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Abstract  

 

A new Croatia-Japan Joint Project “Risk identification and land-use planning for disaster 

mitigation of landslides and floods in Croatia” was initiated in 2009. Grohovo landslide in 

Rijeka was selected as one of the study areas within the research activities of Working 

Group on Landslides of Croatia-Japan Project. New, transportable undrained ring shear 

apparatus, ICL-1, was designed to support research activities. The concept, design and 

construction of the Transportable Undrained Ring Shear Apparatus, ICL-1 are 

explained and described. Stress and pore pressure control tests were conducted on silica 

sand. The results of the tests on silica sand, as well as the experimental procedure, are 

described in detail. In order to simulate natural landslide conditions we conducted two 

types of tests: undrained cyclic stress control tests and naturally drained monotonic pore 

pressure control tests. Typical test results are presented to show the efficiency of this ring 

shear apparatus and the dynamic shear behavior of sand. 

Then, ICL-1 was applied for the Assessment of Triggers in Grohovo Landslide. 

We described the study area and landslide Grohovo in Croatia and gave overview of 

preparatory factors of the landslide by describing geomorphological setting and landslide 

itself. Furthermore, a detail overview of the river characteristics is given with the emphasis 

on its torrential behavior and flood occurrences that are related to mass movement 

occurrences in the past. In order to investigate the impact of rainfall as a trigger in 

reactivation of Grohovo landslide in 1996, we performed rainfall data analysis. Rainfall 

analysis is performed for both long and short-term rainfall data and estimation of both on 

the reactivation of landslide is given. We found that the antecedent conditions (60 days 

before the reactivation) that control groundwater level and soil moisture had a major role in 

landslide reactivation. For the assessment of seismic trigger we employed new ring shear 

apparatus, ICL-1 to simulate dynamic loading. By conducting ring shear test on specimen 

from Grohovo landslide, basic soil parameters are obtained as well. Based on the analysis 

performed and conducted tests, we concluded that cumulative rainfall is the most probable 

trigger of this landslide.  

Then ICL-1 was applied for the investigation of the Negative rate effect in sand -

bentonite mixtures. A significant drop in strength was reported in soils showing 
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transitional shear behavior (between sand and clay), at fast rates of displacement. There is 

a considerable number on residual strength measurement and only few addressing this 

issue. Although negative rate effect was reported in these studies, due to the technical 

difficulties, it was not possible to measure pore pressure during shearing. We conducted a 

series of ring shear tests in silica sand and sand-bentonite mixtures in order to investigate 

this effect. Both single- stage and multi-stage tests in the mixtures resulted in drop of 

residual strength between 0.1 and 1 mm/sec. The results of multi-stage tests in SB 20 and 

SB 30 specimens showed that the residual friction angle increases linearly with the 

logarithm of the rate of displacement. The significance of these finding on the practical 

level is discussed.  
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Chapter 1 Introduction 
 

 

 

1.1   BACKGROUND 

 

A new Croatia-Japan joint project, “Risk identification and land-use planning for disaster 

mitigation of landslides and floods in Croatia” was initiated in 2009. The Grohovo 

landslide in Rijeka was selected as one of the study areas within the research activities of 

The Working Group on Landslides. Research activities include real time monitoring of 

landslides, laboratory soil testing, as well as modelling of landslide behaviour and early 

warning systems (Mihalic and Arbanas 2011). During 2011, monitoring equipment was 

installed in the Grohovo landslide and two boreholes were drilled in order to install 

monitoring equipment and obtain soil samples for laboratory tests (Arbanas and Mihalic 

2012). A new, transportable, undrained ring shear apparatus, ICL-1, was designed by 

Professor Kyoji Sassa for laboratory soil testing. This apparatus was developed through 

2011 with numerous modifications and corrections during that period. It was necessary to 

establish experimental procedures and to apply the apparatus in order to verify its use.  

The ring shear apparatus was designed specifically for the purpose of determining 

residual strength. The primary purpose of the ring shear tests is to study the post-peak 

interval of the stress-displacement curve (Bishop et al. 1971) with emphasis on residual 

strength. Although initially used for determining residual strength developed in cohesive 

soils (Hvorslev 1939, Bishop et al. 1971, Skempton 1985), the apparatus has been widely 

used for better understanding of the undrained shear behaviour of granular soils as well, 

particularly sands, because of its importance in liquefaction analysis where undrained 

steady-state shear strength is required (Poulos et al. 1985, Alarcon-Guzman et al. 1988). 

These conditions are normally reached only at larger shear displacements.  

The measurement of residual strength is poorly understood in geotechnical 

engineering community especially compared to the measurement of peak shear strength 

(Bromhead 1992). Measurement of residual strength is important for soil stability problems 

where the existence of shear zones is known or suspected, as in the case with reactivated 
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landslides. The lack of the interest in the investigation of residual strength compared to the 

peak strength was attributed to practical difficulties in testing to large displacements and to 

underassessment of the importance of residual strength in slope stability (Bosdet 1980). 

Although residual strength is mostly associated with reactivated landslides, some 

investigations showed that residual conditions may also be present on part of the slip 

surface of first-time natural or excavated slope failures in stiff clays and clay shales (Mesri 

and Shahien 2003).  

Although many types have been designed and constructed, none of the devices had 

the capability of measuring pore pressure until 1992. Starting from DPRI-3, all the 

following apparatus of the series had the capability of shear stress-controlled tests, which 

enables simulation of both monotonic and dynamic loadings (real seismic waves or sine 

wave form) under undrained conditions (Sassa et al. 2003, 2004).  

The latest apparatus of the DPRI series are used as a simulation test in addition to 

their basic use for a soil properties measurement. The general purpose of the DPRI ring 

shear testing program is its use as a simulation test of the entire natural landslide 

phenomenon. However, because of all the capabilities of the DPRI series of apparatus, they 

were difficult and expensive to produce. The purpose of the latest apparatus, ICL-1, was to 

design and develop an inexpensive and transportable apparatus to be used in different 

locations.  

 

1.2   OBJECTIVES OF THE STUDY 

 

The overall goal of this study is the development and application of a new ring shear 

apparatus, ICL-1. The specific objectives are: 

1. Development of ICL-1 with all related testing procedures by conducting basic tests 

on materials of known behaviour.  

2. Application of ICL-1 on a real landslide by conducting tests to simulate natural 

conditions. ICL-1 was used for the testing of specimens from the Grohovo 

landslide. 

3. Application of ICL-1 for the investigation of basic spoil behaviour in sand-clay 

mixtures.  
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1.3   ORGANIZATION OF THE DISSERTATION 

 

This dissertation consists of five chapters. A brief explanation of each chapter is outlined 

as follows: 

Chapter 1 Introduction. This chapter presents the background, the study 

objectives, scope of the research, and the organization of the dissertation. 

Chapter 2 Stress- and Pore-Pressure Control-Ring Shear Testing for 

Measurement of the Dynamic Shear Behaviour of Sands. This chapter presents the 

concept, design, and construction of the portable undrained ring shear apparatus, ICL-1. 

The overview of the history and the use of ring shear apparatus from the drained ring shear 

devices by speed-controlled shearing to the undrained ring shear tests with speed and 

stress-control shearing, is given. Stress and pore pressure control tests were conducted on 

silica sand. The results of the tests on silica sand, as well as the experimental procedure, 

are described in detail. To simulate natural landslide conditions, we conducted two types of 

tests: undrained cyclic-stress control tests and naturally drained monotonic pore-pressure 

control tests. Typical test results are presented to show the efficiency of this ring shear 

apparatus and the dynamic shear behaviour of sand. 

Chapter 3 Grohovo Landslide- Assessment of Triggers. This chapter describes 

the study area and the Grohovo landslide in Croatia. It gives overview of the preparatory 

factors of the landslide by describing the geomorphological setting and the landslide itself. 

Furthermore, a detailed overview of the river's characteristics is given with emphasis on its 

torrential behaviour and flood occurrences that are related to mass movement occurrences 

in the past. To investigate the impact of rainfall as a trigger in the reactivation of the 

Grohovo landslide in 1996, rainfall data analysis was performed. Rainfall analysis is 

performed for both long- and short-term rainfall data and an estimation of both on the 

reactivation of the landslide is given. The antecedent conditions (60 days before the 

reactivation) that control groundwater level and soil moisture had a major role in landslide 

reactivation. For the assessment of seismic trigger the new ring shear apparatus, ICL-1, 

was used to simulate dynamic loading. By conducting a ring shear test on a specimen from 

the Grohovo landslide, basic soil parameters were obtained as well. Based on the analysis 

performed, and conducted tests, it was concluded that cumulative rainfall is the most 

probable trigger of this landslide.  
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Chapter 4 Negative Rate Effect in Sand-Bentonite Mixtures. The ICL-1 ring 

shear apparatus was used for the investigation of negative rate effect in cohesive soils. A 

significant drop in strength was reported in soils showing transitional shear behaviour 

(between sand and clay), at fast rates of displacement. However, because of technical 

difficulties, it was not possible to measure pore pressure during shearing. Therefore, a 

series of ring shear tests in silica sand and sand-bentonite mixtures were conducted to 

investigate this effect. Both single-stage and multi-stage tests in the mixtures resulted in a 

drop of residual strength between 0.1 and 1 mm/sec. Comparison of the multi-stage tests 

with gradual change of the rate of displacement, showed the following: in the case of an 

increase in the rate of displacement, there is a significant decrease of shear resistance and 

the effective friction angle in SB20 and SB30 specimens. The results showed that the 

residual friction angle increases linearly with the logarithm of the rate of displacement. The 

significance of these finding on a practical level is discussed.  

Chapter 5 Conclusion. This dissertation is concluded based on the overall research 

results and findings presented and discussed in the previous chapters, and future research is 

suggested. The assessment of the triggers for the Grohovo landslide showed that the 

groundwater level change is the most important in landslide reactivation. Rainfall analysis 

indicated that the groundwater level is mainly influenced by a cumulative, long rainy 

period. However, additional parameters and a physically based rainfall threshold should be 

determined. The negative rate effect was investigated by conducting a series of ring shear 

tests on silica sand and sand-bentonite mixtures. Results of both single- and multi-stage 

tests in SB20 and SB30 specimens confirmed earlier findings; namely, a decrease in 

strength with an increase of the rate of displacement.  
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Chapter 2 Stress- and Pore-Pressure 
Control-Ring Shear Testing for the 

Measurement of the Dynamic Shear 
Behaviour of Sands 

 

This chapter presents the concept, design and construction of the portable undrained ring 

shear apparatus, ICL-1. The apparatus was designed to be inexpensive and transportable, 

so it could be used in different locations. Although reduced in dimensions, it can keep 

undrained conditions up to 1 MPa of pore water pressure (up to two times greater than in 

previous versions of apparatus) and load normal stress up to 1 MPa. Stress- and pore- 

pressure control tests were conducted on silica sand. The results of the tests on silica sand, 

as well as the experimental procedure, are described in detail. In order to simulate natural 

landslide conditions, we conducted two types of tests: undrained cyclic stress control tests 

and naturally drained monotonic pore pressure control tests. Typical test results are 

presented to show the efficiency of this ring shear apparatus and the dynamic shear 

behavior of sands. 

 

2.1   INTRODUCTION: HISTORY AND USE OF RING SHEAR 

APPARATUS 

 

The drained ring shear apparatus was designed specifically for the purpose of determining 

residual strength and to study the shear strength at failure and after failure. There are two 

advantages of the ring shear test: it shears the specimen continuously in one direction for 

an unlimited displacement and the cross section area of the shear plane is constant during 

shearing (Bishop et al. 1971). Due to this, a complete shear stress-shear displacement 

relationship (from peak to residual) can be measured.  

The laboratory shear apparatuses most widely used to measure the peak strength for 

stability analyses are triaxial, direct shear and simple shear apparatuses. However, because 
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they produce a limited shear displacement, they are not suitable for determination of the 

residual shear strength. As a result, the ring shear apparatus was designed and developed 

and then widely used in the analysis of slope stability.  

Although the ring shear was initially designed for the measurement of residual 

shear strength that governs the stability of previously failed structures (reactivated 

landslides), later, it was used in the investigation of natural phenomena that include large 

displacement,  such as long run-out landslides.  

 

2.1.1  Drained Ring Shear Test without Pore-Pressure Measurement 
 

Today, there are several ring shear apparatuses available but the two most widely used are 

the apparatus based upon the Imperial College and Norwegian Geotechnical Institute 

concept (Bishop et al. 1971) and the Bromhead ring shear apparatus (Bromhead 1979). The 

main difference between these two types is in the configuration of the rings and 

accordingly, the location of the shear plane. In a split-ring device (Bishop type), the shear 

zone is at the mid-height, while in the solid-ring device (Bromhead type), the shear zone is 

at the top of the specimen and is often categorizied as a "smear-type" ring shear device 

(Meehan et al. 2008). Both types of ring shear apparatus have been modified and improved 

from their original design (Bromhead type - modified by Savage and Sayed 1984, Stark 

and Eid 1993, Stark and Poeppel 1994, Stark and Contreras 1996, Garga and Sedano 2002, 

Sedano et al. 2007, Meehan et al. 2007, 2008, Merchan et al. 2011, and Bishop type by 

Sassa 1984, Hungr and Morgenstern 1984, Tika 1989, Tika et al. 1996). The Sadrekarimi 

device is similar to the Bromhead type, except that the shear zone is not at the top, but in 

the bottom of the specimen (Sadrekarimi and Olson 2009).  

All previously described devices were not able to perform undrained shearing tests 

because it was not possible to prevent water flow through the rotating gap (Table 2.1). 

Also, they have speed-controlled shearing. The exception is Sadrekarimi’s device that can 

perform both speed and stress-controlled tests.  
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2.1.2  Undrained Triaxial Tests with Pore-Pressure Measurement 
 

The undrained shear behaviour of sands is an important design issue, especially in 

liquefaction analysis where undrained steady state shear strength is required (Poulos et al. 

1985, Alarcon-Guzman et al. 1988).  

Based on the results of triaxial tests, Castro and Poulos (1977) and Poulos (1981) 

proposed the steady state concept and defined it as the state of deformation in which a soil 

mass is continuously deforming at constant volume, constant normal effective stress and 

constant shear stress. It is achieved after all particle breakage and all particle orientation 

has reached a steady state condition (Poulos et al. 1985).  

The study of the steady state condition is very limited in triaxial test. The steady 

state study by triaxial compression tests has both advantages and limitations. Beside the 

fact that it has established procedures, triaxial tests can be stress or strain-controlled and 

they have drainage control, and both drained and undrained tests can be conducted. 

However, due to the limited displacement of the device, triaxial testing may not reach a 

true steady state. The steady state conditions are normally reached only at a larger shear 

displacement, well beyond those which can be attained in a triaxial test.  

There are a few papers that give direct comparison of the steady state obtained in 

triaxial compression tests and ring shear tests. Okada et al. (2000) compared the steady 

state obtained in triaxial compression tests with the undrained ring shear tests while Garga 

and Sedano (2002) compared triaxial consolidated-undrained compression with constant 

volume ring shear tests.  

 

2.1.3  Undrained Ring Shear Tests with Pore-Pressure Measurement 
 

Based on the experimental results of undrained cyclic ring shear tests on soil samples from 

earthquake-induced catastrophic landslides, the concept of sliding surface liquefaction was 

introduced by Sassa (Sassa 1996, Sassa et al. 1996). Sliding surface liquefaction has been 

defined as the liquefaction that takes place only within the shear zone.  it occurs due to 

grain crushing and resulting volume reduction as the shear displacement progress, which is 
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particularly important for landslides with high mobility and long travel distances (like flow 

slides or liquefaction failures of slopes).  

Sassa and his colleagues have developed seven designs of ring shear apparatus 

since 1984 (Sassa et al. 2004). The later five apparatus of the series (DPRI-3, 4, 5, 6 and 7) 

have the capability of shear stress-controlled tests, which enable simulation of both 

monotonic and dynamic loadings (real seismic waves or sine wave form) under undrained 

conditions. Some of the apparatuses in the series also have pore-pressure control tests to 

simulate the ground water rise in the slope and/or displacement-control. Due to all these 

capabilities, these undrained dynamic loading ring shear apparatus are not used only as a 

basic soil test, to measure shear resistance as a parameter, but also as a landslide simulation 

test that can reproduce the stress and pore pressure acting on a potential sliding surface and 

the resulting sliding surface formation and the post-failure motion which will occur in the 

natural slopes during rainfalls, earthquakes and other stress changes. Compared to previous 

apparatus (DPRI-1 to 7), the new apparatus, ICL-1, has much smaller dimensions, but 

higher performance in undrain capability (Table 2.1). It can keep undrained conditions up 

to 1 MPa of pore water pressure and load normal stress up to 1 MPa. This makes it suitable 

for investigation of large-scale and deep-seated landslides. 

 

2.2   UNDRAINED PORTABLE RING SHEAR APPARATUS 

 

The prevention of the leakage of water and soil through the gap between the upper and 

lower rings and the measurement of pore water pressure are the most difficult in the 

undrained ring shear apparatus.  

As stated by Sadrekarimi and Olson (2009), although the undrained ring shear 

apparatus is effective and powerful, this device is complex and very expensive to 

manufacture. The Undrained Portable Ring Shear Apparatus, ICL-1 (Figure 2.1), was 

designed by Professor Sassa in 2011, as part of a project of SATREPS (Science and 

Technology Research Partnership for Sustainable Development) and the JICA/JST project 

"Risk identification and land-use planning for disaster mitigation of landslides and floods 

in Croatia" (IPL-161). The goal was to develop a much more inexpensive and transportable  
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Table 2.1 Characteristics of the Portable Undrained Ring Shear Apparatus ICL-1, compared with other ring shear apparatus (modified from Sassa et al. 
2004). 

 

 
Bishop 

(1971) 

LaGatta 

(1970) 

Hungr & 

Morgenst

ern (1984) 

Sassa 

(1992) 

DPRI-3 

Sassa 

(1996) 

DPRI-4 

Sassa 

(1997) 

DPRI-5 

Sassa 

(1997) 

DPRI-6 

Garga & 

Sendano 

(2002) 

Sassa 

(2004) 

DPRI-7 

Sadrekar

mi & 

Olson 

(2009) 

Sassa 

(2011) 

ICL-1 

Di 
a 10.16 5.08 22.0 21.0 21.0 12.0 25.0 9.2 27.0 20.3 10.0 

Do 
b 15.24 7.11 30.0 31.0 29.0 18.0 35.0 13.3 35.0 26.9 14.0 

Hmax
c  1.9 2.5 2.0 9.0 9.5 11.5 15.0 2.0 11.5 2.6 5.0 

σmax 
d 980 800 200 500 3.000 2.000 2.000 660 500 700 1000 

vmax 
e - 0.001 100.0 30.0 18.0 10.0 224.0 - 300.0 788 5.4 

UTf No No No Yes Yes Yes Yes No Yes No Yes 

umax 
g     400-600 400-600 400-600  600  1000 

 

a Di-Inner diameter (cm), b Do- Outer diameter (cm), c Hmax -Maximal height of specimen (cm), d σmax- Maximal normal stress (kPa), e 

vmax-Maximal shear speed (cm/s), f UT-Undrained testing, g umax-Maximal pore pressure (kPa) 
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undrained ring shear apparatus for use in different organizations with  standard electricity 

available anywhere (single phase electricity of 220 and 110 V). 

 

 

Figure 2.1 Transportable ring shear apparatus (ICL-1): right- ICL-1 on a cart, left- larger view.  

 

In order to be easily transportable, its dimensions were significantly reduced 

compared to previous apparatus of the DPRI series. ICL-1 has the weight of approximately 

100 kg, a maximum height of 95 cm, the dimensions 50x50 cm, and is set on a handcart 

(Figure 2.1). The reduction in dimensions of the latest apparatus was possible because of 

smaller shear velocity (5.4 cm/s) and a new loading system in which normal stress is 

applied by pulling the central axis instead of the high loading frame to push the vertical 

force onto the sample. 

 

2.2.1  General Structure 
 

An annular ring-shaped specimen (S) is confined laterally between the outer and inner 

rings and is sheared at its mid-height. During the test, the specimen is subjected to a 

constant normal stress, and loaded through an annular loading platen connected to an oil 
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piston (Figure 2.2). The lower half of the shear box (SB) rotates in both directions (marked 

in Figure 2.2 as the rotating part), while the upper half (marked as a movable part in Figure 

2.2) of the shear box is restrained with two shear resistance cells (S1 and S2 in Figure 2.2) 

that  measure shear resistance. When failure occurs, the specimen is sheared by a relative 

rotary motion and the lower part rotates along with the rotating table.  

The inner diameter of the shear box is 10 cm, the outer is 14 cm, and the shear area 

is 75.36 cm2. The maximum height of the specimen is 5 cm. By adding porous metals to 

the lower ring, the lower height of the shear box can be adjusted from 0.7 to 1.3 cm, which 

is very useful for a limited amount of specimens, as well as for low permeable specimens.   

 

 

Figure 2.2 Mechanical structure of the apparatus (S- Specimen; CR- Connection ring; C- 
Connection; N- Load cell for normal stress; S1, S2- Load cell for shear resistance; P- Pore- 

pressure transducer; GS- Gap sensor; VD- Vertical displacement transducer; SD- Shear 
displacement transducer). 
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2.2.2  Loading System and Gap Control System 
 

Static and cyclic normal stress is generated by an oil piston controlled by a servo-motor 

(200 W) (Figure 2.3). Normal stress is applied by pulling the central axis.  

The shear stress is given by the second servo control motor (400 W) either by shear 

stress-control, speed-control, or displacement-control. Shear stress in stress-control mode 

can be applied in different ways: as static (monotonic) or dynamic (cyclic or seismic).  

During the test, the gap value is maintained constant automatically by the oil piston 

controlled by the third servo- motor (Figure 2.3). The gap servo-motor uses a feed-back 

signal obtained from a gap sensor (GS) with the precision of 1/1000 mm. The gap control 

system (oil piston and gap sensor) enables the prevention of the leakage of water and 

specimen during high-speed shearing.  

 

 

Figure 2.3 Electronic control system (N- Load cell for normal stress; S1, S2- Load cell for shear 
resistance; GS- Gap sensor; FS- Feedback signal CS- Control signal; PC- Computer; SG- Signal 

generator; SM- Servo-motor; OP- Oil Piston; SA- Servo amplifier). 
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2.2.3  Monitoring System 
 

The vertical load is monitored by a normal load cell (N in Figure 2.2) with the capacity of 

10 kN. The measured vertical load is the sum of the loads on the rubber edge (contact 

pressure), the friction between the sample and the sides of the upper shear box (SB) and 

the weight of the upper part of SB.  

The shear load acting on the shear surface is monitored by a pair of the shear load 

cells (S1 and S2 on Figure 2.2), each of 1 kN capacity. The resistance acting on the shear 

plane is calculated from the measured value in the load cells (S1 and S2) retaining the 

upper half from the rotation against the loaded shear stress on the shear plane. The real 

shear resistance of the soil is the measured value in the load cell minus the rubber-edge 

friction.  

The horizontal shear displacement is monitored by a rotary transducer (SD) at the 

center of the shear area. The vertical displacement is measured by a linear transducer (VD) 

that measures the displacement of the loading plate (LP).  

The data concerning normal stress σ, shear stress  τ, pore pressure  u, variation of 

sample height and shear displacement as well as gap value and control signal given by the 

servo-motor (for both vertical or shear stress) are stored by a personal computer. A 

software application developed by Marui & Co., Ltd. Osaka, is used for control and data 

recording.  

 

2.2.4  Undrained Shear Box and Pore-Pressure Measurement  
 

The most essential part of the ring shear apparatus is the construction of the undrained 

shear box. Design of the shear box (SB) is illustrated in Figure 2.4 with an enlarged 

diagram of the left half of the cross section of the SB and its surroundings, including the 

water pressure measurement system.  

Pore pressure is monitored by two pore-pressure transducers (P), connected to the 

valves placed on the gutter in the shear zone. The pore-pressure transducer has a 

diaphragm that is deformed by water pressure which provides electrical output. The gutter 

(7×7 mm) extends along the entire circumference of the inner wall of the outer - upper ring 
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of the SB (Figure 2.4). The gutter is located 2 mm above the shear surface and is filled 

with felt cloth sandwiched between two metal filters (with pore sizes of 100 µm and 40 

µm). Although the monitoring point is not at the center of the shear zone, this system is 

sensitive to pore-pressure monitoring. 

 

Figure 2.4 A half-section of the shear box and a close-up diagram of the edges plus a photo of the 

shear box with a metal filter and gutter detail below (CR- Connection ring; C- Connection; N- Load 

cell for normal stress;  P- Pore-pressure transducer). 

 

In the DPRI apparatus, rubber edges are fixed with glue to the lower pair of rings, 

but in ICL-1 they are pressed by Teflon rings and stainless steel rings without glue. When 

rubber edges are used or damaged they can be easily replaced with a new pair by 
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unscrewing the Teflon rings and stainless steel rings. Rubber edges used in ICL-1 have 2 

mm width and 90˚ of the rubber-hardness index. Water leakage tightness is provided by O-

rings on the upper loading plate and rubber edges on two confining rings of the lower 

rotary pair. 

 

2.3   SPECIMEN CHARACTERISTICS  

 

In this study Silica Sand No8 is used because it is a material commercially available in 

Japan and the results can be easily compared to previous studies made on ring shear 

apparatuses (Okada et al. 2000, 2004, 2005; Sassa et al. 2003). Silica Sand No. 8 is sand 

made by grinding silica sandstone, mainly consisting of quartz and smaller amounts of 

feldspar. Silica Sand No 8 is a silty sand (particles ranging from fine sand to silt), with a 

mean diameter of D50 = 0.07 mm, and a specific gravity Gs = 2.59. Figure 2.5 shows the 

grain-size distribution of used Silica Sand No 8. The range of values of dry densities 

(minimal 1.29 g/cm3 and maximal 1.31 g/cm3) and void ratios are given in Table 2.2. 

 

 

Figure 2.5 Grain-size distribution of Silica Sand No 8. 
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2.4   PREPARATION TESTS 

 

Before testing the specimen, preparation tests, consisting of water leakage and rubber edge 

friction tests should be made. Preparation tests are made only with water inside the shear 

box. To reduce friction and prevent leakage, rubber edges are sprayed with Teflon spray 

and coated with silicon grease. Then, the shear box is assembled and the gap value is 

adjusted by applying an initial contact force of 0.8 kN, in order to make contact pressure 

between the upper pair of rings and the rubber edges on the lower part of the SB. The 

contact force is maintained constantly during the test through the gap control system. After 

gap value is adjusted, a water leakage test is conducted to proof that water leakage will not 

occur under certain normal stress and shear speeds.  

Next, the friction between the rubber edge and the upper part of ring is measured. 

The measured friction corresponds to the applied contact force of 0.8 kN. The results of the 

rubber edge friction measurement are shown in the Figure 2.6. An initial increase in shear 

resistance is reached at 0.1 mm of shear displacement and represents elastic deformation of 

the rubber edge. After this initial peak, the shear resistance has almost the constant value of 

approximately 15 kPa for all shear speeds.  

 

2.5   SPECIMEN PREPARATION 

 

After preparation tests, tests on a saturated specimen were performed and consisted of the 

following steps: CO2 saturation of SB; specimen setting; de-aired water circulation; 

saturation checking by BD measurement; specimen consolidation and shearing (by cyclic 

stress control and pore pressure control). 

After the gap was adjusted, SB without specimen was filled with CO2. The CO2 

was very slowly introduced into the SB through the lower drainage line and discharged 

from all valves in the SB. This was necessary in order to expel the air entrapped in the 

gutter, the line to the pore pressure sensor, and porous metal filters of the lower ring. 

Dry silica sand was poured by funnel into the SB using a free-fall deposition 

method. Filter papers were placed on the top and bottom of the specimen to prevent 

particle entering. The specimen height was 37 mm from the top. Before water circulation 
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and checking BD, the specimen was initially consolidated under the normal stress of 25-30 

kPa in the drained condition, to make contact between the specimen (i.e. filter paper) and 

porous metal of LP. 

 

 

Figure 2.6 Rubber edge friction: a) Shear displacement of 5 m and b) Shear displacement 1 mm. 

 

After the contact was obtained, water circulation could start to enable full water 

saturation of the specimen. De-aired water was supplied through the lower drainage line, 

and discharged from the upper drainage line until all air bubbles were expelled. The water 

circulation process was kept at a very slow rate. 

After the specimen was fully saturated, the degree of saturation was checked by 

using BD value. As proposed by Sassa (1988), BD is a pore-pressure parameter that is 

related to the degree of saturation in the direct-shear state, formulated as: 

 

σ∆
∆= u

BD          (Eq. 2.1) 
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where ∆u is the increment of pore-water pressure and ∆σ is a change in total normal stress- , 

measured in undrained conditions. Specimens with BD greater than 0.95 are considered to 

be fully saturated. For specimens prepared for undrained cyclic stress control tests, we 

obtained BD>0.95 (Table 2.2). For pore-pressure controlled tests, it is not necessary to 

obtain a high BD value since shearing takes place in the naturally drained state.  

After checking the BD value, normal stress is decreased to a value where the excess 

pore pressure is close to zero so the upper valve can be open. Then, normal stress was 

applied to the pre-decided value of 400 kPa. After normal stress, a different shear stress 

was applied (150, 200, 250 kPa) in a drained condition to simulate the stress state in the 

slope. 

The initial dry density as well as the initial void ratio was calculated after initial 

normal and shear stress was applied in drained condition, based on vertical displacement 

monitoring (Table 2.2).  

 

Table 2.2 Ring shear test conditions. 

Test Type 
Initial Stress 

σ0, τ0, (kPa) 
BD Drainage 

Initial Dry 

Density 

ρd (g/cm3) 

Initial 

Void 

Ratio 

e 

1 CSSCT a 400, 250 0.97 Undrained 1.30 0.99 

2 CSSCT a 400, 200 0.97 Undrained 1.29 1.01 

3 CSSCT a 400, 150 0.95 Undrained 1.29 1.01 

4 PPCT b 400, 250 / Drained 1.31 0.98 

5 PPCT b 400, 200 / Drained 1.30 1.0 

6 PPCT b 400, 150 / Drained 1.30 1.0 

a CSSCT= Cyclic Shear Stress Control test, b PPCT= Pore Pressure Control test. 
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2.6   TESTING AND RESULTS 

 

After initial stresses on the sliding surface were reproduced, undrained cyclic shear stress 

control tests and naturally drained pore-pressure control tests were performed. Test 

conditions are summarized in Table 2.2 and test results described later in section. 

To simulate natural landslide conditions two types of tests were conducted: 

undrained cyclic stress control tests and naturally drained pore-pressure control tests. 

Undrained cyclic stress control tests were made to simulate dynamic loading and 

earthquake-induced landslides, while pore-pressure control tests were made to simulate the 

rise of the groundwater level during rainfall.  

 

2.6.1  Undrained Cyclic Stress Test 
 

Undrained cyclic loading tests were performed on saturated silica sand specimens. After 

initial stresses were created by applying pre-decided normal and shear stress in a drained 

condition, dynamic, cyclic loading was applied in an undrained condition. For all 

undrained cyclic tests, 100 cycles of sine wave shear stress were loaded at 0.2 Hz. We used 

the constant increment of 100 kPa of shear stress. Three tests were conducted, under 

different initial shear stresses (250, 200 and 150 kPa) that correspond to different slope 

inclinations (32°, 27° and 21°). Monitored data were recorded with a sampling of 50 Hz. 

The results of undrained cyclic tests are presented in Figures 2.7-2.9, where each 

figure consists of the stress path, time series, and shear displacement data. Stress path 

graphs (Figures 2.7a, 2.8a and 2.9a) showing the peak failure line and the failure line 

during motion, and also the apparent friction angle. The blue line is the total stress path 

(TSP) and the red line is the effective stress path (ESP). Values of the shear resistance 

shown on Figures 2.7 – 2.9 are the corrected values obtained by subtracting rubber edge 

friction of 15 kPa (Figure 2.6) from the monitored shear stress value.  

Figure 2.7 shows the undrained cyclic test for the specimen consolidated under an 

initial normal stress of 400 kPa and a shear stress of 250 kPa. In this case, soon after initial 

increment of 100 kPa of cyclic loading was applied, an effective stress path reached the 

failure line and moved down along the failure line during motion. Peak shear resistance 
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was reached at 282.3 kPa at shear displacement of 3.9 mm. The peak friction angle of 

35.0° (Figure 2.7a) was calculated. From the failure line during motion, the friction angle 

during motion was calculated to be 31.0°. The test gave an apparent friction angle of 10.5°. 

Shearing stopped after 250 seconds at the displacement of 6 meters before 100 cycles were 

applied (Figure 2.7 b and c).  

Figure 2.8 shows the undrained cyclic test for the specimen consolidated under an 

initial normal stress of 400 kPa and a shear stress of 200 kPa. Similarly to the previous 

case, soon after cyclic stress was applied, an effective stress path reached the failure line 

and moved down along the failure line during motion. Peak shear resistance was reached at 

260.65 kPa and a peak friction angle of 34.7°, the friction angle during motion (30.5°), as 

well as the apparent friction angle of 11.5° were calculated (Figure 2.8a). Shearing was 

stopped when shear displacement reached 3 m (Figure 2.8 b and c). 

For the case when the specimen was consolidated under the initial normal stress of 

400 kPa and a shear stress of 150 kPa, similar results were obtained. Results of these tests 

are shown in Figure 2.9. Peak shear resistance was reached at 223.5 kPa and peak and 

apparent and friction angle during motion were calculated (35.9°, 10.7° and 30.5° 

respectively). 

 

2.6.2  Pore-Pressure Control Test 
 

Pore-pressure control tests were conducted to simulate the failure and post-failure 

behaviour corresponding to rainfall in a naturally drained condition. Pore pressure is 

supplied to the shear box through the upper drainage valve and then gradually increased. 

Since the upper valve is open, the water is free to move and this is considered to be a 

naturally drained condition. The pore pressure is controlled by the computer and the water 

tank connected to the nearby air tank with a servo-controlled air regulator.  

Three pore pressure control tests were performed in this study, under the same 

initial normal stress (400 kPa) and different initial shear stress (150, 200, 250), 

corresponding to different slope inclinations (21°, 27°, 32°). Then, pore pressure was 

increased until failure, while keeping normal (400 kPa) and shear stress (150, 200, 250 

kPa) constant. The same pore-pressure increase rate (0.5 kPa/s) was used in all tests.  
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Figure 2.7 Undrained cyclic 

loading test 1 for initial shear stress of 

250 kPa (BD=0.97, ρd =1.30 g/cm3): a) 

Stress path, b) Time series data for 

normal stress, pore-water pressure, 

shear resistance, control signal and 

shear displacement, and c) Shear 

displacement series data for normal 

stress, pore-water pressure and shear 

resistance. 
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Figure 2.8 Undrained cyclic 

loading test 2 for initial shear stress of 

200 kPa (BD=0.97, ρd=1.29 g/cm3): a) 

Stress path, b) Time series data for 

normal stress, pore-water pressure, 

shear resistance, control signal and 

shear displacement, and c) Shear 

displacement series data for normal 

stress, pore-water pressure and shear 

resistance.  
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Figure 2.9 Undrained cyclic 

loading test 3 for initial shear stress of 

150 kPa (BD=0.95, ρd=1.29 g/cm3): a) 

Stress path, b) Time series data for 

normal stress, pore-water pressure, 

shear resistance, control signal and 

shear displacement, and c) Shear 

displacement series data for normal 

stress, pore-water pressure and shear 

resistance. 
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Stress paths of all pore pressure control tests are shown in the Figure 2.10 and time 

series and shear displacement data separately for each test in Figures 2.11-2.13. Shear 

resistance was corrected by subtracting the rubber edge friction of 15 kPa. Figure 2.10 

shows that depending on the initial stress (I1, I2 and I3), specimens reached the failure line 

at different points (F1, F2 and F3) and different peak friction angles accordingly. Failure 

occurred when the effective stress path reached the failure line, and it moved down along 

the failure line during motion.  

As can be seen, the failure line during motion is 31.5°. The calculated peak as well 

as the friction angle during motion obtained in the pore-pressure control tests (Figure 2.10) 

are in accordance with the values obtained in cyclic stress control tests (Figures 2.7-2.9). 

 

 

Figure 2.10 Stress paths of pore pressure control tests (I1-I3). 

 

The results obtained by cyclic stress control and pore-pressure control tests are in 

accordance with the results obtained for the same specimen by Okada (Okada et al. 2000, 

2005) and Sassa (Sassa et al. 2003) using DPRI-5 and DPRI-6 apparatus.  
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Figure 2.11 Time series and shear displacement data for initial stress I1 (400 kPa, 150 kPa). 
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Figure 2.12 Time series and shear displacement data for initial stress I2 (400 kPa, 200 kPa). 
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Figure 2.13 Time series and shear displacement data for initial stress I3 (400 kPa, 250 kPa) 
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2.7   SUMMARY AND CONCLUSION 

 

Although all the ring shear devices from the DPRI series were recognized as effective and 

powerful, their main disadvantage was that they are complex and expensive to produce 

(Sadrekarimi and Olson 2009). The transportable and compact high-stress undrained-

loading ring shear apparatus presented in this paper (ICL-1) was developed by Sassa in 

2011. The initial plan was to develop a transportable device to be donated to Croatia as a 

part of the Science and Technology Research Partnership for Sustainable Development 

(SATREPS)  

This chapter has presented the principle of the design and the structure of the 

transportable ring shear apparatus ICL-1. Since one of the goals of this apparatus was to be 

transportable and used in Croatia, some of the modifications were made in order to be 

easily maintained outside of Japan. Most of these modifications have practical meaning. 

However, in the development of a new testing device, consideration had to be given to 

simplicity in the construction and operation of the testing apparatus, specimen preparation 

and to time required for testing. As stated by Bishop et al. (1971), the ring shear apparatus 

often fails in satisfying some of the criteria of simplicity of construction and operation, and 

the duration of tests. With some of the modifications in ICL-1, some of the criteria 

mentioned above are satisfied. Rubber edges are not fixed with glue to the lower pairs of 

rings, like in previous DPRI series, but with the Teflon and stainless steel rings and screws. 

This enables easy replacement of the damaged rubber edge with the new one. Also, the 

gutter can be opened for cleaning and change of metal filters and felt cloth. Depending on 

the material tested, annular metal filters with different pore sizes could be used. The height 

of the lower part of the shear box can be adjusted by adding porous metals. This is useful 

for test-time reduction in low permeable specimens.  

By performing tests (undrained cyclic stress control test and naturally drained pore-

pressure control test) on fine silica sand, related experimental procedures are presented in 

detail. Typical test results are presented to show the efficiency of this ring shear apparatus 

as well as its application for earthquake-induced landslides through the undrained cyclic 

loading test and the rain- induced landslide through the drained pore-pressure control test.  



− On Ring Shear Apparatus 

 

- 31 - 

 

Although initially designed for sub-aerial landslides, ICL-1 was recently used for 

investigation of the hypothesis of an earthquake-induced submarine landslide in Suruga 

Bay (Sassa et al. 2012). 
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Chapter 3 Grohovo Landslide- 

Assessment of Triggers 
 

 

 

3.1   INTRODUCTION 

 

Different phenomena cause landslides. These phenomena can be grouped as preconditions, 

preparatory, and triggering factors. Preconditions (pre-disposing factors) are considered to 

be static, inherent factors (e.g. geological composition or structure, topographic geometry, 

etc.). Opposite to static, there are dynamic factors, such as preparatory and triggering 

factors that change with time. Preparatory factors decrease the stability of a slope over time 

without actually initiating movement and the triggering factors are those that initiate 

movement (Glade and Crozier 2005, Crozier et al. 2013).  

Triggering by rainfall or more general hydrological triggering is commonly known 

as one of the principal natural landslide initiation mechanisms.  Extensive literature on this 

subject exists (Terlien et al. 1998, Reichenbach et al. 1998, Glade et al. 2000, Iverson 2000, 

Jakob and Weatherly 2003, Jakob et al. 2006, Aleotti 2004, Cardinali et al. 2006, Guzzetti 

et al. 2004, 2007, 2008). Different approaches have been presented to determine the 

amount of precipitation needed to trigger landslide and to explain the relationship between 

rainfall and failures.  

Rainfall thresholds (empirical or physically based) are often used and applied in 

early warning systems. Different rainfall and climate variables (and their combinations) are 

used for the definition of thresholds in rainfall-induced landslides. Guzzetti listed 25 

rainfall and climate variables, but the ones that are most commonly used are: D- rainfall 

duration, E-cumulative event rainfall, C-critical rainfall, R-daily rainfall, I-rainfall intensity, 

A-antecedent rainfall (Guzzetti et al. 2008). They are characterized by an extreme temporal 

variability (Van Asch et al. 1999, Reichenbach et al. 1998, Pasuto and Silvano 1998, 

Guzzetti et al. 2008) and can be subdivided into short-term (short intense rainfall or rainfall 
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event) and long-term components (antecedent rainfall or pre-event conditions). The 

temporal occurrence of landslides and movement activities are controlled by rainfall 

patterns with different types of temporal resolution (from minutes to months). Both 

shallow- and deep-seated landslides can be triggered by rainfall. It is widely recognized 

that shallow failures (soil slips and debris flows with depth <2 m) can be triggered by high 

intensity and short rainfall duration, while most of the deep-seated landslides (≥5 m) are 

affected by long rainfall periods characterized by low to moderate average rainfall intensity 

(Corominas and Moya 1999, Aleotti 2004, Cardinali et al. 2006, Guzzetti et al. 2007). The 

general pattern could be explained by the definition of hydrological triggering as a 

decrease in shear strength due to an increase in pore-water pressure on the failure surface 

which results in a slope failure. Pore-water pressure increase may be directly related to 

rainfall infiltration and percolation (saturation from above) or indirectly, as the result of the 

build-up of a perched water table or a groundwater table (saturation from below) (Terlien 

1998).  

Beside the above mentioned conditions, short- and long-term rainfall conditions 

(rainfall event/ antecedent rainfall) that will affect reactivation or initiation of landslides, 

there is another group of conditions that are also important to consider, the most important 

being discharge (Reichenbach et al. 1998, Jakob and Weatherly 2003, Jakob et al. 2006). 

The Grohovo landslide in Croatia, the biggest landslide on the Croatian coast, is 

selected as one of the study areas within Japanese-Croatian research project that was 

initiated in 2009. Research activities include real-time monitoring of landslides, laboratory 

soil testing, modeling of landslide behaviour, and an early warning system (Mihalic and 

Arbanas 2011, Arbanas and Mihalic 2012). For soil testing, the new, transportable ring 

shear apparatus, ICL-1 was designed. Two boreholes were drilled in order to install 

monitoring equipment and obtain soil samples for laboratory tests. 

In this chapter an overview of the preparatory conditions of the Grohovo landslide 

are discussed by describing the geomorphologic setting and landslide itself. Furthermore, a 

detailed overview of the river's characteristics is given with emphasis on its torrential 

behaviour and flood occurrences that are related to mass movement occurrences in the past. 

Slope failures can be triggered by a single event, such as an earthquake, rainstorm 

(intense rainfall) or prolonged rainfall period and a snowmelt (Guzzeti et al. 2007, 2008). 

To investigate the impact of rainfall as a trigger in reactivation of the Grohovo landslide in 
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1996, we performed rainfall data analysis. Both long-term and short-term rainfall data from 

Rijeka climatological station were used. The analysis of antecedent conditions is 

performed on monthly precipitation records for 2, 3 or 4 months in a period from 1948-

2011. To analyze event rainfall, we used hourly precipitation data from the period of 

September to December of 1996, i.e., 3 months prior to the reactivation of the landslide. 

Although data of monthly discharge of Rjecina River exist from 1948, measurements for a 

profile of Grohovo in the period 1995-1997 are missing. Therefore, a detailed analysis of 

discharge on landslide reactivation was not possible. However, characteristics of the 

Rjecina River and the flood control problem are described as part of the study area 

description. 

To investigate the other possible trigger, earthquake assessment was done by 

conducting ring shear tests on specimens taken from the Grohovo landslide. Ring shear 

apparatus, besides being used as a device for measurement of basic soil parameters, can be 

used for simulation of the landslide. A cyclic loading test was conducted on a sample from 

Grohovo landslide to simulate seismic loading. 

 

3.2   STUDY AREA 

 

Rjecina watercourse, in the northwestern Adriatic part of Croatia (Figure 3.1a), is a large 

torrential watercourse with its river mouth located in the center of the city of Rijeka 

(Figure 3.1b). The watercourse extends through two distinctive geomorphological units. 

The upstream and central parts of the river valley are relatively narrow and formed in 

flysch and limestone. Limestone rocks are situated on the top of the slopes, while flysch 

forms the lower parts, including the bottom of the valley. The downstream part of the 

watercourse flows through a canyon deep in carbonate rocks (Benac et al. 2005a, 2005b). 

The Valley is assumed to be younger in its morphogenetic development than the 

surrounding area, resulting in intensive recent mass movements (Benac et al. 2011). The 

central part of the valley is the most unstable part and here, mass movements occur mainly 

at the contact of carbonate rocks with the flysch rock complex. There are historic data of a 

few rockfalls and landslides on both slopes of the valley (Ostric et al. 2011, Vivoda et al. 

2012).  



−−−− Grohovo Landslide- Assessment of Triggers 

 - 37 -

Heavy precipitation and earthquakes may be potential triggers of rockfalls and 

rockslides. The historic data shows a strong correlation of flood/ rainfall events with mass 

movements (rockfalls and landslides) in the Rjecina River Valley. The contribution of 

these factors on landslide occurrence is discussed in the following section.  

 

Figure 3.1 Location map of the Rjecina River (a) and Grohovo landslide (b). 

 

3.2.1  Grohovo Landslide 
 

Grohovo landslide is the biggest landslide in the valley and typical of landslides in the area, 

it is formed on the contact between flysch and carbonate rock formations (Figure 3.2). 

Geological composition and groundwater dynamics of the slope were the most important 

landslide causes (Benac et al. 2005a , 2006).  

The landslide had several episodes of re-activation in the past. The most recent 

reactivation occurred on December 5, 1996, after a long rainy period that lasted for a few 

months. It started by undercutting two of the initial landslides at the bottom of the slope 

that caused retrogressive development up to the top of the slope (Benac et al. 2005a). With 

13 different slide bodies identified, Grohovo landslide represents a complex composite 

landslide. 

The failure surface is assumed at the contact between slope deposits (consisting of a 

clayey matrix from the flysch-weathered zone and the debris material from the limestone 

cliffs on the top) and flysch bedrock. Field investigations indicated a complex landslide 

a) b) 
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with thirteen separate slide bodies identified. Estimated dimensions and the geometry of 

this instability are (Benac et al. 2006): 

• total length: L = 425 m; 

• width of the displaced mass: Wd = 200 m; 

• depth of the displaced mass: Dd = 6-20 m; 

 

 

 

 

 

 

 

Figure 3.2 Photo of Grohovo landslide. 

 

3.2.2  Characteristics of the Rjecina River and the flood control problem 
 

The Rjecina River is an example of a large torrential watercourse typical for the coastal 

karst zone of Croatia. It is a typical karstic river originating from a strong karstic spring 

located at the foot of Gorski Kotar Mountains. The majority of Rjecina river discharge 

originates from the strong karst spring of the same name - Rjecina spring. The watercourse 

is 18.63 km long and has a direct (orographic) catchment area of app. 76 km2, but the 

catchment area of all sources that nourish the Rjecina and its tributaries is much larger, app. 

400 km2 (Horvat and Rubinic 2006). Zvir is another important spring of the same 

catchment area that drains on a much lower level than Rjecina spring.  

Part of the water balance from the Rjecina spring is used for the water supply of 

Rijeka, while part of the water from the Valici reservoir is used for electric power 

production. The annual average flow of the Rjecina spring is 7.8 m3/s with maximal flow 

rates ranging from 0 to over 100 m3/s (Karleusa et al. 2003, Rubinic and Saric 2005). 

These regular annual drought periods usually occur during summer and last from 1 to 4 
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months. Zvir spring located close to Rjecina river-mouth is very important for the water 

supply of the area. It is a permanent spring with an average annual discharge of 5.2 m3/s, 

with minimal and maximal capacities varying from 0.5 to 20 m3/s respectively.  

The discharge of the river varies greatly during the year, from the minimum of 0 

m3/s in the profile directly below the spring (during summer) to the maximum ever 

recorded 439 m3/s at the river mouth profile (calculation based on observations during the 

disastrous flood on September 19, 1898). After the great floods in late 19th century, the 

river mouth was displaced and corresponding regulation works were carried out (Karleusa 

et al. 2009). The majority of regulation works were done to reduce flood effects, in order to 

prevent deepening of the channel and formation of landslides. 

For hydropower purposes, the hydropower plant Rijeka was constructed in 1968, 

which uses water from the Valici reservoir and is located in the central part of the valley 

(Figure 3.1b). Grohovo landslide is located downstream from the reservoir. The 

construction of the dam significantly changed the runoff regime in the part of the Rjecina 

River near Grohovo landslide. To show the changes in the water regime of the Rjecina 

River after the reservoir (dam) construction, discharge in two profiles (Rjecina profile, 

upstream and Grohovo profile, downstream from the dam) before (up to 1967) and after 

(starting from 1969) the construction of the dam are shown in Figure 3.3. The hydrological 

monitoring at the Grohovo profile in the Rjecina catchment has been continuously 

performed beginning from 1947 until the present day with a few short interruptions (1976 -

1979 and 1995-1997). Hydrological data of the same period also exists for the profile at 

Rjecina spring. 

Figure 3.3a shows a decreasing trend of mean discharges for both profiles, 

upstream and downstream from the reservoir, for the period 1947-2007. Mean annual 

discharge (m3/s) is on the left axis and MAP for Rijeka station (mm) on the right axis of 

the Figure 3.3a. Mean annual discharges are represented by the green and red lines 

(Rjecina and Grohovo profile respectively), while MAP is represented by the blue line. 

Although the construction of the reservoir had significant influence by decreasing the mean 

discharge of the Rjecina River on the Grohovo profile, maximum discharges reached high 

values even after the construction (Figure 3.3b) (Rubinic and Saric 2005, Ostric et al. 

2011). In Figure 3.3b, the maximum annual discharge (m3/s) on the left axis and the 
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number of days with discharges higher than 50 or 100 m3/s measured on Grohovo profile is 

on the right axis, shown by bars. 

During 1996, when landslide re-activation occurred, several hydrological stations 

were active: Drastin station, Martinovo selo station, and Rjecina spring station, all located 

upstream from the Grohovo landslide and the Valici reservoir. Despite a significant 

amount of recorded rainfall that preceded the re-activation of the landslide, on the critical 

days (the 5th and 6th of December, 1996), very low values of maximum daily flow were 

recorded: 2.5 m3/s at Rjecina spring, 3.7 m3/s at Drastin, and 0 m3/s at Grohovo profile.  

It should be noted that at all the mentioned profiles, in mid-November 1996, 

maximal flows for that year were recorded. But even these maximum annual recorded 

flows were in the range of the average events: at the Martinovo selo profile, a maximum 

annual flow of 79.7 m3/s was recorded (average annual flow being 69.1 m3/s), and at the 

Drastin profile maximum annual flow of 107 m3/s (average of 104 m3/s). 

From the presented data it can be concluded that the surface runoff of Rjecina River 

did not have an impact on the landslide re-activation, in the sense that the runoff caused 

erosion of the landslide toe and in that way decreased its stability. The landslide was the 

result of the force misbalance inside the landslide body which was caused by the change in 

groundwater level that was affected by rainfall. For this reason, in the following section, 

rainfall analysis is provided. 

 

3.3   RAINFALL ANALYSIS 

 

Mean annual precipitation (MAP) depends largely on the morphological characteristics of 

the area. In the mountainous areas MAP is up to 3500 mm, while closer to the coastal part 

of the wider area of Rijeka, it decreases to 1750 mm. The MAP for the station Rijeka is 

1538 mm. Significant, very intensive, but short-term rainfall events have the major 

influence on water discharge for surface, as well as for groundwater (Rubinic et al. 2009). 

Therefore, the surface flows of the study area have torrential characteristics. The wet 

season lasts from September to January, with the dry season from May to August (Figure 

3.5). The whole area is occasionally subject to very intense rainstorms, which can cause 

serious damage by flash floods and consequently mass movements.  
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Data used in the rainfall analysis are from the Rijeka climatological station, located 

in the most downstream part of the Rjecina River. For the analysis of long-term rainfall 

data (or antecedent, "pre-event") we used data of monthly precipitation records at Rijeka 

station for the period from 1948 to2011. For the short-term data analysis, we had daily 

precipitation for the period from 1993 to2006 of the same station as well as the continuous 

(i.e., every 5 min) rainfall record for the 3 month period that preceded landslide 

reactivation (September 1st- December 5th 1996). 

 

 

Figure 3.3 Changes in the water regime before and after the construction of a dam in 1968. 

(Modified from Rubinic and Saric 2005): (a) Mean annual discharge (m3/s) (b) Maximum annual 

discharge (m3/s). 
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3.3.1  Long-term analysis 
 

The most recent larger displacement of Grohovo landslide was observed on December 5th, 

1996. The landslide was triggered by a longer than usual rainy period that lasted for a few 

months. During that period, the regional mean annual precipitation (MAP) was 1929 mm, 

26 % higher than the average MAP for the period between 1948 and 2011. The long rainy 

period resulted in a cumulative rainfall in the period from October to December which 

exceeded 900 mm, which is app. 74 % higher compared to the average cumulative rainfall 

(523 mm) calculated for the same period (Oct-Dec) in the period between 1948 and 2011. 

Figure 3.4 shows the cumulative rainfall measured at the Rijeka rain gauge in October, 

November, and December, 1996. During this period, the monthly rainfall was from 96% 

(October) to 66 % (November) higher than the long-term (1948–2011) monthly averages 

(red lines and italic numbers in Figure 3.4).  

 

Figure 3.4 Cumulative rainfall at Rijeka station for October, November, and December 1996. 

 

Analysis of the available historical record indicates that monthly rainfall at the 

Rijeka rain gauge exceeded 200 mm more than 90 times (of a total 134) in the period from 

September to December for the 65 year period (1948-2011), with a maximum monthly 

value of 526.7 mm in October 1998 (Figure 3.5). In Figure 3.5 the mean annual 

precipitation (MAP), minimum annual precipitation (MIN) and maximum annual 

precipitation (MAX) are shown for the period from 1948 to2011. The dashed, broken 

violet line shows monthly precipitation for 1996 (left axis). Bars show relative frequency 

of events when monthly rainfall exceeds 200 mm (right axis). Relative frequency is 
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calculated by dividing number of events exceeding 200 mm/ month by the observed period 

(1948-2011). 

 

Figure 3.5 Monthly distribution of rainfall at Rijeka station. 

 

However, analysis of the cumulative rainfall for the 2-month (Oct-Nov), 3-month 

(Oct-Dec) and 4-month (Sep-Dec) period (Figure 3.6ABC) indicates that only once (in 

2000, 742 and 986 mm) the cumulative rainfall for the 2 (Oct-Nov) and 3-month (Oct-Dec) 

period exceeded the cumulative value measured in 1996 (643 and 907 mm respectively on 

Figures 3.6ab), and four times (in 1960, 1976, 1993 and in 2000) the cumulative 

precipitation for the 4-month period (Sep-Dec) (Figure 3.6c) exceeded the rainfall 

measured in 1996 (1069 mm). Bars on the Figure 3.6 are arranged from high (left) to low 

(right) values of cumulative yearly rainfall. Red bars show cumulative rainfall for the same 

2, 3 and 4-months periods in 1996. 

We also performed a probability analysis of the cumulative monthly rainfall for a 2- 

month period (Oct-Nov), a 3- month period (Oct-Dec) and a 4-month period (Sep-Dec). 

Based on the obtained results, we determined the character of the rainfall probability 

during the observed period in 1996. Several probability distribution functions were used 

(Galton, Gumbel, Gamma II, Pearson III, Log Pearson III and GEV) together with the 

Smirnov Kolmogorov test to estimate goodness of fit. 

Table 3.1 summarizes the results of the analysis, showing the basic statistical 

indicators of the analyzed data series (average, maximum and minimum as well as the 
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annual data in 1996) and the values calculated for the characteristic return periods (2-100 

yr). 

 

Figure 3.6 Cumulative rainfall at Rijeka station, for the period of: a) 2-months (Oct-Nov),            

b) 3-months (Oct- Dec) and c) 4-months (Sep-Dec) during 1948-2011. 
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  According to the results of the analysis, the observed cumulative values of 2 

months of rainfall (Oct-Nov) matches the rainfall with a 19 year return period (RP), 

cumulative 3- month rainfall (Oct-Dec) is adequate for 24 years RP, while cumulative 4-

month rainfall (Sep-Dec) has the character of 15 years RP. Cumulative annual rainfall 

observed in 1996 has the character of a 12 year return period Depending on the duration of 

the analyzed critical period related to reactivation of the Grohovo landslide, it is obvious 

that the observed rainfall is relatively rare, but cannot be characterized as an absolutely 

extreme and exceptionally rare event. 

 

Table 3.1 Results of the analysis of cumulative rainfall for the selected 2-, 3-, and 4-month periods 

and occurrence probability.  

  

Analyzed Period 

(months)/ 

Distribution 

Po (mm)a 

 

Pc (mm) -RP (year) b 

 
Av Min Max 1996 2 5 10 20 50 100 

2 c / GEV 358 161 742 643 328 460 553 647 774 876 

3 d / GEV 520 242 986 907 490 661 773 879 1013 1113 

4 e / Gumbel 687 320 1328 1069 650 850 983 1111 1276 1399 

12 f / Pearson III 1536 938 2339 1929 1529 1771 1902 2011 2136 2221 

 

a Observed Precipitation, b Calculated Precipitation for the 2/5/10/20/50/100 year Return Periods 

(RP), c 2-month period (Oct-Nov), d 3-month period (Oct-Dec), e 4-month period (Sep-Dec), f 12-

month period (Jan-Dec). 

 

3.3.2  Short-term heavy rainfall  
 

Short-term heavy rainfall describes rainfall occurring during 24 hours with scarce 

intensities (Bonacci 1994). One of the characteristics of a short- term rainfall is its huge 

spatial inhomogeneity and unsteadiness, which makes its estimation and the modeling of a 
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runoff process difficult (Rubinic et al. 2009). Short-term heavy rainfall especially refers to 

areas with distinctive orographic gradients, such as in the investigated Rijeka area. In 

addition, the Rijeka area is characterized with rainfall intensities that are among the highest 

in Croatia. Pluviographic measurements at the Rijeka climatological station have been 

made since 1957. Rainfall Depth-Duration-Frequency (DDF) curves (Figure 3.7) were 

defined on the base of those data for a duration up to 2 and 24 hours (Rubinic et al. 2009). 

As  part of  the conditions that led to activating the Grohovo landslide in December 

1996, we performed an analysis of probability and a return period of rainfall occurrence 

based on the pluviographic data observed at Rijeka gauging station (from 10 min to a 6h 

duration). Rainfall events that were analyzed started in September 1996 and continued 

until reactivation of the landslide on the 6th of December 1996. For illustration, Figure 3.8 

shows a selected daily series for the period 3 months prior to reactivation (indicated with a 

red circle on the figure). 

 

Figure 3.7 DDF curves defined for Rijeka station (modified from Rubinic et al. 2009); numbers in 

the legend representing Return periods in years (2, 5, 10, 20, 50 and 100 year return periods, 

respectively). 

 

Table 3.2 shows the observed short-term rainfall with maximum intensities for 

different durations (10 min to 6 h). Each record is associated with the exact date and time 

the event started as well as the corresponding return periods according to DDF curves 

shown on figure 3.7. It is clear that short term rainfall observed during the 3- month period 

prior to the landslide reactivation (1st September 1996 – 6th December 1996), had the 
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characteristic of frequent events with a return period less than 1 year for the 2 h duration 

and an approximately 2-year return period for longer durations. 

 

Figure 3.8 Daily rainfall observed during time period September 1st- December 31st at Rijeka 

station. 

 

Table 3.2 Results of the analysis of short-term rainfall data (up to 24h). 

 

Duration P I Event started RP 

(min/h) (mm) (mm/h) (dd/mm/yy;hh:min) (yr) 

10 min 11.2 67.2 17.10.1996; 18:34 < 1 

30 min 19.3 38.6 19.11.1996; 3:15 < 1 

1 h 27.1 27.1 19.11.1996; 3:10 < 1 

2 h 39.9 20.0 3.10.1996; 13:15 < 1 

4 h 69.2 17.3 3.10.1996; 11:15 2 

6 h 76.2 12.7 3.10.1996; 10.00 2 
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According to the results of both daily and hourly data, the long-term rainfall events 

(i.e. cumulative 2, 3 or 4 months rainfall) were characterized with much longer return 

periods (10-20 years), in comparison with the short-term rainfall events (i.e. up 24 h) 

which can be described as relatively frequent events with return periods less than 2 years. 

 

3.4   RING SHEAR APPARATUS TESTING 

 

ICL-1 Ring Shear Apparatus was used in this study. The testing procedure consisted of the 

following: gap adjustment; specimen setting and saturation; saturation checking by BD 

measurement; specimen consolidation and shearing (by shear speed control and cyclic 

stress control). Detailed descriptions of each part of the testing procedure were given in 

previous chapter, Chapter 2. 

First, the gap was adjusted by applying a vertical load of 1.5 kN. Secondly, the 

shear box without specimen was filled with CO2 and de-aired water to expel entrapped air. 

Third, the specimen saturated by de-aired water during the night was slowly placed in the 

shear box. Because the specimen was previously saturated, water circulation was not 

necessary. The saturation of the specimen was then checked by measuring the BD value 

that should be greater than 0.95 for fully saturated specimens. For both specimens, 

BD=0.95 was obtained, which means that a fully saturated specimen was obtained without 

water circulation.  

After full saturation was confirmed, the initial stress state of the specimen was 

created. Therefore, the specimen was normally consolidated under pre-decided normal and 

shear stress, depending on the specimen depth, slope angle, and unit weight of the soil. The 

estimated depth of the displaced mass varied from 6 m to a maximum 20 m (Benac et al. 

2005a). According to published engineering-geological models (Benac et al. 2005a, 2005b) 

and the location of the sample, a sliding surface depth at 10 m, slope angle of 15°, and unit 

weight of 21 kN/ m3 was assumed. These parameters were used in the calculation of initial 

stress (200 kPa for normal stress and 80 kPa for shear stress).  

After consolidation, shearing was applied by stress-control mode (a cyclic test) and 

a speed-control test in undrained conditions. 
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3.4.1  Specimen 
 

Surface samples from the landslides are usually taken from locations with outcrops of 

material where sliding surfaces are assumed. Grohovo surface sample (GS1) was taken 

from the flysch outcrop shown in Figure 3.9. Locations of boreholes (B1 and B3) that are 

drilled with the purpose of obtaining a sample for ring shear testing are also shown in the 

figure with red dots. The location of the surface sample (GS1) that was tested in this study 

is shown in a black triangle. A clayey sample of flysch was taken from the outcrop near the 

crown of one of the landslide bodies, from the central part of the slope. Basic parameters 

for this surface sample were obtained by standard laboratory tests (Table 3.3).  

 

 

Figure 3.9 Location of surface sample and boreholes. 

 

3.4.2  Results of Ring Shear Test 
 

Speed Control Test 

After consolidation of the specimen, a speed-control test was conducted under constant 

shear speed of 0.02 cm/s in an undrained condition. The specimen was sheared until a 

steady state condition was obtained at 2 m of displacement. Figure 3.10 shows the stress 

path that reached the failure line and moved down along the failure line, without an 
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observed peak failure line. The straight line fitting the stress path gave values of the 

friction angle during motion, and also at peak as Φp=Φm=31.9° as well as the apparent 

friction angle, Φa=20.4°. Cohesion was assumed to be zero. 

 

Table 3.3 Specimen properties. 

Prameter Value 

Specific gravity, Gs (g/cm3) 2.66 

Water content, w (%) 26.87 

Wet unit weight, γt (kN/m3) 20.11 

Dry unit weight, γd (kN/m3) 15.86 

Porosity, n 0.26 

Void ratio, e 0.35 

 

 

Figure 3.10 Stress path of undrained speed-control test on saturated clayey specimen from 

Grohovo landslide (BD=0.95; ρd=1.51 g/cm3). 
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Cyclic Stress Control Test 

After the specimen was consolidated at 200 kPa of normal stress and 80 kPa of shear stress, 

cyclic shear stress was loaded with the amplification increment of 10 kPa/ cycle at 0.1 Hz. 

Due to the low permeability of the specimen, a slower cycle shearing of 2 cycles/ h was 

chosen, in order to obtain reliable pore pressure measurement data. 

Figure 3.11a shows the time series data and 3.11b the stress path of the cyclic stress 

test. The sample failed, but without rapid failure motion. Figure 3.11a shows that 

displacement of 700 mm occurred after 6,000 sec and pore pressure of app. 20 kPa was 

generated. Both lines of the control signal for shear stress and the mobilized shear 

resistance were the same during the test.  

Shear displacement occurred in the following mode: each time the shear stress 

given by the control signal reached the value of shear resistance, shear displacement 

occurred. When shear stress decreased, displacement stopped and shear resistance moved 

down with loaded shear stress lower than the failure line. The sample showed dilative 

behaviour, which is indicated by black arrows in Figure 3.11a, showing negative pore 

pressure generation at each displacement step. Consequently, the peak friction angle 

increased as well, from the initial value of 31.9° to 39.0° and 41.2° (Figure 3.11b). The 

sample showed strength-hardening behaviour. 
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Figure 3.11 Undrained cyclic loading test on saturated clayey flysch specimen from Grohovo 

landslide (BD=0.96; ρd=1.51 g/cm3): a) Time series data for stress, pressure, and shear displacement 

and b) Stress path. 
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3.5   SUMMARY AND CONCLUSION 

 

Grohovo landslide is one of the study areas chosen for investigation in Japanese- Croatian 

joint research project. It is a reactivated landslide formed on the contact zone of carbonate 

and flysch rock complexes. Flysch is a typical material of the area and due to its material 

properties is prone to erosion and other types of instabilities. Rainfall has been always 

considered a major trigger to these events; however, no comprehensive analysis of rainfall 

data was done in the past. Therefore, assessment of two possible triggers of this reactivated 

landslide: rainfall and earthquake was done. To investigate the rainfall conditions that 

resulted in the reactivation of landslides in 1996, rainfall data from the Rijeka 

climatological station was used. Both long-term and short-term rainfall data were analyzed 

and their impact on the Grohovo landslide was considered. The assessment of seismic 

triggering was done using the ring shear apparatus.  

By analyzing the monthly precipitation data for the Rijeka station in a 65 yr. period 

(1948-2011), it was found that landslide reactivation was probably caused by cumulative 

rainfall in the rainy period during October and November. It is clear that in 1996 a very dry 

summer period (with precipitation lower than average for the 65 yr. period) was followed 

by a very wet period (exceeding average values by 75 %). However, by analyzing daily 

and hourly data of the same period (September-December 1996), no significant single 

event was observed in that period. The return period of the observed 2, 3, and 4 cumulative 

monthly rainfall in 1996 was 19, 24, and 15 years respectively. Short-term data analysis 

showed a much higher probability of occurrence, i.e., less than a 2-year return period. The 

analysis indicated that antecedent conditions are more important for the reactivation of a 

landslide or landslide initiation than short-term rainfall intensities alone. 

Due to the low permeable properties of flysch material and to the behaviour of 

landslides in the same or in similar clay rich materials, it is reasonable to assume that 

cumulative rainfall for a longer period has a more important role in landslide formation and 

reactivation. This is also in accordance with previous investigations that generally 

emphasized the importance of soil moisture in landslide initiation of low permeable 

terrains (Pasuto and Silvano 1998; Glade et al. 2000; Jakob and Weatherly, 2003; Aleotti 

2004, Guzzetti et al. 2008). Some argue that groundwater levels and soil moisture 

conditions cannot be considered as triggers, but as preparatory factors (Reichenbach et al. 
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1998, VanAsch 1999, Guzzetti et al. 2008). However, antecedent rainfall that influences 

both groundwater levels and soil moisture can be used to determine when landslides are 

likely to occur. The main difficulty is that the definition of the period over which rainfall 

accumulates and the considered periods vary from 3 days to 4 months (Cardinali et al. 

2006). In our study, antecedent conditions of longer periods (60-120 days) showed to be 

the most important for landslide reactivation. Some researchers also found that the number 

of antecedent days is related to the depth of the potential failure surface and larger 

windows of antecedent precipitation periods have to be considered for the deeper 

landslides (Van Asch et al. 1999, Terlien 1998).  

However, the role of short term events should not be ignored, especially in 

catchments where runoff reflects the short-term hydrological behaviour of the basin, 

particularly during extreme events (Reichenbach et al. 1998). In that way short-term events 

can also cause landslides, by erosion of the landslide foot that may result in reactivation. 

Unfortunately, discharges of the Rjecina River on the Grohovo profile (located upstream 

from the landslide) were not available for the period 1995-1997. Consequently, the 

evaluation of the effect of discharge on the reactivation of landslides in 1996 was not 

possible.  

Although the analysis of rainfall indicated the importance of antecedent conditions 

in reactivation of the Grohovo landslide as is the case with the initiation of landslides of 

similar geological setting in Croatia (Dugonjic and Arbanas 2012), because of the lack of 

data it is difficult to establish an empirical threshold and instead, a physically based rainfall 

threshold should be determined.  

The new, transportable ring shear apparatus, ICL-1, was applied for testing samples 

taken from the Grohovo landslide in Croatia. The apparatus was used for obtaining basic 

soil parameters by conducting an undrained speed-control test and as a simulation test for 

dynamic loading, by conducting a cyclic stress test. From the results of the cyclic stress 

test, assessment of a seismic trigger was done. According to the results of the cyclic ring 

shear test, clayey flysch specimen from the Grohovo landslide showed the following 

behaviour: an increase of friction angle and shear resistance that was caused by dilation 

and generation of negative pore pressure. This resulted in soil hardening behaviour. From 

this it was concluded that Grohovo soil is resistant to seismic loading. From these findings, 

earthquakes can be ruled out as possible triggers in the case of the Grohovo landslide.  
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Chapter 4 Negative Rate Effect in  

Sand-Bentonite Mixtures 
 

 

 

4.1   INTRODUCTION 
 

The measurement of strength parameters is necessary for stability analysis. Peak shear 

strength is used when analysis is made for first time slides. Peak shear strength is defined 

as the highest shear strength measured, and this strength is measured by triaxial, direct 

shear, and simple shear apparatus. Small displacement is usually necessary for the soil to 

reach its peak strength. After peak strength was reached, the strength gradually decreased 

until reaching a constant minimum value at a large displacement. According to Skempton 

(1985) this is the definition of residual shear strength. However, the concept of residual 

strength is meaningful only for soils that contain platy particles and consequently, can form 

a shear zone or shear surface with highly oriented platy particles (Mesri and Cepeda-Diaz 

1986, Bromhead 1992, Stark and Eid 1994, Wood 1990). According to Skempton, the 

effect of particle reorientation is felt only in soils having a clay fraction exceeding 20-25%. 

Skempton also differentiates between critical state (or fully softened state) and residual 

strength, which corresponds to the orientation of platy particles along the shear plane.  

Ring shear apparatus was designed for the purpose of determining residual strength 

because it allows shearing at almost unlimited displacement. Unlimited displacement is 

necessary because it enables gradual reorientation of clay particles parallel to the direction 

of the shear. The measurement of residual strength is significant in soil stability problems 

where the existence of shear zones is known (re-activated landslides) or suspected. The 

residual behaviour is influenced by: mineralogy and the shape of the particles, applied 

stress, the type of shearing (turbulent or sliding), the rate of displacement and pore water 

chemistry (Lambe and Whitman 1979, Fell et al. 2000, Leroueil 2001). 
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The drained residual strength of cohesive soils has been studied extensively in the 

past (Bishop et al. 1971, Skempton 1964, 1985, LaGatta 1970, Lupini et al. 1981, Lemos 

1986, Stark and Eid 1994, Tika et al. 1996, Tiwari and Marui 2004, 2005, Meehan et al. 

2008, Saito 2008). Early investigations on the residual strength of cohesive soils focused 

on the measurement of the residual strength at relatively slow rates of displacement to 

prevent the generation of excess pore water pressure during shearing. Although rate effect 

on the residual strength was investigated even in those earlier studies (LaGatta 1970, 

Bishop et al. 1971), because of the narrow range of rates of displacement used, no rate 

effect was reported. The review of the previous investigations on the rate effect on the 

residual shear strength is given in more detail in the following section. An extensive 

literature review was done to determine proper percentages and types of clay material as 

well as the methods used. 

However, in most of the previous studies the correct measurement of pore water 

pressure in ring shear tests was not possible, and thus, the influence of pore pressure on 

rate effect in cohesive soils remained unclear. Saito (2008) was the first to explain the 

mechanism of negative rate effect by conducting undrained ring shear test.  

The following data were found in previous studies (Lupini et al. 1981, Skempton 

1985, Lemos 1986, Tika et al. 1996, Saito 2008) and is used as a basis for further research 

in this thesis; namely, soils showing a negative rate effect have a drastic drop in shear 

resistance for the rates of displacements higher than the critical, attaining fast minimum 

values of 30- 50 % of the slow residual. Soils in the transitional shear mode range usually 

exhibit this type of behaviour.  

The aim of this chapter is to investigate in more detail the reported drop in residual 

strength of transitional soil in the range of rates of displacement between 0.1 and 1 mm/s. 

A series of undrained single-stage and undrained, drained, and partially drained multi-stage 

ring shear tests were conducted to investigate this effect. The results and their significance 

are shown and discussed. 

For simplicity, in this chapter we use the term "residual strength" for all specimens 

regardless of the clay fraction percentage, although as mentioned above, this term should 

be used only for soils that exhibit the effect of particle orientation. All rates of 

displacement are given in mm/s to be comparable with the international landslide 
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classification (WP/WLI, 1990). The residual effective friction angle is determined as a 

residual secant friction angle, assuming cohesion is zero.  

 

4.2   REVIEW OF PREVIOUS EXPERIMENTAL WORK ON THE 
EFFECT OF RATE OF DISPLACEMENT ON  RESIDUAL 
STRENGTH  

 

Besides using the ring shear apparatus for the investigation of the rate effect, experimental 

studies in granular material have also been carried out by flume tests, and in cohesive 

material by a reversal direct shear test. However, in the following section, an overview of 

the rate effect on both granular and cohesive soils conducted on ring shear tests is given, 

by summarizing the most important findings from "old" papers with an update with recent 

research on this topic. The details of the specimens tested and methods used are described 

in detail.  

 

4.2.1  Granular Soils 
 

All earlier investigations on the rate effect by ring shear tests on granular soils reported no 

or slight rate effect (e.g., Hungr and Morgenstern 1984, Savage and Sayed 1984). The first 

tests were carried out on glass and plastic granular material (Savage and Sayed 1984, Sassa 

1985). Hungr and Morgenstern (1984) carried out ring shear tests on sand specimens with 

varying normal stress (up to 200 kPa) and velocities (1, 160 and 1000 mm/s). All tests 

resulted in unique angles of friction, practically unaffected by the rate of displacement of 

the test.  

Investigating the effect of grain crushing of sands on the generation of excess pore 

pressure, Okada et al. (2004) performed undrained and naturally drained speed-control ring 

shear tests on silica sand, under different normal stresses (50, 200 and 470 kPa) and at 

different rates of displacement (3, 5, and 100 mm/s). For silica sand No. 8, an almost 

constant value of friction angle was observed after failure, regardless of the shear rates of 

displacement used. For the silica specimens grain crushing was small in Okada et al. 

(2004) tests and no excess pore pressure was generated. However, in the tests in the Osaka 



-Chapter 4 

- 61 - 

 

group, coarse sandy soils were present due to the grain crushing that occurred during the 

long shear displacement (60 m), and there was a drop in the shear strength with an increase 

in the rate of displacement. 

Fukuoka et al. (2007) conducted a series of naturally drained ring shear tests on 

mixed sand and mixed beads under different normal stresses and rates of displacement to 

study the process of shear zone development. They used a normal stress of 22 and 200 kPa 

and rates of displacement of 90 and 2000 mm/s. The shear zone was visually observed (a 

ring shear apparatus with a transparent shear box was used) and the variation of grain size 

distribution along the specimen cross section was examined. The following results were 

obtained: large grains were concentrated in the central and upper part of the shear zone, 

and small particles deposited downward and upward from the shear zone. A possible 

explanation was suggested -larger grains tend to move into the moving layer that is in the 

shear zone. These results are consistent with those presented by Wafid et al. (2004). He 

studied the evolution of the shear zone and found that at steady state (shear displacement 

of 10 m) the shear zone was separated into two parts by a segregation process. The upper 

part consisted mainly of coarse grains, and the bottom of the of the shear zone where fine 

particles accumulated. 

 

4.2.2  Cohesive Soils 
 

Many papers have provided detailed reviews of investigations on the drained residual 

strength of cohesive soils (La Gatta 1970, Lupini et al. 1981, Skempton 1964, 1985 and 

Tika et al. 1996) and the effect of the rate of displacement on the residual strength is 

mentioned in some of them.  

La Gatta (1970) conducted tests on three specimens (shale and clay) by initially 

shearing them at 0.001 mm/s until the residual strength was defined. Then he reduced the 

rate of displacement to 0.0001 mm/s with no significant change in the shearing resistance. 

Next, he increased the rate of displacement to 0.01 mm/s and reported the increase of 

resistance by only 3.5 %. Skempton (1985) also reported a negligible rate effect within the 

usual range of slow laboratory tests (0.00003-0.0002 mm/s). When those results were 

compared to field values, this variation appeared between -3 to +5%. Tiwari et al. (2005a) 
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obtained similar values for tests conducted on specimens from two landslides, under a 

normal effective consolidation stress of 250 kPa at rates of displacement of 0.002 and 0.02 

mm/s. The value of the residual shear at the higher rate of displacement was about 2 and 

3% higher than for the lower rate used. 

Most of the previous investigations reported the significant change in the residual 

shear behaviour of cohesive soils with an increase in clay fraction. Many researchers tried 

to correlate the residual friction angle of soils with their index parameters (Skempton 1964, 

1985, Voight 1973, Lupini et al. 1981, Mesri and Cepeda-Diaz 1986, Stark and Eid 1994, 

Tiwari and Marui 2005, Wesley 2003). The results showing a decrease of the residual 

effective friction angle with an increase in clay fraction, obtained by Lupini et al. (1981) 

were summarized by Skempton (1985) and are reproduced in Figure 4.1 along with the 

results obtained by Tiwari and Marui (2005). Figure 4.1 shows the change from "sand" to a 

"clay" type of behaviour and consequently, a decrease in the residual effective friction 

angle with the increase of the clay fraction. Clay fraction (CF) refers to percentage by 

weight of particles smaller than 0.002 mm, as determined by sedimentation. The 

percentage of CF that differentiate the "sand" and "clay" behaviour, obtained by Tiwari 

and Marui (2005) are lower, 8.5 % and 42.5 %, respectively, compared to 25 and 50 % 

obtained by Lupini et al. (1981). 

 

Figure 4.1 Residual effective friction angle as a function of clay fraction-from the drained 

ring shear tests on sand-bentonite mixtures (from Tiwari and Marui (2005) and Skempton (1985) 

after Lupini et al. (1981)). 
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Most of the authors recognized that the use of CF as an indicator of platy particles 

did not give real insight in the composition of soil. Measurement of the clay content 

proportion of total clay minerals indicates soil characteristics more comprehensively than 

CF (Tiwari and Marui 2005). However, for practical reasons, the use of CF for descriptions 

of soil behaviour is still more widely used. 

Lupini et al. (1981) carried out a series of ring shear tests on sand-bentonite 

mixtures, and suggested two basic mechanisms in the development of residual strengths 

that mostly depend on clay fraction percentage. The authors called the mechanisms 

turbulent (rolling) and sliding shear with a transitional shearing between these two 

conditions. When soils containing both rotund and platy particles were sheared at large 

displacements, the following behaviour was observed: 

• A turbulent (or rolling) mode was identified in soils with a high proportion of rotund 

particles, when the clay fraction is less than 20-25 % and soil behaves much like 

sand or silt, with higher friction angles (usually greater than 25°). The "residual 

strength" of these soils will be same as the critical state strength and they will exhibit 

almost classical critical state type behaviour. In the turbulent mode of shearing, 

preferred particle orientation does not occur, and the changes in shear zone are only 

concerned with change in porosity.  

• A sliding mode was identified in soils formed by a high proportion of platy low 

friction particles, when the clay fraction is about 50% and residual strength is 

controlled by the sliding friction of the clay minerals. In the sliding mode, platy clay 

particles orientate in the direction of shearing. Therefore, a low strength shear 

surface is formed and results in low residual strength of a predominant clay mineral 

(15 ° for kaolinite, 10° for illite and 5° for montmorillonite).  

• A transitional mode was identified in soils with no dominant particle shape, when the 

clay fraction is 25% to 50%. Shearing involves both turbulent and sliding behaviour 

of a shear zone with rotund particles that disrupt the development of a continuous 

shear surface. 

In both sliding and transitional shearing mode, residual shear strength depends on the 

mineralogy and shape of clay particles (clays containing platy minerals are more likely to 
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orientate in shearing and show a decrease in shear resistance) and pore water chemistry 

(Lemos 2003, Tiwari et al. 2005b, Fell et al. 2000, Leroueil 2001). 

Lupini was the first to identify the rate effect on the drained residual strength in 

cohesive soils and following his findings, several studies focused on the influence of fast 

rates of displacement on the residual shear strength (Lemos1986, 2003 and Tika 1989, 

Tika et al. 1996). The subsequent authors showed (and confirmed the findings of earlier 

studies) that residual strength is relatively insensitive to the rate of shearing for the slow 

rates of shearing. However, at faster rates (v> 1.67 mm/s according to Skempton (1985) 

and Tika et al. (1996)), the effect of rate of displacement on residual strength is significant 

and plays a role in the pattern of behaviour.  

Lemos (1986, 2003) identified and described the pattern during fast shearing of a 

shear zone that was previously formed by slow drained shearing (when "slow" or " static" 

residual strength is obtained). The following behaviour is typically observed during fast 

shearing: an immediate increase in strength (threshold), a further increase in strength to a 

maximum (fast peak) and finally, a decrease of strength to a minimum value of fast 

residual strength. Three types of rate effects on the residual strength were identified 

(Figure 4.2), according to the relation of fast residual strength to slow residual strength: 

positive (POS) (fast residual>slow residual strength), neutral (NEU) (fast residual=slow 

residual strength) and the negative rate effect (NEG) (fast residual<slow residual strength). 

Soils with a turbulent shear mode exhibited a neutral or negative rate effect, soils with a 

sliding shear mode showed a negative or positive effect while the transitional shear mode 

showed a negative rate effect (Tika et al. 1996). 

 

Figure 4.2 Three types of rate effects on the residual strength. Summary of the observed 

rate- displacement phenomena for residual strength (after Tika et al. 1996). 
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Tika et al. (1981) and Lemos (2003) also tried to investigate the causes of the 

negative rate effect and they suggested a possible mechanism. Causes of negative rate 

effect, such as pore pressure as the most important one, were investigated by using indirect 

(fast shearing with and without consolidation phase) and direct procedures (measuring of 

pore pressure and temperature immediately after fast shearing). These authors suggested 

the following mechanism of decrease in strength: fast shearing involves dilation of massive 

particles which results in increased void ratio and consequently, increased water content of 

the shear zone which leads to strength reduction (Tika et al. 1996, Lemos 2003).  

Skempton (1985) concluded that there is a qualitative change in the behaviour of 

soils when they are sheared at rates exceeding 1.67 mm/s. He suggested that in soils with a 

positive rate effect this is probably due to the disturbance of the original structure and in 

soils with a negative rate effect, he assumed that negative pore pressures are generated, and 

as displacement continues, these pressures are dissipated within the specimen, thus leading 

to a decrease in strength. He also states: "It is surely significant that this material lies in the 

"transitional" zone, but why it should show increase in fast rates followed by an abnormal 

decrease is not clear. Clearly more research is needed better to define the limits of this 

phenomenon and for all types of soil, to measure pore pressures at fast rates of 

displacement and to explore the effects in rapid tests. The results and their significance in 

engineering design are obviously considerable" (Skempton 1985). 

Meehan investigated shearing resistance that can be mobilized on slickensided 

rupture surfaces in clay slopes during earthquakes by conducting a series of ring shear tests, 

direct shear tests, and triaxial tests (Meehan 2006). The aim of his study was to investigate 

static and cyclic shear resistance of slickensided surfaces. A series of fast ring shear tests 

were conducted in the Bromhead ring shear device on Rancho Solano Fat clay specimens 

(CF >53 %). The purpose of these tests was to try to develop an understanding of the fast 

residual shear strength along existing slickensided discontinuities. He used same multi-

stage testing approach proposed by Skempton (1985) by initial drained shearing at a slow 

rate (0.0003 mm/s), then rapidly shearing until app. 500 mm of shear displacement (0.74 

mm/s), and then slowly again to re-establish the drained residual condition (Meehan et al. 

2007, 2008). Test results indicated a positive rate effect that was in accordance with 

previous studies. However, there was a cyclic increase and decrease during that fast 

shearing stage that was likely caused by a shifting of the top platen during shearing. In 
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addition to this problem, he also pointed to the problem of the pore pressure response, 

which in the Bromhead ring shear apparatus, occurs differently than it would occur in the 

field, or in the Bishop type of apparatus. This is because in the Bromhead type of apparatus, 

shearing takes place at or close to the top platen so the generated pore pressure dissipates 

relatively quickly. He showed that the Bishop type of ring shear apparatus is better suited 

for testing at fast rates of displacement (Meehan 2006). 

Saito (2008) conducted a series of undrained ring shear tests on silica sand and 

sand-clay mixtures (sand with 10 and 20 % of kaolin, illite and bentonite), in order to 

investigate the mechanism of the negative rate effect. He showed that there is an effect of 

the rate of displacement on the secant friction angle in bentonite-sand and illite-sand 

mixtures but not in silica sand and kaolin-sand mixtures. His results of undrained multi-

stage test on silica sand and a 20 % bentonite specimen, showed a significant difference in 

effective friction angle between 0.01-0.1 mm/s. The rate effect on the effective secant 

friction angle was interpreted as a change in the degree of interlocking that was influenced 

by the change in the shear zone by the type of clay and the particle segregation. 

 

4.3   APPARATUS AND TESTING PROCEDURE 
 

In this study, ICL-1, a transportable and compact undrained ring shear apparatus designed 

by Sassa in 2010 is used. The details related to its mechanism and structures are explained 

in detail in the previous chapter. The maximum shear rate of displacement it can produce is 

54 mm/s and the minimum is 0.01 mm/s.  

 

4.3.1  Tested specimens 
 

Three types of specimens were tested, one of pure silica sand No. 8 (SS 8) and two 

mixtures of silica sand and bentonite clay (SB 20, SB 30). Both silica sand and bentonite 

are commercially available and were mixed in different proportions; 20 % and 30 % of 

bentonite (by weight) was added to silica sand (SB 20 and SB 30 respectively).  

Silica sand No. 8 is a silty sand mainly consisting of quartz and smaller amounts of 

feldspar while commercial bentonite contains mainly smectite and smaller amounts of 
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crystoballite, illite, and quartz. The bentonite clay used in this research is Na–bentonite 

with 97% of clay fraction, and plastic and liquid limits which were measured to be 85.7 

and 357.9 (Gratchev et al. 2007). Specimen properties are given in Table 4.1 and grain size 

distribution is shown in Figure 4.3. Grain size distribution was determined according to 

Japanese soil testing practices. The Clay fraction (CF) determined by sedimentation seems 

to be overestimated due to the high percentage of silt in silica sand No. 8. 

 

Table 4.1 Specimen properties 

Specimen 

Bentonite 

content 

(%) 

CF 
(<2µm) 

ρs 

(g/cm3) 

LL 

(%) 

PL 

(%) 
Ip 

       

SS 8 0 5 2.59 - - NP* 

SB 20 20 30 2.55 64.3 26.5 37.8 

SB 30 30 40 2.45 70 20 50 

*NP- Non Plastic 

 

 

Figure 4.3 Grain size distribution. 

 

In the previous ring shear tests with saturated specimens, dry samples were usually 

placed in the shear box and then saturated by water circulation. For low permeability 
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specimens, this process of water circulation took at least several days (Tiwari et al. 2004 

mentioned 72 h). 

To reduce the time of sample saturation, the sample was saturated outside of the 

shear-box. All the mixtures were first mixed dry, then saturated with de-aired water and 

finally mixed until they became slurry. Next, they were placed in a vacuum and left for at 

least two days (Figure 4.4). A similar procedure was reported by Toyota et al. (2009). 

Therefore, the already prepared saturated specimen was placed into the ring shear box 

filled with de-aired water. In this way, fully saturated samples were successfully prepared 

without water circulation, which was confirmed by BD≥ 0.95. 

 

 

Figure 4.4 Silica sand-bentonite specimens in vacuum tank. 

 

Silica sand–bentonite mixtures were chosen for testing because both are 

commercially available and the same mixtures were tested in ring shear tests by Lupini et 

al. (1981), Tiwari and Marui (2005) and Saito (2008). Also, the aim was to investigate in 

more detail soils in a transitional zone that show the negative rate effect.  
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4.3.2  Testing Procedure 
 

The testing procedure consisted of; specimen saturation, consolidation, and shearing. The 

following procedure was employed to saturate the specimens for the ring shear tests. Here 

only a short description of each stage is given, because details of the procedure are 

explained in the previous chapter.  

Gap adjustment and measurement of rubber edge friction: After the apparatus is set 

up without a sample, the gap value is adjusted by applying the vertical load of 0.8 kN. The 

shear box without a sample was filled with CO2 and de-aired water to expel entrapped air. 

Then, the friction of the rubber edge was measured. The increment of shear resistance due 

to rubber edge friction was usually around 25 kPa, and that value was subtracted from the 

measured test values to obtain the true shear resistance of the specimen.  

Next, a saturated sample was slowly spooned in the de-aired water inside the shear 

box. Preparation of saturated specimens has been previously described. The saturation was 

then checked by measuring the BD value which should be greater than 0.95 for fully 

saturated specimens. For all specimens BD> 0.95 was obtained (Table 4.2).  

The sample was then consolidated in drained conditions, under a pre-decided 

normal stress of 400 kPa (or 500 kPa in some tests when the back pressure of 100 kPa was 

kept constant during the test). For all tests the same, initial effective stress of 400 kPa was 

used and normal stress was kept constant during test. 

After consolidation, the shearing was applied by speed-control tests. To investigate 

and explain the decrease in shear resistance and the effective secant friction angle (Φ’ r), 

two series of speed-controlled ring shear tests were conducted on silica sand and silica 

sand-bentonite mixtures: 

• Single-Stage Shearing-each individual specimen was sheared at one constant rate of 

displacement until a certain displacement in the undrained condition. Four different 

rates of displacement were used: 0.01 mm/s, 0.1 mm/s, 1 mm/s, and 10 mm/s. The first 

two rates of displacement are considered slow, and last two fast. By testing a new 

specimen at each shear rate, it was possible to avoid the effect of settlement that 

occurs during a multi-stage test. 



-Negative Rate Effect 

- 70 - 

 

• Multi-Stage Shearing-one specimen is sheared in several stages with different rates 

of displacement until 1m of displacement for each stage is achieved. To confirm 

previous rate effect findings, specimens were subjected to alternating slow and fast 

shearing stages, as shown in Figures 4.2 and 4.5. First, slow shearing was applied and 

was stopped after 1 m of displacement. Next, the specimen was re-sheared at a fast 

rate of displacement. Four types of multi-stage shearing were conducted, depending on 

the rates of displacement used and the draining conditions during shearing, and the 

pause that followed after shearing was stopped. For the first three types, three rates of 

displacement were used (0.1, 1 and 10 mm/s) in 8 stages, that is, until cumulative 

displacement of 8 m. Figure 4.5a shows the rates of displacement used in the 8-stage 

type of tests. In one type of multi-stage test, the specimen was sheared until 7 m, in 7 

stages, using only two rates of displacement (0.1 and 1 mm/s), but with a gradual 

change between them. Rates of displacement used in this type of multi-stage test are 

shown in Figure 4.5b. 

To avoid possible terminological confusion, different multi-stage tests were named 

by the state of the upper valve during shearing and pausing: as open or closed (C-O; C-C 

and O-O). The first letter refers to the position of the upper valve during shearing and the 

second letter refers to the valve position during the pausing, e.g C-O is the multi-stage test 

in which shearing is conducted with a closed upper valve and during pausing the valve is 

open. When silica sand is sheared with the upper valve open, shearing is considered to be 

drained. However, in the case of SB 20 and SB 30 specimens, shearing with the open 

upper valve is considered to be partially drained, because the pore-pressure generation rate 

is greater than the dissipation rate. And to be consistent, the same was done for the pause 

that followed after shearing was stopped: with the open upper valve, consolidation was 

allowed while with the closed upper valve, no consolidation was allowed. The following 

are the four types of multi-stage tests conducted:  

1) Undrained test with consolidation- Multi-stage Test in 8 stages (I-VIII; C-O). 

Shearing in undrained conditions was conducted in 8 stages. After 1 m of 

displacement shearing was stopped and the upper valve opened for pore pressure to 

dissipate. The specimen was allowed to consolidate and after the pore pressure was 

zero, re-sharing at a different rate of displacement could start.  
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2) Undrained test without consolidation- Multi-stage Test in 8 stages (I-VIII; C-C). 

Shearing was conducted in undrained conditions and after shearing was stopped, the 

upper valve was kept closed and pore pressure could not dissipate. In this way 

consolidation of the specimen was not allowed. 

3) Drained/ Partially drained test with consolidation- Multi-stage Test in 8 stages (I-

VIII; O-O).  The entire time during the test the upper valve was open enabling 

drainage during shearing. As mentioned earlier, shearing was drained in silica sand 

specimens and partially drained in the mixtures. After shearing was stopped, the valve 

remained open to allow full dissipation of pore pressure and specimen consolidation. 

4) Undraind test with consolidation- Multi-stage Test in 7 stages (I-IV; C-O) with 

gradual change of the rate of displacement. Conditions of this test are the same as in 

the first case; namely, the undrained shearing is followed by consolidation, except the 

change between the slow (0.1 mm/s) and fast (1 mm/s) stages is gradual, as shown in 

Figure 4.5.b.  

 

Figure 4.5 Multi-stage tests and rates of displacement applied: a) 8-stage test (I-VIII) and b) 7- 

stage test (I-IV). 
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Multi-stage ring shear tests have been used by many researchers in their 

investigation for both stress-dependent (Stark and Eid 1994, Tiwari et al. 2004) and rate- 

dependent (Skempton 1985, Lemos 1986, Tika et al.1996, Saito 2008) behaviour of the 

residual failure envelope. Although multi-stage ring shear tests have been reported as being 

useful, because they reduce testing time considerably, these tests are still not widely used, 

mostly due to problem of leakage during long shearing and due to the limitation in 

measuring peak shear strength. 

Individual specimen testing is more commonly used although each specimen may 

not have the same properties (Tiwari et al. 2004). Even when specimens of the same 

mixture are used, different saturations can be obtained (BD value) and the consolidation 

process may differ, which will result in variations of pore pressure generation and 

measured shear resistance. Due to the above mentioned reasons, a series of single and 

multi-stage ring shear tests were conducted for each specimen. Shear resistance, shear 

displacement, vertical displacement, and pore pressure were monitored continuously 

during each test. The results of both single-and multi-staged tests are shown and explained 

in the following section. 

 

4.4   RESULTS 
 

First, single-stage tests were conducted, in order to have preliminary results that would 

indicate the behaviour of the specimen sheared at different rates of displacement. The 

minimum displacement of 3 m was reached for the slowest test (0.01 mm/s) and 20 m for 

the fastest (10 mm/s). Four different multi-stage shearing tests were conducted for each 

type of specimen (SS 8, SB 20 and SB 30). The results are shown separately for all three 

specimens in the following section and the list of tests and test conditions are summarized 

in Table 4.2.  

As mentioned in the introduction to this chapter, the results are interpreted using the 

secant phi approach, assuming that there is no residual cohesion, using the following 

formula for calculation of the effective secant residual friction angle (Figures 4.8, 4.11 and 

4.14): 
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.        (Eq 4.1) 

where τr is residual shear resistance and σ’ is effective stress.  

Test results of each multi-stage test are shown in Appendices (A1-A12). In all 

figures in the Appendices, the same representation style was used; the slow rates of 

displacement are shown in the "cold" colors (blue and green) and the fast shear rates in 

"warm" (violet and red) colors. The results of four multi-stage tests conducted for SS 8, SB 

20 and SB 30 are summarized and shown in the following way: the ratio of a friction 

coefficient to the corresponding residual value (R) as well as to the pore-pressure ratio (ru) 

are plotted against the cumulative shear displacement (Figures 4.7, 4.10, and 4.13). The 

ratio of the friction coefficient to the corresponding residual value is expressed by Eq. 4.2. 

and is represented in the red lines in figures 4.7, 4.10 and 4.13. The pore-pressure ratio (ru), 

which is represented by blue lines, is calculated by generated excess pore pressure (u) 

divided by total normal stress (σ) (Eq. 4.3). 

 

.      (Eq. 4.2) 

 .         (Eq. 4.3) 

 

The residual friction coefficient (R’0.01) refers to the value obtained at the end of the 

first slow stage when residual shear resistance was obtained. Results shown in this way 

allow changes to be seen compared to the residual value of the first stage when R=1 

indicated in figures by the grey line. 
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Table 4.2 List of tests and test conditions. 

Test 
No. 

Specimen vs σ0’ Ds BD Type of test 

  
(mm/s) (kPa) (m)  

 
T 1 SS 8 0.01 400 

 
 

Single- stage 

 

T 2 SS 8 0.1 400 6 0.95  

T 3 SS 8 1 400 10 0.96  

T 4 SS 8 10 400 20 0.96  

T 5 SS 8 0.1 & 1 &10 400 8 0.97 

Multi-stage 

C-O 

T 6 SS 8 0.1 & 1 &10 400 8 0.97 C-C 

T 7 SS 8 0.1 & 1 &10 400 8 0.98 O-O 

T 8 SS 8 0.1 & 1 400 7 0.97 C-O 

T 9 SB 20 0.01 400 3 0.96 

Single- stage 

 

T 10 SB 20 0.1 400 6 0.95  

T 11 SB 20 1 400 10 0.97  

T 12 SB 20 10 400 20 0.98  

T 13 SB 20 0.1 & 1 &10 400 8 0.97 

Multi-stage 

C-O 

T 14 SB 20 0.1 & 1 &10 400 8 0.98 C-C 

T 15 SB 20 0.1 & 1 &10 400 8 0.97 O-O 

T 16 SB 20 0.1 and 1 400 7 0.94 C-O 

T 17 SB 30 0.01 400 
 

 

Single- stage 

 

T 18 SB 30 0.1 400 6 0.95  

T 19 SB 30 1 400 10 0.97  

T 20 SB 30 10 400 20 0.96  

T 21 SB 30 0.1 & 1 &10 400 8 0.95 

Multi-stage 

C-O 

T 22 SB 30 0.1 & 1 &10 400 
 

 C-C 

T 23 SB 30 0.1 & 1 &10 400 8 0.95 O-O 

T 24 SB 30 0.1 and 1 400 7 0.95 C-O 

 
 

 

vs-  rate of displacement, σ0’-  initial effective stress, Ds – shear displacement, C- Closed valve, O- 

Open valve (The first letter refers to the position of the upper valve during shearing and the second 

letter refers to the valve position during  pausing). Tests 1, 17, and 22 were not conducted. 
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4.4.1  Silica Sand (SS 8) 
 

As could be expected and according to previously published data on the rate effects of 

granular soils showing turbulent shear behaviour, there were no rate effects in the pure 

silica sand specimens. The results of both, single and multi-stage tests showed that the 

effective secant friction angle is independent of the rate of displacement used. Test results 

are presented and described separately for single and multi- stage shearing directly below: 

 

Single-Stage Shearing Tests on SS 8 

All single-stage tests results (T 2, T 3, and T 4) conducted on silica sand specimens are 

shown in Figure 4.6. The total normal stress of 400 kPa was kept constant during tests and 

each specimen was sheared at a different rate of displacement until 7, 10, or 20 m of 

displacement (Figure 4.6a). After failure, pore pressure increased and reached app. 250 kPa 

at the end of shearing, while shear resistance decreased to a minimum value (86 kPa to 70 

kPa). The stress paths of these tests are shown in Figure 4.6 b. with the residual failure line 

showing the residual effective friction angle (Φr’ ) of 29.5°. The same can be seen on 

Figure 4.6c, which shows almost the same effective friction angle for all rates of 

displacement used. 

 

Multi-Stage Shearing Tests on Silica Sand Specimens (SS 8) 

In tests with undrained shearing and allowed consolidation (T 5, T 8), a gain in strength in 

each subsequent stage due to consolidation can be seen (Figure 4.7). The biggest change in 

sample height due to consolidation took place after the first stage and resulted in higher 

shear resistance in the beginning of the 2nd stage (Appendix A1 and A4).  

When consolidation was not allowed (T 6), there was no such gain. The undrained 

shear resistance as well as the residual friction angle had the lowest values (Figure 4.8, 

Appendix A2). A decrease in pore pressure and consequent increase in resistance after 

stage IV occurred because the test was stopped during night. However, as soon as re-

shearing started, strength was recovered, as well as pore pressure (Appendix A2). Almost 

constant values of all parameters were then observed.  



-Negative Rate Effect 

- 76 - 

 

 

Figure 4.6 SS 8 single-stage tests results: a) Shear displacement, b) Stress Path and c) Rate of 

displacement.
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Figure 4.7 Cumulative displacement and friction coefficient and pore pressure ratio of multi-stage 

tests conducted on SS 8 specimens a) T 5-T 7 (8 stages) and b) T 8 (7 stages). 

 

 

Figure 4.8 Rate of displacement and residual effective friction angle of multi-stage tests conducted 

on SS 8 specimens (T 5-T 8). 
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In the case of the drained shearing with allowed consolidation (T 7), similar 

behaviour as in T 6 occurred; the ratio of a friction coefficient to the corresponding 

residual value decreased after the first stage (Figure 4.7). Also, there was no generation of 

any excess pore pressure and vertical displacement increased gradually during shearing 

and the consolidation phase. This resulted in the highest shear resistance and effective 

friction angle (Figure 4.8). This cannot be seen in Figure 4. 7 because relative change 

compared to the first stage is given, but in Figure 4. 8 and Appendix A3.  

However, the changes of the friction coefficient ratio were in the range of 10 % and as a 

result the residual effective friction angle varied around 3°, showing rate independent 

behaviour (Figure 4.8). This can be clearly visible from the test of the gradual change of 

the rate of displacement (T 8) that is shown in Figure 4.7b and Appendix A4. 

 

4.4.2  Silica Sand and 20 % Bentonite Mixture (SB 20) 
 

In the tests conducted on this specimen, a negative rate effect was observed, which was in 

accordance with reports of other authors (Tika et al. 1996, Saito 2008). As explained in the 

discussion, regardless of the displacement used, in the generated pore pressure and other 

factors, shear resistance was lower in both single and multi-stage ring shear tests, thus 

confirming that residual strength depends on the rate of displacement.  

 

Single-Stage Shearing Tests on SB 20 

In order to confirm results of single-stage tests (T 9-T 12 in Table 4.2), additional tests 

were conducted for each rate of shearing (in Figures T 9a-T 12a). As can be seen in Figure 

4.9a, shear resistance measured at 1 mm/s was the lowest, and for 0.1 mm/s, the highest. 

Figure 4.9b shows the effective stress paths of all 8 single-stage undraned tests. In that 

graph, two distinctive failure lines could be drawn, one for tests at slow rates of 

displacement (0.01 and 0.1 mm/s) with the Φ’r =29°, and in the other one for tests at fast 

rates of displacement (1 and 10 mm/s) with the Φ’r =16°. When residual effective friction 

angles of all tests are drawn in relation to the rates of displacement (Figure 4.9c) a very 

clear tendency of decrease could be seen.  
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Figure 4.9 SB 20 single-stage tests results: a) Shear displacement, b) Stress Path and c) Rate of 

displacement
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Multi-Stage Shearing Tests on SB 20 

Multi-stage tests on SB 20 specimens showed changes in effective friction angle, shear 

resistance and pore pressure, especially during fast shearing stages (II, IV, VI and VIII). 

This change was the most significant in the case of tests with undrained shearing with 

allowed consolidation (T 13 and T 16). This can be more clearly seen in the figures of each 

test that are given in the Appendix (A5- A8). Figure 4.10 shows a cumulative displacement 

graph in terms of the change of friction coefficient and pore pressure ratio.  

In an undrained test without consolidation (T 14), there was negligible change in 

specimen height (Appendix A6). High pore pressure was maintained during the test, but as 

can be seen in Figure 4.10a, it varied during fast stages, especially during VI and VIII 

stage. Due to the height of the pore pressure, shear resistance was the lowest (Appendix 

A6). 

In the SB20 specimen, unlike in the pure silica sand specimen, a test with the open 

upper valve was partially drained (T 15). As can be seen from Figure 4.10a, there was 

excess pore pressure generated during shearing. However, the generated pore pressure was 

much lower than in the case of the undrained multi-stage shearing tests (T 13 and T 14). 

Keeping the valve open during all tests allowed consolidation to take place and resulted in 

the highest specimen height reduction of 3.8 mm (Appendix A7). The higher effective 

friction angles are also the result of the higher compaction and consolidation that was 

enabled by keeping the value open (Figure 4.11). 

The multi-stage test with a gradual change of rate of displacement (T 16), showed 

similar results with T 13, due to the similar conditions used ( but with a more pronounced 

difference of the slow and fast stages, and the gradual change between these stages (Figure 

4.10b). The drop in the friction coefficient ratio is obvious from the value obtained at the 

end of 1st slow shearing stage (R=1). The value drops at 50 % of the initial value during a 

gradual increase of the rate of displacement between 0.1 and 1 mm/s, after 1.2 m of 

cumulative displacement. The value is then constant during the fast stage at 1 mm/ sec (2 

to 3 m of cumulative displacement). Then, the friction coefficient ratio slowly increases up 

to R=0.7 during the decrease of the rate of displacement from 1 to 0.1 mm/s. The increase 

continues during the slow stage, from R=0.7 to R=1.1 (until 5 m of cumulative 

displacement). Similar behaviour occurred when a gradual increase of the rate of 
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displacement was repeated. This resulted in two distinctive failure lines in the stress path 

graphs of T 16 (Appendix A8).  

 

Figure 4.10 Cumulative displacement and friction coefficient and pore pressure ratio of multi-stage 

tests conducted on SB 20 specimens a) T 13-T 15 (8 stages) and b) T 16 (7 stages). 

 

Figure 4.11 Rate of displacement and residual effective friction angle of multi-stage tests 

conducted on SB 20 specimens (T 13-T 16). 
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When effective friction angles of all stages are compared (Figure 4.11), it is 

obvious that there is a decrease in the faster shearing stages compared to the slow shearing 

stages. 

 

4.4.3  Silica Sand and a 30 % Bentonite Mixture (SB 30) 
 

Tests on mixtures of silica sand 30% bentonite were, due to the higher CF content and 

lower permeability, much slower and more difficult to conduct. The time needed for 

consolidation was app. 4 days. Because of larger height reduction in this specimen, there 

were problems with the vertical load, because the minimum specimen height was limited 

and was reached in some stages before the end of the tests. Because of the above 

mentioned difficulties and the duration of SB 30 specimen tests, only a few single-stage 

undrained shearing tests were conducted and only 3 of 4 multi-stage tests. Although these 

tests are listed in Table 4.2, they will be conducted additionally (T 17 and T 22). 

In all conducted multi-stage tests, negative pore pressure occurred in fast stages 

which reflected the results obtained. In spite of the questionable reliability of these results, 

the results of these tests are shown and described. Their reliability and meaning as well as 

possible reasons for this negative pore pressure will be described and explained in the 

discussion.  

 

Single-Stage Shearing Tests on SB 30 

Figure 4.12a shows the shear resistance of tests T 18, T 19, and T 20. As can be seen, at a 

slow rate of displacement (0.1 mm/s), higher shear resistance was obtained compared to a 

test at 10 mm/s with lower resistance. Test T 19, at the rate of 1 mm/s shows the highest 

value of shear resistance, which is according to previous results questionable and should be 

repeated. This can also be seen in the stress path graph (Figure 4.12b) with obvious 

abnormalities in ESP of test T 19. When residual effective friction angles of all tests are 

drawn in relation to the rates of displacement (Figure 4.12c), it can be seen that lower 

effective friction angles are obtain compared to the SB 20 specimen as expected 

(Φr’ =17.9° for SB 30 compared to the average Φr’ =31° for SB 20 at 0.1 mm/s, and 

Φr’ =7.6° for SB 30 compared to the average Φr’ =18° at 10 mm/s). 
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Figure 4.12 SB 30 single-stage tests results: a) Shear displacement, b) Stress Path and c) Rate of 

displacement.
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Multi-Stage Shearing Tests on SB 30 

Figure 4.13 shows a cumulative displacement graph with significant changes in the friction 

coefficient and pore pressure ratio of multi-stage tests on the SB 30 specimen. In the test of 

undrained shearing with consolidation (T 21), a small dilation occurred in stages II and IV, 

and the drop of pore pressure was probably caused by the dilation. Also, in stages VII and 

VIII there was a significant change in vertical displacement, probably caused by leaking, 

or undulation of the formed shear zone that caused the loading plate to move up and down 

(the cyclic shape  indicates this). The variation in vertical displacement, as well as shear 

resistance, can be seen in the figures of T 21 given in Appendix A9. Even if leakage 

occurred, it did not affect the results of stages I-VI. Figure 4.13a shows a decrease of the 

friction coefficient ratio in stages II and IV and an increase of friction coefficient ratio in 

the slow stages (III and V).  

In Test T 23, the valve was open during the test and shearing was partially drained 

as in the SB 20 specimen. Figure 4.13a shows excessive pore pressure in stage I that 

suddenly decreases in stage II and becomes negative possibly due to dilation or cavitation. 

Regardless of pore pressure, Figure 4.13a indicates a drop in the friction coefficient ratio 

between slow and fast stages. The comparison regarding the first stage, when R=1 shows 

much bigger variations compared to the SB 20 specimen. In the case of the SB 20 

specimen, the consolidation that followed the first stage resulted in the maximum height 

reduction of the specimen (more than 50 % of all height changes occurred until 2 m of 

displacement), while in the case of the SB30 specimen, this height reduction was more 

evenly distributed.  

The results of the test with a gradual change in the rate of displacement show a 

similar pattern to that in the SB 20 case, and are similar with Test T 21, because of the 

same conditions used (undrained shearing and consolidation), but with a more pronounced 

difference of slow and fast stages, and the gradual change between these stages (Figure 

4.13b). 

The effective friction angles of the end of each stage of all multi-stage tests are 

shown in Figure 4.14, indicating a decreasing trend.  
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Figure 4.13 Cumulative displacement and friction coefficient and pore pressure ratio of multi-stage 
tests conducted on SB 30 specimens a) T 21 and T 23 (8 stages) and b) T 24 (7 stages). 

 

Figure 4.14 Rate of displacement and residual effective friction angle of multi-stage tests 
conducted on SB 30 specimens (T 21, T 23 and T24). 
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4.4.4  Shear zone examination 
 

The structures of post-failure test specimens were examined only by visual examination 

after shearing. Slickensides were not found; only shear zones of 4-6 mm were observed 

when the specimen was cut (Figure 4.15). Similar shear zones were observed in sand and 

15 and 30 % bentonite mixures (16- 26 % CF) by Lupini et al. (1981). The formation of 

well-polished slickensides was reported only for soils with a clay fraction higher than 40% 

(Tiwari and Marui 2005, Meehan 2006, Lupini et al. 1981) which was in contrast to what 

Saito (2008) observed in the SB 20 specimens. For some tests when shearing was much 

longer, this zone was even thicker (Figure 4.15c, as expected knowing that the thickness of 

the shear zone increases with an increase in the shear displacement (Tika et al. 1996, 

Tiwari and Marui 2004).  

 

Figure 4.15 Photo of shear zones after shearing: a) SB 20 at 0.1 mm/s until 5 m, b) SB 30 at 1 
mm/s until 10 m and c) SB 30 multi-stage test with total displacement of 30 m. 

 

4.5   DISCUSSIONS 
 

Published data of similar tests conducted on the same material exist. Silica sand is used as 

standard material in laboratory tests in Japan and the results obtained in our study are quite 

similar to those. However, there are few comparable sources for silica sand- bentonite 

mixtures, and the test conditions and apparatus used are quite different.  

Investigating the influence of the rate of displacement on the shear behaviour 

associated with grain crushing, Okada et al. (2004) conducted speed-controlled tests at 

different rates of displacement (3, 5 and 100 mm/s) under a total normal stress of about 

470 kPa. The authors observed the almost constant value of the residual friction angle (32-

34°) after failure, for all rates of displacement used. This was in accordance with results 
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obtained on the same specimen in this thesis. Okada et al. (2004) observed no excess pore 

pressure generated, but observed some grain crushing.  

The results of the silica sand–bentonite mixtures are to some degree comparable to 

previous research (Lupini et al. 1981, Tiwari et al. 2005, Saito 2008). First, these authors' 

tests were conducted on slow rates of shearing in drained conditions. In spite of some 

difficulties in comparing those results, a comparison is given for the slow stages (at 0.1 

mm/s) of multi-stage tests because of the similar displacement used (1 m and 1.5 m). 

Assuming no excess pore pressure is generated in the slow drained test, the normal stress 

of 352 kPa can be calculated. Lupini et al. (1981) obtained a residual value of 30.5° for the 

15 % mixture; and 23.3° for the 30 % mixture, respectively. Tiwari and Marui (2005) 

showed a residual failure envelope at 250 kPa of normal stress, at which the residual 

friction angle for 20 and 30 % mixture could be calculated as 20.8° and 9.5°, respectively. 

Tiwari and Marui (2005) used a linear regression friction angle value instead of the secant 

friction angle used in Lupini et al. (1981). This is true in Saito (2008) and our work as well. 

Our multi-stage tests on SB 20 specimens resulted in a residual friction angle of 28-

32° for the first slow stage and slightly higher values for the other slow stages, due to 

consolidation. For the SB 30 specimens, the residual friction angle of the first slow stage, 

varied from 15° to 22°. As for the other slow stages (III, V, VII), the angle was 

approximately 25°. Single-stage test at 0.1 mm/s, showed a lower value of 18° due to 

longer displacement.  

We used a similar multi-stage testing procedure to the one used by Saito (2008) and 

the results were quite similar. Saito also determined the highest drop in shear resistance in 

the SB 20 specimen between 0.1 and 1 mm/s. However, values obtained in his tests show 

larger difference between the fast and slow failure envelope. He obtained Φ’r ≈33° for slow 

stages and Φ’r ≈14° for fast stage (19° difference). The results for the same specimen used 

in this thesis gave the same value for slow stages, but a much higher value for fast stages 

Φ’r ≈26° (7° difference). However, in the multi-stage test with a gradual change in the rate 

of displacement, this difference was more distinctive, but still lower than in the Saito test 

(11° difference compared to 19° in results obtained by Saito). A possible explanation is 

that the pore pressure measurement in his test is probably not reliable. Two facts indicate 

this: first, the BD value he obtained was 0.92, which implies that the specimen cannot be 

considered fully saturated; second, from stage 4 he had negative pore pressure, which 
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indicates a possible cavitation and making questionable pore pressure measurement from 

that point.  

Obvious discrepancy in results exist, but it is difficult to compare results obtained 

by using different methods, drainage conditions, rates of displacements as well as shearing 

displacement. All these factors will affect the final result and are discussed in more detail 

in the following sections on cohesion, steady state condition and reliability of pore pressure 

measurement. 

It is also worth noting that CF determined by sedimentation in this study seems to 

be overestimated, due to the silty sand used in mixtures. Overestimation in CF is very 

probable in soils containing silt due to the presence of clay-sized particles of silt (Mesri 

and Cepeda-Diaz 1986). The opposite occurred in the case of specimens tested by Lupini 

et al. (1981) and Tiwari and Marui (2005); the CF was lower than the percentage of 

mixtures (13% CF for SB15, 26 % CF for SB 30 in Lupini et al. (1981), and 8.5 % CF for 

SB10, 17 % for SB 20, and 26% for SB 30 in Tiwari and Marui (2005)). 

In the following sections, other issues important for the interpretation and meaning 

of the results are discussed in detail. 

 

Cohesion 

We used a secant effective friction angle by assuming the cohesion is zero and thus, a 

residual strength envelope passes through the origin. Although this is a widely accepted 

assumption, there have been arguments on its accuracy (Tiwari et al 2005a). In Tiwari et 

al.'s (2005a) tests on natural soils, residual strength envelopes resulted in low values of 

cohesion. When comparing these results of tests with sand-bentonite mixtures, Tiwari et al. 

(2005a) explained the difference with Lupini’s results by using a different strength 

interpretation, i.e., secant or the linear regression Φ’r .  

 

The residual-steady state problem (the problem of appropriate shear displacement) 

Ideally, the residual shear strength is obtained when there is no change in shear stress or 

specimen volume/ pore pressure (in the case of drained/undrained tests, respectively) with 

increasing shear displacement. However, the problem of ascertaining the true residual has 
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long been known and is usually solved by the selection of the appropriate shear rate (slow 

enough to allow dissipation of excess pore pressure) or by achieving adequate 

displacement (long enough to ensure excess pore pressure dissipation in the drained test or 

by obtaining constant pressure and effective stress in the undrained test). Achieving 

adequate total displacement can be estimated well by plotting the stress-displacement 

behaviour on a semi-logarithmic base (Bishop et al. 1971, La Gatta 1970, Stark and Eid 

1994). 

In previous rate effect studies, this condition was not always achieved, especially 

during fast shearing (only 200-400 mm for rates 1.67- 6.67 mm/s, Skempton 1985, Lupini 

et al. 1981). However, in order to explain the role of generated pore pressure during fast 

shearing, the authors conducted a prolonged shearing for longer displacement (4 m and 15 

m for shear rates of 2.67 and 5 mm/s). These tests showed low shear resistance that 

remained low until the end of displacement (Tika et al. 1996, Lemos 2003). In the multi-

stage tests conducted by Saito (2008), the specimen was first slowly sheared at 0.01 mm/s 

until 100 mm of displacement. Since during the first stage, shear surface or zone should be 

formed and residual state obtained, it seems that this displacement was not appropriate. 

Also, according to previous research, a minimum displacement of 500 mm is required 

before residual strength is reached (Skempton 1985, Lupini et al. 1981, Tiwari and Marui 

2004). 

Figure 4.16 shows shear displacement in a semi-logarithmic scale for all single-

stage tests conducted on SB 20 and SB 30 specimens. It is obvious that residual state in the 

SB 20 specimen was obtained only when the lowest shear rate was used (0.01 mm/s) at app. 

1 m of displacement. All other shear rates show that the residual state was reached with a 

much longer displacement or not at all.  

Our tests did not differ in this sense from the ones mentioned before. It is clear that 

in multi-stage tests residual strength (as it is "strictly defined"- minimum resistance at 

constant effective stresses, or pore pressure) was not obtained. Although aware of that fact, 

the use of longer displacement in fast stages was estimated as affecting shear strength (by 

increasing the shear zone) more than the case of the "non" residual condition. The 

emphasis was the rate effect; therefore, the effect of other factors that could influence the 

result had to be eliminated. 
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Reliability of pore water pressure monitoring 

ICL-1 enables the monitoring of pore pressure by pore pressure transducers, connected to 

the valves placed in the gutter located 2 mm above the shear zone. In the low permeable 

materials such as in the clay mixtures  used in this thesis, there is a high possibility that the 

pore-pressure transducers are not reliable because they show the value of the pore pressure 

along the shear surface (or within the shear zone). Also, there is the possibly of a time lag 

in pore pressure monitoring. Considering both factors, the results of tests conducted on SB 

20 specimens appear reliable, and on the SB 30 may be considered not reliable. The right 

side of Figure 4.16 shows the results of the single-stage tests on the SB 30 specimens. As 

can be seen, the pore pressure varies more than in the SB 20 specimens. Also, multi-stage 

tests on the SB 30 specimens resulted in negative pore pressure during fast shearing stages, 

which did not occur in the case of the SB 20 specimen.  

It should also be mentioned that permeability of the specimen during shearing 

changes (usually decreases) due to the structural changes in the shear zone (grain crushing 

of sand and/or particle orientation of clay). This will consequently result in a slower 

dissipation rate for generated excess pore pressure from the shear zone (Okada et al. 2004).  

 

Density 

The shear behaviour will depend on the change of density during shearing in the case of 

drained shearing. In undrained shearing, volume change hardly takes place and the 

variation of density in the shear zone is limited and might be neglected. However, the 

problem of influence of density change on shear behaviour should also be considered in 

undrained multi-stage tests with allowed dissipation, due to the volume change that takes 

place during consolidation. Figure 4.17 show that the change in density in Test T 16 did 

not influence the rate-dependent behaviour of that specimen. In test T 16, the change 

between slow (0.1 mm/s) and fast stages (1 mm/s) was gradual and the difference in 

residual friction angle was the most distinctive (between I and II stages around 13° and 

between III and IV, 10° respectively) 
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SB 20 SB 30 

 

v=0.01 mm/s v=0.01 mm/s 

 

v=0.1 mm/s v=0.1 mm/s 

 

v=1 mm/s v=1 mm/s 

v=10 mm/s v=10 mm/s 

 

Figure 4.16 Shear displacement in log scale for single-stage tests on SB 20 (left side) and SB 30 
(right side). 
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Figure 4.17 Residual friction angle and density, T 16. 

 

Change in the failure line 

As was shown in the results of multi-stage tests, residual strength in the SS 8 specimen was 

independent of the shear rate used, but SB 20 and SB 30 specimens showed a negative rate 

effect, by decreasing residual strength with the increase of the rate of displacement.  

Figure 4.18 shows stress paths of these two types of behaviour. When effective 

stress paths (ESP) of all stages in the multi-stage test on SS 8 specimen are drawn, they all 

trace one failure line with the average residual effective friction angle of 32.6° (Figure 

4.18). Black circles represent the end of each stage.  

However, in the SB 20 specimen, there are two very distinctive failure lines; the 

slow shearing stages with Φ’r =28.6°, and the fast stages with Φ’r =17.6° (Figure 4.18b). 

These are the average values of slow stages (I and III) and fast stages (II and IV), 

respectively. The same was obtained in other SB 20 and SB 30 multi-stage test results with 

different variations between the failure lines of slow and fast stages.  

 

Change of strength with gradual change of the rate of displacement  

The aim of this study was to investigate in more detail the reported drop in the shear 

resistance and residual effective friction angle between 0.1 and 1 mm/s (Skempton 1985, 

Tika et al. 1996 and Saito 2008). In previous reports, the authors all noticed and mentioned 

a critical rate beyond which, structural changes take place. However, the main goal of 
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those studies was an explanation of the mechanism that causes the drop in resistance, and 

consequently the effective friction angle, and not the change itself. 

 

Figure 4.18 Stress path of multi-stage tests: a) SS 8 specimen (T 8) and b) SB 20 specimen). 
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To investigate this claim, multi-stage tests were conducted with the gradual change 

in the rate of displacement to observe a continuous change of soil behaviour with the 

increase/ decrease of the rate of displacement. Unfortunately, although some tests, using 

the wider range of rates of displacement, were conducted (0.1-10 mm/s), due to the large 

displacement (more than 30 m), the tests resulted in leakage and were not taken into 

account in this interpretation.  

Figure 4.19 shows the continuous change of the effective friction angle between 0.1 

and 1 mm/s for all multistage tests with a gradual change of the rate of displacement (T 8, 

T 16 and T 24). The decreasing trend in the effective friction angle in the case of the 

gradual increase of the rate of displacement is clearly visible. The trend is distinctive in the 

case of the SB 20 and SB 30 specimens, and negligible in the case of silica sand Both the 

SB 20 and SB 30 specimens showed a similar pattern, for both "increasing" stages (I-II and 

III-IV) (Figure 4.19a). The trend is expressed by the equations shown in Figure 4.19. 

However, in the "decreasing" stage (II-III), only specimen SB 20 showed an increasing 

trend (Figure 4.19b), but  the trend was much milder than in the case of "increasing" stages 

(I-II and III-IV) for the same specimen. A gradual increase/ decrease of the rate of 

displacement is indicated by the arrow on the x-axis of Figure 4.19a and b.  

Figure 4.19 shows that the residual friction angle changes linearly with the 

logarithm of the rate of displacement. A similar behaviour was observed by others (Ruina 

1983, Wedage et al. 1998) and is well known in geophysics. It should be mentioned that 

this findings mostly refers to solid state mechanics and fault mechanics. 
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Figure 4.19 Residual friction angle and rate of displacement (T 8, T 16 and T 24) 
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4.6   SUMMARY AND CONCLUSION 
 

The residual strength of soil is an important parameter--- one that controls behaviour when 

the shear plane already exists, as in re-activated landslides. On an existing shear surface, 

the shear strength is considerably changed and consequently affects the future behaviour of 

that soil (Bromhead 1992). Previous investigations reported a negative rate effect in soils 

showing transitional shear behaviour. However, in those studies, the pore pressure 

measurement was or: was neither possible nor reliable. 

A series of ring shear tests were conducted on sand-bentonite mixtures to 

investigate the drop in strength between 0.1 and 1 mm/s. Two series of tests were 

conducted for each specimen (SS 8, SB 20 and SB 30). Single-step shearing in undrained 

conditions and multi-stage shearing in varying conditions (drained/ undrained/ partially 

drained, with or without consolidation). In multi-stage tests, shear zones were formed by 

slow shearing and then were tested at alternately fast and slow rates of displacement. 

To avoid the influence of shear displacement on the shear strength, it was estimated 

that 1 m of displacement for each stage should be applied. Results on the SB 20 specimens 

showed a clear drop in shear resistance and in the effective secant friction angle. This was 

especially clear from the multi-stage test with a gradual change of the rate of displacement. 

The highest drop in strength occurred between 0.1 and 1 mm/s, which confirmed findings 

of earlier studies (Skempton 1985, Tika et al. 1996, Saito 2008). The issue of adequate 

shearing displacement in order to obtain a residual state of soil was discussed previously. 

Even if multi-stage displacement of 1 m for each stage was not adequate, and the drop in 

strength could be questionable, the findings of the multi-stage tests were confirmed with 

the results of the single-step shear tests. Undrained single-stage tests resulted in a lower 

shearing resistance even at large shear displacements. The results of multi-stage tests on 

the SB 30 specimens are considered unreliable due to negative pore pressure that occurred 

during fast shearing. However, the results do indicate a decrease in strength with an 

increasing rate of displacement. 

Comparison of the multi-stage tests with the gradual change of the rate of 

displacement (T 8, T 16, and T 24), showed the following: in the case of an increased rate 

of displacement, there is a significant decrease of shear resistance and effective friction 
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angle in the SB 20 and SB 30 specimens. The results showed that the residual friction 

angle decreases linearly with the increase of the logarithm for the rate of displacement.  

There are two existing explanations for the change in the strength of cohesive soils: 

1) the change in strength is caused by the influence of excess pore water pressure or by a 

change in the shear mode in the shear zone (Lemos 1986, Tika et al. 1996, Saito 2008). 

Possible mechanisms of the change were not explained in this thesis because such 

explanation was outside of the scope of the thesis. However, it would be necessary to 

clearly understand the mechanism of both the positive and negative rate effect of cohesive 

soils. Saito (2008) tried to explain the mechanism of negative rate effect by clay 

enrichment during fast stages, by the mechanism of particle segregation. To confirm his 

work, it is necessary to conduct additional measurements, like the measurement of grain 

size distribution of the shear zone after shearing at different rates of displacement and at 

certain displacements. 

Practical implications of these findings are important because the soils that show a 

negative rate effect will result in accelerating movement which usually results in negative 

consequences. Traditional limit equilibrium analysis does not take into account rate effects 

in weak soils, but considers the friction angle as static and constant.  
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Chapter 5 Conclusions and Future 
Research 

 

 

 

A transportable and compact high-stress undrained-loading ring shear was designed 

by Professor Sassa in 2010 (Sassa et al. 2012) as a part of a Japanese-Croatian Research 

Project. It was developed and modified through 2011. Although smaller in dimensions 

compared with previous versions, it has high capacity; it can load normal stress and keep to 

the undrained condition of pore water pressure up to 1 MPa. In Chapter 2 the concept, 

design, and construction of ICL-1 was presented. The results of the tests on silica sand, as 

well as the experimental procedure, are described in detail. Typical test results are 

presented to show the efficiency of this ring shear apparatus as well as its application for 

earthquake induced landslides through undrained cyclic loading tests and rain-induced 

landslide through drained pore-pressure control tests.  

The ring shear apparatus has two purposes: it can be used for basic soil tests (for 

determination of soil parameters) and for the landslide simulation test. In this thesis, ICL-1 

was applied for both purposes. In Chapter 3 we applied ICL-1 to the case of a real 

landslide, the Grohovo landslide. The assessment of two triggers was performed; namely, 

rainfall and earthquakes. The rainfall analysis was performed for long and short-term 

rainfall data as well as for the probability of their occurrence. The assessment of seismic 

triggering was done using the ICL-1. The surface samples from Grohovo were used in 

seismic loading simulation by conducting a cyclic loading test. The conducted test 

indicated soil hardening behaviour that has to be investigated further. Also, tests on 

borehole samples from the assumed sliding surface, need to be conducted, both as basic 

tests; i.e., as a speed-control test to obtain soil parameters and as a simulation test. 

According to the results from Chapter 3, a pore pressure control test that will simulate 

groundwater rise would be desirable. Although the rainfall data analysis performed in 

Chapter 3 showed that the influence of a cumulative, long rainy period has a much higher 

impact on landslide reactivation, the role of short term events shouldn’t be neglected. If 

hydrological triggering is defined as a decrease in shear strength due to an increase in pore-
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water pressure on the potential failure surface, then pore-water pressure increase may be 

related to rainfall infiltration and percolation (saturation from above), or may be the result 

of the groundwater table rising (saturation from below) (Terlien 1998, Iverson 2000, 2005). 

Therefore, a more detail hydrological analysis should be performed to define threshold 

values for reactivation of the Grohovo landslide. Also, internal and boundary pore-water 

pressures are among material properties such as strength, viscosity, and relative density, 

and are main factors that may affect landslide velocity (Schultz et al. 2009). 

Ring shear apparatus was also applied for the investigation of basic soil 

characteristics, specifically in Chapter 4, for the investigation of a negative rate effect on 

sand-bentonite mixtures. There is a significant drop in shear strength of SB 20 and SB 30 

mixtures between 0.1 and 1 mm/s rate of displacement. The tests on SB 20 specimens 

showed to be reliable regarding the measurement of pore pressure. Both single-stage 

undrained tests as well as multi-stage shearing tests in varying conditions (undrained/ 

partially/ drained; with/ without consolidation) showed a decrease of strength with an 

increasing rate of displacement. This was most evident in multi-stage tests with undrained 

shearing by gradual change of the rate of displacement from 0.1 to 1 mm/s. From the 

results of the same tests, the same trend for SB 20 and SB 30 specimens was obtained, in 

which the residual friction angle increases linearly with the logarithm of the rate of 

displacement. Practical implications are obvious for both first-time slides and reactivated 

ones: if the critical displacement rate is exceeded in the soil that shows negative rate effect, 

the strength drops below the slow residual and accelerates. There is an argument about the 

significance of negative rate effect in the rates of displacement that are used at fast rates of 

displacements. However, landslides exhibit a great diversity of movement styles and rates, 

ranging from centimeters per year to meters per second (WL/WPI 1990). Velocity is also 

the most important parameter determining the destructive potential of landslides (Hungr 

2007). As professor Skempton pointed out, the rates of displacement in reactivated 

landslides can vary by many orders of magnitudes (very fast for ones induced by 

earthquakes) and the knowledge of rate effects should be an important part of residual 

strength studies (Skempton 1985). 

Although cyclic tests on the Grohovo landslide showed soil-hardening behaviour that 

should consequently result in the decelerating behaviour of a reactivated landslide, it is 

necessary to conduct additional tests to confirm soil-hardening behaviour Most of the 
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instabilities in the coastal part of Croatia occur in the flysch deposits. Due to variability in 

mineralogical composition of flysch deposits, they could be in the group that shows 

transitional shearing behaviour (CF 10-40 %). Laboratory work on typical sand or clay 

behaviour is extensive; however, for the transitional zone this is not the case.  

Therefore, the investigation of rate effect should be applied to natural samples that 

show transitional shear behaviour. Also, one important parameter that was not addressed 

properly in our rate effect study is pore water chemistry. Usually, laboratory tests are 

conducted by using distilled water or de-aired water as in our case. However, if pore water 

chemistry is changed it will affect the measured residual strength of soil and consequently, 

slope stability (DiMaio 1996, Leroueil 2001, Tiwari et al. 2005). From a practical point of 

view, this means that the residual strength parameters should be evaluated with pore water 

chemistry close to the pore water chemistry existing in situ. 
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Appendix: Results of Multi-stage Tests  
 

 
 
 

 

The Appendix contains figures of all multi-stage tests conducted (listed in Table 4.2). In 

Chapter 4 they were explained separately for SS 8, SB 20 and SB 30 specimens. However, 

because figures in the text compared results of more multi-stage tests, some of the data 

could not be presented. Here, results of all multi-stage tests are compiled for cumulative 

displacement, shear displacement of 1 m, stress paths of all stages and rate of displacement 

and effective friction angle.  
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A.1 Test T 5-SS 8-Undrained shearing with consolidation (I-VIII; C-O) 

A.2 Test T 6-SS 8-Undrained shearing without consolidation (I-VIII; C-C) 

A.3 Test T 7-SS 8-Drained shearing with consolidation (I-VIII; O-O) 

A.4 Test T 8-SS 8-Undrained shearing with consolidation (I-V; C-O) 

A.5 Test T 13-SB 20-Undrained shearing with consolidation (I-VIII; C-O) 

A.6 Test T 14-SB 20-Undrained shearing without consolidation (I-VIII; C-C) 

A.7 Test T 15-SB 20-Partialy drained shearing with consolidation (I-VIII; O-O)  

A.8 Test T 16-SB 20-Undrained shearing with consolidation (I-IV; C-O) 

A.9 Test T 21-SB 30-Undrained shearing with consolidation (I-VIII; C-O) 

A.10 Test T 23-SB 30-Partialy drained shearing with consolidation (I-VIII; O-O) 

A.11 Test T 24-SB 30-Undrained shearing with consolidation (I-IV; C-O) 
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A.1   Test T 5-SS 8-Undrained shearing with consolidation (I-VIII; C-O) 
 

 

Fig. A.1.1 Cumulative shear displacement and a) Effective friction angle (Φ’ ) and rate of 

displacement (vs), b) Shear resistance (τ) , pore pressure (u) and vertical displacement (Dv). 

 

 

Fig. A.1.2 Shear displacement and a) Effective friction angle (Φ’ ), b) Shear resistance, c) Pore 

pressure and d) Vertical displacement. 
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Fig. A.1.3 Stress path of all Stages (I-VIII), TSP- total stress path, ESP- effective stress path. 

 

 

Fig. A.1.4 Rate of displacement and effective friction angle. 
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A.2   Test T 6-SS 8-Undrained shearing without consolidation                    
(I-VIII; C-C) 

 
Fig. A.2.1 Cumulative shear displacement and a) Effective friction angle (Φ’ ) and rate of 

displacement (vs), b) Shear resistance (τ) , pore pressure (u) and vertical displacement (Dv). 

 

 

Fig. A.2.2 Shear displacement and a) Effective friction angle (Φ’ ), b) Shear resistance, c) Pore 

pressure and d) Vertical displacement. 
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Fig. A.2.3 Stress path of all Stages (I-VIII), TSP- total stress path, ESP- effective stress path. 

 

 

Fig. A.2.4 Rate of displacement and effective friction angle. 
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A.3   Test T 7-SS 8-Drained shearing with consolidation (I-VIII; O-O) 
 

 

Fig. A.3.1 Cumulative shear displacement and a) Effective friction angle (Φ’ ) and rate of 

displacement (vs), b) Shear resistance (τ) , pore pressure (u) and vertical displacement (Dv). 

 

 

Fig. A.3.2 Shear displacement and a) Effective friction angle (Φ’ ), b) Shear resistance, c) Pore 

pressure and d) Vertical displacement. 
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Fig. A.3.3 Stress path of all stages (I-VIII), TSP- total stress path, ESP- effective stress path. 

 

 

Fig. A.3.4 Rate of displacement and effective friction angle. 
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A.4   Test T 8-SS 8-Undrained shearing with consolidation (I-V; C-O) 
 

 

Fig. A.4.1 Cumulative shear displacement and a) Effective friction angle (Φ’ ) and rate of 

displacement (vs), b) Shear resistance (τ) , pore pressure (u) and vertical displacement (Dv). 

 

 

Fig. A.4.2 Shear displacement and a) Effective friction angle (Φ’ ), b) Shear resistance, c) Pore 

pressure and d) Vertical displacement. 
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Fig. A.4.3 Stress path of all stages (I-VIII), TSP- total stress path, ESP- effective stress path. 

 

 

Fig. A.4.4 Rate of displacement and effective friction angle. 
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A.5   Test T 13-SB 20-Undrained shearing with consolidation                     
(I-VIII; C-O) 

 

 

Fig. A.5.1 Cumulative shear displacement and a) Effective friction angle (Φ’ ) and rate of 

displacement (vs), b) Shear resistance (τ) , pore pressure (u) and vertical displacement (Dv) 

 

 

Fig. A.5.2 Shear displacement and a) Effective friction angle (Φ’ ), b) Shear resistance, c) Pore 

pressure and d) Vertical displacement.
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Fig. A.5.3 Stress path of all stages (I-VIII), TSP- total stress path, ESP- effective stress path. 

 

 

Fig. A.5.4 Rate of displacement and effective friction angle. 
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A.6   Test T 14-SB 20-Undrained shearing without consolidation               
(I-VIII; C-C) 

 

 

Fig. A.6.1 Cumulative shear displacement and a) Effective friction angle (Φ’ ) and rate of 

displacement (vs), b) Shear resistance (τ) , pore pressure (u) and vertical displacement (Dv) 

 

Fig. A.6.2 Shear displacement and a) Effective friction angle (Φ’ ), b) Shear resistance, c) Pore 

pressure and d) Vertical displacement.
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Fig. A.6.3 Stress path of all stages (I-VIII), TSP- total stress path, ESP- effective stress path. 

 

 

Fig. A.6.4 Rate of displacement and effective friction angle. 
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A.7   Test T 15-SB 20-Partialy drained shearing with consolidation            
(I-VIII; O-O) 

 

 

Fig. A.7.1 Cumulative shear displacement and a) Effective friction angle (Φ’ ) and rate of 

displacement (vs), b) Shear resistance (τ) , pore pressure (u) and vertical displacement (Dv) 

 

 

Fig. A.7.2 Shear displacement and a) Effective friction angle (Φ’ ), b) Shear resistance, c) Pore 

pressure and d) Vertical displacement.
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Fig. A.7.3 Stress path of all stages (I-VIII), TSP- total stress path, ESP- effective stress path. 

 

 

Fig. A.7.4 Rate of displacement and effective friction angle. 
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A.8   Test T 16-SB 20-Undrained shearing with consolidation (I-IV; C-O) 
 

 

Cumulative shear displacement and a) Effective friction angle (Φ’ ) and rate of displacement (vs), b) 

Shear resistance (τ) , pore pressure (u) and vertical displacement (Dv) 

 

 

Fig. A.8.2 Shear displacement and a) Effective friction angle (Φ’ ), b) Shear resistance, c) Pore 

pressure and d) Vertical displacement. 
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Fig. A.8.3 Stress path of all stages (I-VIII), TSP- total stress path, ESP- effective stress path. 

 

 

Fig. A.8.4 Rate of displacement and effective friction angle. 
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A.9   Test T 21-SB 30-Undrained shearing with consolidation                     
(I-VIII; C-O) 

 

 

Fig. A.9.1 Cumulative shear displacement and a) Effective friction angle (Φ’ ) and rate of 

displacement (vs), b) Shear resistance (τ) , pore pressure (u) and vertical displacement (Dv) 

 

 

Fig. A.9.2 Shear displacement and a) Effective friction angle (Φ’ ), b) Shear resistance, c) Pore 

pressure and d) Vertical displacement.
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Fig. A.9.3 Stress path of all stages (I-VIII), TSP- total stress path, ESP- effective stress path. 

 

 

Fig. A.9.4 Rate of displacement and effective friction angle. 
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A.10   Test T 23-SB 30-Partialy drained shearing with consolidation                    
(I-VIII; O-O) 

 

 

Fig. A.10.1 Cumulative shear displacement and a) Effective friction angle (Φ’ ) and rate of 

displacement (vs), b) Shear resistance (τ) , pore pressure (u) and vertical displacement (Dv). 

 

 

Fig. A.10.2 Shear displacement and a) Effective friction angle (Φ’ ), b) Shear resistance, c) Pore 

pressure and d) Vertical displacement.
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Fig. A.10.3 Stress path of all stages (I-VIII), TSP- total stress path, ESP- effective stress path. 

 

 

Fig. A.10.4 Rate of displacement and effective friction angle. 

 



− Appendix 

 

 - 128 -

A.11   Test T 24-SB 30-Undrained shearing with consolidation                   
(I-IV; C-O) 

 

 

Fig. A.11.1 Cumulative shear displacement and a) Effective friction angle (Φ’ ) and rate of 

displacement (vs), b) Shear resistance (τ) , pore pressure (u) and vertical displacement (Dv). 

 

 

Fig. A.11.2 Shear displacement and a) Effective friction angle (Φ’ ), b) Shear resistance, c) Pore 

pressure and d) Vertical displacement. 
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Fig. A.11.3 Stress path of all stages (I-VIII), TSP- total stress path, ESP- effective stress path. 

 

 

Fig. A.11.4 Rate of displacement and effective friction angle. 
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