specification of PWR primary water 

systems, which is commonly known as PWSCC. The high strength analogue of alloy 600, alloy X-

750, and to a considerably lesser extent alloy 718 with a somewhat higher chromium content, have 

also proved to be susceptible to PWSCC of which the details are discussed below. PWSCC 

susceptibility in alloy 600 has been shown to depend on the metallurgical structure, particularly the 

carbide morphology, and cold work level. 

Nickel alloys, especially alloy 600, with many carbides on the grain boundary are found to be 

more resistant to PWSCC, whereas those with many intragranular carbides are the most susceptible. 

Since the carbon solubility in nickel alloys is low, carbon in solid solution combines with chromium 

to form chromium carbides during cooling from hot working temperatures. 

The initial studies of the importance of the effect of carbide morphology on PWSCC susceptibility 

were carried out in connection with steam generator tube cracking. During the mill annealing process 

to produce steam generator tubes, the ability to get a favorable microstructure depends on the amount 

of carbon in solid solution to precipitate as carbides in the grains. Another cause of failure of 
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subsequent thermal treatment to give the favorable intergranular carbide morphology is tube 

straightening after mill annealing which generates dislocations on which carbides may precipitate 

preferentially. These microstructural considerations are not confined to tubing but also apply to 

thicker section forgings of alloy 600.  

Microstructures that are most resistant to PWSCC have grain boundaries with a semi-continuous 

decoration of carbides (see Fig 2.10). Thermally treated alloys (705 °C for 16 hours) usually have 

improved PWSCC resistance for this reason. The mechanism by which PWSCC resistance is 

improved by grain boundary carbides remains open to debate. One hypothesis for the beneficial effect 

of intergranular carbides on PWSCC resistance has been proposed by Bruemmer who suggested that 

IG cracks are blunted by grain boundary carbides. In this mechanism dislocations are preferentially 

emitted from carbides at the crack tip, thereby reducing the stress concentration around them [31]. 

Another possible explanation arises from considerations of selective oxidation of chromium at the 

grain boundaries. In this case, carbides act a sink for oxygen and also present a more difficult 

diffusion path for oxygen. The role of carbon is not so clear in the case of alloy 182 and 82 weld 

materials, because it is preferentially precipitated as niobium carbide. 

 

 

Fig 2.10 Carbide classification system due to Vaillant. 
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The use of alloy 600 for new and replacement components has been discontinued and has been 

replaced by alloy 690. The corresponding weld metals are alloy 52 and alloy 152. These alloys are 

characterized by significantly higher chromium content, approximately 30 %. No cracking has been 

reported to date in these materials after up to 20 year service. Nevertheless, laboratory work has 

shown that PWSCC propagation can occur after at least 10 % of unidirectional cold work in the plane 

of cold work or on steam generator tubes with a degraded microstructure. Many studies have 

confirmed the very high PWSCC initiation resistance of alloys 690, 152 and 52 at temperatures of up 

to 360 °C. 

Alloy X-750 is also used in PWRs for high strength applications. The second of the two HTAs 

described in Section 2.4.1.1 produces a microstructure that is also more resistant to PWSCC, 

presumably due to the carbide morphology. Alloy 718, another precipitation hardened high strength 

alloy used in PWRs for high strength bolts and springs, is highly resistant to PWSCC initiation, but 

more susceptible to propagation. A few cases of PWSCC have occurred where oxidation damage of 

grain boundaries occurred during fabrication, which circumvented the crack initiation phase. Alloy 

286 is a gamma prime strengthened stainless steel used in some high strength fastener applications 

where considerations of thermal expansion coefficients between austenitic components are important. 

The alloy is, however, rather susceptible to PWSCC, particularly in the condition of higher strength 

tempering, which demands that the applied stress must be very strictly controlled so as not to exceed 

the proportional limit even with stress concentrations in a practical uses. 

 

2.4.2.2 Environmental aspects 

The main environmental parameters in PWR primary systems influencing the SCC are 

temperature and the hydrogen concentration in the water, and to a much lesser extent the Li-content, 

interior related pH-value, and the presence of zinc. 

The effect of hydrogen on the crack growth rate in alloy 600 and its weld metals has been 

extensively studied during the last few years, which indicated that the crack growth has a weak 

maximum in alloy 600, larger in the case of the weld metal alloys 182 and 132, at a hydrogen 

concentration approximately corresponding to the Ni/NiO equilibrium potential, as illustrated in Fig. 

2.11. 
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Fig. 2.11. Crack growth rate for alloy 600 in simulated PWR environment at 338 °C [32]. 

 

In addition, the temperature has a considerable effect on the PWSCC crack growth rate as 

illustrated in Fig. 2.12 for alloy 182 for three different hydrogen concentrations. The temperature 

varies in the primary system with the lowest temperature in the cold leg pipework and the highest in 

the pressurizer. The figure shows that the crack growth rate increases significantly with temperature; it 

also shows that the effect of hydrogen is considerable and that at high hydrogen concentrations 

corresponding to potentials less than the NiNiO equilibrium potential the crack growth rate decreases 

(as in Fig. 2.11). 

 

 

Fig. 2.12. Effect of temperature on PWSCC crack growth rate for alloy 182 [32]. 
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Studies of the effect of hydrogen on the initiation of PWSCC do not show a peak in susceptibility 

as a function of hydrogen concentration but resistance to cracking continuously increases with 

decreasing hydrogen content (see Fig. 2.13). However, in the normal range of hydrogen applied in 

operating PWRs (25–50 cc/kg), the influence of hydrogen on crack initiation is relatively small. Note 

that hydrogen partial pressures below 5 kPa (corresponding to 7–8 ml H2/kg H2O at 330 °C) would be 

required to obtain significant benefits from reduced hydrogen concentrations. This is outside the 

present hydrogen specification and such low hydrogen contents have not yet been used in any 

operating PWR. 

In summary, it appears that there are certain differences between the explanations indicated by 

initiation and propagation data as regards the effect of hydrogen partial pressure. As illustrated in Fig. 

2.14, the propagation data shows a weak maximum whereas certain initiation data a continuous 

decrease of the initiation time with increasing hydrogen. The apparently strong effect of corrosion 

potential close to Ni/NiO oxide stability has not been explained, although the other oxides have been 

identified in long term experiments which might influence the cracking tendency. 

 

 

Fig. 2.13. The effect of hydrogen on initiation time. The data includes measurements at different 

temperatures normalized to the hydrogen partial pressure at 330 °C [33]. 
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Fig. 2.14. Comparison of the effect of hydrogen on initiation and propagation of PWSCC in alloy 600 

MA [7]. 

 

The effect of lithium on PWSCC has drawn some attention in recent years, as extended fuel cycles 

imply operation at higher Li contents (and pH) during the beginning of a fuel cycle. Earlier crack 

initiation data indicate that moderate increases in Li content decrease somewhat the initiation time. 

The effect of higher Li content (>7 ppm) on the initiation of PWSCC has not been investigated. 

Regarding the effect of Li on the crack growth rate, data generated so far show no or little influence. 

EDF has observed a small detrimental influence of Li 3.5 ppm/ 2 ppm on crack growth rates (CGRs) 

(×2.6) but no influence on initiation (for times greater than 18 000 h). 

Zinc is being added to some PWR primary loops mainly to reduce the activity buildup. The zinc 

concentration used is around 5–10 ppb. However, zinc may also have a significant beneficial effect on 

the initiation of PWSCC. Zinc additions have also been applied in plants for such reasons. The 

additions are larger and up to 40 ppb. Regarding crack growth, the available data is inconclusive, 

while it indicates that there is little or no effect of Zn.  

The effect of any future changes in PWR chemistry should be carefully considered with respect to 

PWSCC of alloy 600, alloy 182 and other structural materials due to the unresolved contradictions 
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between initiation and propagation data. Utilities are recommended to carefully study and follow 

ongoing research. It should also be pointed out that a change of hydrogen can also influence activity 

transport and buildup as well as AOA conditions. These questions have not yet been resolved. 

 

2.4.2.3 Tensile stress aspects 

Constant load PWSCC tests have been performed on alloy 600 base metal, alloy 690 base metal 

and alloy 132/182/82 weld metals. Some of these results are shown in Fig. 2.15–2.17. As a result, 

alloy 600 and alloy 132/82 have identifiable threshold stresses but for alloy 690 and the associated 

high Cr weld metals (152/52), no threshold stress has been measured in PWSCC tests since no 

cracking occurred [34]. 

In general, few instances of IGSCC in stainless steels have been observed in PWRs. There are, 

however, many SCC issues with alloy 600 and other Ni-based alloys. However, contrary to BWR 

experience, few PWR SCC issues are associated with weld HAZs. Most cracking has been observed 

in wrought materials remote from HAZs or in weld metals. The surface residual stress due to grinding 

or other surface finishing operations plays an important role in all cases of PWRSCC and strain 

reversals or deformation texture in the cold worked material are always involved. 

 

 

Fig. 2.15. Results of constant load PWSCC tests for alloy 600 base metal. 
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Fig. 2.16. Results of constant load PWSCC tests for alloy 132/82 weld metal. 

 

 

Fig. 2.17. Results of PWSCC tests on alloy 690 base metal and Alloy 600 base metal showing no 

cracking detected in alloy 690 after test times up to ~75 000 hours. 
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2.5 Review of stress corrosion cracking in supercritical pressurized water 

An early study of SCC of 316 SS in degassed SCPW was reported by Boyd and Pray [35]. Their 

samples were exposed to 732 °C, 34.5 MPa SCPW and stressed to 90 % of the stress required to cause 

rupture in 1000 hours (103 MPa). It was found that the samples failed after one week of exposure. The 

SEM observations of fracture surface and the side surfaces revealed the presence of transgranular 

cracking. Fournier et al. [36] carried out constant extension rate tensile tests (CERT) at a strain rate of 

1×10
-6

 s
-1

 to test alloys 690 and 718 in 400 °C, 25 MPa SCPW under aerated conditions. Alloy 718 

failed by IGSCC such that the entire fracture surface was IG in nature and exhibited no necking. It 

was determined that the cracking was initiated by the oxidation of niobium precipitates in the alloy. 

Alloy 690 failed by completely ductile rupture and showed a significant amount of necking. Both of 

these alloys were also tested in air environments at 600 °C using the same type of CERT experiments. 

The tests in air revealed behavior for each alloy that was similar to that in SCPW at 400 °C. 

Recent results by Teysseyre et al. [37] indicate that IGSCC is a significant problem throughout the 

SCWR temperature range for austenitic alloys. In a comprehensive study of SCC behavior between 

400 and 550 °C for alloys 304L, 316L, 625 and 690, they found that in deaerated SCPW under 

constant extension rate, all alloys display some degree of IGSCC at all temperatures. Alloys 304L and 

625 suffered the most severe cracking with crack depths exceeding 300 μm in the case of 304L at 

550 °C. They were able to identify at least 3 distinct cracking modes; TG, IG and tarnish rupture and 

were able to determine the activation energies for cracking, which were about 100 kJ/mol for 304L 

and 625 and 80 kJ/mol for 316L and 690. Fig. 2.18 shows the strong effect of temperature on crack 

growth rate measured from CERT samples for 304L, 316L, 625 and 690. [37] 

Tsuchiya et al. [38] investigated the behavior of sensitized 304 and 316 stainless steels using 

CERT experiments at 4 × 10
-7

 s
-1

. The test temperature ranged from 290-550 °C, with a pressure of 25 

MPa, and high purity water dissolved with oxygen content of 8 ppm. For both alloys, the fracture 

surface did not show any sign of IGSCC for temperatures above 400 °C. However, 304 did show 

IGSCC on the fracture surface at temperatures below 400 °C. Both alloys had small cracks on the side 

surface when exposed to SCPW. Watanabe et al. [39] examined the SCC behavior of sensitized 316 

stainless steel as a function of pressure using CERT experiments at 2.78 × 10
-6

 s
-1

. They found that the 

fracture surface of the alloy was almost completely IG in nature under subcritical conditions of 

360 °C and 25 MPa. Fracture was transgranular under 400 °C, 30 MPa supercritical conditions. 

However, as the pressure was increased at 400 °C, the fracture mode became more predominantly 

IGSCC. They also found that small additions of H2SO4 induced in IG fracture. 
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Fig. 2.18. Crack growth rate measured from cross sections of CERT samples for alloys 304L, 316L, 

625 and 690 between 400 °C and 550 °C in deaerated SCW. [37] 

 

Fujisawa et al. [40] studied SCC of 316, C-276, 625 and MC alloy in 400 °C SCPW containing 8 

ppm dissolved oxygen. No IG cracks were observed in pure water, but the addition of small amounts 

(0.001 mol/l) HCl resulted in IG cracking in both 317 and alloy C-276. 

Bosch [41] tested a superaustenitic stainless steel, N31266, a superduplex stainless steel, S32550, 

and two nickel base alloys N06625 and N06030 in 250-450 °C SCPW with additions of hydrogen 

peroxide in dynamic (CERT) and static (constant stress) loading mode. The CERT tests were 

conducted at a strain rate of 5 × 10
-7

 s
-1

 and the constant load tests were conducted with loading the 

elastic limit, σy 0.2. in SCPW+10% H2O2, the superaustenitic stainless steel exhibited cracking in 

CERT test at 400 °C but not in constant load tests. Higher concentrations of H2O2 or the addition of 

NaCl were required to cause cracking in this alloy. The superduplex stainless steel did not crack in 

constant load tests under any conditions. Cracking occurred in CERT tests using N06625 at 400 °C, 

while cracking in constant load tests required the addition of NaCl similar with the superaustenitic 

alloy. No cracking occurred in N06030 under constant load testing. 

U-bend experiments conducted at VTT in 400 °C SCPW containing1 bar H2 overpressure did not 

result in cracking after 1000 hr and 675 hr for austenitic alloys (304, 304L, 321, A286) and nickel-

base alloys (625, Uranus B66, 690, 718, 800), respectively. [42] 

Cracking has not been observed in ferritic-martensitic alloys with the exception of HT-9, which 
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showed minor amounts of IG at 400 °C [43].  

Very little data exists on Ti alloys in supercritical water, though there is a significant database in 

subcritical water. The only experiment conducted in SCPW was on Ti–15Mo–5Zr–3Al in pure SCPW 

at 550 °C, 25 MPa and 8 ppm dissolved oxygen. The maximum stress was 249 MPa, and the strain to 

failure was 38 %, resulting in a crack density of 26 cracks/mm
2
 [44]. Similarly, several experiments 

have been conducted on ODS alloys in subcritical water [45,46], no experiments have been conducted 

to date in SCW. 

 

2.6 Summary of introduction and objectives of this research 

Energy is one of the most significant resources of global economy, and is necessary to increase the 

opportunities of economic and social development. Already today, the world’s energy consumption - 

80% of which is produced from fossil fuels, whose combustion generates carbon dioxide and other 

greenhouse gases – accounts for 12 billion tonnes of oil equivalent. The growth of the demand is 

estimated in 40 % over 20 years, due to the increased population and industrialization, especially in 

emerging countries. Even with improvements in energy efficiency, it is expected that global energy 

demand would be doubled by 2050. Therefore, we must face several challenges: meeting significant 

electricity needs while facing the reduction of fossil fuels and enacting measures to tackle climate 

change. In order to achieve these objectives, it is certainly necessary to save electricity, develop 

carbon capture and storage technologies and increase as much as possible the use of renewables. 

Nevertheless, no source, not even renewables, is capable alone of meeting electricity needs. The most 

suitable solution is therefore a balanced generation mix that includes fossil fuels, renewables and 

nuclear power. Indeed, nuclear ensures the stability of electricity generation while allowing the 

reduction of carbon dioxide emissions: over one year, a nuclear power station can save emissions for 

9 million tons of carbon dioxide. It would be equivalent to removing 4 and a half million cars from 

the roads. These advantages have led the positive prediction of the increasing nuclear energy by many 

of international energy reports.   

Nuclear materials R&D is essential to identify key priority topics and funding opportunities with 

the purpose of supporting in an efficient way the development and optimization of a sustainable 

nuclear energy. However, the operating conditions envisaged for nuclear systems are demanding and 

will impact on the performance of the structural and clad materials, the safety and the feasibility of 

most of nuclear reactor concepts and their optimization will depend crucially on the capability of the 
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chosen materials to withstand the expected operating conditions. Among the various nuclear material 

issues, stress corrosion cracking (SCC) is one of the significant ageing degradations for major 

components of pressurized water reactors (PWRs), boiling water reactors (BWRs) and supercritical 

water reactors (SCWRs) and is still an important technical issue. 

However, the experiment data of SCC susceptibility of ODS steels in supercritical pressurized 

water (SCPW) has not been reported to our knowledge. And all of tests for SCC susceptibility in 

SCPW were conducted with oxygen environments but not in SCPW dissolved with hydrogen. 

In this research, therefore, the stress corrosion cracking susceptibility was investigated for oxide 

dispersion strengthened (ODS) ferritic steel and conventional structural steels such as F82H 

ferritic/martensitic steel and SUS316L austenitic stainless steel in supercritical pressurized water 

(SCPW) dissolved with various oxygen and hydrogen contents. And, the specimen morphologic 

effects such as surface roughness and specimen size and shape were discussed for the structural 

metallic materials based on the results from slow strain rate test (SSRT) in vacuum and SCPW.  
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Chapter 3 

Stress Corrosion Cracking Susceptibility of ODS Ferritic Steel in 

Supercritical Pressurized Water Dissolved with Different 

Hydrogen and Oxygen Contents 
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3.1 Introduction 

Supercritical pressurized water cooled reactor system has been considered as one of the candidates 

of Generation IV fission advanced nuclear systems as well as fusion systems because of its high 

thermal efficiency and simple reactor design [1]. In the supercritical water reactor (SCWR), the 

operation temperature is expected to be in the range 500 ~ 550 °C, and fuel claddings and the other 

core components are subjected to a potentially corrosive environment [2]. It is well known that the 

SCPW above critical point (374 °C, 22.1 MPa) is very severe environment for metallic materials 

being highly corrosive and it may cause stress corrosion cracking. For the application to the advanced 

nuclear systems, high performance is required for structural material in terms of its radiation 

resistance, weldability, creep strength, corrosion and stress corrosion cracking susceptibility, etc [3]. 

To meet these requirements, oxide dispersion strengthened ferritic steels have been developed as a 

high performance structural material for nuclear applications. Recent study showed that the corrosion 

resistance of the ODS ferritic steels in SCPW significantly increased with increasing Cr concentration 

up to 16 wt.%. And the addition of Al to about 4 wt.% made the ODS steels show excellent corrosion 

resistance to Pb-Bi eutectic coolant and SCPW [4]. 

There are several works on the SCC susceptibility of ODS steels, ferritic–martensitic (F/M) and 

austenitic steels at room and higher temperatures [5-9]. The existing data of austenitic and ferritic-

martensitic steels at a temperature range from 380 °C to 550 °C in SCPW clearly showed a general 

decrease in the ultimate tensile stress with temperature. Teysseyre and Was [10] reported that the 

crack growth rate and maximum crack depth of austenitic stainless steels increased with increasing 

temperatures. In contrast, the observed dependence of strain to failure on temperature does not show 

any clear relationships with SCC susceptibility [1,6,10-14]. 

The selection of the strain rate is very important because the susceptibility to cracking may not be 

evident from the result of tests at too low or too high strain rate. In the previous works on SCC in a 

number of material-environment systems, strain rates in the range 10
-5

 ~ 10
-6

 s
-1

 are generally used 

and many of slow strain rate test (SSRT) in SCPW were conducted at strain rates faster than 10
-7

 s
-1
.
 
It 

was reported that low alloy steels become sensitive to the strain-induced corrosion cracking (SICC) at 

a strain rate of 1 × 10
-6

 s
-1

 in light water reactor system [15]. Nishimura and Maeda proposed that 

SCC-dominated strain rate region is from 10
-4

 s
-1

 to 10
-6

 s
-1

 for types 304 and 316 austenitic stainless 

steels in acidic chloride solutions at 80 °C [16]. Serebrinsky [17] investigated the effect of strain rate 

on the crack propagation rate (CPR), which was calculated by dividing the length of the brittle zone 

measured under the scanning electron microscope (SEM) by the fracture time, for FCC alloys in LiCl 
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solution at 130 °C, and showed that an increase in the strain rate enhanced the CPR. Therefore, more 

various range of strain rate test in SCPW is required for careful consideration of SCC susceptibility. 

The dependence of SCC on DO content for ferritic-martnesitic steel in SCPW [18] as well as 304 

austenitic steel and alloy 690 in high temperature water [19,20] were investigated, indicating that the 

thickness of the oxide layer grown on the specimen surface depended on DO content of the water. 

Similarly, several experiments have been conducted on ODS alloys in sub-critical water [21]. 

Previous works demonstrated that ODS steels showed no susceptibility to SCC in a simulated boiling 

water reactor condition dissolved with oxygen, but did show in a SCPW. Corrosion behavior and SCC 

susceptibility in SCPW have been evaluated for austenitic and ferritic-martensitic steels [1,6,7,10-

13,18,21], but few research groups studied on corrosion behavior of ODS steels in a SCPW [4,7,9,21-

25]. In general, nickel-base alloys and austenitic stainless steels exhibited higher susceptibility to 

intergranular stress corrosion cracking (IGSCC) than ferritic–martensitic alloys. Meanwhile, ferritic-

martensitic alloys suffer from severe oxidation. On the other hand, outstanding corrosion resistance of 

ODS steels to SCPW has been presented by several works on corrosion behavior of ODS steels in a 

SCPW. Therefore, one of the solutions to prevent SCC is the use of ODS ferritic steels, which has 

been considered to be resistant to SCC. However, the experimental data on the SCC susceptibility of 

ODS steels in SCPW are so limited.  

In this study, the effect of strain rate on the deformation and fracture behavior was investigated to 

evaluate the susceptibility of ODS steel to SCC in SCPW dissolved with different hydrogen and 

oxygen contents. 

 

3.2. Experimental 

3.2.1. Specimen preparation  

The material used in this study is a high Cr (15Cr) ODS ferritic steel (SOC-16) of which the 

chemical compositions are shown in Table 3.1. SOC-16 was manufactured by mechanical alloying 

method using a high speed attritor in KOBELCO. The mixed powders were encapsuled, hot extruded 

at 1150 °C and subsequently annealed at 1150 °C for 60 min followed by air cooling. The details of 

the fabrication process of the ODS steel are given in the previous papers [26,27]. Tensile specimens 

were sampled from the extruded bar with the loading direction parallel to the extruded direction. 

Round bar tensile specimens which measure a gauge section of 10 mm with 2.1 mm of diameter were 
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used for SSRT. The specimen geometry is shown in Fig. 3.1. The surface of the round bar specimens 

was mechanically polished by SiC abrasive paper to 4000 grit.  

 

Table 3.1. Chemical compositions of ODS ferritic steel (SOC-16). wt% 

Material C Cr W Al Ti Y O N Ar Hf Y2O3 

SOC-16 0.043 14.54 1.93 3.01 0.13 0.28 0.17 0.006 0.0064 0.62 0.36 

 

 

Fig. 3.1. The geometry of tensile specimens for SSRT in SCPW 

 

3.2.2. SSRT conditions 

In order to evaluate the susceptibility to SCC in SCPW, SSRT was carried out at strain rates of 1 × 

10
-3

 s
-1

 and 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

 in SCPW at 500 °C under a pressure of 25 MPa with different 

contents of dissolved oxygen and dissolved hydrogen. The DO and DH contents of the water were DH 

= 0.4 ppm, DO and DH < 0.01 ppm and DO = 8 ppm (mg/L). The water chemistry was controlled by 

injections of high purity nitrogen and hydrogen gas to a conditioning tank and the conductivity was 

lower than 0.10 µS/cm during experiment. In addition, tensile tests in a vacuum of 2.0 × 10
-3

 Pa were 

also performed at 500 °C to compare with the deformation and fracture behavior in SCPW. After the 

SSRT, fractured surface and side surface of the gauge section were observed by SEM to investigate 

the fracture mode in detail. Electron probe microanalyzer (EPMA) analysis was also conducted for the 

cross-sectional areas of the tensile specimens to understand the roll of corrosion products. The 

cracking pass way was examined by the cross-sectional observation to measure the crack depth and to 

count the number of cracks.  
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3.3. Results and discussion 

3.3.1. Stress-strain behavior 

The SSRT stress–strain curves of SOC-16 deformed in a vacuum and SCPW dissolved with 

different DO and DH are shown in Fig. 3.2 (a) for the test at a higher strain rate (1 × 10
-3

 s
-1

) and Fig. 

3.2 (b) for the test at a lower strain rate (1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

). Table 3.2 summarized the 

numerical values of the tensile properties obtained by the SSRT. Both the figures indicate that there is 

no significant effect of test environment on the stress-strain behavior of the ODS steel irrespective of 

the strain rate, although the yield stress and ultimate tensile stress are decreased with decreasing strain 

rate, while the total elongation tends to increase with decreasing strain rate. This behavior is a typical 

strain rate effect for metallic materials because a decreased strain rate gives more time for dislocations 

to move past obstacles as a thermally activation process. The obtained tensile test results suggest that 

there is no susceptibility to SCC of the ODS steel in the SCPW.  

Generally, the susceptibility to SCC can be evaluated by measuring the reduction of total 

elongation and the change in the fracture mode from ductile to brittle fracture, IGSCC and 

transgranular stress corrosion cracking (TGSCC). In our previous work on the SCC of a martensitic 

steel in SCPW, a remarkable fracture mode change from ductile to brittle mode was accompanied by 

lowering strain rate, while the total elongation of the steel was not affected by the strain rate change 

[1]. Therefore, the susceptibility to SCC can be more clearly evaluated by the observation of fracture 

mode change and the measurement of reduction in area (RA). Fig. 3.3 shows the RA of the tensile 

specimens after SSRT at different strain rates, indicating that the RA is almost independent of the test 

environment and strain rate. This also suggests that the ODS steel is not susceptible to SCC in SCPW 

at this experimental condition.  
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Fig. 3.2. SSRT stress-strain curves tested at (a) higher strain rate of 1 × 10
-3

 s
-1

 and (b) lower strain 

rate of 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

 in vacuum and SCPW (DH = 0.4 ppm, DO & DH < 0.01 ppm and 

DO = 8 ppm)  
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Table 3.2. SSRT data for ODS ferritic steel in vacuum and SCPW 

Environments Strain rate Yield stress 

(MPa) 

Ultimate tensile 

stress (MPa) 

Total 

elongation (%) 

Reduction 

in area (%) 

Vacuum 1 × 10
-3

 s
-1 

(higher)
 

667 742 17.5 70.4 

1 × 10
-6

 s
-1

 

( lower ) 

527 579 20.4 68.3 

SCPW  

DH = 0.4 

ppm 

1 × 10
-3

 s
-1 

(higher) 

655 725 17.7 70.5 

1 × 10
-6

 s
-1

 

( lower ) 

592 630 24 67.8 

SCPW  

DO&DH < 

0.01 ppm 

1 × 10
-3

 s
-1 

(higher) 

662 736 20.8 70.3 

1 × 10
-6

 s
-1

 

( lower ) 

579 615 26.8 70.8 

SCPW  

DO = 8.0 

ppm 

1 × 10
-3

 s
-1 

(higher) 

662 760 19.4 69.7 

5 × 10
-7

 s
-1

 

( lower ) 

602 665 25.6 73.2 

 

 

 

Fig. 3.3. Reduction in area of ODS ferritic steel after SSRT at higher (1 × 10
-3

 s
-1

) and lower (1 × 10
-6

 

s
-1

 or 5 × 10
-7

 s
-1

) strain rates. 
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3.3.2. Fracture behavior 

3.3.2.1. Fracture mode 

To investigate the fracture behavior, SEM observations of the fractured surface and the specimen 

side surface in the necking region were carried out and shown in Fig. 3.4 and 3.5 deformed at higher 

and lower strain rates, respectively. The results of the SEM observations are in good agreement with 

those obtained by the measurement of RA. In all the tested specimens regardless of the strain rate, a 

typical ductile fracture was observed showing a cup and corn facture shape with necking accompanied 

by the formation of very fine dimples on the fractured surface. However, detailed observations of the 

side surface revealed that some cracks randomly oriented exist in the necking region deformed at both 

higher and lower strain rates in SCPW, while no such a crack was observed in the specimen deformed 

in vacuum at higher strain rate. Furthermore, the cracks at the higher strain rate in SCPW (Fig. 3.4b~d) 

are more or less similar to those formed in vacuum at the lower strain rate of 1 × 10
-6

 s
-1

 (Fig 3.5a). 

Therefore, it is considered that the cracks in the specimen tested in vacuum at the lower strain rate 

(Fig. 3.5a) are formed in the oxide layer produced during the test for about 60 hours at 500 °C, 

although the oxidation rate is low in the vacuum of 2.0 × 10
-3

 Pa. The cracks observed in SCPW at the 

lower strain rate (Fig. 3.5b~d) show somewhat different patterns, which were located at only near the 

necking region, but not observed at the other gauge part of the specimen. Furthermore, these cracks 

were formed along random direction to the tensile direction. The fractured surface observation also 

indicates that the cracks were limited at the peripheral region of the fractured surface. In the case of 

austenitic stainless steels in high temperature water and SCPW, however, it was reported that a plenty 

of cracks were initiated suddenly and tended to be distributed in the direction perpendicular to the 

loading direction and the cracks were distributed over the whole surface of the specimen gauge 

[1,12,28]. 
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Fig. 3.4. SEM images of fracture surface and gauge section of the ODS steel after SSRT at a higher strain rate of 1 × 10
-3

 s
-1

. (a : vacuum, b : SCPW with 

DH 0.4 ppm, c : SCPW with DO & DH < 0.01 ppm, d : SCPW with DO 8.0 ppm) 
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Fig. 3.5. SEM images of fracture surface and gauge section of the ODS steel after SSRT at lower strain rate of 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

. (a : vacuum - 1 × 

10
-6

 s
-1

, b : SCPW with DH 0.4 ppm - 1 × 10
-6

 s
-1

, c : SCPW with DO & DH < 0.01 ppm - 1 × 10
-6

 s
-1

, d : SCPW with DO 8.0 ppm - 5 × 10
-7

 s
-1

) 
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3.3.2.2. Analysis of corrosion products 

In order to understand the role of corrosion products, EPMA analysis was conducted for the cross-

sectional areas in the homogeneously deformed region of the tensile specimens after SSRT in SCPW 

at the lower strain rates. As shown in Fig. 3.6, the results revealed that all the corrosion products were 

Fe/Cr/Al oxide layers, even in the dissolved hydrogen environment. The oxide layers were classified 

into two layers, an outer Fe-rich oxide layer and an inner Cr and Al-rich complex oxide layer. The 

formation of the oxide layers can be explained based on an outward diffusion of iron ions which will 

produce the outer layer, while an inward diffusion of oxygen forms the inner oxide layer. The 

interesting is that the EPMA results indicate that the oxide layer formed in the water with DO 8 ppm 

is thinner than that of DH 0.4 ppm and DO & DH < 0.01 ppm. This phenomenon can be interpreted in 

terms of Al effects that the addition of Al to 15Cr ODS ferritic steel suppresses the corrosion by the 

formation of very thin Cr/Al rich complex oxide layer. As shown in Fig. 3.6, the inner Cr/Al complex 

oxide layer was formed on all the specimen surfaces irrespective of the water condition, which 

interrupts the growth of the outer Fe oxide layer, resulting in the suppression of the entire corrosion. 

The oxide layer thickness depends on the DO/DH contents and the thickness of the Cr/Al complex 

oxide film is thinnest for the specimen tested in DH=0.4 ppm. In other words, SCPW dissolved with 

extremely low oxygen contents interrupts the creation of the Cr/Al complex layer and gives rise to 

thicker outer oxide layer in DH = 0.4 ppm and DO & DH < 0.01 ppm.  

Fig. 3.7 shows oxide layer thickness of highly deformed necking portion and less deformed gage 

portion after SSRT at the lower strain rates. The thicknesses of the thin oxide layer in the less 

deformed portion show a good correspondence to the EPMA results. On the other hand, the thick 

oxide layers of highly deformed part such as near the necking region are thicker than those of the less 

deformed part. This difference could be the evidence that the deformation accelerates corrosion by 

introducing fresh surface for corrosion. However, the water chemistry effect tis negligible to the 

fracture behavior of the ODS steel in SCPW. 
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Fig. 3.6. EPMA analysis results of cross sectional area of the specimens after SSRT in SCPW at lower 

strain rate of 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

 (scale shows the relative concentration). 

 

 

Fig. 3.7. Oxide layer thickness of highly deformed necking portion and less deformed gage portion 

after SSRT at lower strain rate of 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1
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In the previous work by Was et al., they reported the corrosion behavior of austenitic steels and 

ferritic-martensitic steels in SCPW, where the oxide layer developed in ferritic–martensitic steels was 

stable, maintained a constant average density and was difficult to be broken. It is also reported that in 

many of the austenitic stainless steels with higher bulk concentrations of nickel and chromium, the 

outer oxide layer had a tendency to spall [10]. And the oxide layer of high Cr ODS steels in SCPW 

consisted of magnetite and hematite [23, 24], which was similar to high Cr austenitic stainless steels. 

In this research on the ODS steel, cracks and pores were also observed in the outer layer of the 

magnetite and the oxide layer tended to spall. 

 

3.3.2.3. Correlation of growth rate of corrosion products and diffusion of elements 

The thickness of corrosion products can be estimated based on the diffusivity of elements, such as 

Fe, Cr, Al and O through the oxides. As the oxide grows thicker the required diffusion distance 

increases, which may result in the decreasing of the oxidation rate. Theoretically, oxidation should 

follow parabolic behavior. Oxidation kinetics can be determined by one of two processes; diffusion of 

Fe cations through the oxide to the oxide-water interface, or diffusion of O anions through the oxide 

to the metal-oxide interface. 

The diffusion coefficients were calculated by the equation of diffusion distance;  

S = √4𝐷𝑡                            (3.1) 

or,                           D = S
2
t/4                             (3.2) 

where S is the diffusing distance (cm), D is the diffusion coefficient (cm
2
/s) and t is the time (s). 

S was obtained from Fig 3.7, and t is available from the strain rate and strain to fracture in each 

test. The values of calculated diffusion coefficient are summarized in Table 3.3.  

Table 3.3. Diffusion coefficients of O and Fe in the oxide layer of less deformed gage portion after 

SSRT at lower strain rate (1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

) (cm
2
/s) 

 DDH = 0.4 ppm DDO & DH < 0.01 ppm DDO = 8 ppm 

Fe 3.15 × 10
-14

 3.40 × 10
-14

 4.88 × 10
-15

 

O 1.40 × 10
-14

 1.11 × 10
-14

 4.88 × 10
-15
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Table 3.4 lists the selected diffusion data of Fe and O ions in oxides from literature, which is 

compared with the calculated diffusion coefficient of Table 3.3. As shown in Table 3.4, Experiments 

conducted with poly-crystal oxide specimens provided higher diffusivities than those of single-crystal 

oxide specimen, and the diffusion of Cr is too slow to influence the oxidation mechanism, thus it is 

negligible. Comparing Table 3.3 with Table 3.4, the diffusion coefficients of O and Fe in the oxide 

formed on 15Cr-4Al ODS ferritic steel are much lower than that of the O and Fe in the oxide formed 

on conventional Fe-Cr steels. This implies that the rate controlling mechanism of oxidation in the 

ODS steel is different from the other steels. 

 

Table 3.4. Diffusion coefficients of Fe, Cr and O in Fe3O4, Fe-Cr spinel oxide and Cr2O3  

Oxide Ions Temp.  

(°C) 

Diffusion coefficient 

(D) (cm
2
/s) 

Note : (S) Single crystal, (P) Polycrystal Ref. 

Fe3O4 O 500-800 3.50 × 10
-6

 (S) 20-200 MPa hydrothermal with O
18

 [29] 

Fe3O4 Fe 350-1200 4.51 × 10
-5

 (P) Fe
55

 in Fe3O4, averaged from PO2=10
-28

 – 

10
-18

 atm 

[30] 

FeCr2O4 O 600-1000 1.61 × 10
-5

 (P) O
18

 radiotracer on Fe-Cr alloy [31] 

Fe3O4 Fe 1200 6.71 × 10
-9

 (P) Fe
59

 tracer [32] 

Fe3O4 Cr 1200 1.54 × 10
-11

 (P) Cr
51

 tracer [32] 

Cr2O3 Cr 800 5.90 × 10
-18

 Bulk [33] 

Cr2O3 Cr 800 1.10 × 10
-12

 Grain boundary [33] 

Cr2O3 O 800 2.60 × 10
-18

 Bulk [33] 

Cr2O3 O 800 5.90 × 10
-13

 Grain boundary [33] 

 

The oxidation kinetic equation of the ODS steel can be estimated by obtaining the oxidation 

parabolic constant kP. If oxidation film was very stable and was not broken off, the oxidation curves 

generally obey a parabolic law:  

(∆m)
2
 = kPt.                          (3.3) 
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Assuming that the oxide layer consists of Cr2O3, the kC value defined as x
2
 = kCt (x: oxide 

thickness) is expressed by: 

kC = (
𝑀𝐶𝑟2𝑂3

3𝑀𝑂𝜌𝐶𝑟2𝑂3

)
2

kP                   (3.4) 

where 𝑀𝐶𝑟2𝑂3
 is the molar mass of Cr2O3 and MO is the molar mass of oxygen atom and 𝜌𝐶𝑟2𝑂3

 

is the density of Cr2O3. It is necessary to consider the effective diffusion coefficients (𝐷𝑒𝑓𝑓
𝑜𝑥 ) in the 

oxide layer [34] which take into account diffusion in the bulk, 𝐷𝑏𝑢𝑙𝑘
𝑜𝑥 , and along grain boundaries, 

𝐷𝑔𝑏
𝑜𝑥, according to: 

𝐷𝑒𝑓𝑓
𝑜𝑥  = (1 – f) 𝐷𝑏𝑢𝑙𝑘

𝑜𝑥  + 𝐷𝑔𝑏
𝑜𝑥             (3.5) 

where f is the fraction of atoms diffusion along grain boundaries, commonly given by: 

f = 
3𝛿

𝜙
                               (3.6) 

where δ is the grain boundary width arbitrarily taken as 1 nm, and ϕ is the oxide grain size [34].  

From the classical equation given by Wagner, which relates the parabolic oxidation constant kC to 

the diffusion coefficients for an oxide MaOb, kC can be expressed [33]: 

kC(calc.) = ∫ [𝐷𝑎𝑛𝑖𝑜𝑛
𝑜𝑥 + 

𝑏

𝑎
𝐷𝑐𝑎𝑡𝑖𝑜𝑛

𝑜𝑥 ]
𝑃𝑂2

𝑒𝑥𝑡

𝑃𝑂2
𝑖𝑛𝑡 dln(𝑃𝑂2

)          (3.7) 

𝑃𝑂2

𝑒𝑥𝑡: oxygen pressure at gas/scale interface; 𝑃𝑂2

𝑖𝑛𝑡: oxygen pressure at the alloy/scale interface and 

𝐷𝑎𝑛𝑖𝑜𝑛
𝑜𝑥  and 𝐷𝑐𝑎𝑡𝑖𝑜𝑛

𝑜𝑥 : anion and cation diffusion coefficients in oxide layer. 

Writing D = D°(𝑝𝑂2
)

n
 for each species (D° being the diffusion coefficient at 𝑝𝑂2

 = 1 atm) and 

considering that self-diffusion occurs by Oi and VCr : 

kC = ∫ 𝐷𝑂
° (𝑝𝑂2

)
1/6

dln(𝑝𝑂2
) + 

3

2
∫ 𝐷𝐶𝑟

° (𝑝𝑂2
)3/16

dln(𝑝𝑂2
) 

= 6𝐷𝑂
° (𝑝𝑂2

𝑒𝑥𝑡)
1/6

 + 8𝐷𝐶𝑟
° (𝑝𝑂2

𝑒𝑥𝑡)
3/16

                      (3.8) 

= 6𝐷𝑂
° (0.1 atm) + 8𝐷𝐶𝑟

° (0.1 atm)    

In our previous research, H.S. Cho [35] calculates the diffusion coefficients of Cr and O in the 

oxide layer formed on high Cr (14-22 wt%) ODS steels at 510 °C in SCPW by using diffusion data in 
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a literature [36] and the result was shown in Table 3.5. 

 

Table 3.5. Diffusion coefficients of Cr and O in the oxide layer formed on high Cr (14-22 wt%) ODS 

steels at 510 °C in SCPW 

Element 𝐷𝑏𝑢𝑙𝑘
𝑜𝑥  𝐷𝑔𝑏

𝑜𝑥 𝐷𝑒𝑓𝑓
𝑜𝑥  

Cr 1.73 × 10
-19

 6.88 × 10
-15

 4.14 × 10
-17

 

O 1.20 × 10
-23

 7.74 × 10
-15

 4.64 × 10
-17

 

 

The calculated diffusion coefficients by using experimental data in this research (see Table 3.3) 

exhibits approaching value of the grain boundary diffusion coefficients (see Table 3.5). This implies 

that the grain boundary diffusion plays an important role in the oxide formation of the 15Cr-4Al ODS 

steel. 

Although grain boundary diffusion, which is faster than the bulk or effective diffusion, was mainly 

occurred, the thickness of oxide layer on the ODS steel is very thin. It indicates that diffusivity of ions 

in the oxide layer on ODS steel in SCPW is slower than the effective diffusion of ions in oxide on 

conventional steels. It should be noted that the thickness of the oxide layer on the ODS steel is almost 

similar regardless of the water chemistry. Therefore, it can be suggested that the grain boundary 

diffusion mechanism of the 15Cr-4Al ODS steel could be affected by nano-particles and presence of 

Al-Cr rich complex oxide layer.  

 

3.3.2.4. Cracks on specimen side surface 

To make clear the relation of oxide layer with cracks produced in the ODS steel, cross-sectional 

observation was carried out to measure the crack depth and to count the number of the cracks in the 

necking part up to 1.2 mm far away from the edge of the cup and corn fractured surface. Fig. 3.8 

indicates that the crack depth tends to deeper when the deformation is more severe, that is, near 

fractured portion. In all cases cracks were only observed in necking region and no crack was observed 

in the region far beyond 1.2 mm away from the fractured surface. The maximum crack depth was 

observed on the specimen tested with DH = 0.4 ppm at lower strain rate of 1 × 10
-6

 s
-1

, which does not 
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exceed 25 µm. It should be noted that the number of cracks on the ODS steel was not influenced by 

the strain rate, although much more surface cracks on gauge section were observed in the test in DO = 

8 ppm water at a strain rate of 5 × 10
-7

 s
-1

 (Fig. 3.5d).  

 

 

Fig. 3.8. The number and depth of cracks according to the distance from fractured surface after SSRT 

deformed at lower strain rate of 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

 in SCPW. Side 1 and 2 are the bottom and 

top side of the cross sectional area of the specimens in Fig. 3.9 

 

The deeper cracks were also covered by the almost same level of oxide layer as shown in Fig. 3.9, 

indicating that the cracks are limited in the necking region and are very shallow. Based on the results 

above, the crack development of ODS steel in SCPW can be explained in terms of “corrosion layer 

cracking” model of Fig. 3.10. First, oxide layer rupture is occurred in the necking region through a 

large deformation (Fig. 3.10a), because the oxide layer has no enough ductility. Once oxide layer 

cracking occurred, a fresh metallic surface is introduced, and corrosion proceeds by the outward 

diffusion of iron ions and the inward diffusion of oxygen (Fig. 3.10b). Finally, the successively 

formed new oxide layer at the front of the crack is deformed and new cracks are introduced in the 

layer (Fig. 3.10c). This crack development of ODS steel which is nano-crystalline material does not 

significantly affect its tensile property, although Irvin R. Kramer and Louis J. Demer [37] report that 
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oxide films on surface influence the mechanical properties of materials. This is because the influence 

of the films is considerably larger for single crystals than for polycrystalline materials, as they also 

mentioned in the report.  

 

 

Fig. 3.9. Cross-sectional SEM images of specimens showing cracks after SSRT at lower strain rate in 

SCPW. (a : DH 0.4 ppm - 1 × 10
-6

 s
-1

, b : DO & DH < 0.01 ppm - 1 × 10
-6

 s
-1

, c : DO 8.0 ppm - 5 × 10
-

7
 s

-1
,) 

 

 

Fig. 3.10. Schematic view of “corrosion layer cracking” model of ODS steel in SCPW. 

From the macroscopic analysis, the deformation and fracture behavior of the ODS steel in SCPW 

are not sensitive to the change in the contents of DH and DO of SCPW.  
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3.4. Conclusions 

 

SCC susceptibility and fracture mode of a 15Cr-4Al-2W ODS ferritic steel in SCPW (500 °C, 25 

MPa) dissolved with DH = 0.4 ppm, DH = DO = 0 ppm and DO = 8 ppm were investigated by means 

of SSRT. The main results obtained are the followings: 

1) The deformation and fracture behavior of the ODS steel are independent of the test 

conditions, such as strain rate, environment namely vacuum or SCPW and DH/DO contents 

in SCPW. All the tested specimens shows a ductile fracture showing a cup and corn shape 

of fractured region.  

2) The effect of DH and DO contents on the fracture behavior is negligible for the ODS steel. 

3) The high resolution EPMA observations revealed that oxide layer thickness depends on the 

DO/DH contents and the thickness of the Cr/Al complex oxide film is thickest for the 

specimen tested in DH=0.4 ppm. In other words, SCPW dissolved with extremely low 

oxygen contents interrupts the creation of the Cr/Al complex oxide layer and gives rise to 

thicker outer oxide layer in DH = 0.4 ppm and DO & DH < 0.01 ppm. 

4) The detailed EPMA and SEM analysis showed that small “corrosion layer cracking” was 

observed in the necking region of all the tested specimens except for that tested in vacuum 

at higher strain rate. The number of the oxide layer cracks was not influenced by the change 

in the strain rate ranging from 1 × 10
-3

 s
-1

 to 5 × 10
-7

 s
-1

. 

5) The diffusion process of the ODS steel in SCPW follows grain boundary diffusion 

mechanism. Although grain boundary diffusion, which is faster than the bulk or effective 

diffusion, was mainly occurred, the thickness of oxide layers on the ODS steel is very thin 

and similar, regardless of the water chemistry. Therefore, it can be suggested that the grain 

boundary diffusion mechanism of the 15Cr-4Al ODS steel could be affected by nano-

particles and presence of Al-Cr rich complex oxide layer. 

6) After the test in vacuum at a strain rate of 5 × 10
-7

 s
-1

, the corrosion layer cracking was 

observed, indicating that the small amount of oxygen in the vacuum may cause corrosion 

and corrosion layer cracking in necking area.   

7) The 15Cr-ODS ferritic steel shows no susceptibility to SCC in SCPW in the test condition 

of this research.  
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Chapter 4 

Stress Corrosion Cracking Behavior of Austenitic Stainless Steel 

and Ferritic/Martensitic Steel in Different Water Chemistry 

of Supercritical Pressurized Water 
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4.1 Introduction. 

Several works on the SCC susceptibility of austenitic stainless steels and ferritic/martensitic steels 

were conducted in SCPW dissolved with various oxygen contents from deaerated condition (≃0.0 

ppm) to 8 ppm. Austenitic stainless steels tested in supercritical water are 304, 316, 316L, 347 and 

UNS S31266 [1-7]. All of these steels have experienced some degree of SCC, most of which is 

intergranular. Ferritic/martensitic steels of T91, T92, HCM12A, HT-9 and F82H have been tested in 

SCPW with dissolved oxygen contents ranging from the deaerated condition to 500 ppb by slow strain 

rate test [7-12]. Of these alloys, only HT-9 showed a susceptibility to SCC that increased with 

temperature and DO content.  

 In the case of water chemistry condition for boiled water reactor (BWR), an effective remedy for 

304 austenitic stainless steel pipe cracking can be developed based on hydrogen injection to reduce 

the steel corrosion potential combined with careful control of water quality [13].  

Some experimental data for nickel alloy at pressurized water reactor (PWR) condition indicates 

that primary water stress corrosion cracking (PWSCC) growth rate has a convex upward dependency 

for DH content [14,15]. On the other hand, it is reported that the experimental data of PWSCC 

initiation shows a monotonic decrease of initiation time for the increasing DH content [16-18]. SCC 

growth rate of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water 

environments decreases with increasing DH in the range of 5–50 cm
3
 (STP) H2/kg H2O [19]. 

As for the application of the structural materials to fusion blanket systems, the effect of hydrogen 

isotopes on SCC will be one of the important issues to be solved. However, all of the tests in SCPW 

were conducted with oxygen environments but not in SCPW dissolved with hydrogen, as mentioned 

above. Therefore, the objective of this study is to investigate the effect of supercritical water 

chemistry against SCC susceptibility of 316L austenitic stainless steel and F82H ferritic/martensitic 

steel.  

 

4.2 Experimental 

4.2.1 Materials and specimen preparation 

The materials used were SUS316L austenitic stainless steel and F82H ferritic/martensitic steel. 

The chemical compositions are shown in Table 4.1. The geometry of tensile specimen has been 

described in the previous chapter. SUS316L was solid solution heat-treated at 1050 °C for 1 hour, and 
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then water quenched. In case of F82H, the tensile specimens were cut out from a thick (15 mm) plate 

which was normalized at 1040 °C for 30 min and tempered at 740 °C for 1 hr followed by air cooling. 

 

Table.4.1. The chemical compositions of tested materials in wt. % 

Material C Si Mn Cr Ni P S W V Ta N B Mo 

F82H 0.10 0.2 0.5 8.0 ― ― ― 2.0 0.20 0.04 <0.01 0.003 ― 

SUS316L 0.01 0.73 1.06 17.41 12.13 0.032 0.004 ― ― ― ― ― 2.05 

 

 

4.2.2 SSRT conditions. 

To investigate the SCC susceptibility, the SSRTs were carried out in a supercritical pressurized 

water system at 500 °C under a pressure of 25 MPa, at a higher strain rate of 1 × 10
-3

 s
-1

 and lower 

strain rate of 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

. The contents of DO and DH of SCPW for the test were  0.4 

ppm DH, DO and DH < 0.01 ppb (deaerated) and 8 ppm DO, which were controlled by injections of 

high purity oxygen, nitrogen and hydrogen gas to a conditioning tank.  

After the tests, a gauge section and fracture surface of the SSRT specimen was observed with a 

scanning electron microscope (SEM) to investigate fracture mode to evaluate SCC susceptibility. A 

cross section of the fractured tensile specimens was analyzed with a SEM and Electron probe micro-

analyzer (EPMA). The cracking pass way was examined by the cross-sectional observation to 

measure the crack depth and to count the number of cracks. Crack development pattern was also 

investigated by electron backscattered electron diffraction (EBSD). 

 

4.3 Results and discussion. 

4.3.1 Stress-strain behavior. 

The SSRT results of SUS316L and F82H in a vacuum and SCPW dissolved with different DO and 

DH are shown in Fig. 4.1 and 4.2. The numerical values of tensile properties obtained by the SSRT 

are summarized in Table 4.2.  

For SUS316L austenitic steel, all of the stress-strain curves exhibit typical work hardening 

behavior, indicating the high degree of uniform elongation. The elongations of specimens tested in 
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deaerated SCPW (DO & DH < 0.01 ppb) were reduced by decreasing strain rate, while other 

specimens tested in SCPW with DH 0.4 ppm, DO 8 ppm and also vacuum show higher elongation at 

lower strain rate.  

In contrast, the stress-strain curves for F82H ferritic / martensitic steel denote that the yield stress 

and ultimate tensile stress are decreased with decreasing strain rate, while the total elongation tends to 

increase with decreasing strain rate. This phenomenon can be explained by typical strain rate effect 

for metallic materials because a decreased strain rate gives more time for dislocations to move past 

obstacles as a thermally activation process. There is no significant effect of test environment on the 

stress-strain behavior of the F82H ferritic / martensitic steel at tested strain rates. The obtained SSRT 

results suggest that there is no susceptibility to SCC of the F82H in the SCPW, although stress strain 

behavior often gives us no information about SCC susceptibility. 

 

Fig. 4.1 SSRT stress-strain curves for SUS316L austenitic stainless steel as a function of different 

strain rate at each environment of a) vacuum, b) SCPW DH =0.4 ppm, c) SCPW DO & DH < 0.01 

ppb (deaerated) and d) SCPW DO = 8 ppm  
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Fig. 4.2 SSRT stress-strain curves for F82H ferritic/martensitic steel as a function of different strain 

rate at each environment of a) vacuum, b) SCPW DH =0.4 ppm, c) SCPW DO & DH < 0.01 ppb 

(deaerated) and d) SCPW DO = 8 ppm 
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Table 4.2.  SSRT data for ODS ferritic steel in vacuum and SCPW 

Material Environments Strain rate Yield stress 

(MPa) 

Ultimate tensile 

stress (MPa) 

Total elongation 

(%) 

Reduction 

in area 

(%) 

SUS316L Vacuum 1 × 10-3 s-1 108 435 41.3 73.6 

1 × 10-6 s-1 122 486 41.6 70.3 

SCPW  

DH = 0.4 ppm 
1 × 10-3 s-1 116 431 46.3 82.8 

1 × 10-6 s-1 108 485 50.1 74.4 

SCPW  

DO&DH < 0.01 

ppm 

1 × 10-3 s-1 125 428 51.6 89.4 

1 × 10-6 s-1 101 448 47.3 66.8 

5 × 10-7 s-1 113 466 41.9 59.2 

SCPW  

DO = 8.0 ppb 
1 × 10-3 s-1 109 438 43.7 78.3 

5 × 10-7 s-1 104 470 48.6 78.3 

F82H Vacuum 1 × 10-3 s-1 466 492 15.7 85.7 

1 × 10-6 s-1 400 407 17.6 93.4 

SCPW  

DH = 0.4 ppm 

1 × 10-3 s-1 467 491 15.2 76.4 

1 × 10-6 s-1 444 489 20 90.6 

SCPW  

DO&DH < 0.01 

ppb 

1 × 10-3 s-1 449 466 19.3 84.1 

1 × 10-6 s-1 418 429 23.4 93.6 

SCPW  

DO = 8.0 ppm 
5 × 10-7 s-1 438 441 23.4 91.8 

 

 

4.3.2 Fracture behavior 

4.3.2.1 Fracture surface analysis. 

Fig. 4.3 shows the dependence of reduction in area of fractured surface after SSRT on strain rate. 

In the case of SUS316L austenitic stainless steel, the reduction in area of the specimens tested in 

SCPW with any water chemistry decreased with decreasing strain rate, while relatively constant 

values of reduction in area were obtained for the specimens tested in vacuum regardless of strain rate 

changes. It should be noticed that a significant decreasing of reduction in area occurred in SCPW with 

DO & DH < 0.01 ppb at lower strain of 1 × 10
-6

 s
-1

 and 5 × 10
-7

 s
-1

. A direct link between total 

elongation and reduction in area of SUS316L was not observed. 

In contrast to this, the reduction in area of F82H ferritic / martensitic steels increased with 

decreasing strain rate, not only in non-corrosive environment of vacuum but also in corrosive 

environments of SCPW.  
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All fracture surfaces of SUS316L and F82H after SSRT at higher strain rate of 1 × 10
-3

 s
-1

 

exhibit ductile fracture surface with dimples at any tested environment, as shown in Fig 4.4 and 

4.5. After SSRT at lower strain rate of 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

, brittle fracture surface was 

observed on SUS316L tested in SCPW (Fig 4.6 - b, c, d, e) while no brittle surface was shown in 

vacuum (Fig 4.6 – a). Appearance of brittle fracture surface and decreasing of reduction in area 

imply that fracture mode of SUS316L was changed in SCPW by decreasing strain rate. In contrast, 

only ductile fracture surface was found on F82H tested at lower strain rate, regardless of test 

environments, as shown in Fig 4.7. 

 

 

Fig 4.3. Reduction in area of SUS316L and F82H after fracture by SSRT.  
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Fig. 4.4 Fracture surface of SUS316L austenitic stainless steel after SSRT at higher strain rate of 1 × 

10
-3

 s
-1

 in a) vacuum, b) SCPW with DH 0.4 ppm, c) deaerated SCPW (DO & DH < 0.01 ppb) and d) 

SCPW with DO 8 ppm. 
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Fig. 4.5 Fracture surface of F82H ferritic / martensitic steel after SSRT at higher strain rate of 1 × 10
-3

 

s
-1

 in a) vacuum, b) SCPW with DH 0.4 ppm and c) deaerated SCPW (DO & DH < 0.01 ppb) 
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Fig. 4.6 Fracture surface of SUS316L austenitic stainless steel after SSRT at lower strain rate of 1 × 

10
-6

 s
-1

 or 5 × 10
-7

 s
-1

 in (a) vacuum, (b) SCPW with DH 0.4 ppm, (c, d) deaerated SCPW (DO & DH 

< 0.01 ppb) and (e) SCPW with DO 8 ppm. 
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Fig. 4.7 Fracture surface of SUS316L austenitic stainless steel after SSRT at lower strain rate of 1 × 

10
-6

 s
-1

 or 5 × 10
-7

 s
-1

 in a) vacuum, b) SCPW with DH 0.4 ppm, c) deaerated SCPW (DO & DH < 

0.01 ppb) and d) SCPW with DO 8 ppm. 



83 

 

4.3.2.2 Specimen side surface analysis. 

Fig 4.8 and 4.9 indicate that cup and corn facture shape with necking was observed for all the 

tested materials at higher strain rate of 1 × 10
-3

 s
-1

 not only in vacuum but also in a SCPW. However, 

at lower strain rate of 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

, cracks were observed on the specimen surface of both 

of SUS316L and F82H except for SUS316L tested in vacuum as shown in Fig 4.10 and 4.11. The 

observed cracks, however, have a significant difference in the distribution and shape between 

SUS316L and F82H. Cracks on SUS316L were widely distributed over the whole gauge section and 

were mostly formed perpendicularly to the tensile direction. Because the surfaces of SUS316L 

specimens tested at lower strain rates were covered by corrosion products, it should be confirmed that 

the cracks contribute to development into matrix. In contrast, cracks on F82H were located at only 

near the neck part with different crack pattern, as shown in Fig 4.11. The crack patterns at lower strain 

rate were changed from perpendicular to random, as deformation is more progressing. This evidence 

suggests that the surface cracks are only corrosion products on the F82H specimen and no crack 

propagates into the substrate matrix of F82H.    
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Fig. 4.8 Specimen side surface of SUS316L austenitic stainless steel after SSRT at higher strain rate 

of 1 × 10
-3

 s
-1

 in a) vacuum, b) SCPW with DH 0.4 ppm, c) deaerated SCPW (DO & DH < 0.01 ppb) 

and d) SCPW with DO 8 ppm. 
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Fig. 4.9 Specimen side surface of F82H ferritic / martensitic steel after SSRT at higher strain rate of 1 

× 10
-3

 s
-1

 in a) vacuum, b) SCPW with DH 0.4 ppm and c) deaerated SCPW (DO & DH < 0.01 ppb) 

  



86 

 

   

   

 

Fig. 4.10 Specimen side surface of SUS316L austenitic stainless steel after SSRT at lower strain rate 

of 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

 in (a) vacuum, (b) SCPW with DH 0.4 ppm, (c, d) deaerated SCPW (DO 

& DH < 0.01 ppb) and (e) SCPW with DO 8 ppm. 
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Fig. 4.11 Specimen side surface of F82H ferritic / martensitic steel after SSRT at lower strain rate of 1 

× 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

 in a) vacuum, b) SCPW with DH 0.4 ppm, c) deaerated SCPW (DO & DH < 

0.01 ppb) and d) SCPW with DO 8 ppm. 
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4.3.2.3 Cross sectional analysis 

To make clear the role of corrosion products in the nucleation of cracks which were observed near 

the fracture surface, EPMA analysis was conducted for the cross-sectional areas of the tensile 

specimens after SSRT in SCPW at lower strain rate.  

EPMA analysis results of cracks on SUS316L after SSRT at lower strain rate of 1 × 10
-6

 s
-1

 or 5 × 

10
-7

 s
-1

 in SCPW was shown in Fig 4.12. All the corrosion products were Fe/Cr oxide layers, even in 

the dissolved hydrogen environment, and they are classified into two layers, an outer Fe-rich oxide 

layer and an inner Cr-rich oxide layer, which agreed well with previous studies on oxide films formed 

on SUS316 and SUS316L in SCW [20,21]. Kim found that the oxide film formed on type 304 

austenitic stainless steel in 288 °C water containing 200 ppb O2 and 150 ppb H2 mainly consisted of 

two oxide layers: an inner layer of iron chromate (FeCr2O4) structure with an outer layer of hematite 

(α-Fe2O3) and magnetite (Fe3O4), respectively [22]. Terachi et al. reported that the oxide film formed 

on 316 stainless steel after exposure to a simulated PWR primary water at 320 °C had a double-layer 

structure: the outer layer was composed mainly of iron oxide (Fe3O4) and relatively chromium-rich 

oxide was recognized in the inner layer (FeCr2O4) [23]. In addition, Ni enrichment was observed at 

the interface between the metal matrix and inner layer. These results imply that the general oxidation 

mechanism of SUS316L in SCW is similar to that in high-temperature water. Much thinner oxide 

layers were observed on the secondary crack tip than the primary cracks of specimen surface, 

indicating that stress corrosion cracking was actually occurred. However, clear evidence of grain 

boundary oxidation was not observed ahead of the crack tip. 

EPMA analysis of F82H revealed that the corrosion layer consisted of outer Fe-rich oxide layer 

and an inner Cr-rich oxide layer, as shown in Fig 4.13. T.R. Allen and G.S. Was reported that 

ferritic/martensitic steels exhibit two oxide layer when exposed to SCPW with an outer layer 

containing only magnetite (Fe3O4) and an inner layer containing a mixture of (Fe, Cr)3O4 spinel 

structure [7,9-11,24]. The thickness of oxide layer between crack tip and specimen surface was similar, 

which suggests that the cracks are oxide layer rupture but not SCC. 

The number and depth of SUS316L cracks were measured according to the distance from 

fractured surface to 2.5 mm away from the rupture region after SSRT deformed at lower strain rate of 

1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

 in SCPW, and shown in Fig. 4.14. A crack with the penetration depth of 67 

µm was measured in the specimen tested in deaerated SCPW at the strain rate of 1 × 10
-6

 s
-1

 (Fig 4.14-

b). The largest number of cracks was existed on the specimen tested in SCPW with 0.4 ppm DH 
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environment (Fig 4.14-a). However, the number and depth of cracks do not show a clear trend to SCC 

susceptibility. 

The fracture mode of crack was investigated by EBSD for the cracks on SUS316L after SSRT at 

lower strain rate of 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

 in SCPW with different water chemistry, as shown in Fig. 

4.15 – 4.18. Intergranular SCC mainly occurred in SUS316L in the SCPW with dissolved hydrogen 

environment. On the other hand, the fracture mode at crack initiation stage in SCPW with dissolved 

oxygen contents was intermixed with intergranular and transgranular SCC. 

 

 

Fig. 4.12 EPMA analysis results of cracks on SUS316L after SSRT at lower strain rate of 1 × 10
-6

 s
-1

 

or 5 × 10
-7

 s
-1

 in SCPW 
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Fig. 4.13 EPMA analysis results of cracks on F82H after SSRT at lower strain rate of 1 × 10
-6

 s
-1

 or 5 

× 10
-7

 s
-1

 in SCPW 
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Fig. 4.14 The number and depth of SUS316L cracks according to the distance from fractured surface 

to the region 2.5 mm away from the fracture after SSRT deformed at lower strain rate of 1 × 10
-6

 s
-1

 or 

5 × 10
-7

 s
-1

 in SCPW with a) DH 0.4 ppm, b & c) deaerated and d) DO 8 ppm. Side 1 and 2 are the 

bottom and top side of the cross sectional area of the specimens (refer to Fig. 4.15 – 4.18)  
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Fig. 4.15 EBSD analysis results of cracks on SUS316L after SSRT at lower strain rate of 1 × 10
-6

 s
-1

 in SCPW with 0.4 ppm dissolved hydrogen. 
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Fig. 4.16 EBSD analysis results of cracks on SUS316L after SSRT at lower strain rate of 1 × 10
-6

 s
-1

 in deaerated SCPW (DO & DH < 0.01 ppm) 
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Fig. 4.17 EBSD analysis results of cracks on SUS316L after SSRT at lower strain rate of 5 × 10
-7

 s
-1

 in deaerated SCPW (DO & DH < 0.01 ppm) 
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Fig. 4.18 EBSD analysis results of cracks on SUS316L after SSRT at lower strain rate of 5 × 10
-7

 s
-1

 in SCPW with 8 ppm dissolved oxygen. 
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4.3.2.4 SCC susceptibility dependence on material 

As shown in the above sections, the susceptibility to SCC depended on the material among three 

candidates, F82H, SUS316L and ODS steel. In this section, the material dependence of the SCC 

susceptibility is discussed based on the results obtained in this study and the previous studies reported 

by the other researchers. 

 Many models have been proposed to explain the mechanisms of SCC, but each of these models 

has its own limitations because of the complexity in the mechanism that is strongly affected by the 

experimental conditions such as water chemistry, test temperature and specimen surface conditions. 

Since no single mechanism of SCC can be applied to all cases of SCC, a few models are summarized 

as follows: 

SCC mechanisms can be classified into two cases. One case is a crack advance due to the removal 

of metal substrate by dissolution or oxidation. This process requires slip-dissolution or grain boundary 

localized corrosion. According to slip-dissolution model, crack growth is accompanied by extremely 

localized anodic dissolution with a cyclic process of film rupturing, dissolution and film repairing (Fig. 

4.19). The stress assisted intergranular corrosion model applies to the IGSCC in certain aqueous 

environments in the form of intergranular corrosion, as depicted in Fig. 4.20. 

 

 

Fig. 4.19 Schematic drawing of crack initiation and growth by slip-dissolution. [25] 



97 

 

 

Fig.4.20 Schematic illustration of grain boundary chromium carbides precipitation and corresponding 

Cr profile. Chromium-depleted zones adjacent to grain boundaries are susceptible to intergranular 

corrosion [26] 

 

The other case is a crack advance by micro-cracking which may be due to; 1) Hydrogen 

embrittlement, 2) Cleavage induced by the rupture of a nanoporous surface layer, and 3) Change of 

surface energy due to adsorption. The representative model of this case, film-induced cleavage model, 

is originated with the suggestion by Edeleanu and Forty [27] and illustrated in Fig.4.21. They believed 

that the material through which this crack was propagating (between slip bands) was embrittled by 

short-range ordering [28]. From this model, sometimes the evidence for stepwise (discontinuous) 

crack advance was shown in the fracture surfaces, especially in TGSCC [29–33] (Fig. 4.22). 

  

 

Fig. 4.21 Schematic drawing of crack growth by film-induced cleavage in an fcc metal or alloy. [34] 
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Fig. 4.22 (a) schematic drawing of the transgranular SCC process and the mechanism of striation 

formation. (After Refs. 29–33. Courtesy of NACE.) (b) Crack arrest marks on a transgranular SCC 

surface, observed near the overload region on a slow strain rate specimen (10
–5

 s
–1

) of 70–30 brass 

tested in pH 7.2 Mattsson’s [35] solution with 0.05M NaCl 

 

In this research, the crack arrest marks were observed on a TGSCC (see Fig 4.22-b) fracture 

surface of SUS316L austenitic stainless steel after SSRT at lower strain rate of 5 × 10
-7

 s
-1

 in both 

deaerated SCPW and SCPW with DO 8 ppm, as shown in Fig 4.23. The cracks with slip step and/or 

grain boundary sliding, which could be formed thorough the metal removal by dissolution model, 

were also observed on all the specimens of SUS316L tested in SCPW, as shown in Fig 4.24. However, 

stress assisted intergranular corrosion was not identified from the results of EPMA analysis (see Fig 

4.12). Therefore, on the basis of the summarized SCC models as mentioned above, the SCC of 

SUS316L in SCPW in this research can be explained by the combination of metal removal by 

dissolution model and film-induced cleavage model.  
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Fig. 4.23 Fracture surface of SUS316L austenitic stainless steel after SSRT at lower strain rate of 5 × 

10
-7

 s
-1

 in (a) deaerated SCPW (DO & DH < 0.01 ppb) and (b) SCPW with DO 8 ppm. 

 

 

Fig. 4.24 Cross-sectional crack observation formed on SUS316L at lower strain rate of 1 × 10
-6

 s
-1

 or 5 

× 10
-7

 s
-1

 in SCPW with a) DH 0.4 ppm, b & c) deaerated and d) DO 8 ppm. 
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With increasing Cr and Mo contents, the stainless steels become increasingly resistant to the SCC 

in aggressive solutions. However, the localized loss of chromium, that is Cr-depletion, causes loss of 

corrosion resistance, because the chromium is crucial in promoting the formation of a Cr-rich passive 

film on the surface of stainless steels. The effect of Cr content on the SCC is described in Fig. 4.20, 

when the Cr-depleted zones were formed at grain boundaries. The effect of Ni content upon the SCC 

of iron-chromium-nickel in MgCl2 is shown in Fig. 4.25, indicating the higher Ni content reduces the 

risk of SCC. Swann [36] also reports that at high nickel contents the stacking-fault energy is high and 

planar groups of dislocations are not observed. Molybdenum decreases the SCC susceptibility in the 

critical Ni concentration level mainly indicating the increase in the critical KISCC threshold, as shown 

in Fig 4.26. 

The effect of Ni has been interpreted in terms of the planar slip in FCC. The deformation in the 

FCC metals is controlled by edge dislocations, while that is screw dislocations in BCC metals. Since 

the Burger’s vector of screw dislocations is parallel to the dislocation line, screw dislocations are 

easily cross slipped, which results in the very fine deformation steps on the specimen surface. In FCC 

metals, however, cross slip is difficult for edge dislocations, which causes planar slip on the same slip 

plane, resulting in a big slip step on the specimen surface. In a high stacking faulted energy lattices, an 

edge dislocation has a narrower disordered region. This causes cross slip be easier for edge dislocation, 

which reduces surface new steps and suppress the SCC.  

However, the relationships between the susceptibility to SCC and steel compositions, condition, 

and microstructures are complex, as has been often known to be only empirical and sometimes not 

reproducible. The influence of the composition of an austenitic stainless steel on its susceptibility to 

SCC is not well-defined. High Ni and Cr contents improve resistance to SCC but, judging from 

published information, the influences of other alloy components, including Mo and C, which are often 

components of austenitic stainless steels, do not seem to be reproducible, perhaps because of 

uncertainties in interactions between the components of the alloys [37]. 
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Fig. 4.25 Stress-corrosion cracking of iron-chromium-nickel wires in boiling 42% MgCl2 at 154 °C 

[38] 

 

 

Fig. 4.26 The relationship between molybdenum contents and critical KISCC of CrNiMo steel with 

15.5-21%Ni 22%Cr in aerated NaCl solution at 105 °C 
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Austenitic stainless steels are sensitive to SCC in a specific aggressive environment such as 

chlorides, while carbon steels, ferritic and ferritic/austenitic (duplex) stainless steels are much 

resistant to the SCC in chlorides environment. This is because ferritic stainless steels have a ferritic 

structure with a body centered cubic (bcc) crystal lattice, whereas austenitic stainless steels have a 

face centered cubic (fcc) crystal lattice. FCC lattice metals are considered to be sensitive for chloride 

SCC because in this crystal lattice more easily shear occurs along a slip plane with a larger number of 

atoms [39]. Considering this crystalline structure aspect, F82H ferritic/martensitic steel has better 

resistance against SCC than 316L austenitic stainless steel. However, some ferritic/martensitic steel 

exhibits SCC. For example, in SCC of HT-9 ferritic/martensitic steel, IGSCC likely results from grain 

boundary carbides [40]. From the SCC models summarized above, the possible explanation of the 

IGSCC of the HT-9 ferritic/martensitic steel can be explained in terms of intergranular corrosion 

along the carbon segregated zones that provides a stress concentration. It should be noted that the 

carbon composition of F82H (0.1 wt% C) is half of the HT-9 (0.2 wt% C). 

The grain size is also a factor in determining the resistance to SCC. A fine grain size has been 

shown to increase the resistance to SCC of carbon steels in solutions containing H2S or nitrates [41], 

of brass in ammonia [42], and of stainless steels in boiling magnesium chloride [43]. The effect of a 

coarse grain size on increased susceptibility to SCC has been attributed to the changes in the grain 

boundary compositions and microstructure. That is, the total quantity of a precipitated phase that is 

responsible for SCC will become more enriched at grain boundaries as the grains become larger. [44]  

In the chapter 3, SCC was not occurred on the ODS ferritic steel in SCPW. Most of all the SCC 

initiation and development behavior were closely related with the following material aspects, 

dislocation behavior, slip plane, grain boundary segregation and crystalline structure. Therefore, it is 

predictable that the ODS ferritic steel shows better resistant against SCC than the other metallic 

materials, of which the mechanisms are interpreted in terms of acceleration of cross slip by nano-sized 

oxide particles through the pinning effect, large total area of grain boundaries caused by very fine 

grains and BCC structure. 
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4.4 Conclusions 

 

The effect of supercritical water chemistry on the SCC susceptibility of 316L austenitic stainless 

steel and F82H ferritic/martensitic steel was investigated by the same test method as described in 

chapter 3.  

1) IG-SCC mainly occurred in SUS316L in the SCPW with dissolved hydrogen. On the other 

hand, the fracture mode at crack initiation stage in SCPW with dissolved oxygen was 

intermixed with intergranular and transgranular SCC. 

2) Although SUS316L exhibits SCC in SCPW with different water chemistry, the 

susceptibility to SCC was highest in the water with dissolved hydrogen concentration 

followed by that in the deaerated SCPW, while SCC was so limited in the water with 

dissolved oxygen. 

3) In contrast, F82H ferritic/martensitic steel is resistant to SCC in the SCPW dissolved with 

hydrogen and oxygen in this test condition, while it suffers from much severe oxidation. 

The surface cracks observed after the test were oxide layer crack limited to the corrosion 

products. 

4) The SCC of SUS316L in SCPW in this research can be explained by the combination of 

metal removal by dissolution model and film-induced cleavage model. The resistance to 

SCC of F82H ferritic/martensitic steels was explained by crystalline structure of lattice: 

BCC lattice is less sensitive to SCC through the easiness of cross slip.  

5) It was predictable that the ODS ferritic steel shows better resistant against SCC than the 

other metallic materials because nano-size oxide particles can trap dislocations by pinning 

effect, very fine grain size prevents crack development and ferritic structure is also less 

sensitive to SCC. 
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Chapter 5 

Effects of Specimen Geometry and Surface Condition on the SCC 

Susceptibility in SCPW 
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5.1 Introduction 

Increasing interest in the application of oxide dispersion strengthened (ODS) steels to the 

advanced nuclear power system requires a sound understanding of the material’s mechanical behavior, 

including the effect of specimen morphology. 

Using the miniaturized specimens offers many advantages for the research of fission and fusion 

reactor materials. For example, many of specimens can be irradiated at once despite a very small 

irradiation volume in a testing reactor. Also, direct observation of deformation behavior after applying 

a load is possible without additional preparatory procedures which may bring about mechanical 

damage [1]. Hence, various types of miniaturized mechanical tests have been developed for the 

research of fission and fusion reactor materials [2,3]. Among them, a miniaturized tensile specimen 

with a gauge section of 5 × 1.2 × 0.25 mm has been proposed and has been utilized in Japan [4]. Most 

of the size effect considered for metal produced by cast. Therefore, the size effect of oxide dispersion 

strengthened (ODS) steels which produced by mechanical alloy method is worth considering. 

On the other hand, corrosion resistance and SCC of steel and its correlation with surface 

topography have been important concerns for structural metallic materials. In the case of stainless 

steel, this is because the dense chromium oxide layer on the stainless steel surface prevents corrosion 

and surface roughness can affect this layer [5].  

In this present work, the morphologic effects such as surface roughness and specimen size and 

shape were discussed for the structural metallic materials base on the result from SSRT in vacuum and 

SCPW. 

 

5.2 Specimen preparation 

The chemical composition of SOC-16 oxide dispersion strengthened ferritic steel, SUS316L 

austenitic steel and F82H ferritic-martensitic steel are listed in Table 5.1. The 2 different kinds of 

tensile specimens were prepared to evaluate the shape and side effect of the tested materials. One is a 

plate shape with 5 mm of gauge length, 1.2 mm of width and 0.45 mm of thickness, called SSJ2 

specimen. Another is a round bar specimen which had a gauge section of 2.1 mm diameter by 10 mm, 

as shown in Fig. 5.1. The surface of the round bar and SSJ2 specimens was mechanically polished by 

SiC abrasive paper to #4000 and by buff with diamond abrasive of 0.25 µm, respectively. In case of 

SOC-16 and F82H, tensile specimens were cut out from the extruded bars in the longitudinal 
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directions. Solid solution heat treatment was done for SUS316L. 

 

Table 5.1. Chemical compositions of SOC-16 ODS ferritic steel, F82H ferritic-martensitic steel, and 

SUS316L austenitic steel. (wt %) 

Material C Si Cr W Al Ti Y O N Ar Hf Zr Y2O3 

SOC-16 0.043 ― 14.54 1.93 3.01 0.13 0.28 0.17 0.006 0.0064 0.62 ― 0.36 

Material C Si Mn Cr Ni P S W V Ta N B Mo 

F82H 0.10 0.2 0.5 8.0 ― ― ― 2.0 0.20 0.04 <0.01 0.003 ― 

SUS316L 0.01 0.73 1.06 17.41 12.13 0.032 0.004 ― ― ― ― ― 2.05 

 

 

 

Fig 5.1. The geometry of tensile specimens for SSRT 

 

5.3 Strain rate behavior on the different size and shape of specimens in vacuum. 

With the different size and shape of specimens, steady strain rate test was carried out at a 

temperature of 773 K with strain rate ranging from 1 × 10
-3

 s
-1

 to 1 × 10
-6

 s
-1

 in a vacuum in order to 

evaluate the morphological effect. 

 

5.3.1 Results and discussion. 

The stress-strain curves of SOC-16, F82H and SUS316L after SSRT in vacuum was compared 

between the plate specimen and the round bar specimen, as shown in Fig 5.2.  
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For both plate and round bar specimen, the results of SSRT in a vacuum indicate that the ultimate 

tensile strength and yield strength decreased with increasing strain rate for the ODS ferritic steel and 

F82H ferritic/martensitic steel, while SUS316L austenitic stainless steel shows higher UTS at lower 

strain rate. This phenomenon for SUS316L may explained by the difference of microstructure and/or 

the typical work hardening which is the strengthening of a metal by plastic deformation.  

A miniaturized tensile specimen of 5 mm gauge length, 1 mm width and 0.4 mm thickness was 

recommended by P. Jung and G.E. Lucas et. al [6] if grain size is less than 0.06 mm. The miniaturized 

specimen was considered with a number of factors such as 1) grain size effects on yield stress by a 

Hall-Petch relation, 2) the ratio of thickness, width and length to grain size, 3) the ratio of thickness to 

width, called aspect ratio and 4) the ratio of gauge length to area. The recommended miniaturized 

tensile specimen is very similar to the plate specimen in this work. And the SSRT results from 

SUS316L and F82H corresponded well between plate specimen and round bar specimen. It implies 

that both plate and round bar specimen are effective to evaluate the deformation behavior by SSRT in 

inactive environment such as vacuum.  

In contrast, SOC-16 ODS ferritic steel exhibits slight different stain rate dependence between plate 

and round bar specimen, although the grain size of ODS steel much less than the miniaturized 

specimen’s grain size of 0.06 mm. The SSRT results from plate specimen show relatively constant 

elongation with different stain rates, while that of round bar specimen demonstrated the typical strain 

rate effect. This difference to the plate specimen of ODS steel may explained by the pinning effect of 

the oxide particles along with Hall-Petch relation in high temperature condition. Therefore, the 

miniaturized tensile specimen for the ODS steel needs to be considered. 
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Fig 5.2. Stress-strain curves of SOC-16, F82H and SUS316L after SSRT in vacuum with different 

specimen morphology. 
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5.4 Fracture behavior observation after SSRT in SCPW for the different size and shape of 

specimens 

After SSRT for the plate and round bar specimen in SCPW, fracture surface and side region 

observation was conducted by SEM. The stress–strain curves for plate specimens tested in SCPW 

were not obtained because it was too small to detect the applied load for the owned equipment. To 

investigate the surface roughness effect for the ODS steel in SCPW, machined specimen and ground 

specimen (#4000) after forming processing were compared for the round bar specimen. The SCPW 

was controlled at a pressure of 25 MPa, 773 K and the dissolved oxygen (DO) concentration below 

0.01 ppm by injections of high pure nitrogen gas to the conditioning tank. 

 

5.4.1 Results and discussion 

The SEM images of fracture surface and gauge section after SSRT in SCPW with plate specimen 

and round bar specimen were shown in Fig 5.3 and 5.4, respectively. At higher strain rate, necking 

was observed for all the tested materials in a SCPW, regardless of specimen morphology. However, 

necking was not observed on the ODS steel tested by plate specimen at lower strain rate while round 

bar specimen exhibits cup and corn fracture shape with necking at the same test environment and 

condition. Reduction in area measurement shows good agreement to the SEM observation, indicating 

that the RA value of ODS steel drastically decreased with decreasing strain rate for the plate specimen, 

as shown in Fig 5.5. 

Most of work for the SCC susceptibility of metal by means of SSRT technic adopted a specimen 

with round shape of gauge section. And several works with plate tensile specimen were also 

conducted for ferritic–martensitic (F/M) and austenitic steels at a high temperature water and SCPW 

[7-12]. Among them, a few research group used SSJ2 specimen [10-12]. For research on the 

irradiation-assisted stress corrosion cracking (IASCC), all the tested plate tensile specimens were 

larger than SSJ2 and the recommended miniaturized specimen [13-15]. From the observed 

deformation and strain rate behavior above, SSJ2 specimen demonstrates reliable fracture and 

deformation behavior for the austenitic stainless steels and ferritic/martensitic steels. Meanwhile, the 

specimen miniaturization of ODS steel for SSRT in corrosive environment could be considerable.  
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Fig. 5.3. Fracture surface and gauge section of the plate specimen after SSRT in SCPW at higher 

strain rate (1 × 10
-3

 s
-1

) and lower strain rate (1 × 10
-6

 s
-1

) 

 

Fig. 5.4. Fracture surface and gauge section of the round bar specimen after SSRT in SCPW at higher 

strain rate (1 × 10
-3

 s
-1

) and lower strain rate (1 × 10
-6

 s
-1

) 
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Fig. 5.5 Reduction in area as a function of strain rate with different specimen shapes. 

 

Since SCC is a surface phenomenon, the crack initiation can be influenced by surface area ratio, 

the periphery length/cross sectional area, as a surface effect. Fig 5.6 indicates that surface effect can 

be more remarkable in the plate type specimens than round bar type specimens. Especially for 

corrosion issue, plate specimens suffer much corrosion than round bar specimens. The oxide film 

cracking can be interpreted in terms of specimen geometry effect. 

 

 

Fig. 5.6 The surface area ratio of the tested round bar and plate specimen. 

 

With rectangular test pieces, the corners prevent uniform flow from occurring, and consequently, 

after fracture, the shape of the reduced area is not rectangular and deformation and fracture are 

concentrated in the area far from the corners, as shown in Fig 5.7. This may accelerate oxide film 

cracking. It is considered that the combined effect of the specimen surface area ratio effect and 

specimen corner effect is possible explanation of the degradation to the plate specimen of ODS steel 

in active environment.  
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Fig. 5.7. Sketch of end view of rectangular test piece after fracture showing constraint at corners 

indicating the difficulty of determining reduced area. 

 

Fig. 5.8 shows the surface roughness effect of ODS steel after SSRT in SCPW at lower strain rate. 

The ground specimen (#4000) exhibits cup and corn facture shape with necking. In contrast, less 

reduced area by deforming to fracture appears on the machined specimen (non-polished).  

The effect of surface roughness for austenitic 301, 304, 316L stainless steels clearly shows the 

improved corrosion resistance by sound surface finishing [16-18]. T. Hong and M. Nagumo [16] 

demonstrated that the change in potential relates with the change in grit number of silicon carbide 

paper.  

On the surface of the non-polished ODS tensile specimen, some level of residual stress fields 

could be generated during fabrication process. It is well known that residual stress fields can 

accelerate SCC, possibly in such situations as associated with the presence of hydrogen, where the 

corresponding strain field influences hydrogen entry and diffusion toward the fracture process zone 

[19]. Therefore, it is expected that the residual stress on non-polished ODS specimen can affect SCC 

susceptibility. However, in the previous chapter, it was demonstrated that the ODS steel shows 

excellent resistance to SCC with the aspects of tensile stress and SCPW environment. According to 

the literature survey results, which described at above, and SEM observation results of ODS steel, the 

surface roughness or the residual stress of ODS steel could be a factor to determine the SCC 

susceptibility to the SCPW.  
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Fig. 5.8. Fracture surface and gauge section of the round bar specimen with different surface condition 

after SSRT in SCPW at lower strain rate (1 × 10
-6

 s
-1

) 

 

5.5 Conclusions 

In this chapter, the morphologic effects such as surface roughness and specimen size and shape 

were discussed for the structural metallic materials base on the result from SSRT in vacuum and 

SCPW.  

1) In the case of austenitic stainless steel and ferritic/martensitic steel, the miniaturized specimen 

can give reliable deformation and fracture behavior information to the SCC susceptibility by 

means of SSRT.  

2) However, ODS steel needs careful consideration of miniaturization and surface finishing in 

order to evaluate the SCC susceptibility with using SSRT technique. 

3) Surface roughness or residual stress of ODS steel could be a factor to determine the SCC 

susceptibility to the SCPW.  
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Chapter 6 

Deformation and Fracture Behavior of ODS Steels in Vacuum 
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6.1 Introduction 

Since the Industrial Revolution in the 17
th
 century, CO2 concentration in the atmosphere has been 

increased as a result of human activities, such as the burning of oil, coal and gases, as well as 

deforestation. Recently, global atmospheric concentration of CO2 was about 35% higher than that 

before the Industrial Revolution. Nuclear power is considered to be contributing to environmental 

benefits with reducing CO2 emission. 

One of the critical issues towards high burn-up operation of nuclear power plant has been 

considered to be development of fuel clad material that can overcome the requirement of materials 

performance, such as low susceptibility to stress corrosion cracking (SCC) and high temperature 

performance. Oxide dispersion strengthened (ODS) steels have been developed for the application to 

fuel cladding material [1-6]. Since high-strength ODS steels are considered to be susceptible to SCC, 

evaluation of SCC behavior of ODS steels is important for practical application to the life-extension 

and the safety operation of nuclear power plants. Strain rate dependence of the fracture mode is a 

characteristic trend of SCC of metallic materials. Before investigating the SCC behavior in corrosion 

environment, such as supercritical pressurized water, strain rate dependence in a vacuum should be 

investigated as basal information of material behavior.  

In this study, the effect of strain rate on the deformation behavior was investigated at high-

temperatures in order to get fundamental data for research on the susceptibility to SCC of ODS steels 

and to apply it to advanced fossil and nuclear power plants. 

 

6.2 Experimental 

The materials used were three kinds of 15Cr-4Al-2W-ODSsteels of which the other chemical 

compositions were slightly changed by the addition of small amount of alloying elements. The 

chemical compositions were shown in Table 6.1. The details of the fabrication process of the ODS 

steels are given in the previous papers [1-3]. All of the ODS steels were finally heat treated at 1323K 

for 1h, then air-cooled. The tensile specimens with a gauge length of 5 mm, a width of 1.2 mm and a 

thickness of 0.45 mm were cut out from the extruded bars in the longitudinal directions. To prevent 

the effect of surface defect on the deformation process during the tensile test, the surface of specimens 

was mechanically polished using 0.25 µm alumina abrasive particles. 
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Table 6.1 Chemical compositions of ODS steels (SOC-9, SOC-14 and SOC-16) (wt%) 

Material C Cr W Al Ti Y O N Ar Hf Zr Y2O3 

SOC-9 0.03 15.42 1.85 3.8 0.1 0.28 0.16 0.004 0.0068 ― ― 0.36 

SOC-14 0.052 14.85 1.84 3.73 0.09 0.27 0.17 0.009 0.0061 ― 0.63 0.34 

SOC-16 0.043 14.54 1.93 3.01 0.13 0.28 0.17 0.006 0.0064 0.62 ― 0.36 

 

Steady strain rate tests (SSRT) were performed at a strain rate ranging from 1 × 10
-3

 s
-1

 to 1 × 10
-6
 

s
-1

 in a vacuum of 2.3 × 10
-3

 Pa at a temperature of 773K. The test temperature was controlled within 

in an error of ±3 K.  

The fractured surface was observed by scanning electron microscope (SEM), and the reduction in 

area of the tested specimens was measured to investigate the effects of strain rate on the fracture mode 

in inactive environment.  

 

6.3 Results 

6.3.1 Tensile properties 

Fig. 6.1 (a), (b), and (c) show the stress-strain curves of ODS steels at 773K in a vacuum with the 

different strain rate ranging from 1 × 10
-3 

s
-1

 to
 
1 × 10

-6 
s

-1
, as a function of materials which are SOC-9, 

SOC-14 and SOC-16, indicating the lower the strain rate, the lower the ultimate tensile strength for all 

the materials used in this research at the test conditions. However, the tensile strength of all the 

materials is very similar at each strain rate and no strain rate dependence is observed for the steels, 

although the tensile elongation is different among the materials more or less at each strain rate. The 

yield strength of the ODS steels decreased with decreasing strain rate, as shown in Fig. 6.1 (d). 
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Fig. 6.1  Tensile test results of steady strain rate test for ODS steels at 773K in a vacuum at different 

strain rates ranging from 1 × 10
-3 

s
-1

 to
 
1 × 10

-6 
s

-1
 : (a) SOC-9, (b) SOC-14, (c) SOC-16, and (d) yield 

stress of ODS steels as a function of strain rate 

 

In the previous works on tensile tests at 973K, the tensile strength of Al-added ODS steels (SOC-9) 

was increased by the addition of Zr (SOC-14) or Hf (SOC-16). However, in this study the tensile 

strength of these materials is almost same at test temperature of 773K. At 973K, the deformation 

mechanism of ferritic steels has been considered to be grain boundary sliding which accelerates creep 

deformation at a lower applied stress than yield stress. SOC-14 and -16 ODS steels showed a higher 

creep strength than SOC-9 ODS steel, which is due to the suppression of the grain boundary sliding 

by the precipitation of Zr or Hf carbides and oxides at grain boundaries but not strengthening. 
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6.3.2 Fracture mode 

The susceptibility of SCC can be evaluated by the observation of fracture mode change from 

ductile to brittle grain boundary and/or cleavage fracture and measuring reduction in area. Reduction 

in area after SSRT of ODS steels in a vacuum was shown in Fig. 6.2(a). Relatively constant value 

from 65% to 80% was obtained without regarding to material. 

Fig. 6.2(b) is representative fracture surface and specimen side surface of SOC-14 which was 

deformed at strain rates of 1 × 10
-3 

s
-1

 and
 
1 × 10

-6 
s

-1
. The dimple size of the fracture surface which 

tested at the strain rate of 1 × 10
-3 

s
-1

 is smaller than that of the fracture surface which tested at the 

strain rate of 1 × 10
-6 

s
-1

. However, according to the result of reduction in area and the observation of 

fractured surface, all the specimens tested in this study exhibit ductile fracture mode, indicating high 

reduction in area and many dimples on the fracture surface. 

 

Fig. 6.2 Analysis of fracture mode : (a) Reduction in area after tensile test of the specimens, (b) SEM 

images of SOC-14 after tests at the strain rate of 1 × 10
-3

 and
 
1 × 10

-6 
s

-1
  

 

6.4 Discussion 

There is a simple relationship between the plastic strain and the dislocation density. It is based on 

the fact that when a dislocation moves, two atoms on sites adjacent across the plane of motion are 

displaced relative to each other by the Burgers vector b. With this relationship, therefore, it is well 

known that the strain rate (ὲ) can be expressed by 

𝜀̇ = 𝜌𝑚𝑏�̅�                           (1) 
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where b is Burgers vector, ρm is density of mobile dislocations, and ῡ is average velocity of 

dislocation. 

By repeating the experiment for different times and stress levels the velocity can be determined as 

a function of stress as shown in Fig. 6.3. In the range of velocity between 10
-7

 and 10
-3

 cm s
-1

, the 

logarithm of the velocity varies linearly with the logarithm of the applied stress, thus 

ν ∝ (
τ

τ0
)

𝑚
                           (2) 

where ν is the velocity of dislocations, τ is the applied shear stress resolved in the slip plane, τ0 is 

the shear stress for υ = 1 cm s
-1

, m is a constant [7]. The value of m ≈ 31 was revealed by means of 

plotting from the results of SSRT for ODS steels. The dislocation velocity of ODS steels at tested 

conditions was very sensitive to the applied shear stress, compare to the other materials. This implies 

that the deformation mechanism of the ODS steels could be interpreted in terms of thermally activated 

dislocation motion and/or possibly grain boundary sliding, namely “dislocation mechanism”. 

 

Fig. 6.3. The dependence of dislocation velocity on applied shear stress with various kinds of 

materials and ODS steels 
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6.5 Conclusions  

 

In this study, the strain rate effects on high-temperature tensile properties of high-Cr ODS steels 

were investigated as a basal information of SCC research for ODS steels. The susceptibility of SCC is 

generally evaluated by SSRT at different strain rates. Before the tests in corrosive environment, the 

test was carried out in a vacuum to investigate strain rate effects without any corrosive environment. 

And the main results obtained are the following:   

1) The result of SSRT in a vacuum at 773K with the different ODS steels (SOC-9, SOC-14, 

SOC-16) shows that the lower the strain rate, the lower the tensile strength. However, no 

material dependence was shown with the tested specimens. 

2) Tensile yield stress is remarkably dependent on the strain rate, showing a large increase with 

increasing strain rate, while tensile elongation is not remarkably influenced by strain rate.  

3) Reduction in area after SSRT in a vacuum at 773K was relatively constant, regardless of 

strain rate. 

4) According to the precise observations of fractured surface, there was no strain rate effect on 

the fracture mode, and only ductile fracture was observed for all the specimens tested in the 

study. This trend was independent of material. 

5) The m value in Eq. (2) for the ODS steels was 31 that is very large, implying that the 

deformation mechanism is related with thermally-activated dislocation motion and/or 

possibly grain boundary sliding. 
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The foremost consideration in the successful development and deployment of advanced nuclear 

reactor is the safety, performance and reliability of the systems. One of the critical issues for these 

requirements can be the soundness of structural materials, which endure high-temperature, high 

neutron doses and extremely corrosive environment. Therefore, oxide dispersion strengthened steels 

have been considered to be candidates for several advanced nuclear systems with higher thermal 

efficiency, because of their excellent performance as structural component in such a severe 

environments. However, the experimental data on the SCC susceptibility of “ODS steels” in 

supercritical pressurized water (SCPW) has not been reported to our knowledge. And all of the tests 

for SCC susceptibility in SCPW were conducted in SCPW dissolved with oxygen but not in SCPW 

dissolved with hydrogen. 

In this research, the stress corrosion cracking susceptibility and fracture mode of ODS ferritic steel 

and conventional structural steels such as F82H ferritic/martensitic steel and SUS316L austenitic 

stainless steel in supercritical pressurized water (25 MPa, 500 °C) dissolved with various oxygen and 

hydrogen contents were investigated by means of steady strain rate tests (SSRT), which were 

performed at a higher strain rate of 1 × 10
-3

 s
-1

 and lower strain rates of 1 × 10
-6

 s
-1

 or 5 × 10
-7

 s
-1

. The 

DO and DH contents of the water are DH = 0.4 ppm, DO and DH < 0.01 ppb and DO = 8 ppm. In 

addition, high temperature tensile test in vacuum was also performed at 500 °C to compare the 

deformation and fracture behavior with those of the corrosive environment of SCPW. And the 

specimen geometry effects on the SCC susceptibility and the deformation mechanism in vacuum of 

ODS steels were investigated by means of slow strain rate test (SSRT) in vacuum and SCPW. The 

following results are obtained: 

1. SCC susceptibility and fracture mode of a 15Cr-4Al-2W ODS ferritic steel in SCPW with 

different water chemistry. 

(1) The deformation and fracture behavior of the ODS steel are independent of the test 

conditions, such as strain rate, environment namely vacuum or SCPW and DH/DO contents 

in SCPW. All the tested specimens shows a ductile fracture showing a cup and corn shape of 

fractured region. 

(2) The effect of DH and DO contents on the fracture behavior is negligible for the ODS steel. 

(3) The high resolution EPMA observations revealed that oxide layer thickness depends on the 

DO/DH contents and the thickness of the Cr/Al complex oxide film is thickest for the 

specimen tested in DH=0.4 ppm. In other words, SCPW dissolved with extremely low 
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oxygen contents interrupts the creation of the Cr/Al complex oxide layer and gives rise to 

thicker outer oxide layer in DH = 0.4 ppm and DO & DH < 0.01 ppm. 

(4) The detailed EPMA and SEM analysis showed that small “corrosion layer cracking” was 

observed in the necking region of all the tested specimens except for that tested in vacuum at 

higher strain rate. The number of the oxide layer cracks was not influenced by the change in 

the strain rate ranging from 1 × 10
-3

 s
-1

 to 5 × 10
-7

 s
-1

.  

(5) The diffusion process of the ODS steel in SCPW follows grain boundary diffusion 

mechanism. Although grain boundary diffusion, which is faster than the bulk or effective 

diffusion, was mainly occurred, the thickness of oxide layers on the ODS steel is very thin 

and similar, regardless of the water chemistry. Therefore, it can be suggested that the grain 

boundary diffusion mechanism of the 15Cr-4Al ODS steel could be affected by nano-

particles and presence of Al-Cr rich complex oxide layer. 

(6) After the test in vacuum at a strain rate of 5 × 10
-7

 s
-1

, the corrosion layer cracking was 

observed, indicating that the small amount of oxygen in the vacuum may cause corrosion and 

corrosion layer cracking in necking area.   

(7) The 15Cr-ODS ferritic steel shows no susceptibility to SCC in SCPW in the test condition of 

this research. 

2. The effect of SCPW chemistry on the SCC susceptibility of SUS316L and F82H.  

(1) IG-SCC mainly occurred in SUS316L in the SCPW with dissolved hydrogen. On the other 

hand, the fracture mode at crack initiation stage in SCPW with dissolved oxygen was 

intermixed with intergranular and transgranular SCC. 

(2) Although SUS316L exhibits SCC in SCPW with different water chemistry, the susceptibility 

to SCC was highest in the water with dissolved hydrogen concentration followed by that in 

the deaerated SCPW, while SCC was so limited in the water with dissolved oxygen. 

(3) In contrast, F82H ferritic/martensitic steel is resistant to SCC in the SCPW dissolved with 

hydrogen and oxygen in this test condition, while it suffers from much severe oxidation. The 

surface cracks observed after the test were oxide layer crack limited to the corrosion products. 

(4) The SCC of SUS316L in SCPW in this research can be explained by the combination of slip-

dissolution model and film-induced cleavage model. The resistance to SCC of F82H 

ferritic/martensitic steels was explained by crystalline structure of lattice: BCC lattice is less 

sensitive to SCC through the easiness of cross slip. 

(5) It was predictable that the ODS ferritic steel shows better resistant against SCC than the other 

metallic materials because nano-size oxide particles can trap dislocations by pinning effect, 
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very fine grain size prevents crack development and ferritic structure is also less sensitive to 

SCC. 

3. The effect of specimen geometry and surface condition on the SCC susceptibility in SCPW 

(1) In the case of austenitic stainless steel and ferritic/martensitic steel, the miniaturized 

specimen can give reliable deformation and fracture behavior information to the SCC 

susceptibility by means of SSRT. 

(2) However, ODS steel needs careful consideration of miniaturization and surface finishing in 

order to evaluate the SCC susceptibility with using SSRT technic. 

(3) Surface roughness or residual stress of ODS steel could be a factor to determine the SCC 

susceptibility to the SCPW. 

4. Deformation mechanism in vacuum of the materials studied in this research as a reference of the 

experimental data for comparison between vacuum and SCPW. 

(1) The result of SSRT in a vacuum at 773K with the different ODS steels (SOC-9, SOC-14, 

SOC-16) shows that the lower the strain rate, the lower the tensile strength. However, no 

material dependence was shown with the tested specimens.  

(2) Tensile yield stress is remarkably dependent on the strain rate, showing a large increase with 

increasing strain rate, while tensile elongation is not remarkably influenced by strain rate. 

(3) Reduction in area after SSRT in a vacuum at 773K was relatively constant, regardless of 

strain rate. 

(4) According to the precise observations of fractured surface, there was no strain rate effect on 

the fracture mode, and only ductile fracture was observed for all the specimens tested in the 

study. This trend was independent of material. 

(5) The m value in Eq. (2) for the ODS steels was 31 that is very large, implying that the 

deformation mechanism is related with thermally-activated dislocation motion and/or 

possibly grain boundary sliding. 

The obtained main results of this study are summarized as follows:  

1. Slow strain rate tests in supercritical pressurized water revealed that 15Cr-ODS ferritic steel 

did not show the susceptibility to SCC at all the test conditions in this study such as strain 

rate and water chemistry, indicating that all the tested specimens show a ductile fracture 

with a cup and corn shape of fracture region. Although cracks are observed in the necking 
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region, the cracks do not affect the tensile properties of ODS ferritic steel because it was 

revealed, in this study, that the crack development mechanism of the ODS steel is the 

“corrosion layer cracking” of the very thin oxide film. Therefore, degradation of tensile 

properties of the ODS steel is only influenced by the thickness of oxide film in the 

researched water condition.  

2. SUS316L austenitic stainless steel exhibits greater susceptibility for SCC than ODS ferritic 

steel and F82H ferritic/martensitic steel, while it shows good resistance to corrosion. 

However, SCC susceptibility of SUS316L shows complex behavior to the strain rate change 

and the different water chemistry. It indicates that water chemistry control is essential for the 

SUS316L to apply to supercritical water cooled system. 

3. Although F82H ferritic/martensitic steel did not show any susceptibility to SCC in SCPW, it 

severely suffers from oxidation that is inadequately significant for practical applications. 

4. Additionally, ODS steel needs careful consideration on the specimen size effect and surface 

finishing condition in order to evaluate the SCC susceptibility by means of SSRT. 

 

In conclusion, ODS ferritic steel shows no susceptibility to SCC in SCPW and the steel has 

noticeable feasibility as structural material for application to SCPW cooled nuclear systems, such as 

SCPW reactor, fusion blanket and also high burn-up light water reactors, where high corrosion 

resistance and high-temperature strength are simultaneously required. 
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